Statistics
| Branch: | Revision:

root / hw / sun4u.c @ 39186d8a

History | View | Annotate | Download (26.8 kB)

1
/*
2
 * QEMU Sun4u/Sun4v System Emulator
3
 *
4
 * Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "apb_pci.h"
27
#include "pc.h"
28
#include "nvram.h"
29
#include "fdc.h"
30
#include "net.h"
31
#include "qemu-timer.h"
32
#include "sysemu.h"
33
#include "boards.h"
34
#include "firmware_abi.h"
35
#include "fw_cfg.h"
36
#include "sysbus.h"
37
#include "ide.h"
38
#include "loader.h"
39
#include "elf.h"
40
#include "blockdev.h"
41
#include "exec-memory.h"
42

    
43
//#define DEBUG_IRQ
44
//#define DEBUG_EBUS
45
//#define DEBUG_TIMER
46

    
47
#ifdef DEBUG_IRQ
48
#define CPUIRQ_DPRINTF(fmt, ...)                                \
49
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
50
#else
51
#define CPUIRQ_DPRINTF(fmt, ...)
52
#endif
53

    
54
#ifdef DEBUG_EBUS
55
#define EBUS_DPRINTF(fmt, ...)                                  \
56
    do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
57
#else
58
#define EBUS_DPRINTF(fmt, ...)
59
#endif
60

    
61
#ifdef DEBUG_TIMER
62
#define TIMER_DPRINTF(fmt, ...)                                  \
63
    do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
64
#else
65
#define TIMER_DPRINTF(fmt, ...)
66
#endif
67

    
68
#define KERNEL_LOAD_ADDR     0x00404000
69
#define CMDLINE_ADDR         0x003ff000
70
#define INITRD_LOAD_ADDR     0x00300000
71
#define PROM_SIZE_MAX        (4 * 1024 * 1024)
72
#define PROM_VADDR           0x000ffd00000ULL
73
#define APB_SPECIAL_BASE     0x1fe00000000ULL
74
#define APB_MEM_BASE         0x1ff00000000ULL
75
#define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
76
#define PROM_FILENAME        "openbios-sparc64"
77
#define NVRAM_SIZE           0x2000
78
#define MAX_IDE_BUS          2
79
#define BIOS_CFG_IOPORT      0x510
80
#define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
81
#define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
82
#define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
83

    
84
#define MAX_PILS 16
85

    
86
#define TICK_MAX             0x7fffffffffffffffULL
87

    
88
struct hwdef {
89
    const char * const default_cpu_model;
90
    uint16_t machine_id;
91
    uint64_t prom_addr;
92
    uint64_t console_serial_base;
93
};
94

    
95
typedef struct EbusState {
96
    PCIDevice pci_dev;
97
    MemoryRegion bar0;
98
    MemoryRegion bar1;
99
} EbusState;
100

    
101
int DMA_get_channel_mode (int nchan)
102
{
103
    return 0;
104
}
105
int DMA_read_memory (int nchan, void *buf, int pos, int size)
106
{
107
    return 0;
108
}
109
int DMA_write_memory (int nchan, void *buf, int pos, int size)
110
{
111
    return 0;
112
}
113
void DMA_hold_DREQ (int nchan) {}
114
void DMA_release_DREQ (int nchan) {}
115
void DMA_schedule(int nchan) {}
116

    
117
void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
118
{
119
}
120

    
121
void DMA_register_channel (int nchan,
122
                           DMA_transfer_handler transfer_handler,
123
                           void *opaque)
124
{
125
}
126

    
127
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
128
{
129
    fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
130
    return 0;
131
}
132

    
133
static int sun4u_NVRAM_set_params(M48t59State *nvram, uint16_t NVRAM_size,
134
                                  const char *arch, ram_addr_t RAM_size,
135
                                  const char *boot_devices,
136
                                  uint32_t kernel_image, uint32_t kernel_size,
137
                                  const char *cmdline,
138
                                  uint32_t initrd_image, uint32_t initrd_size,
139
                                  uint32_t NVRAM_image,
140
                                  int width, int height, int depth,
141
                                  const uint8_t *macaddr)
142
{
143
    unsigned int i;
144
    uint32_t start, end;
145
    uint8_t image[0x1ff0];
146
    struct OpenBIOS_nvpart_v1 *part_header;
147

    
148
    memset(image, '\0', sizeof(image));
149

    
150
    start = 0;
151

    
152
    // OpenBIOS nvram variables
153
    // Variable partition
154
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
155
    part_header->signature = OPENBIOS_PART_SYSTEM;
156
    pstrcpy(part_header->name, sizeof(part_header->name), "system");
157

    
158
    end = start + sizeof(struct OpenBIOS_nvpart_v1);
159
    for (i = 0; i < nb_prom_envs; i++)
160
        end = OpenBIOS_set_var(image, end, prom_envs[i]);
161

    
162
    // End marker
163
    image[end++] = '\0';
164

    
165
    end = start + ((end - start + 15) & ~15);
166
    OpenBIOS_finish_partition(part_header, end - start);
167

    
168
    // free partition
169
    start = end;
170
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
171
    part_header->signature = OPENBIOS_PART_FREE;
172
    pstrcpy(part_header->name, sizeof(part_header->name), "free");
173

    
174
    end = 0x1fd0;
175
    OpenBIOS_finish_partition(part_header, end - start);
176

    
177
    Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
178

    
179
    for (i = 0; i < sizeof(image); i++)
180
        m48t59_write(nvram, i, image[i]);
181

    
182
    return 0;
183
}
184
static unsigned long sun4u_load_kernel(const char *kernel_filename,
185
                                       const char *initrd_filename,
186
                                       ram_addr_t RAM_size, long *initrd_size)
187
{
188
    int linux_boot;
189
    unsigned int i;
190
    long kernel_size;
191
    uint8_t *ptr;
192

    
193
    linux_boot = (kernel_filename != NULL);
194

    
195
    kernel_size = 0;
196
    if (linux_boot) {
197
        int bswap_needed;
198

    
199
#ifdef BSWAP_NEEDED
200
        bswap_needed = 1;
201
#else
202
        bswap_needed = 0;
203
#endif
204
        kernel_size = load_elf(kernel_filename, NULL, NULL, NULL,
205
                               NULL, NULL, 1, ELF_MACHINE, 0);
206
        if (kernel_size < 0)
207
            kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
208
                                    RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
209
                                    TARGET_PAGE_SIZE);
210
        if (kernel_size < 0)
211
            kernel_size = load_image_targphys(kernel_filename,
212
                                              KERNEL_LOAD_ADDR,
213
                                              RAM_size - KERNEL_LOAD_ADDR);
214
        if (kernel_size < 0) {
215
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
216
                    kernel_filename);
217
            exit(1);
218
        }
219

    
220
        /* load initrd */
221
        *initrd_size = 0;
222
        if (initrd_filename) {
223
            *initrd_size = load_image_targphys(initrd_filename,
224
                                               INITRD_LOAD_ADDR,
225
                                               RAM_size - INITRD_LOAD_ADDR);
226
            if (*initrd_size < 0) {
227
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
228
                        initrd_filename);
229
                exit(1);
230
            }
231
        }
232
        if (*initrd_size > 0) {
233
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
234
                ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
235
                if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
236
                    stl_p(ptr + 24, INITRD_LOAD_ADDR + KERNEL_LOAD_ADDR - 0x4000);
237
                    stl_p(ptr + 28, *initrd_size);
238
                    break;
239
                }
240
            }
241
        }
242
    }
243
    return kernel_size;
244
}
245

    
246
void pic_info(Monitor *mon)
247
{
248
}
249

    
250
void irq_info(Monitor *mon)
251
{
252
}
253

    
254
void cpu_check_irqs(CPUState *env)
255
{
256
    uint32_t pil = env->pil_in |
257
                  (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
258

    
259
    /* check if TM or SM in SOFTINT are set
260
       setting these also causes interrupt 14 */
261
    if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
262
        pil |= 1 << 14;
263
    }
264

    
265
    /* The bit corresponding to psrpil is (1<< psrpil), the next bit
266
       is (2 << psrpil). */
267
    if (pil < (2 << env->psrpil)){
268
        if (env->interrupt_request & CPU_INTERRUPT_HARD) {
269
            CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
270
                           env->interrupt_index);
271
            env->interrupt_index = 0;
272
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
273
        }
274
        return;
275
    }
276

    
277
    if (cpu_interrupts_enabled(env)) {
278

    
279
        unsigned int i;
280

    
281
        for (i = 15; i > env->psrpil; i--) {
282
            if (pil & (1 << i)) {
283
                int old_interrupt = env->interrupt_index;
284
                int new_interrupt = TT_EXTINT | i;
285

    
286
                if (env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt) {
287
                    CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
288
                                   "current %x >= pending %x\n",
289
                                   env->tl, cpu_tsptr(env)->tt, new_interrupt);
290
                } else if (old_interrupt != new_interrupt) {
291
                    env->interrupt_index = new_interrupt;
292
                    CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
293
                                   old_interrupt, new_interrupt);
294
                    cpu_interrupt(env, CPU_INTERRUPT_HARD);
295
                }
296
                break;
297
            }
298
        }
299
    } else if (env->interrupt_request & CPU_INTERRUPT_HARD) {
300
        CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
301
                       "current interrupt %x\n",
302
                       pil, env->pil_in, env->softint, env->interrupt_index);
303
        env->interrupt_index = 0;
304
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
305
    }
306
}
307

    
308
static void cpu_kick_irq(CPUState *env)
309
{
310
    env->halted = 0;
311
    cpu_check_irqs(env);
312
    qemu_cpu_kick(env);
313
}
314

    
315
static void cpu_set_irq(void *opaque, int irq, int level)
316
{
317
    CPUState *env = opaque;
318

    
319
    if (level) {
320
        CPUIRQ_DPRINTF("Raise CPU IRQ %d\n", irq);
321
        env->pil_in |= 1 << irq;
322
        cpu_kick_irq(env);
323
    } else {
324
        CPUIRQ_DPRINTF("Lower CPU IRQ %d\n", irq);
325
        env->pil_in &= ~(1 << irq);
326
        cpu_check_irqs(env);
327
    }
328
}
329

    
330
typedef struct ResetData {
331
    CPUState *env;
332
    uint64_t prom_addr;
333
} ResetData;
334

    
335
void cpu_put_timer(QEMUFile *f, CPUTimer *s)
336
{
337
    qemu_put_be32s(f, &s->frequency);
338
    qemu_put_be32s(f, &s->disabled);
339
    qemu_put_be64s(f, &s->disabled_mask);
340
    qemu_put_sbe64s(f, &s->clock_offset);
341

    
342
    qemu_put_timer(f, s->qtimer);
343
}
344

    
345
void cpu_get_timer(QEMUFile *f, CPUTimer *s)
346
{
347
    qemu_get_be32s(f, &s->frequency);
348
    qemu_get_be32s(f, &s->disabled);
349
    qemu_get_be64s(f, &s->disabled_mask);
350
    qemu_get_sbe64s(f, &s->clock_offset);
351

    
352
    qemu_get_timer(f, s->qtimer);
353
}
354

    
355
static CPUTimer* cpu_timer_create(const char* name, CPUState *env,
356
                                  QEMUBHFunc *cb, uint32_t frequency,
357
                                  uint64_t disabled_mask)
358
{
359
    CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
360

    
361
    timer->name = name;
362
    timer->frequency = frequency;
363
    timer->disabled_mask = disabled_mask;
364

    
365
    timer->disabled = 1;
366
    timer->clock_offset = qemu_get_clock_ns(vm_clock);
367

    
368
    timer->qtimer = qemu_new_timer_ns(vm_clock, cb, env);
369

    
370
    return timer;
371
}
372

    
373
static void cpu_timer_reset(CPUTimer *timer)
374
{
375
    timer->disabled = 1;
376
    timer->clock_offset = qemu_get_clock_ns(vm_clock);
377

    
378
    qemu_del_timer(timer->qtimer);
379
}
380

    
381
static void main_cpu_reset(void *opaque)
382
{
383
    ResetData *s = (ResetData *)opaque;
384
    CPUState *env = s->env;
385
    static unsigned int nr_resets;
386

    
387
    cpu_reset(env);
388

    
389
    cpu_timer_reset(env->tick);
390
    cpu_timer_reset(env->stick);
391
    cpu_timer_reset(env->hstick);
392

    
393
    env->gregs[1] = 0; // Memory start
394
    env->gregs[2] = ram_size; // Memory size
395
    env->gregs[3] = 0; // Machine description XXX
396
    if (nr_resets++ == 0) {
397
        /* Power on reset */
398
        env->pc = s->prom_addr + 0x20ULL;
399
    } else {
400
        env->pc = s->prom_addr + 0x40ULL;
401
    }
402
    env->npc = env->pc + 4;
403
}
404

    
405
static void tick_irq(void *opaque)
406
{
407
    CPUState *env = opaque;
408

    
409
    CPUTimer* timer = env->tick;
410

    
411
    if (timer->disabled) {
412
        CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
413
        return;
414
    } else {
415
        CPUIRQ_DPRINTF("tick: fire\n");
416
    }
417

    
418
    env->softint |= SOFTINT_TIMER;
419
    cpu_kick_irq(env);
420
}
421

    
422
static void stick_irq(void *opaque)
423
{
424
    CPUState *env = opaque;
425

    
426
    CPUTimer* timer = env->stick;
427

    
428
    if (timer->disabled) {
429
        CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
430
        return;
431
    } else {
432
        CPUIRQ_DPRINTF("stick: fire\n");
433
    }
434

    
435
    env->softint |= SOFTINT_STIMER;
436
    cpu_kick_irq(env);
437
}
438

    
439
static void hstick_irq(void *opaque)
440
{
441
    CPUState *env = opaque;
442

    
443
    CPUTimer* timer = env->hstick;
444

    
445
    if (timer->disabled) {
446
        CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
447
        return;
448
    } else {
449
        CPUIRQ_DPRINTF("hstick: fire\n");
450
    }
451

    
452
    env->softint |= SOFTINT_STIMER;
453
    cpu_kick_irq(env);
454
}
455

    
456
static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
457
{
458
    return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
459
}
460

    
461
static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
462
{
463
    return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
464
}
465

    
466
void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
467
{
468
    uint64_t real_count = count & ~timer->disabled_mask;
469
    uint64_t disabled_bit = count & timer->disabled_mask;
470

    
471
    int64_t vm_clock_offset = qemu_get_clock_ns(vm_clock) -
472
                    cpu_to_timer_ticks(real_count, timer->frequency);
473

    
474
    TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n",
475
                  timer->name, real_count,
476
                  timer->disabled?"disabled":"enabled", timer);
477

    
478
    timer->disabled = disabled_bit ? 1 : 0;
479
    timer->clock_offset = vm_clock_offset;
480
}
481

    
482
uint64_t cpu_tick_get_count(CPUTimer *timer)
483
{
484
    uint64_t real_count = timer_to_cpu_ticks(
485
                    qemu_get_clock_ns(vm_clock) - timer->clock_offset,
486
                    timer->frequency);
487

    
488
    TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n",
489
           timer->name, real_count,
490
           timer->disabled?"disabled":"enabled", timer);
491

    
492
    if (timer->disabled)
493
        real_count |= timer->disabled_mask;
494

    
495
    return real_count;
496
}
497

    
498
void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
499
{
500
    int64_t now = qemu_get_clock_ns(vm_clock);
501

    
502
    uint64_t real_limit = limit & ~timer->disabled_mask;
503
    timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
504

    
505
    int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
506
                    timer->clock_offset;
507

    
508
    if (expires < now) {
509
        expires = now + 1;
510
    }
511

    
512
    TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
513
                  "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
514
                  timer->name, real_limit,
515
                  timer->disabled?"disabled":"enabled",
516
                  timer, limit,
517
                  timer_to_cpu_ticks(now - timer->clock_offset,
518
                                     timer->frequency),
519
                  timer_to_cpu_ticks(expires - now, timer->frequency));
520

    
521
    if (!real_limit) {
522
        TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
523
                timer->name);
524
        qemu_del_timer(timer->qtimer);
525
    } else if (timer->disabled) {
526
        qemu_del_timer(timer->qtimer);
527
    } else {
528
        qemu_mod_timer(timer->qtimer, expires);
529
    }
530
}
531

    
532
static void dummy_isa_irq_handler(void *opaque, int n, int level)
533
{
534
}
535

    
536
/* EBUS (Eight bit bus) bridge */
537
static void
538
pci_ebus_init(PCIBus *bus, int devfn)
539
{
540
    qemu_irq *isa_irq;
541

    
542
    pci_create_simple(bus, devfn, "ebus");
543
    isa_irq = qemu_allocate_irqs(dummy_isa_irq_handler, NULL, 16);
544
    isa_bus_irqs(isa_irq);
545
}
546

    
547
static int
548
pci_ebus_init1(PCIDevice *pci_dev)
549
{
550
    EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
551

    
552
    isa_bus_new(&pci_dev->qdev, pci_address_space_io(pci_dev));
553

    
554
    pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
555
    pci_dev->config[0x05] = 0x00;
556
    pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
557
    pci_dev->config[0x07] = 0x03; // status = medium devsel
558
    pci_dev->config[0x09] = 0x00; // programming i/f
559
    pci_dev->config[0x0D] = 0x0a; // latency_timer
560

    
561
    isa_mmio_setup(&s->bar0, 0x1000000);
562
    pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
563
    isa_mmio_setup(&s->bar1, 0x800000);
564
    pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar1);
565
    return 0;
566
}
567

    
568
static PCIDeviceInfo ebus_info = {
569
    .qdev.name = "ebus",
570
    .qdev.size = sizeof(EbusState),
571
    .init = pci_ebus_init1,
572
    .vendor_id = PCI_VENDOR_ID_SUN,
573
    .device_id = PCI_DEVICE_ID_SUN_EBUS,
574
    .revision = 0x01,
575
    .class_id = PCI_CLASS_BRIDGE_OTHER,
576
};
577

    
578
static void pci_ebus_register(void)
579
{
580
    pci_qdev_register(&ebus_info);
581
}
582

    
583
device_init(pci_ebus_register);
584

    
585
static uint64_t translate_prom_address(void *opaque, uint64_t addr)
586
{
587
    target_phys_addr_t *base_addr = (target_phys_addr_t *)opaque;
588
    return addr + *base_addr - PROM_VADDR;
589
}
590

    
591
/* Boot PROM (OpenBIOS) */
592
static void prom_init(target_phys_addr_t addr, const char *bios_name)
593
{
594
    DeviceState *dev;
595
    SysBusDevice *s;
596
    char *filename;
597
    int ret;
598

    
599
    dev = qdev_create(NULL, "openprom");
600
    qdev_init_nofail(dev);
601
    s = sysbus_from_qdev(dev);
602

    
603
    sysbus_mmio_map(s, 0, addr);
604

    
605
    /* load boot prom */
606
    if (bios_name == NULL) {
607
        bios_name = PROM_FILENAME;
608
    }
609
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
610
    if (filename) {
611
        ret = load_elf(filename, translate_prom_address, &addr,
612
                       NULL, NULL, NULL, 1, ELF_MACHINE, 0);
613
        if (ret < 0 || ret > PROM_SIZE_MAX) {
614
            ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
615
        }
616
        g_free(filename);
617
    } else {
618
        ret = -1;
619
    }
620
    if (ret < 0 || ret > PROM_SIZE_MAX) {
621
        fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
622
        exit(1);
623
    }
624
}
625

    
626
static int prom_init1(SysBusDevice *dev)
627
{
628
    ram_addr_t prom_offset;
629

    
630
    prom_offset = qemu_ram_alloc(NULL, "sun4u.prom", PROM_SIZE_MAX);
631
    sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM);
632
    return 0;
633
}
634

    
635
static SysBusDeviceInfo prom_info = {
636
    .init = prom_init1,
637
    .qdev.name  = "openprom",
638
    .qdev.size  = sizeof(SysBusDevice),
639
    .qdev.props = (Property[]) {
640
        {/* end of property list */}
641
    }
642
};
643

    
644
static void prom_register_devices(void)
645
{
646
    sysbus_register_withprop(&prom_info);
647
}
648

    
649
device_init(prom_register_devices);
650

    
651

    
652
typedef struct RamDevice
653
{
654
    SysBusDevice busdev;
655
    uint64_t size;
656
} RamDevice;
657

    
658
/* System RAM */
659
static int ram_init1(SysBusDevice *dev)
660
{
661
    ram_addr_t RAM_size, ram_offset;
662
    RamDevice *d = FROM_SYSBUS(RamDevice, dev);
663

    
664
    RAM_size = d->size;
665

    
666
    ram_offset = qemu_ram_alloc(NULL, "sun4u.ram", RAM_size);
667
    sysbus_init_mmio(dev, RAM_size, ram_offset);
668
    return 0;
669
}
670

    
671
static void ram_init(target_phys_addr_t addr, ram_addr_t RAM_size)
672
{
673
    DeviceState *dev;
674
    SysBusDevice *s;
675
    RamDevice *d;
676

    
677
    /* allocate RAM */
678
    dev = qdev_create(NULL, "memory");
679
    s = sysbus_from_qdev(dev);
680

    
681
    d = FROM_SYSBUS(RamDevice, s);
682
    d->size = RAM_size;
683
    qdev_init_nofail(dev);
684

    
685
    sysbus_mmio_map(s, 0, addr);
686
}
687

    
688
static SysBusDeviceInfo ram_info = {
689
    .init = ram_init1,
690
    .qdev.name  = "memory",
691
    .qdev.size  = sizeof(RamDevice),
692
    .qdev.props = (Property[]) {
693
        DEFINE_PROP_UINT64("size", RamDevice, size, 0),
694
        DEFINE_PROP_END_OF_LIST(),
695
    }
696
};
697

    
698
static void ram_register_devices(void)
699
{
700
    sysbus_register_withprop(&ram_info);
701
}
702

    
703
device_init(ram_register_devices);
704

    
705
static CPUState *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
706
{
707
    CPUState *env;
708
    ResetData *reset_info;
709

    
710
    uint32_t   tick_frequency = 100*1000000;
711
    uint32_t  stick_frequency = 100*1000000;
712
    uint32_t hstick_frequency = 100*1000000;
713

    
714
    if (!cpu_model)
715
        cpu_model = hwdef->default_cpu_model;
716
    env = cpu_init(cpu_model);
717
    if (!env) {
718
        fprintf(stderr, "Unable to find Sparc CPU definition\n");
719
        exit(1);
720
    }
721

    
722
    env->tick = cpu_timer_create("tick", env, tick_irq,
723
                                  tick_frequency, TICK_NPT_MASK);
724

    
725
    env->stick = cpu_timer_create("stick", env, stick_irq,
726
                                   stick_frequency, TICK_INT_DIS);
727

    
728
    env->hstick = cpu_timer_create("hstick", env, hstick_irq,
729
                                    hstick_frequency, TICK_INT_DIS);
730

    
731
    reset_info = g_malloc0(sizeof(ResetData));
732
    reset_info->env = env;
733
    reset_info->prom_addr = hwdef->prom_addr;
734
    qemu_register_reset(main_cpu_reset, reset_info);
735

    
736
    return env;
737
}
738

    
739
static void sun4uv_init(ram_addr_t RAM_size,
740
                        const char *boot_devices,
741
                        const char *kernel_filename, const char *kernel_cmdline,
742
                        const char *initrd_filename, const char *cpu_model,
743
                        const struct hwdef *hwdef)
744
{
745
    CPUState *env;
746
    M48t59State *nvram;
747
    unsigned int i;
748
    long initrd_size, kernel_size;
749
    PCIBus *pci_bus, *pci_bus2, *pci_bus3;
750
    qemu_irq *irq;
751
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
752
    DriveInfo *fd[MAX_FD];
753
    void *fw_cfg;
754

    
755
    /* init CPUs */
756
    env = cpu_devinit(cpu_model, hwdef);
757

    
758
    /* set up devices */
759
    ram_init(0, RAM_size);
760

    
761
    prom_init(hwdef->prom_addr, bios_name);
762

    
763

    
764
    irq = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
765
    pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, irq, &pci_bus2,
766
                           &pci_bus3);
767
    pci_vga_init(pci_bus);
768

    
769
    // XXX Should be pci_bus3
770
    pci_ebus_init(pci_bus, -1);
771

    
772
    i = 0;
773
    if (hwdef->console_serial_base) {
774
        serial_mm_init(get_system_memory(), hwdef->console_serial_base, 0,
775
                       NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
776
        i++;
777
    }
778
    for(; i < MAX_SERIAL_PORTS; i++) {
779
        if (serial_hds[i]) {
780
            serial_isa_init(i, serial_hds[i]);
781
        }
782
    }
783

    
784
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
785
        if (parallel_hds[i]) {
786
            parallel_init(i, parallel_hds[i]);
787
        }
788
    }
789

    
790
    for(i = 0; i < nb_nics; i++)
791
        pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);
792

    
793
    ide_drive_get(hd, MAX_IDE_BUS);
794

    
795
    pci_cmd646_ide_init(pci_bus, hd, 1);
796

    
797
    isa_create_simple("i8042");
798
    for(i = 0; i < MAX_FD; i++) {
799
        fd[i] = drive_get(IF_FLOPPY, 0, i);
800
    }
801
    fdctrl_init_isa(fd);
802
    nvram = m48t59_init_isa(0x0074, NVRAM_SIZE, 59);
803

    
804
    initrd_size = 0;
805
    kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename,
806
                                    ram_size, &initrd_size);
807

    
808
    sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
809
                           KERNEL_LOAD_ADDR, kernel_size,
810
                           kernel_cmdline,
811
                           INITRD_LOAD_ADDR, initrd_size,
812
                           /* XXX: need an option to load a NVRAM image */
813
                           0,
814
                           graphic_width, graphic_height, graphic_depth,
815
                           (uint8_t *)&nd_table[0].macaddr);
816

    
817
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
818
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
819
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
820
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
821
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
822
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
823
    if (kernel_cmdline) {
824
        fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
825
                       strlen(kernel_cmdline) + 1);
826
        fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
827
                         (uint8_t*)strdup(kernel_cmdline),
828
                         strlen(kernel_cmdline) + 1);
829
    } else {
830
        fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
831
    }
832
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
833
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
834
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]);
835

    
836
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
837
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
838
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
839

    
840
    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
841
}
842

    
843
enum {
844
    sun4u_id = 0,
845
    sun4v_id = 64,
846
    niagara_id,
847
};
848

    
849
static const struct hwdef hwdefs[] = {
850
    /* Sun4u generic PC-like machine */
851
    {
852
        .default_cpu_model = "TI UltraSparc IIi",
853
        .machine_id = sun4u_id,
854
        .prom_addr = 0x1fff0000000ULL,
855
        .console_serial_base = 0,
856
    },
857
    /* Sun4v generic PC-like machine */
858
    {
859
        .default_cpu_model = "Sun UltraSparc T1",
860
        .machine_id = sun4v_id,
861
        .prom_addr = 0x1fff0000000ULL,
862
        .console_serial_base = 0,
863
    },
864
    /* Sun4v generic Niagara machine */
865
    {
866
        .default_cpu_model = "Sun UltraSparc T1",
867
        .machine_id = niagara_id,
868
        .prom_addr = 0xfff0000000ULL,
869
        .console_serial_base = 0xfff0c2c000ULL,
870
    },
871
};
872

    
873
/* Sun4u hardware initialisation */
874
static void sun4u_init(ram_addr_t RAM_size,
875
                       const char *boot_devices,
876
                       const char *kernel_filename, const char *kernel_cmdline,
877
                       const char *initrd_filename, const char *cpu_model)
878
{
879
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
880
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
881
}
882

    
883
/* Sun4v hardware initialisation */
884
static void sun4v_init(ram_addr_t RAM_size,
885
                       const char *boot_devices,
886
                       const char *kernel_filename, const char *kernel_cmdline,
887
                       const char *initrd_filename, const char *cpu_model)
888
{
889
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
890
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
891
}
892

    
893
/* Niagara hardware initialisation */
894
static void niagara_init(ram_addr_t RAM_size,
895
                         const char *boot_devices,
896
                         const char *kernel_filename, const char *kernel_cmdline,
897
                         const char *initrd_filename, const char *cpu_model)
898
{
899
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
900
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
901
}
902

    
903
static QEMUMachine sun4u_machine = {
904
    .name = "sun4u",
905
    .desc = "Sun4u platform",
906
    .init = sun4u_init,
907
    .max_cpus = 1, // XXX for now
908
    .is_default = 1,
909
};
910

    
911
static QEMUMachine sun4v_machine = {
912
    .name = "sun4v",
913
    .desc = "Sun4v platform",
914
    .init = sun4v_init,
915
    .max_cpus = 1, // XXX for now
916
};
917

    
918
static QEMUMachine niagara_machine = {
919
    .name = "Niagara",
920
    .desc = "Sun4v platform, Niagara",
921
    .init = niagara_init,
922
    .max_cpus = 1, // XXX for now
923
};
924

    
925
static void sun4u_machine_init(void)
926
{
927
    qemu_register_machine(&sun4u_machine);
928
    qemu_register_machine(&sun4v_machine);
929
    qemu_register_machine(&niagara_machine);
930
}
931

    
932
machine_init(sun4u_machine_init);