Statistics
| Branch: | Revision:

root / kvm-all.c @ 396d2cfc

History | View | Annotate | Download (51.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu/atomic.h"
25
#include "qemu/option.h"
26
#include "qemu/config-file.h"
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/pci/msi.h"
30
#include "exec/gdbstub.h"
31
#include "sysemu/kvm.h"
32
#include "qemu/bswap.h"
33
#include "exec/memory.h"
34
#include "exec/address-spaces.h"
35
#include "qemu/event_notifier.h"
36

    
37
/* This check must be after config-host.h is included */
38
#ifdef CONFIG_EVENTFD
39
#include <sys/eventfd.h>
40
#endif
41

    
42
#ifdef CONFIG_VALGRIND_H
43
#include <valgrind/memcheck.h>
44
#endif
45

    
46
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47
#define PAGE_SIZE TARGET_PAGE_SIZE
48

    
49
//#define DEBUG_KVM
50

    
51
#ifdef DEBUG_KVM
52
#define DPRINTF(fmt, ...) \
53
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54
#else
55
#define DPRINTF(fmt, ...) \
56
    do { } while (0)
57
#endif
58

    
59
#define KVM_MSI_HASHTAB_SIZE    256
60

    
61
typedef struct KVMSlot
62
{
63
    hwaddr start_addr;
64
    ram_addr_t memory_size;
65
    void *ram;
66
    int slot;
67
    int flags;
68
} KVMSlot;
69

    
70
typedef struct kvm_dirty_log KVMDirtyLog;
71

    
72
struct KVMState
73
{
74
    KVMSlot slots[32];
75
    int fd;
76
    int vmfd;
77
    int coalesced_mmio;
78
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79
    bool coalesced_flush_in_progress;
80
    int broken_set_mem_region;
81
    int migration_log;
82
    int vcpu_events;
83
    int robust_singlestep;
84
    int debugregs;
85
#ifdef KVM_CAP_SET_GUEST_DEBUG
86
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87
#endif
88
    int pit_state2;
89
    int xsave, xcrs;
90
    int many_ioeventfds;
91
    int intx_set_mask;
92
    /* The man page (and posix) say ioctl numbers are signed int, but
93
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
94
     * unsigned, and treating them as signed here can break things */
95
    unsigned irq_set_ioctl;
96
#ifdef KVM_CAP_IRQ_ROUTING
97
    struct kvm_irq_routing *irq_routes;
98
    int nr_allocated_irq_routes;
99
    uint32_t *used_gsi_bitmap;
100
    unsigned int gsi_count;
101
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102
    bool direct_msi;
103
#endif
104
};
105

    
106
KVMState *kvm_state;
107
bool kvm_kernel_irqchip;
108
bool kvm_async_interrupts_allowed;
109
bool kvm_irqfds_allowed;
110
bool kvm_msi_via_irqfd_allowed;
111
bool kvm_gsi_routing_allowed;
112

    
113
static const KVMCapabilityInfo kvm_required_capabilites[] = {
114
    KVM_CAP_INFO(USER_MEMORY),
115
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116
    KVM_CAP_LAST_INFO
117
};
118

    
119
static KVMSlot *kvm_alloc_slot(KVMState *s)
120
{
121
    int i;
122

    
123
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124
        if (s->slots[i].memory_size == 0) {
125
            return &s->slots[i];
126
        }
127
    }
128

    
129
    fprintf(stderr, "%s: no free slot available\n", __func__);
130
    abort();
131
}
132

    
133
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134
                                         hwaddr start_addr,
135
                                         hwaddr end_addr)
136
{
137
    int i;
138

    
139
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140
        KVMSlot *mem = &s->slots[i];
141

    
142
        if (start_addr == mem->start_addr &&
143
            end_addr == mem->start_addr + mem->memory_size) {
144
            return mem;
145
        }
146
    }
147

    
148
    return NULL;
149
}
150

    
151
/*
152
 * Find overlapping slot with lowest start address
153
 */
154
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155
                                            hwaddr start_addr,
156
                                            hwaddr end_addr)
157
{
158
    KVMSlot *found = NULL;
159
    int i;
160

    
161
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162
        KVMSlot *mem = &s->slots[i];
163

    
164
        if (mem->memory_size == 0 ||
165
            (found && found->start_addr < mem->start_addr)) {
166
            continue;
167
        }
168

    
169
        if (end_addr > mem->start_addr &&
170
            start_addr < mem->start_addr + mem->memory_size) {
171
            found = mem;
172
        }
173
    }
174

    
175
    return found;
176
}
177

    
178
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179
                                       hwaddr *phys_addr)
180
{
181
    int i;
182

    
183
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184
        KVMSlot *mem = &s->slots[i];
185

    
186
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187
            *phys_addr = mem->start_addr + (ram - mem->ram);
188
            return 1;
189
        }
190
    }
191

    
192
    return 0;
193
}
194

    
195
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196
{
197
    struct kvm_userspace_memory_region mem;
198

    
199
    mem.slot = slot->slot;
200
    mem.guest_phys_addr = slot->start_addr;
201
    mem.memory_size = slot->memory_size;
202
    mem.userspace_addr = (unsigned long)slot->ram;
203
    mem.flags = slot->flags;
204
    if (s->migration_log) {
205
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206
    }
207
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208
}
209

    
210
static void kvm_reset_vcpu(void *opaque)
211
{
212
    CPUState *cpu = opaque;
213

    
214
    kvm_arch_reset_vcpu(cpu);
215
}
216

    
217
int kvm_init_vcpu(CPUArchState *env)
218
{
219
    CPUState *cpu = ENV_GET_CPU(env);
220
    KVMState *s = kvm_state;
221
    long mmap_size;
222
    int ret;
223

    
224
    DPRINTF("kvm_init_vcpu\n");
225

    
226
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
227
    if (ret < 0) {
228
        DPRINTF("kvm_create_vcpu failed\n");
229
        goto err;
230
    }
231

    
232
    cpu->kvm_fd = ret;
233
    cpu->kvm_state = s;
234
    cpu->kvm_vcpu_dirty = true;
235

    
236
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
237
    if (mmap_size < 0) {
238
        ret = mmap_size;
239
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
240
        goto err;
241
    }
242

    
243
    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
244
                        cpu->kvm_fd, 0);
245
    if (cpu->kvm_run == MAP_FAILED) {
246
        ret = -errno;
247
        DPRINTF("mmap'ing vcpu state failed\n");
248
        goto err;
249
    }
250

    
251
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
252
        s->coalesced_mmio_ring =
253
            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
254
    }
255

    
256
    ret = kvm_arch_init_vcpu(cpu);
257
    if (ret == 0) {
258
        qemu_register_reset(kvm_reset_vcpu, cpu);
259
        kvm_arch_reset_vcpu(cpu);
260
    }
261
err:
262
    return ret;
263
}
264

    
265
/*
266
 * dirty pages logging control
267
 */
268

    
269
static int kvm_mem_flags(KVMState *s, bool log_dirty)
270
{
271
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
272
}
273

    
274
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
275
{
276
    KVMState *s = kvm_state;
277
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
278
    int old_flags;
279

    
280
    old_flags = mem->flags;
281

    
282
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
283
    mem->flags = flags;
284

    
285
    /* If nothing changed effectively, no need to issue ioctl */
286
    if (s->migration_log) {
287
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
288
    }
289

    
290
    if (flags == old_flags) {
291
        return 0;
292
    }
293

    
294
    return kvm_set_user_memory_region(s, mem);
295
}
296

    
297
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
298
                                      ram_addr_t size, bool log_dirty)
299
{
300
    KVMState *s = kvm_state;
301
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
302

    
303
    if (mem == NULL)  {
304
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
305
                TARGET_FMT_plx "\n", __func__, phys_addr,
306
                (hwaddr)(phys_addr + size - 1));
307
        return -EINVAL;
308
    }
309
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
310
}
311

    
312
static void kvm_log_start(MemoryListener *listener,
313
                          MemoryRegionSection *section)
314
{
315
    int r;
316

    
317
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
318
                                   section->size, true);
319
    if (r < 0) {
320
        abort();
321
    }
322
}
323

    
324
static void kvm_log_stop(MemoryListener *listener,
325
                          MemoryRegionSection *section)
326
{
327
    int r;
328

    
329
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
330
                                   section->size, false);
331
    if (r < 0) {
332
        abort();
333
    }
334
}
335

    
336
static int kvm_set_migration_log(int enable)
337
{
338
    KVMState *s = kvm_state;
339
    KVMSlot *mem;
340
    int i, err;
341

    
342
    s->migration_log = enable;
343

    
344
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
345
        mem = &s->slots[i];
346

    
347
        if (!mem->memory_size) {
348
            continue;
349
        }
350
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
351
            continue;
352
        }
353
        err = kvm_set_user_memory_region(s, mem);
354
        if (err) {
355
            return err;
356
        }
357
    }
358
    return 0;
359
}
360

    
361
/* get kvm's dirty pages bitmap and update qemu's */
362
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
363
                                         unsigned long *bitmap)
364
{
365
    unsigned int i, j;
366
    unsigned long page_number, c;
367
    hwaddr addr, addr1;
368
    unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
369
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
370

    
371
    /*
372
     * bitmap-traveling is faster than memory-traveling (for addr...)
373
     * especially when most of the memory is not dirty.
374
     */
375
    for (i = 0; i < len; i++) {
376
        if (bitmap[i] != 0) {
377
            c = leul_to_cpu(bitmap[i]);
378
            do {
379
                j = ffsl(c) - 1;
380
                c &= ~(1ul << j);
381
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
382
                addr1 = page_number * TARGET_PAGE_SIZE;
383
                addr = section->offset_within_region + addr1;
384
                memory_region_set_dirty(section->mr, addr,
385
                                        TARGET_PAGE_SIZE * hpratio);
386
            } while (c != 0);
387
        }
388
    }
389
    return 0;
390
}
391

    
392
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
393

    
394
/**
395
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
396
 * This function updates qemu's dirty bitmap using
397
 * memory_region_set_dirty().  This means all bits are set
398
 * to dirty.
399
 *
400
 * @start_add: start of logged region.
401
 * @end_addr: end of logged region.
402
 */
403
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
404
{
405
    KVMState *s = kvm_state;
406
    unsigned long size, allocated_size = 0;
407
    KVMDirtyLog d;
408
    KVMSlot *mem;
409
    int ret = 0;
410
    hwaddr start_addr = section->offset_within_address_space;
411
    hwaddr end_addr = start_addr + section->size;
412

    
413
    d.dirty_bitmap = NULL;
414
    while (start_addr < end_addr) {
415
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
416
        if (mem == NULL) {
417
            break;
418
        }
419

    
420
        /* XXX bad kernel interface alert
421
         * For dirty bitmap, kernel allocates array of size aligned to
422
         * bits-per-long.  But for case when the kernel is 64bits and
423
         * the userspace is 32bits, userspace can't align to the same
424
         * bits-per-long, since sizeof(long) is different between kernel
425
         * and user space.  This way, userspace will provide buffer which
426
         * may be 4 bytes less than the kernel will use, resulting in
427
         * userspace memory corruption (which is not detectable by valgrind
428
         * too, in most cases).
429
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
430
         * a hope that sizeof(long) wont become >8 any time soon.
431
         */
432
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
433
                     /*HOST_LONG_BITS*/ 64) / 8;
434
        if (!d.dirty_bitmap) {
435
            d.dirty_bitmap = g_malloc(size);
436
        } else if (size > allocated_size) {
437
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
438
        }
439
        allocated_size = size;
440
        memset(d.dirty_bitmap, 0, allocated_size);
441

    
442
        d.slot = mem->slot;
443

    
444
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
445
            DPRINTF("ioctl failed %d\n", errno);
446
            ret = -1;
447
            break;
448
        }
449

    
450
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
451
        start_addr = mem->start_addr + mem->memory_size;
452
    }
453
    g_free(d.dirty_bitmap);
454

    
455
    return ret;
456
}
457

    
458
static void kvm_coalesce_mmio_region(MemoryListener *listener,
459
                                     MemoryRegionSection *secion,
460
                                     hwaddr start, hwaddr size)
461
{
462
    KVMState *s = kvm_state;
463

    
464
    if (s->coalesced_mmio) {
465
        struct kvm_coalesced_mmio_zone zone;
466

    
467
        zone.addr = start;
468
        zone.size = size;
469
        zone.pad = 0;
470

    
471
        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
472
    }
473
}
474

    
475
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
476
                                       MemoryRegionSection *secion,
477
                                       hwaddr start, hwaddr size)
478
{
479
    KVMState *s = kvm_state;
480

    
481
    if (s->coalesced_mmio) {
482
        struct kvm_coalesced_mmio_zone zone;
483

    
484
        zone.addr = start;
485
        zone.size = size;
486
        zone.pad = 0;
487

    
488
        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
489
    }
490
}
491

    
492
int kvm_check_extension(KVMState *s, unsigned int extension)
493
{
494
    int ret;
495

    
496
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
497
    if (ret < 0) {
498
        ret = 0;
499
    }
500

    
501
    return ret;
502
}
503

    
504
static int kvm_check_many_ioeventfds(void)
505
{
506
    /* Userspace can use ioeventfd for io notification.  This requires a host
507
     * that supports eventfd(2) and an I/O thread; since eventfd does not
508
     * support SIGIO it cannot interrupt the vcpu.
509
     *
510
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
511
     * can avoid creating too many ioeventfds.
512
     */
513
#if defined(CONFIG_EVENTFD)
514
    int ioeventfds[7];
515
    int i, ret = 0;
516
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
517
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
518
        if (ioeventfds[i] < 0) {
519
            break;
520
        }
521
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
522
        if (ret < 0) {
523
            close(ioeventfds[i]);
524
            break;
525
        }
526
    }
527

    
528
    /* Decide whether many devices are supported or not */
529
    ret = i == ARRAY_SIZE(ioeventfds);
530

    
531
    while (i-- > 0) {
532
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
533
        close(ioeventfds[i]);
534
    }
535
    return ret;
536
#else
537
    return 0;
538
#endif
539
}
540

    
541
static const KVMCapabilityInfo *
542
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
543
{
544
    while (list->name) {
545
        if (!kvm_check_extension(s, list->value)) {
546
            return list;
547
        }
548
        list++;
549
    }
550
    return NULL;
551
}
552

    
553
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
554
{
555
    KVMState *s = kvm_state;
556
    KVMSlot *mem, old;
557
    int err;
558
    MemoryRegion *mr = section->mr;
559
    bool log_dirty = memory_region_is_logging(mr);
560
    hwaddr start_addr = section->offset_within_address_space;
561
    ram_addr_t size = section->size;
562
    void *ram = NULL;
563
    unsigned delta;
564

    
565
    /* kvm works in page size chunks, but the function may be called
566
       with sub-page size and unaligned start address. */
567
    delta = TARGET_PAGE_ALIGN(size) - size;
568
    if (delta > size) {
569
        return;
570
    }
571
    start_addr += delta;
572
    size -= delta;
573
    size &= TARGET_PAGE_MASK;
574
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
575
        return;
576
    }
577

    
578
    if (!memory_region_is_ram(mr)) {
579
        return;
580
    }
581

    
582
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
583

    
584
    while (1) {
585
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
586
        if (!mem) {
587
            break;
588
        }
589

    
590
        if (add && start_addr >= mem->start_addr &&
591
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
592
            (ram - start_addr == mem->ram - mem->start_addr)) {
593
            /* The new slot fits into the existing one and comes with
594
             * identical parameters - update flags and done. */
595
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
596
            return;
597
        }
598

    
599
        old = *mem;
600

    
601
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
602
            kvm_physical_sync_dirty_bitmap(section);
603
        }
604

    
605
        /* unregister the overlapping slot */
606
        mem->memory_size = 0;
607
        err = kvm_set_user_memory_region(s, mem);
608
        if (err) {
609
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
610
                    __func__, strerror(-err));
611
            abort();
612
        }
613

    
614
        /* Workaround for older KVM versions: we can't join slots, even not by
615
         * unregistering the previous ones and then registering the larger
616
         * slot. We have to maintain the existing fragmentation. Sigh.
617
         *
618
         * This workaround assumes that the new slot starts at the same
619
         * address as the first existing one. If not or if some overlapping
620
         * slot comes around later, we will fail (not seen in practice so far)
621
         * - and actually require a recent KVM version. */
622
        if (s->broken_set_mem_region &&
623
            old.start_addr == start_addr && old.memory_size < size && add) {
624
            mem = kvm_alloc_slot(s);
625
            mem->memory_size = old.memory_size;
626
            mem->start_addr = old.start_addr;
627
            mem->ram = old.ram;
628
            mem->flags = kvm_mem_flags(s, log_dirty);
629

    
630
            err = kvm_set_user_memory_region(s, mem);
631
            if (err) {
632
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
633
                        strerror(-err));
634
                abort();
635
            }
636

    
637
            start_addr += old.memory_size;
638
            ram += old.memory_size;
639
            size -= old.memory_size;
640
            continue;
641
        }
642

    
643
        /* register prefix slot */
644
        if (old.start_addr < start_addr) {
645
            mem = kvm_alloc_slot(s);
646
            mem->memory_size = start_addr - old.start_addr;
647
            mem->start_addr = old.start_addr;
648
            mem->ram = old.ram;
649
            mem->flags =  kvm_mem_flags(s, log_dirty);
650

    
651
            err = kvm_set_user_memory_region(s, mem);
652
            if (err) {
653
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
654
                        __func__, strerror(-err));
655
#ifdef TARGET_PPC
656
                fprintf(stderr, "%s: This is probably because your kernel's " \
657
                                "PAGE_SIZE is too big. Please try to use 4k " \
658
                                "PAGE_SIZE!\n", __func__);
659
#endif
660
                abort();
661
            }
662
        }
663

    
664
        /* register suffix slot */
665
        if (old.start_addr + old.memory_size > start_addr + size) {
666
            ram_addr_t size_delta;
667

    
668
            mem = kvm_alloc_slot(s);
669
            mem->start_addr = start_addr + size;
670
            size_delta = mem->start_addr - old.start_addr;
671
            mem->memory_size = old.memory_size - size_delta;
672
            mem->ram = old.ram + size_delta;
673
            mem->flags = kvm_mem_flags(s, log_dirty);
674

    
675
            err = kvm_set_user_memory_region(s, mem);
676
            if (err) {
677
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
678
                        __func__, strerror(-err));
679
                abort();
680
            }
681
        }
682
    }
683

    
684
    /* in case the KVM bug workaround already "consumed" the new slot */
685
    if (!size) {
686
        return;
687
    }
688
    if (!add) {
689
        return;
690
    }
691
    mem = kvm_alloc_slot(s);
692
    mem->memory_size = size;
693
    mem->start_addr = start_addr;
694
    mem->ram = ram;
695
    mem->flags = kvm_mem_flags(s, log_dirty);
696

    
697
    err = kvm_set_user_memory_region(s, mem);
698
    if (err) {
699
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
700
                strerror(-err));
701
        abort();
702
    }
703
}
704

    
705
static void kvm_region_add(MemoryListener *listener,
706
                           MemoryRegionSection *section)
707
{
708
    kvm_set_phys_mem(section, true);
709
}
710

    
711
static void kvm_region_del(MemoryListener *listener,
712
                           MemoryRegionSection *section)
713
{
714
    kvm_set_phys_mem(section, false);
715
}
716

    
717
static void kvm_log_sync(MemoryListener *listener,
718
                         MemoryRegionSection *section)
719
{
720
    int r;
721

    
722
    r = kvm_physical_sync_dirty_bitmap(section);
723
    if (r < 0) {
724
        abort();
725
    }
726
}
727

    
728
static void kvm_log_global_start(struct MemoryListener *listener)
729
{
730
    int r;
731

    
732
    r = kvm_set_migration_log(1);
733
    assert(r >= 0);
734
}
735

    
736
static void kvm_log_global_stop(struct MemoryListener *listener)
737
{
738
    int r;
739

    
740
    r = kvm_set_migration_log(0);
741
    assert(r >= 0);
742
}
743

    
744
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
745
                                  MemoryRegionSection *section,
746
                                  bool match_data, uint64_t data,
747
                                  EventNotifier *e)
748
{
749
    int fd = event_notifier_get_fd(e);
750
    int r;
751

    
752
    assert(match_data && section->size <= 8);
753

    
754
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
755
                               data, true, section->size);
756
    if (r < 0) {
757
        abort();
758
    }
759
}
760

    
761
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
762
                                  MemoryRegionSection *section,
763
                                  bool match_data, uint64_t data,
764
                                  EventNotifier *e)
765
{
766
    int fd = event_notifier_get_fd(e);
767
    int r;
768

    
769
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
770
                               data, false, section->size);
771
    if (r < 0) {
772
        abort();
773
    }
774
}
775

    
776
static void kvm_io_ioeventfd_add(MemoryListener *listener,
777
                                 MemoryRegionSection *section,
778
                                 bool match_data, uint64_t data,
779
                                 EventNotifier *e)
780
{
781
    int fd = event_notifier_get_fd(e);
782
    int r;
783

    
784
    assert(match_data && section->size == 2);
785

    
786
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
787
                                   data, true);
788
    if (r < 0) {
789
        abort();
790
    }
791
}
792

    
793
static void kvm_io_ioeventfd_del(MemoryListener *listener,
794
                                 MemoryRegionSection *section,
795
                                 bool match_data, uint64_t data,
796
                                 EventNotifier *e)
797

    
798
{
799
    int fd = event_notifier_get_fd(e);
800
    int r;
801

    
802
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
803
                                   data, false);
804
    if (r < 0) {
805
        abort();
806
    }
807
}
808

    
809
static MemoryListener kvm_memory_listener = {
810
    .region_add = kvm_region_add,
811
    .region_del = kvm_region_del,
812
    .log_start = kvm_log_start,
813
    .log_stop = kvm_log_stop,
814
    .log_sync = kvm_log_sync,
815
    .log_global_start = kvm_log_global_start,
816
    .log_global_stop = kvm_log_global_stop,
817
    .eventfd_add = kvm_mem_ioeventfd_add,
818
    .eventfd_del = kvm_mem_ioeventfd_del,
819
    .coalesced_mmio_add = kvm_coalesce_mmio_region,
820
    .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
821
    .priority = 10,
822
};
823

    
824
static MemoryListener kvm_io_listener = {
825
    .eventfd_add = kvm_io_ioeventfd_add,
826
    .eventfd_del = kvm_io_ioeventfd_del,
827
    .priority = 10,
828
};
829

    
830
static void kvm_handle_interrupt(CPUArchState *env, int mask)
831
{
832
    CPUState *cpu = ENV_GET_CPU(env);
833

    
834
    env->interrupt_request |= mask;
835

    
836
    if (!qemu_cpu_is_self(cpu)) {
837
        qemu_cpu_kick(cpu);
838
    }
839
}
840

    
841
int kvm_set_irq(KVMState *s, int irq, int level)
842
{
843
    struct kvm_irq_level event;
844
    int ret;
845

    
846
    assert(kvm_async_interrupts_enabled());
847

    
848
    event.level = level;
849
    event.irq = irq;
850
    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
851
    if (ret < 0) {
852
        perror("kvm_set_irq");
853
        abort();
854
    }
855

    
856
    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
857
}
858

    
859
#ifdef KVM_CAP_IRQ_ROUTING
860
typedef struct KVMMSIRoute {
861
    struct kvm_irq_routing_entry kroute;
862
    QTAILQ_ENTRY(KVMMSIRoute) entry;
863
} KVMMSIRoute;
864

    
865
static void set_gsi(KVMState *s, unsigned int gsi)
866
{
867
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
868
}
869

    
870
static void clear_gsi(KVMState *s, unsigned int gsi)
871
{
872
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
873
}
874

    
875
static void kvm_init_irq_routing(KVMState *s)
876
{
877
    int gsi_count, i;
878

    
879
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
880
    if (gsi_count > 0) {
881
        unsigned int gsi_bits, i;
882

    
883
        /* Round up so we can search ints using ffs */
884
        gsi_bits = ALIGN(gsi_count, 32);
885
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
886
        s->gsi_count = gsi_count;
887

    
888
        /* Mark any over-allocated bits as already in use */
889
        for (i = gsi_count; i < gsi_bits; i++) {
890
            set_gsi(s, i);
891
        }
892
    }
893

    
894
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
895
    s->nr_allocated_irq_routes = 0;
896

    
897
    if (!s->direct_msi) {
898
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
899
            QTAILQ_INIT(&s->msi_hashtab[i]);
900
        }
901
    }
902

    
903
    kvm_arch_init_irq_routing(s);
904
}
905

    
906
static void kvm_irqchip_commit_routes(KVMState *s)
907
{
908
    int ret;
909

    
910
    s->irq_routes->flags = 0;
911
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
912
    assert(ret == 0);
913
}
914

    
915
static void kvm_add_routing_entry(KVMState *s,
916
                                  struct kvm_irq_routing_entry *entry)
917
{
918
    struct kvm_irq_routing_entry *new;
919
    int n, size;
920

    
921
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
922
        n = s->nr_allocated_irq_routes * 2;
923
        if (n < 64) {
924
            n = 64;
925
        }
926
        size = sizeof(struct kvm_irq_routing);
927
        size += n * sizeof(*new);
928
        s->irq_routes = g_realloc(s->irq_routes, size);
929
        s->nr_allocated_irq_routes = n;
930
    }
931
    n = s->irq_routes->nr++;
932
    new = &s->irq_routes->entries[n];
933
    memset(new, 0, sizeof(*new));
934
    new->gsi = entry->gsi;
935
    new->type = entry->type;
936
    new->flags = entry->flags;
937
    new->u = entry->u;
938

    
939
    set_gsi(s, entry->gsi);
940

    
941
    kvm_irqchip_commit_routes(s);
942
}
943

    
944
static int kvm_update_routing_entry(KVMState *s,
945
                                    struct kvm_irq_routing_entry *new_entry)
946
{
947
    struct kvm_irq_routing_entry *entry;
948
    int n;
949

    
950
    for (n = 0; n < s->irq_routes->nr; n++) {
951
        entry = &s->irq_routes->entries[n];
952
        if (entry->gsi != new_entry->gsi) {
953
            continue;
954
        }
955

    
956
        entry->type = new_entry->type;
957
        entry->flags = new_entry->flags;
958
        entry->u = new_entry->u;
959

    
960
        kvm_irqchip_commit_routes(s);
961

    
962
        return 0;
963
    }
964

    
965
    return -ESRCH;
966
}
967

    
968
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
969
{
970
    struct kvm_irq_routing_entry e;
971

    
972
    assert(pin < s->gsi_count);
973

    
974
    e.gsi = irq;
975
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
976
    e.flags = 0;
977
    e.u.irqchip.irqchip = irqchip;
978
    e.u.irqchip.pin = pin;
979
    kvm_add_routing_entry(s, &e);
980
}
981

    
982
void kvm_irqchip_release_virq(KVMState *s, int virq)
983
{
984
    struct kvm_irq_routing_entry *e;
985
    int i;
986

    
987
    for (i = 0; i < s->irq_routes->nr; i++) {
988
        e = &s->irq_routes->entries[i];
989
        if (e->gsi == virq) {
990
            s->irq_routes->nr--;
991
            *e = s->irq_routes->entries[s->irq_routes->nr];
992
        }
993
    }
994
    clear_gsi(s, virq);
995
}
996

    
997
static unsigned int kvm_hash_msi(uint32_t data)
998
{
999
    /* This is optimized for IA32 MSI layout. However, no other arch shall
1000
     * repeat the mistake of not providing a direct MSI injection API. */
1001
    return data & 0xff;
1002
}
1003

    
1004
static void kvm_flush_dynamic_msi_routes(KVMState *s)
1005
{
1006
    KVMMSIRoute *route, *next;
1007
    unsigned int hash;
1008

    
1009
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1010
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1011
            kvm_irqchip_release_virq(s, route->kroute.gsi);
1012
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1013
            g_free(route);
1014
        }
1015
    }
1016
}
1017

    
1018
static int kvm_irqchip_get_virq(KVMState *s)
1019
{
1020
    uint32_t *word = s->used_gsi_bitmap;
1021
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1022
    int i, bit;
1023
    bool retry = true;
1024

    
1025
again:
1026
    /* Return the lowest unused GSI in the bitmap */
1027
    for (i = 0; i < max_words; i++) {
1028
        bit = ffs(~word[i]);
1029
        if (!bit) {
1030
            continue;
1031
        }
1032

    
1033
        return bit - 1 + i * 32;
1034
    }
1035
    if (!s->direct_msi && retry) {
1036
        retry = false;
1037
        kvm_flush_dynamic_msi_routes(s);
1038
        goto again;
1039
    }
1040
    return -ENOSPC;
1041

    
1042
}
1043

    
1044
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1045
{
1046
    unsigned int hash = kvm_hash_msi(msg.data);
1047
    KVMMSIRoute *route;
1048

    
1049
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1050
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1051
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1052
            route->kroute.u.msi.data == msg.data) {
1053
            return route;
1054
        }
1055
    }
1056
    return NULL;
1057
}
1058

    
1059
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1060
{
1061
    struct kvm_msi msi;
1062
    KVMMSIRoute *route;
1063

    
1064
    if (s->direct_msi) {
1065
        msi.address_lo = (uint32_t)msg.address;
1066
        msi.address_hi = msg.address >> 32;
1067
        msi.data = msg.data;
1068
        msi.flags = 0;
1069
        memset(msi.pad, 0, sizeof(msi.pad));
1070

    
1071
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1072
    }
1073

    
1074
    route = kvm_lookup_msi_route(s, msg);
1075
    if (!route) {
1076
        int virq;
1077

    
1078
        virq = kvm_irqchip_get_virq(s);
1079
        if (virq < 0) {
1080
            return virq;
1081
        }
1082

    
1083
        route = g_malloc(sizeof(KVMMSIRoute));
1084
        route->kroute.gsi = virq;
1085
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1086
        route->kroute.flags = 0;
1087
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1088
        route->kroute.u.msi.address_hi = msg.address >> 32;
1089
        route->kroute.u.msi.data = msg.data;
1090

    
1091
        kvm_add_routing_entry(s, &route->kroute);
1092

    
1093
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1094
                           entry);
1095
    }
1096

    
1097
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1098

    
1099
    return kvm_set_irq(s, route->kroute.gsi, 1);
1100
}
1101

    
1102
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1103
{
1104
    struct kvm_irq_routing_entry kroute;
1105
    int virq;
1106

    
1107
    if (!kvm_gsi_routing_enabled()) {
1108
        return -ENOSYS;
1109
    }
1110

    
1111
    virq = kvm_irqchip_get_virq(s);
1112
    if (virq < 0) {
1113
        return virq;
1114
    }
1115

    
1116
    kroute.gsi = virq;
1117
    kroute.type = KVM_IRQ_ROUTING_MSI;
1118
    kroute.flags = 0;
1119
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1120
    kroute.u.msi.address_hi = msg.address >> 32;
1121
    kroute.u.msi.data = msg.data;
1122

    
1123
    kvm_add_routing_entry(s, &kroute);
1124

    
1125
    return virq;
1126
}
1127

    
1128
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1129
{
1130
    struct kvm_irq_routing_entry kroute;
1131

    
1132
    if (!kvm_irqchip_in_kernel()) {
1133
        return -ENOSYS;
1134
    }
1135

    
1136
    kroute.gsi = virq;
1137
    kroute.type = KVM_IRQ_ROUTING_MSI;
1138
    kroute.flags = 0;
1139
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1140
    kroute.u.msi.address_hi = msg.address >> 32;
1141
    kroute.u.msi.data = msg.data;
1142

    
1143
    return kvm_update_routing_entry(s, &kroute);
1144
}
1145

    
1146
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1147
{
1148
    struct kvm_irqfd irqfd = {
1149
        .fd = fd,
1150
        .gsi = virq,
1151
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1152
    };
1153

    
1154
    if (!kvm_irqfds_enabled()) {
1155
        return -ENOSYS;
1156
    }
1157

    
1158
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1159
}
1160

    
1161
#else /* !KVM_CAP_IRQ_ROUTING */
1162

    
1163
static void kvm_init_irq_routing(KVMState *s)
1164
{
1165
}
1166

    
1167
void kvm_irqchip_release_virq(KVMState *s, int virq)
1168
{
1169
}
1170

    
1171
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1172
{
1173
    abort();
1174
}
1175

    
1176
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1177
{
1178
    return -ENOSYS;
1179
}
1180

    
1181
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1182
{
1183
    abort();
1184
}
1185
#endif /* !KVM_CAP_IRQ_ROUTING */
1186

    
1187
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1188
{
1189
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1190
}
1191

    
1192
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1193
{
1194
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1195
}
1196

    
1197
static int kvm_irqchip_create(KVMState *s)
1198
{
1199
    QemuOptsList *list = qemu_find_opts("machine");
1200
    int ret;
1201

    
1202
    if (QTAILQ_EMPTY(&list->head) ||
1203
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1204
                           "kernel_irqchip", true) ||
1205
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1206
        return 0;
1207
    }
1208

    
1209
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1210
    if (ret < 0) {
1211
        fprintf(stderr, "Create kernel irqchip failed\n");
1212
        return ret;
1213
    }
1214

    
1215
    kvm_kernel_irqchip = true;
1216
    /* If we have an in-kernel IRQ chip then we must have asynchronous
1217
     * interrupt delivery (though the reverse is not necessarily true)
1218
     */
1219
    kvm_async_interrupts_allowed = true;
1220

    
1221
    kvm_init_irq_routing(s);
1222

    
1223
    return 0;
1224
}
1225

    
1226
static int kvm_max_vcpus(KVMState *s)
1227
{
1228
    int ret;
1229

    
1230
    /* Find number of supported CPUs using the recommended
1231
     * procedure from the kernel API documentation to cope with
1232
     * older kernels that may be missing capabilities.
1233
     */
1234
    ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1235
    if (ret) {
1236
        return ret;
1237
    }
1238
    ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1239
    if (ret) {
1240
        return ret;
1241
    }
1242

    
1243
    return 4;
1244
}
1245

    
1246
int kvm_init(void)
1247
{
1248
    static const char upgrade_note[] =
1249
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1250
        "(see http://sourceforge.net/projects/kvm).\n";
1251
    KVMState *s;
1252
    const KVMCapabilityInfo *missing_cap;
1253
    int ret;
1254
    int i;
1255
    int max_vcpus;
1256

    
1257
    s = g_malloc0(sizeof(KVMState));
1258

    
1259
    /*
1260
     * On systems where the kernel can support different base page
1261
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1262
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1263
     * page size for the system though.
1264
     */
1265
    assert(TARGET_PAGE_SIZE <= getpagesize());
1266

    
1267
#ifdef KVM_CAP_SET_GUEST_DEBUG
1268
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1269
#endif
1270
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1271
        s->slots[i].slot = i;
1272
    }
1273
    s->vmfd = -1;
1274
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1275
    if (s->fd == -1) {
1276
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1277
        ret = -errno;
1278
        goto err;
1279
    }
1280

    
1281
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1282
    if (ret < KVM_API_VERSION) {
1283
        if (ret > 0) {
1284
            ret = -EINVAL;
1285
        }
1286
        fprintf(stderr, "kvm version too old\n");
1287
        goto err;
1288
    }
1289

    
1290
    if (ret > KVM_API_VERSION) {
1291
        ret = -EINVAL;
1292
        fprintf(stderr, "kvm version not supported\n");
1293
        goto err;
1294
    }
1295

    
1296
    max_vcpus = kvm_max_vcpus(s);
1297
    if (smp_cpus > max_vcpus) {
1298
        ret = -EINVAL;
1299
        fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1300
                "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1301
        goto err;
1302
    }
1303

    
1304
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1305
    if (s->vmfd < 0) {
1306
#ifdef TARGET_S390X
1307
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1308
                        "your host kernel command line\n");
1309
#endif
1310
        ret = s->vmfd;
1311
        goto err;
1312
    }
1313

    
1314
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1315
    if (!missing_cap) {
1316
        missing_cap =
1317
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1318
    }
1319
    if (missing_cap) {
1320
        ret = -EINVAL;
1321
        fprintf(stderr, "kvm does not support %s\n%s",
1322
                missing_cap->name, upgrade_note);
1323
        goto err;
1324
    }
1325

    
1326
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1327

    
1328
    s->broken_set_mem_region = 1;
1329
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1330
    if (ret > 0) {
1331
        s->broken_set_mem_region = 0;
1332
    }
1333

    
1334
#ifdef KVM_CAP_VCPU_EVENTS
1335
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1336
#endif
1337

    
1338
    s->robust_singlestep =
1339
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1340

    
1341
#ifdef KVM_CAP_DEBUGREGS
1342
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1343
#endif
1344

    
1345
#ifdef KVM_CAP_XSAVE
1346
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1347
#endif
1348

    
1349
#ifdef KVM_CAP_XCRS
1350
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1351
#endif
1352

    
1353
#ifdef KVM_CAP_PIT_STATE2
1354
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1355
#endif
1356

    
1357
#ifdef KVM_CAP_IRQ_ROUTING
1358
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1359
#endif
1360

    
1361
    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1362

    
1363
    s->irq_set_ioctl = KVM_IRQ_LINE;
1364
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1365
        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1366
    }
1367

    
1368
    ret = kvm_arch_init(s);
1369
    if (ret < 0) {
1370
        goto err;
1371
    }
1372

    
1373
    ret = kvm_irqchip_create(s);
1374
    if (ret < 0) {
1375
        goto err;
1376
    }
1377

    
1378
    kvm_state = s;
1379
    memory_listener_register(&kvm_memory_listener, &address_space_memory);
1380
    memory_listener_register(&kvm_io_listener, &address_space_io);
1381

    
1382
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1383

    
1384
    cpu_interrupt_handler = kvm_handle_interrupt;
1385

    
1386
    return 0;
1387

    
1388
err:
1389
    if (s->vmfd >= 0) {
1390
        close(s->vmfd);
1391
    }
1392
    if (s->fd != -1) {
1393
        close(s->fd);
1394
    }
1395
    g_free(s);
1396

    
1397
    return ret;
1398
}
1399

    
1400
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1401
                          uint32_t count)
1402
{
1403
    int i;
1404
    uint8_t *ptr = data;
1405

    
1406
    for (i = 0; i < count; i++) {
1407
        if (direction == KVM_EXIT_IO_IN) {
1408
            switch (size) {
1409
            case 1:
1410
                stb_p(ptr, cpu_inb(port));
1411
                break;
1412
            case 2:
1413
                stw_p(ptr, cpu_inw(port));
1414
                break;
1415
            case 4:
1416
                stl_p(ptr, cpu_inl(port));
1417
                break;
1418
            }
1419
        } else {
1420
            switch (size) {
1421
            case 1:
1422
                cpu_outb(port, ldub_p(ptr));
1423
                break;
1424
            case 2:
1425
                cpu_outw(port, lduw_p(ptr));
1426
                break;
1427
            case 4:
1428
                cpu_outl(port, ldl_p(ptr));
1429
                break;
1430
            }
1431
        }
1432

    
1433
        ptr += size;
1434
    }
1435
}
1436

    
1437
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1438
{
1439
    CPUState *cpu = ENV_GET_CPU(env);
1440

    
1441
    fprintf(stderr, "KVM internal error.");
1442
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1443
        int i;
1444

    
1445
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1446
        for (i = 0; i < run->internal.ndata; ++i) {
1447
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1448
                    i, (uint64_t)run->internal.data[i]);
1449
        }
1450
    } else {
1451
        fprintf(stderr, "\n");
1452
    }
1453
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1454
        fprintf(stderr, "emulation failure\n");
1455
        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1456
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1457
            return EXCP_INTERRUPT;
1458
        }
1459
    }
1460
    /* FIXME: Should trigger a qmp message to let management know
1461
     * something went wrong.
1462
     */
1463
    return -1;
1464
}
1465

    
1466
void kvm_flush_coalesced_mmio_buffer(void)
1467
{
1468
    KVMState *s = kvm_state;
1469

    
1470
    if (s->coalesced_flush_in_progress) {
1471
        return;
1472
    }
1473

    
1474
    s->coalesced_flush_in_progress = true;
1475

    
1476
    if (s->coalesced_mmio_ring) {
1477
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1478
        while (ring->first != ring->last) {
1479
            struct kvm_coalesced_mmio *ent;
1480

    
1481
            ent = &ring->coalesced_mmio[ring->first];
1482

    
1483
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1484
            smp_wmb();
1485
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1486
        }
1487
    }
1488

    
1489
    s->coalesced_flush_in_progress = false;
1490
}
1491

    
1492
static void do_kvm_cpu_synchronize_state(void *arg)
1493
{
1494
    CPUState *cpu = arg;
1495

    
1496
    if (!cpu->kvm_vcpu_dirty) {
1497
        kvm_arch_get_registers(cpu);
1498
        cpu->kvm_vcpu_dirty = true;
1499
    }
1500
}
1501

    
1502
void kvm_cpu_synchronize_state(CPUArchState *env)
1503
{
1504
    CPUState *cpu = ENV_GET_CPU(env);
1505

    
1506
    if (!cpu->kvm_vcpu_dirty) {
1507
        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1508
    }
1509
}
1510

    
1511
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1512
{
1513
    CPUState *cpu = ENV_GET_CPU(env);
1514

    
1515
    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1516
    cpu->kvm_vcpu_dirty = false;
1517
}
1518

    
1519
void kvm_cpu_synchronize_post_init(CPUArchState *env)
1520
{
1521
    CPUState *cpu = ENV_GET_CPU(env);
1522

    
1523
    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1524
    cpu->kvm_vcpu_dirty = false;
1525
}
1526

    
1527
int kvm_cpu_exec(CPUArchState *env)
1528
{
1529
    CPUState *cpu = ENV_GET_CPU(env);
1530
    struct kvm_run *run = cpu->kvm_run;
1531
    int ret, run_ret;
1532

    
1533
    DPRINTF("kvm_cpu_exec()\n");
1534

    
1535
    if (kvm_arch_process_async_events(cpu)) {
1536
        env->exit_request = 0;
1537
        return EXCP_HLT;
1538
    }
1539

    
1540
    do {
1541
        if (cpu->kvm_vcpu_dirty) {
1542
            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1543
            cpu->kvm_vcpu_dirty = false;
1544
        }
1545

    
1546
        kvm_arch_pre_run(cpu, run);
1547
        if (env->exit_request) {
1548
            DPRINTF("interrupt exit requested\n");
1549
            /*
1550
             * KVM requires us to reenter the kernel after IO exits to complete
1551
             * instruction emulation. This self-signal will ensure that we
1552
             * leave ASAP again.
1553
             */
1554
            qemu_cpu_kick_self();
1555
        }
1556
        qemu_mutex_unlock_iothread();
1557

    
1558
        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1559

    
1560
        qemu_mutex_lock_iothread();
1561
        kvm_arch_post_run(cpu, run);
1562

    
1563
        if (run_ret < 0) {
1564
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1565
                DPRINTF("io window exit\n");
1566
                ret = EXCP_INTERRUPT;
1567
                break;
1568
            }
1569
            fprintf(stderr, "error: kvm run failed %s\n",
1570
                    strerror(-run_ret));
1571
            abort();
1572
        }
1573

    
1574
        switch (run->exit_reason) {
1575
        case KVM_EXIT_IO:
1576
            DPRINTF("handle_io\n");
1577
            kvm_handle_io(run->io.port,
1578
                          (uint8_t *)run + run->io.data_offset,
1579
                          run->io.direction,
1580
                          run->io.size,
1581
                          run->io.count);
1582
            ret = 0;
1583
            break;
1584
        case KVM_EXIT_MMIO:
1585
            DPRINTF("handle_mmio\n");
1586
            cpu_physical_memory_rw(run->mmio.phys_addr,
1587
                                   run->mmio.data,
1588
                                   run->mmio.len,
1589
                                   run->mmio.is_write);
1590
            ret = 0;
1591
            break;
1592
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1593
            DPRINTF("irq_window_open\n");
1594
            ret = EXCP_INTERRUPT;
1595
            break;
1596
        case KVM_EXIT_SHUTDOWN:
1597
            DPRINTF("shutdown\n");
1598
            qemu_system_reset_request();
1599
            ret = EXCP_INTERRUPT;
1600
            break;
1601
        case KVM_EXIT_UNKNOWN:
1602
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1603
                    (uint64_t)run->hw.hardware_exit_reason);
1604
            ret = -1;
1605
            break;
1606
        case KVM_EXIT_INTERNAL_ERROR:
1607
            ret = kvm_handle_internal_error(env, run);
1608
            break;
1609
        default:
1610
            DPRINTF("kvm_arch_handle_exit\n");
1611
            ret = kvm_arch_handle_exit(cpu, run);
1612
            break;
1613
        }
1614
    } while (ret == 0);
1615

    
1616
    if (ret < 0) {
1617
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1618
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1619
    }
1620

    
1621
    env->exit_request = 0;
1622
    return ret;
1623
}
1624

    
1625
int kvm_ioctl(KVMState *s, int type, ...)
1626
{
1627
    int ret;
1628
    void *arg;
1629
    va_list ap;
1630

    
1631
    va_start(ap, type);
1632
    arg = va_arg(ap, void *);
1633
    va_end(ap);
1634

    
1635
    ret = ioctl(s->fd, type, arg);
1636
    if (ret == -1) {
1637
        ret = -errno;
1638
    }
1639
    return ret;
1640
}
1641

    
1642
int kvm_vm_ioctl(KVMState *s, int type, ...)
1643
{
1644
    int ret;
1645
    void *arg;
1646
    va_list ap;
1647

    
1648
    va_start(ap, type);
1649
    arg = va_arg(ap, void *);
1650
    va_end(ap);
1651

    
1652
    ret = ioctl(s->vmfd, type, arg);
1653
    if (ret == -1) {
1654
        ret = -errno;
1655
    }
1656
    return ret;
1657
}
1658

    
1659
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1660
{
1661
    int ret;
1662
    void *arg;
1663
    va_list ap;
1664

    
1665
    va_start(ap, type);
1666
    arg = va_arg(ap, void *);
1667
    va_end(ap);
1668

    
1669
    ret = ioctl(cpu->kvm_fd, type, arg);
1670
    if (ret == -1) {
1671
        ret = -errno;
1672
    }
1673
    return ret;
1674
}
1675

    
1676
int kvm_has_sync_mmu(void)
1677
{
1678
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1679
}
1680

    
1681
int kvm_has_vcpu_events(void)
1682
{
1683
    return kvm_state->vcpu_events;
1684
}
1685

    
1686
int kvm_has_robust_singlestep(void)
1687
{
1688
    return kvm_state->robust_singlestep;
1689
}
1690

    
1691
int kvm_has_debugregs(void)
1692
{
1693
    return kvm_state->debugregs;
1694
}
1695

    
1696
int kvm_has_xsave(void)
1697
{
1698
    return kvm_state->xsave;
1699
}
1700

    
1701
int kvm_has_xcrs(void)
1702
{
1703
    return kvm_state->xcrs;
1704
}
1705

    
1706
int kvm_has_pit_state2(void)
1707
{
1708
    return kvm_state->pit_state2;
1709
}
1710

    
1711
int kvm_has_many_ioeventfds(void)
1712
{
1713
    if (!kvm_enabled()) {
1714
        return 0;
1715
    }
1716
    return kvm_state->many_ioeventfds;
1717
}
1718

    
1719
int kvm_has_gsi_routing(void)
1720
{
1721
#ifdef KVM_CAP_IRQ_ROUTING
1722
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1723
#else
1724
    return false;
1725
#endif
1726
}
1727

    
1728
int kvm_has_intx_set_mask(void)
1729
{
1730
    return kvm_state->intx_set_mask;
1731
}
1732

    
1733
void *kvm_vmalloc(ram_addr_t size)
1734
{
1735
#ifdef TARGET_S390X
1736
    void *mem;
1737

    
1738
    mem = kvm_arch_vmalloc(size);
1739
    if (mem) {
1740
        return mem;
1741
    }
1742
#endif
1743
    return qemu_vmalloc(size);
1744
}
1745

    
1746
void kvm_setup_guest_memory(void *start, size_t size)
1747
{
1748
#ifdef CONFIG_VALGRIND_H
1749
    VALGRIND_MAKE_MEM_DEFINED(start, size);
1750
#endif
1751
    if (!kvm_has_sync_mmu()) {
1752
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1753

    
1754
        if (ret) {
1755
            perror("qemu_madvise");
1756
            fprintf(stderr,
1757
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1758
            exit(1);
1759
        }
1760
    }
1761
}
1762

    
1763
#ifdef KVM_CAP_SET_GUEST_DEBUG
1764
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1765
                                                 target_ulong pc)
1766
{
1767
    struct kvm_sw_breakpoint *bp;
1768

    
1769
    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1770
        if (bp->pc == pc) {
1771
            return bp;
1772
        }
1773
    }
1774
    return NULL;
1775
}
1776

    
1777
int kvm_sw_breakpoints_active(CPUState *cpu)
1778
{
1779
    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1780
}
1781

    
1782
struct kvm_set_guest_debug_data {
1783
    struct kvm_guest_debug dbg;
1784
    CPUState *cpu;
1785
    int err;
1786
};
1787

    
1788
static void kvm_invoke_set_guest_debug(void *data)
1789
{
1790
    struct kvm_set_guest_debug_data *dbg_data = data;
1791

    
1792
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1793
                                   &dbg_data->dbg);
1794
}
1795

    
1796
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1797
{
1798
    CPUState *cpu = ENV_GET_CPU(env);
1799
    struct kvm_set_guest_debug_data data;
1800

    
1801
    data.dbg.control = reinject_trap;
1802

    
1803
    if (env->singlestep_enabled) {
1804
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1805
    }
1806
    kvm_arch_update_guest_debug(cpu, &data.dbg);
1807
    data.cpu = cpu;
1808

    
1809
    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1810
    return data.err;
1811
}
1812

    
1813
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1814
                          target_ulong len, int type)
1815
{
1816
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1817
    struct kvm_sw_breakpoint *bp;
1818
    CPUArchState *env;
1819
    int err;
1820

    
1821
    if (type == GDB_BREAKPOINT_SW) {
1822
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1823
        if (bp) {
1824
            bp->use_count++;
1825
            return 0;
1826
        }
1827

    
1828
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1829
        if (!bp) {
1830
            return -ENOMEM;
1831
        }
1832

    
1833
        bp->pc = addr;
1834
        bp->use_count = 1;
1835
        err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1836
        if (err) {
1837
            g_free(bp);
1838
            return err;
1839
        }
1840

    
1841
        QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1842
                          bp, entry);
1843
    } else {
1844
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1845
        if (err) {
1846
            return err;
1847
        }
1848
    }
1849

    
1850
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1851
        err = kvm_update_guest_debug(env, 0);
1852
        if (err) {
1853
            return err;
1854
        }
1855
    }
1856
    return 0;
1857
}
1858

    
1859
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1860
                          target_ulong len, int type)
1861
{
1862
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1863
    struct kvm_sw_breakpoint *bp;
1864
    CPUArchState *env;
1865
    int err;
1866

    
1867
    if (type == GDB_BREAKPOINT_SW) {
1868
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1869
        if (!bp) {
1870
            return -ENOENT;
1871
        }
1872

    
1873
        if (bp->use_count > 1) {
1874
            bp->use_count--;
1875
            return 0;
1876
        }
1877

    
1878
        err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1879
        if (err) {
1880
            return err;
1881
        }
1882

    
1883
        QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1884
        g_free(bp);
1885
    } else {
1886
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1887
        if (err) {
1888
            return err;
1889
        }
1890
    }
1891

    
1892
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1893
        err = kvm_update_guest_debug(env, 0);
1894
        if (err) {
1895
            return err;
1896
        }
1897
    }
1898
    return 0;
1899
}
1900

    
1901
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1902
{
1903
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1904
    struct kvm_sw_breakpoint *bp, *next;
1905
    KVMState *s = current_cpu->kvm_state;
1906
    CPUArchState *env;
1907
    CPUState *cpu;
1908

    
1909
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1910
        if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1911
            /* Try harder to find a CPU that currently sees the breakpoint. */
1912
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1913
                cpu = ENV_GET_CPU(env);
1914
                if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1915
                    break;
1916
                }
1917
            }
1918
        }
1919
        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1920
        g_free(bp);
1921
    }
1922
    kvm_arch_remove_all_hw_breakpoints();
1923

    
1924
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1925
        kvm_update_guest_debug(env, 0);
1926
    }
1927
}
1928

    
1929
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1930

    
1931
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1932
{
1933
    return -EINVAL;
1934
}
1935

    
1936
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1937
                          target_ulong len, int type)
1938
{
1939
    return -EINVAL;
1940
}
1941

    
1942
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1943
                          target_ulong len, int type)
1944
{
1945
    return -EINVAL;
1946
}
1947

    
1948
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1949
{
1950
}
1951
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1952

    
1953
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1954
{
1955
    CPUState *cpu = ENV_GET_CPU(env);
1956
    struct kvm_signal_mask *sigmask;
1957
    int r;
1958

    
1959
    if (!sigset) {
1960
        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
1961
    }
1962

    
1963
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1964

    
1965
    sigmask->len = 8;
1966
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1967
    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
1968
    g_free(sigmask);
1969

    
1970
    return r;
1971
}
1972

    
1973
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1974
                           uint32_t size)
1975
{
1976
    int ret;
1977
    struct kvm_ioeventfd iofd;
1978

    
1979
    iofd.datamatch = val;
1980
    iofd.addr = addr;
1981
    iofd.len = size;
1982
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1983
    iofd.fd = fd;
1984

    
1985
    if (!kvm_enabled()) {
1986
        return -ENOSYS;
1987
    }
1988

    
1989
    if (!assign) {
1990
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1991
    }
1992

    
1993
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1994

    
1995
    if (ret < 0) {
1996
        return -errno;
1997
    }
1998

    
1999
    return 0;
2000
}
2001

    
2002
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
2003
{
2004
    struct kvm_ioeventfd kick = {
2005
        .datamatch = val,
2006
        .addr = addr,
2007
        .len = 2,
2008
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
2009
        .fd = fd,
2010
    };
2011
    int r;
2012
    if (!kvm_enabled()) {
2013
        return -ENOSYS;
2014
    }
2015
    if (!assign) {
2016
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2017
    }
2018
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2019
    if (r < 0) {
2020
        return r;
2021
    }
2022
    return 0;
2023
}
2024

    
2025
int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
2026
{
2027
    CPUState *cpu = ENV_GET_CPU(env);
2028
    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2029
}
2030

    
2031
int kvm_on_sigbus(int code, void *addr)
2032
{
2033
    return kvm_arch_on_sigbus(code, addr);
2034
}