Statistics
| Branch: | Revision:

root / hw / spapr.c @ 3944966d

History | View | Annotate | Download (15.9 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32

    
33
#include "hw/boards.h"
34
#include "hw/ppc.h"
35
#include "hw/loader.h"
36

    
37
#include "hw/spapr.h"
38
#include "hw/spapr_vio.h"
39
#include "hw/xics.h"
40

    
41
#include <libfdt.h>
42

    
43
#define KERNEL_LOAD_ADDR        0x00000000
44
#define INITRD_LOAD_ADDR        0x02800000
45
#define FDT_MAX_SIZE            0x10000
46
#define RTAS_MAX_SIZE           0x10000
47
#define FW_MAX_SIZE             0x400000
48
#define FW_FILE_NAME            "slof.bin"
49

    
50
#define MIN_RAM_SLOF                512UL
51

    
52
#define TIMEBASE_FREQ           512000000ULL
53

    
54
#define MAX_CPUS                256
55
#define XICS_IRQS                1024
56

    
57
sPAPREnvironment *spapr;
58

    
59
static void *spapr_create_fdt_skel(const char *cpu_model,
60
                                   target_phys_addr_t initrd_base,
61
                                   target_phys_addr_t initrd_size,
62
                                   const char *boot_device,
63
                                   const char *kernel_cmdline,
64
                                   long hash_shift)
65
{
66
    void *fdt;
67
    CPUState *env;
68
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(ram_size) };
69
    uint32_t start_prop = cpu_to_be32(initrd_base);
70
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
71
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
72
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
73
        "\0hcall-tce\0hcall-vio\0hcall-splpar";
74
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
75
    int i;
76
    char *modelname;
77

    
78
#define _FDT(exp) \
79
    do { \
80
        int ret = (exp);                                           \
81
        if (ret < 0) {                                             \
82
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
83
                    #exp, fdt_strerror(ret));                      \
84
            exit(1);                                               \
85
        }                                                          \
86
    } while (0)
87

    
88
    fdt = qemu_mallocz(FDT_MAX_SIZE);
89
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
90

    
91
    _FDT((fdt_finish_reservemap(fdt)));
92

    
93
    /* Root node */
94
    _FDT((fdt_begin_node(fdt, "")));
95
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
96
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
97

    
98
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
99
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
100

    
101
    /* /chosen */
102
    _FDT((fdt_begin_node(fdt, "chosen")));
103

    
104
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
105
    _FDT((fdt_property(fdt, "linux,initrd-start",
106
                       &start_prop, sizeof(start_prop))));
107
    _FDT((fdt_property(fdt, "linux,initrd-end",
108
                       &end_prop, sizeof(end_prop))));
109
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
110

    
111
    _FDT((fdt_end_node(fdt)));
112

    
113
    /* memory node */
114
    _FDT((fdt_begin_node(fdt, "memory@0")));
115

    
116
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
117
    _FDT((fdt_property(fdt, "reg",
118
                       mem_reg_property, sizeof(mem_reg_property))));
119

    
120
    _FDT((fdt_end_node(fdt)));
121

    
122
    /* cpus */
123
    _FDT((fdt_begin_node(fdt, "cpus")));
124

    
125
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
126
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
127

    
128
    modelname = qemu_strdup(cpu_model);
129

    
130
    for (i = 0; i < strlen(modelname); i++) {
131
        modelname[i] = toupper(modelname[i]);
132
    }
133

    
134
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
135
        int index = env->cpu_index;
136
        uint32_t gserver_prop[] = {cpu_to_be32(index), 0}; /* HACK! */
137
        char *nodename;
138
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
139
                           0xffffffff, 0xffffffff};
140

    
141
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
142
            fprintf(stderr, "Allocation failure\n");
143
            exit(1);
144
        }
145

    
146
        _FDT((fdt_begin_node(fdt, nodename)));
147

    
148
        free(nodename);
149

    
150
        _FDT((fdt_property_cell(fdt, "reg", index)));
151
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
152

    
153
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
154
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
155
                                env->dcache_line_size)));
156
        _FDT((fdt_property_cell(fdt, "icache-block-size",
157
                                env->icache_line_size)));
158
        _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ)));
159
        /* Hardcode CPU frequency for now.  It's kind of arbitrary on
160
         * full emu, for kvm we should copy it from the host */
161
        _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
162
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
163
        _FDT((fdt_property(fdt, "ibm,pft-size",
164
                           pft_size_prop, sizeof(pft_size_prop))));
165
        _FDT((fdt_property_string(fdt, "status", "okay")));
166
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
167
        _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", index)));
168
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
169
                           gserver_prop, sizeof(gserver_prop))));
170

    
171
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
172
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
173
                               segs, sizeof(segs))));
174
        }
175

    
176
        _FDT((fdt_end_node(fdt)));
177
    }
178

    
179
    qemu_free(modelname);
180

    
181
    _FDT((fdt_end_node(fdt)));
182

    
183
    /* RTAS */
184
    _FDT((fdt_begin_node(fdt, "rtas")));
185

    
186
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
187
                       sizeof(hypertas_prop))));
188

    
189
    _FDT((fdt_end_node(fdt)));
190

    
191
    /* interrupt controller */
192
    _FDT((fdt_begin_node(fdt, "interrupt-controller@0")));
193

    
194
    _FDT((fdt_property_string(fdt, "device_type",
195
                              "PowerPC-External-Interrupt-Presentation")));
196
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
197
    _FDT((fdt_property_cell(fdt, "reg", 0)));
198
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
199
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
200
                       interrupt_server_ranges_prop,
201
                       sizeof(interrupt_server_ranges_prop))));
202

    
203
    _FDT((fdt_end_node(fdt)));
204

    
205
    /* vdevice */
206
    _FDT((fdt_begin_node(fdt, "vdevice")));
207

    
208
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
209
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
210
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
211
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
212
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
213
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
214

    
215
    _FDT((fdt_end_node(fdt)));
216

    
217
    _FDT((fdt_end_node(fdt))); /* close root node */
218
    _FDT((fdt_finish(fdt)));
219

    
220
    return fdt;
221
}
222

    
223
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
224
                               target_phys_addr_t fdt_addr,
225
                               target_phys_addr_t rtas_addr,
226
                               target_phys_addr_t rtas_size)
227
{
228
    int ret;
229
    void *fdt;
230

    
231
    fdt = qemu_malloc(FDT_MAX_SIZE);
232

    
233
    /* open out the base tree into a temp buffer for the final tweaks */
234
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
235

    
236
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
237
    if (ret < 0) {
238
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
239
        exit(1);
240
    }
241

    
242
    /* RTAS */
243
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
244
    if (ret < 0) {
245
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
246
    }
247

    
248
    _FDT((fdt_pack(fdt)));
249

    
250
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
251

    
252
    qemu_free(fdt);
253
}
254

    
255
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
256
{
257
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
258
}
259

    
260
static void emulate_spapr_hypercall(CPUState *env)
261
{
262
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
263
}
264

    
265
static void spapr_reset(void *opaque)
266
{
267
    sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
268

    
269
    fprintf(stderr, "sPAPR reset\n");
270

    
271
    /* flush out the hash table */
272
    memset(spapr->htab, 0, spapr->htab_size);
273

    
274
    /* Load the fdt */
275
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
276
                       spapr->rtas_size);
277

    
278
    /* Set up the entry state */
279
    first_cpu->gpr[3] = spapr->fdt_addr;
280
    first_cpu->gpr[5] = 0;
281
    first_cpu->halted = 0;
282
    first_cpu->nip = spapr->entry_point;
283

    
284
}
285

    
286
/* pSeries LPAR / sPAPR hardware init */
287
static void ppc_spapr_init(ram_addr_t ram_size,
288
                           const char *boot_device,
289
                           const char *kernel_filename,
290
                           const char *kernel_cmdline,
291
                           const char *initrd_filename,
292
                           const char *cpu_model)
293
{
294
    CPUState *env;
295
    int i;
296
    ram_addr_t ram_offset;
297
    uint32_t initrd_base;
298
    long kernel_size, initrd_size, fw_size;
299
    long pteg_shift = 17;
300
    char *filename;
301
    int irq = 16;
302

    
303
    spapr = qemu_malloc(sizeof(*spapr));
304
    cpu_ppc_hypercall = emulate_spapr_hypercall;
305

    
306
    /* We place the device tree just below either the top of RAM, or
307
     * 2GB, so that it can be processed with 32-bit code if
308
     * necessary */
309
    spapr->fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
310
    spapr->rtas_addr = spapr->fdt_addr - RTAS_MAX_SIZE;
311

    
312
    /* init CPUs */
313
    if (cpu_model == NULL) {
314
        cpu_model = "POWER7";
315
    }
316
    for (i = 0; i < smp_cpus; i++) {
317
        env = cpu_init(cpu_model);
318

    
319
        if (!env) {
320
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
321
            exit(1);
322
        }
323
        /* Set time-base frequency to 512 MHz */
324
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
325
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
326

    
327
        env->hreset_vector = 0x60;
328
        env->hreset_excp_prefix = 0;
329
        env->gpr[3] = env->cpu_index;
330
    }
331

    
332
    /* allocate RAM */
333
    ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
334
    cpu_register_physical_memory(0, ram_size, ram_offset);
335

    
336
    /* allocate hash page table.  For now we always make this 16mb,
337
     * later we should probably make it scale to the size of guest
338
     * RAM */
339
    spapr->htab_size = 1ULL << (pteg_shift + 7);
340
    spapr->htab = qemu_malloc(spapr->htab_size);
341

    
342
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
343
        env->external_htab = spapr->htab;
344
        env->htab_base = -1;
345
        env->htab_mask = spapr->htab_size - 1;
346
    }
347

    
348
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
349
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
350
                                           ram_size - spapr->rtas_addr);
351
    if (spapr->rtas_size < 0) {
352
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
353
        exit(1);
354
    }
355
    qemu_free(filename);
356

    
357
    /* Set up Interrupt Controller */
358
    spapr->icp = xics_system_init(XICS_IRQS);
359

    
360
    /* Set up VIO bus */
361
    spapr->vio_bus = spapr_vio_bus_init();
362

    
363
    for (i = 0; i < MAX_SERIAL_PORTS; i++, irq++) {
364
        if (serial_hds[i]) {
365
            spapr_vty_create(spapr->vio_bus, SPAPR_VTY_BASE_ADDRESS + i,
366
                             serial_hds[i], xics_find_qirq(spapr->icp, irq),
367
                             irq);
368
        }
369
    }
370

    
371
    for (i = 0; i < nb_nics; i++, irq++) {
372
        NICInfo *nd = &nd_table[i];
373

    
374
        if (!nd->model) {
375
            nd->model = qemu_strdup("ibmveth");
376
        }
377

    
378
        if (strcmp(nd->model, "ibmveth") == 0) {
379
            spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd,
380
                              xics_find_qirq(spapr->icp, irq), irq);
381
        } else {
382
            fprintf(stderr, "pSeries (sPAPR) platform does not support "
383
                    "NIC model '%s' (only ibmveth is supported)\n",
384
                    nd->model);
385
            exit(1);
386
        }
387
    }
388

    
389
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
390
        spapr_vscsi_create(spapr->vio_bus, 0x2000 + i,
391
                           xics_find_qirq(spapr->icp, irq), irq);
392
        irq++;
393
    }
394

    
395
    if (kernel_filename) {
396
        uint64_t lowaddr = 0;
397

    
398
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
399
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
400
        if (kernel_size < 0) {
401
            kernel_size = load_image_targphys(kernel_filename,
402
                                              KERNEL_LOAD_ADDR,
403
                                              ram_size - KERNEL_LOAD_ADDR);
404
        }
405
        if (kernel_size < 0) {
406
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
407
                    kernel_filename);
408
            exit(1);
409
        }
410

    
411
        /* load initrd */
412
        if (initrd_filename) {
413
            initrd_base = INITRD_LOAD_ADDR;
414
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
415
                                              ram_size - initrd_base);
416
            if (initrd_size < 0) {
417
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
418
                        initrd_filename);
419
                exit(1);
420
            }
421
        } else {
422
            initrd_base = 0;
423
            initrd_size = 0;
424
        }
425

    
426
        spapr->entry_point = KERNEL_LOAD_ADDR;
427
    } else {
428
        if (ram_size < (MIN_RAM_SLOF << 20)) {
429
            fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
430
                    "%ldM guest RAM\n", MIN_RAM_SLOF);
431
            exit(1);
432
        }
433
        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "slof.bin");
434
        fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
435
        if (fw_size < 0) {
436
            hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
437
            exit(1);
438
        }
439
        qemu_free(filename);
440
        spapr->entry_point = 0x100;
441
        initrd_base = 0;
442
        initrd_size = 0;
443

    
444
        /* SLOF will startup the secondary CPUs using RTAS,
445
           rather than expecting a kexec() style entry */
446
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
447
            env->halted = 1;
448
        }
449
    }
450

    
451
    /* Prepare the device tree */
452
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
453
                                            initrd_base, initrd_size,
454
                                            boot_device, kernel_cmdline,
455
                                            pteg_shift + 7);
456
    assert(spapr->fdt_skel != NULL);
457

    
458
    qemu_register_reset(spapr_reset, spapr);
459
}
460

    
461
static QEMUMachine spapr_machine = {
462
    .name = "pseries",
463
    .desc = "pSeries Logical Partition (PAPR compliant)",
464
    .init = ppc_spapr_init,
465
    .max_cpus = MAX_CPUS,
466
    .no_vga = 1,
467
    .no_parallel = 1,
468
    .use_scsi = 1,
469
};
470

    
471
static void spapr_machine_init(void)
472
{
473
    qemu_register_machine(&spapr_machine);
474
}
475

    
476
machine_init(spapr_machine_init);