Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 39bffca2

History | View | Annotate | Download (79.7 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 8f40c388 bellard
@settitle QEMU Emulator User Documentation
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 386405f7 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 0806e3f6 bellard
@iftex
20 386405f7 bellard
@titlepage
21 386405f7 bellard
@sp 7
22 8f40c388 bellard
@center @titlefont{QEMU Emulator}
23 debc7065 bellard
@sp 1
24 debc7065 bellard
@center @titlefont{User Documentation}
25 386405f7 bellard
@sp 3
26 386405f7 bellard
@end titlepage
27 0806e3f6 bellard
@end iftex
28 386405f7 bellard
29 debc7065 bellard
@ifnottex
30 debc7065 bellard
@node Top
31 debc7065 bellard
@top
32 debc7065 bellard
33 debc7065 bellard
@menu
34 debc7065 bellard
* Introduction::
35 debc7065 bellard
* Installation::
36 debc7065 bellard
* QEMU PC System emulator::
37 debc7065 bellard
* QEMU System emulator for non PC targets::
38 83195237 bellard
* QEMU User space emulator::
39 debc7065 bellard
* compilation:: Compilation from the sources
40 7544a042 Stefan Weil
* License::
41 debc7065 bellard
* Index::
42 debc7065 bellard
@end menu
43 debc7065 bellard
@end ifnottex
44 debc7065 bellard
45 debc7065 bellard
@contents
46 debc7065 bellard
47 debc7065 bellard
@node Introduction
48 386405f7 bellard
@chapter Introduction
49 386405f7 bellard
50 debc7065 bellard
@menu
51 debc7065 bellard
* intro_features:: Features
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 322d0c66 bellard
@section Features
56 386405f7 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
58 1f673135 bellard
achieve good emulation speed.
59 1eb20527 bellard
60 1eb20527 bellard
QEMU has two operating modes:
61 0806e3f6 bellard
62 d7e5edca Stefan Weil
@itemize
63 7544a042 Stefan Weil
@cindex operating modes
64 0806e3f6 bellard
65 5fafdf24 ths
@item
66 7544a042 Stefan Weil
@cindex system emulation
67 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
68 3f9f3aa1 bellard
example a PC), including one or several processors and various
69 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
70 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
71 1eb20527 bellard
72 5fafdf24 ths
@item
73 7544a042 Stefan Weil
@cindex user mode emulation
74 83195237 bellard
User mode emulation. In this mode, QEMU can launch
75 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
76 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 1f673135 bellard
to ease cross-compilation and cross-debugging.
78 1eb20527 bellard
79 1eb20527 bellard
@end itemize
80 1eb20527 bellard
81 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
82 5fafdf24 ths
performance.
83 322d0c66 bellard
84 52c00a5f bellard
For system emulation, the following hardware targets are supported:
85 52c00a5f bellard
@itemize
86 7544a042 Stefan Weil
@cindex emulated target systems
87 7544a042 Stefan Weil
@cindex supported target systems
88 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
89 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
90 52c00a5f bellard
@item PREP (PowerPC processor)
91 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
92 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
93 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
96 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
97 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
98 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
99 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
100 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
104 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
106 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
107 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
108 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
110 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112 3aeaea65 Max Filippov
@item Avnet LX60/LX110/LX200 boards (Xtensa)
113 52c00a5f bellard
@end itemize
114 386405f7 bellard
115 7544a042 Stefan Weil
@cindex supported user mode targets
116 7544a042 Stefan Weil
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 7544a042 Stefan Weil
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 7544a042 Stefan Weil
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119 0806e3f6 bellard
120 debc7065 bellard
@node Installation
121 5b9f457a bellard
@chapter Installation
122 5b9f457a bellard
123 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
124 15a34c63 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* install_linux::   Linux
127 debc7065 bellard
* install_windows:: Windows
128 debc7065 bellard
* install_mac::     Macintosh
129 debc7065 bellard
@end menu
130 debc7065 bellard
131 debc7065 bellard
@node install_linux
132 1f673135 bellard
@section Linux
133 7544a042 Stefan Weil
@cindex installation (Linux)
134 1f673135 bellard
135 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
136 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
137 5b9f457a bellard
138 debc7065 bellard
@node install_windows
139 1f673135 bellard
@section Windows
140 7544a042 Stefan Weil
@cindex installation (Windows)
141 8cd0ac2f bellard
142 15a34c63 bellard
Download the experimental binary installer at
143 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
144 7544a042 Stefan Weil
TODO (no longer available)
145 d691f669 bellard
146 debc7065 bellard
@node install_mac
147 1f673135 bellard
@section Mac OS X
148 d691f669 bellard
149 15a34c63 bellard
Download the experimental binary installer at
150 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
151 7544a042 Stefan Weil
TODO (no longer available)
152 df0f11a0 bellard
153 debc7065 bellard
@node QEMU PC System emulator
154 3f9f3aa1 bellard
@chapter QEMU PC System emulator
155 7544a042 Stefan Weil
@cindex system emulation (PC)
156 1eb20527 bellard
157 debc7065 bellard
@menu
158 debc7065 bellard
* pcsys_introduction:: Introduction
159 debc7065 bellard
* pcsys_quickstart::   Quick Start
160 debc7065 bellard
* sec_invocation::     Invocation
161 debc7065 bellard
* pcsys_keys::         Keys
162 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
163 debc7065 bellard
* disk_images::        Disk Images
164 debc7065 bellard
* pcsys_network::      Network emulation
165 576fd0a1 Stefan Weil
* pcsys_other_devs::   Other Devices
166 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
167 debc7065 bellard
* pcsys_usb::          USB emulation
168 f858dcae ths
* vnc_security::       VNC security
169 debc7065 bellard
* gdb_usage::          GDB usage
170 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
171 debc7065 bellard
@end menu
172 debc7065 bellard
173 debc7065 bellard
@node pcsys_introduction
174 0806e3f6 bellard
@section Introduction
175 0806e3f6 bellard
176 0806e3f6 bellard
@c man begin DESCRIPTION
177 0806e3f6 bellard
178 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
179 3f9f3aa1 bellard
following peripherals:
180 0806e3f6 bellard
181 0806e3f6 bellard
@itemize @minus
182 5fafdf24 ths
@item
183 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 0806e3f6 bellard
@item
185 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 15a34c63 bellard
extensions (hardware level, including all non standard modes).
187 0806e3f6 bellard
@item
188 0806e3f6 bellard
PS/2 mouse and keyboard
189 5fafdf24 ths
@item
190 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
191 1f673135 bellard
@item
192 1f673135 bellard
Floppy disk
193 5fafdf24 ths
@item
194 3a2eeac0 Stefan Weil
PCI and ISA network adapters
195 0806e3f6 bellard
@item
196 05d5818c bellard
Serial ports
197 05d5818c bellard
@item
198 c0fe3827 bellard
Creative SoundBlaster 16 sound card
199 c0fe3827 bellard
@item
200 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
201 c0fe3827 bellard
@item
202 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
203 e5c9a13e balrog
@item
204 7d72e762 Gerd Hoffmann
Intel HD Audio Controller and HDA codec
205 7d72e762 Gerd Hoffmann
@item
206 2d983446 Stefan Weil
Adlib (OPL2) - Yamaha YM3812 compatible chip
207 b389dbfb bellard
@item
208 26463dbc balrog
Gravis Ultrasound GF1 sound card
209 26463dbc balrog
@item
210 cc53d26d malc
CS4231A compatible sound card
211 cc53d26d malc
@item
212 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
213 0806e3f6 bellard
@end itemize
214 0806e3f6 bellard
215 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
216 3f9f3aa1 bellard
217 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
218 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
219 e5178e8d malc
required card(s).
220 c0fe3827 bellard
221 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 15a34c63 bellard
VGA BIOS.
223 15a34c63 bellard
224 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225 c0fe3827 bellard
226 2d983446 Stefan Weil
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 26463dbc balrog
by Tibor "TS" Schรผtz.
228 423d65f4 balrog
229 1a1a0e20 Bernhard Reutner-Fischer
Note that, by default, GUS shares IRQ(7) with parallel ports and so
230 720036a5 malc
qemu must be told to not have parallel ports to have working GUS
231 720036a5 malc
232 720036a5 malc
@example
233 720036a5 malc
qemu dos.img -soundhw gus -parallel none
234 720036a5 malc
@end example
235 720036a5 malc
236 720036a5 malc
Alternatively:
237 720036a5 malc
@example
238 720036a5 malc
qemu dos.img -device gus,irq=5
239 720036a5 malc
@end example
240 720036a5 malc
241 720036a5 malc
Or some other unclaimed IRQ.
242 720036a5 malc
243 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
244 cc53d26d malc
245 0806e3f6 bellard
@c man end
246 0806e3f6 bellard
247 debc7065 bellard
@node pcsys_quickstart
248 1eb20527 bellard
@section Quick Start
249 7544a042 Stefan Weil
@cindex quick start
250 1eb20527 bellard
251 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
252 0806e3f6 bellard
253 0806e3f6 bellard
@example
254 285dc330 bellard
qemu linux.img
255 0806e3f6 bellard
@end example
256 0806e3f6 bellard
257 0806e3f6 bellard
Linux should boot and give you a prompt.
258 0806e3f6 bellard
259 6cc721cf bellard
@node sec_invocation
260 ec410fc9 bellard
@section Invocation
261 ec410fc9 bellard
262 ec410fc9 bellard
@example
263 0806e3f6 bellard
@c man begin SYNOPSIS
264 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
265 0806e3f6 bellard
@c man end
266 ec410fc9 bellard
@end example
267 ec410fc9 bellard
268 0806e3f6 bellard
@c man begin OPTIONS
269 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 d2c639d6 blueswir1
targets do not need a disk image.
271 ec410fc9 bellard
272 5824d651 blueswir1
@include qemu-options.texi
273 ec410fc9 bellard
274 3e11db9a bellard
@c man end
275 3e11db9a bellard
276 debc7065 bellard
@node pcsys_keys
277 3e11db9a bellard
@section Keys
278 3e11db9a bellard
279 3e11db9a bellard
@c man begin OPTIONS
280 3e11db9a bellard
281 de1db2a1 Brad Hards
During the graphical emulation, you can use special key combinations to change
282 de1db2a1 Brad Hards
modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283 de1db2a1 Brad Hards
then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284 de1db2a1 Brad Hards
@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285 de1db2a1 Brad Hards
286 a1b74fe8 bellard
@table @key
287 f9859310 bellard
@item Ctrl-Alt-f
288 7544a042 Stefan Weil
@kindex Ctrl-Alt-f
289 a1b74fe8 bellard
Toggle full screen
290 a0a821a4 bellard
291 d6a65ba3 Jan Kiszka
@item Ctrl-Alt-+
292 d6a65ba3 Jan Kiszka
@kindex Ctrl-Alt-+
293 d6a65ba3 Jan Kiszka
Enlarge the screen
294 d6a65ba3 Jan Kiszka
295 d6a65ba3 Jan Kiszka
@item Ctrl-Alt--
296 d6a65ba3 Jan Kiszka
@kindex Ctrl-Alt--
297 d6a65ba3 Jan Kiszka
Shrink the screen
298 d6a65ba3 Jan Kiszka
299 c4a735f9 malc
@item Ctrl-Alt-u
300 7544a042 Stefan Weil
@kindex Ctrl-Alt-u
301 c4a735f9 malc
Restore the screen's un-scaled dimensions
302 c4a735f9 malc
303 f9859310 bellard
@item Ctrl-Alt-n
304 7544a042 Stefan Weil
@kindex Ctrl-Alt-n
305 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
306 a0a821a4 bellard
@table @emph
307 a0a821a4 bellard
@item 1
308 a0a821a4 bellard
Target system display
309 a0a821a4 bellard
@item 2
310 a0a821a4 bellard
Monitor
311 a0a821a4 bellard
@item 3
312 a0a821a4 bellard
Serial port
313 a1b74fe8 bellard
@end table
314 a1b74fe8 bellard
315 f9859310 bellard
@item Ctrl-Alt
316 7544a042 Stefan Weil
@kindex Ctrl-Alt
317 a0a821a4 bellard
Toggle mouse and keyboard grab.
318 a0a821a4 bellard
@end table
319 a0a821a4 bellard
320 7544a042 Stefan Weil
@kindex Ctrl-Up
321 7544a042 Stefan Weil
@kindex Ctrl-Down
322 7544a042 Stefan Weil
@kindex Ctrl-PageUp
323 7544a042 Stefan Weil
@kindex Ctrl-PageDown
324 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326 3e11db9a bellard
327 7544a042 Stefan Weil
@kindex Ctrl-a h
328 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
329 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
330 ec410fc9 bellard
331 ec410fc9 bellard
@table @key
332 a1b74fe8 bellard
@item Ctrl-a h
333 7544a042 Stefan Weil
@kindex Ctrl-a h
334 d2c639d6 blueswir1
@item Ctrl-a ?
335 7544a042 Stefan Weil
@kindex Ctrl-a ?
336 ec410fc9 bellard
Print this help
337 3b46e624 ths
@item Ctrl-a x
338 7544a042 Stefan Weil
@kindex Ctrl-a x
339 366dfc52 ths
Exit emulator
340 3b46e624 ths
@item Ctrl-a s
341 7544a042 Stefan Weil
@kindex Ctrl-a s
342 1f47a922 bellard
Save disk data back to file (if -snapshot)
343 20d8a3ed ths
@item Ctrl-a t
344 7544a042 Stefan Weil
@kindex Ctrl-a t
345 d2c639d6 blueswir1
Toggle console timestamps
346 a1b74fe8 bellard
@item Ctrl-a b
347 7544a042 Stefan Weil
@kindex Ctrl-a b
348 1f673135 bellard
Send break (magic sysrq in Linux)
349 a1b74fe8 bellard
@item Ctrl-a c
350 7544a042 Stefan Weil
@kindex Ctrl-a c
351 1f673135 bellard
Switch between console and monitor
352 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
353 7544a042 Stefan Weil
@kindex Ctrl-a a
354 a1b74fe8 bellard
Send Ctrl-a
355 ec410fc9 bellard
@end table
356 0806e3f6 bellard
@c man end
357 0806e3f6 bellard
358 0806e3f6 bellard
@ignore
359 0806e3f6 bellard
360 1f673135 bellard
@c man begin SEEALSO
361 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
362 1f673135 bellard
user mode emulator invocation.
363 1f673135 bellard
@c man end
364 1f673135 bellard
365 1f673135 bellard
@c man begin AUTHOR
366 1f673135 bellard
Fabrice Bellard
367 1f673135 bellard
@c man end
368 1f673135 bellard
369 1f673135 bellard
@end ignore
370 1f673135 bellard
371 debc7065 bellard
@node pcsys_monitor
372 1f673135 bellard
@section QEMU Monitor
373 7544a042 Stefan Weil
@cindex QEMU monitor
374 1f673135 bellard
375 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
376 1f673135 bellard
emulator. You can use it to:
377 1f673135 bellard
378 1f673135 bellard
@itemize @minus
379 1f673135 bellard
380 1f673135 bellard
@item
381 e598752a ths
Remove or insert removable media images
382 89dfe898 ths
(such as CD-ROM or floppies).
383 1f673135 bellard
384 5fafdf24 ths
@item
385 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386 1f673135 bellard
from a disk file.
387 1f673135 bellard
388 1f673135 bellard
@item Inspect the VM state without an external debugger.
389 1f673135 bellard
390 1f673135 bellard
@end itemize
391 1f673135 bellard
392 1f673135 bellard
@subsection Commands
393 1f673135 bellard
394 1f673135 bellard
The following commands are available:
395 1f673135 bellard
396 2313086a Blue Swirl
@include qemu-monitor.texi
397 0806e3f6 bellard
398 1f673135 bellard
@subsection Integer expressions
399 1f673135 bellard
400 1f673135 bellard
The monitor understands integers expressions for every integer
401 1f673135 bellard
argument. You can use register names to get the value of specifics
402 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
403 ec410fc9 bellard
404 1f47a922 bellard
@node disk_images
405 1f47a922 bellard
@section Disk Images
406 1f47a922 bellard
407 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
408 acd935ef bellard
growable disk images (their size increase as non empty sectors are
409 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
410 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
411 13a2e80f bellard
snapshots.
412 1f47a922 bellard
413 debc7065 bellard
@menu
414 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
415 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
416 13a2e80f bellard
* vm_snapshots::              VM snapshots
417 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
418 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
419 19cb3738 bellard
* host_drives::               Using host drives
420 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
421 75818250 ths
* disk_images_nbd::           NBD access
422 42af9c30 MORITA Kazutaka
* disk_images_sheepdog::      Sheepdog disk images
423 00984e39 Ronnie Sahlberg
* disk_images_iscsi::         iSCSI LUNs
424 debc7065 bellard
@end menu
425 debc7065 bellard
426 debc7065 bellard
@node disk_images_quickstart
427 acd935ef bellard
@subsection Quick start for disk image creation
428 acd935ef bellard
429 acd935ef bellard
You can create a disk image with the command:
430 1f47a922 bellard
@example
431 acd935ef bellard
qemu-img create myimage.img mysize
432 1f47a922 bellard
@end example
433 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
434 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
435 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
436 acd935ef bellard
437 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
438 1f47a922 bellard
439 debc7065 bellard
@node disk_images_snapshot_mode
440 1f47a922 bellard
@subsection Snapshot mode
441 1f47a922 bellard
442 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
443 1f47a922 bellard
considered as read only. When sectors in written, they are written in
444 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
445 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
446 acd935ef bellard
command (or @key{C-a s} in the serial console).
447 1f47a922 bellard
448 13a2e80f bellard
@node vm_snapshots
449 13a2e80f bellard
@subsection VM snapshots
450 13a2e80f bellard
451 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
452 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
453 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
454 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
455 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
456 13a2e80f bellard
457 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
458 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
459 19d36792 bellard
snapshot in addition to its numerical ID.
460 13a2e80f bellard
461 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
463 13a2e80f bellard
with their associated information:
464 13a2e80f bellard
465 13a2e80f bellard
@example
466 13a2e80f bellard
(qemu) info snapshots
467 13a2e80f bellard
Snapshot devices: hda
468 13a2e80f bellard
Snapshot list (from hda):
469 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
470 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
471 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
472 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
473 13a2e80f bellard
@end example
474 13a2e80f bellard
475 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
476 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
477 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
478 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
479 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
480 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
481 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
482 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
483 19d36792 bellard
disk images).
484 13a2e80f bellard
485 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
486 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
488 13a2e80f bellard
489 13a2e80f bellard
VM snapshots currently have the following known limitations:
490 13a2e80f bellard
@itemize
491 5fafdf24 ths
@item
492 13a2e80f bellard
They cannot cope with removable devices if they are removed or
493 13a2e80f bellard
inserted after a snapshot is done.
494 5fafdf24 ths
@item
495 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
496 13a2e80f bellard
state is not saved or restored properly (in particular USB).
497 13a2e80f bellard
@end itemize
498 13a2e80f bellard
499 acd935ef bellard
@node qemu_img_invocation
500 acd935ef bellard
@subsection @code{qemu-img} Invocation
501 1f47a922 bellard
502 acd935ef bellard
@include qemu-img.texi
503 05efe46e bellard
504 975b092b ths
@node qemu_nbd_invocation
505 975b092b ths
@subsection @code{qemu-nbd} Invocation
506 975b092b ths
507 975b092b ths
@include qemu-nbd.texi
508 975b092b ths
509 19cb3738 bellard
@node host_drives
510 19cb3738 bellard
@subsection Using host drives
511 19cb3738 bellard
512 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
513 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
514 19cb3738 bellard
515 19cb3738 bellard
@subsubsection Linux
516 19cb3738 bellard
517 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
518 4be456f1 ths
disk image filename provided you have enough privileges to access
519 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
520 19cb3738 bellard
@file{/dev/fd0} for the floppy.
521 19cb3738 bellard
522 f542086d bellard
@table @code
523 19cb3738 bellard
@item CD
524 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
525 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
526 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
527 19cb3738 bellard
@item Floppy
528 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
529 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
530 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
531 19cb3738 bellard
OS will think that the same floppy is loaded).
532 19cb3738 bellard
@item Hard disks
533 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
534 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
536 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
537 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
538 19cb3738 bellard
line option or modify the device permissions accordingly).
539 19cb3738 bellard
@end table
540 19cb3738 bellard
541 19cb3738 bellard
@subsubsection Windows
542 19cb3738 bellard
543 01781963 bellard
@table @code
544 01781963 bellard
@item CD
545 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
546 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547 01781963 bellard
supported as an alias to the first CDROM drive.
548 19cb3738 bellard
549 e598752a ths
Currently there is no specific code to handle removable media, so it
550 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
551 19cb3738 bellard
change or eject media.
552 01781963 bellard
@item Hard disks
553 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
554 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
555 01781963 bellard
556 01781963 bellard
WARNING: unless you know what you do, it is better to only make
557 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
558 01781963 bellard
host data (use the @option{-snapshot} command line so that the
559 01781963 bellard
modifications are written in a temporary file).
560 01781963 bellard
@end table
561 01781963 bellard
562 19cb3738 bellard
563 19cb3738 bellard
@subsubsection Mac OS X
564 19cb3738 bellard
565 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
566 19cb3738 bellard
567 e598752a ths
Currently there is no specific code to handle removable media, so it
568 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
569 19cb3738 bellard
change or eject media.
570 19cb3738 bellard
571 debc7065 bellard
@node disk_images_fat_images
572 2c6cadd4 bellard
@subsection Virtual FAT disk images
573 2c6cadd4 bellard
574 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
575 2c6cadd4 bellard
directory tree. In order to use it, just type:
576 2c6cadd4 bellard
577 5fafdf24 ths
@example
578 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
579 2c6cadd4 bellard
@end example
580 2c6cadd4 bellard
581 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
582 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
583 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
584 2c6cadd4 bellard
585 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
586 2c6cadd4 bellard
587 5fafdf24 ths
@example
588 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
589 2c6cadd4 bellard
@end example
590 2c6cadd4 bellard
591 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
592 2c6cadd4 bellard
@code{:rw:} option:
593 2c6cadd4 bellard
594 5fafdf24 ths
@example
595 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
596 2c6cadd4 bellard
@end example
597 2c6cadd4 bellard
598 2c6cadd4 bellard
What you should @emph{never} do:
599 2c6cadd4 bellard
@itemize
600 2c6cadd4 bellard
@item use non-ASCII filenames ;
601 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
602 85b2c688 bellard
@item expect it to work when loadvm'ing ;
603 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
604 2c6cadd4 bellard
@end itemize
605 2c6cadd4 bellard
606 75818250 ths
@node disk_images_nbd
607 75818250 ths
@subsection NBD access
608 75818250 ths
609 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
610 75818250 ths
protocol.
611 75818250 ths
612 75818250 ths
@example
613 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
614 75818250 ths
@end example
615 75818250 ths
616 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
617 75818250 ths
of an inet socket:
618 75818250 ths
619 75818250 ths
@example
620 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
621 75818250 ths
@end example
622 75818250 ths
623 75818250 ths
In this case, the block device must be exported using qemu-nbd:
624 75818250 ths
625 75818250 ths
@example
626 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627 75818250 ths
@end example
628 75818250 ths
629 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
630 75818250 ths
@example
631 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632 75818250 ths
@end example
633 75818250 ths
634 75818250 ths
and then you can use it with two guests:
635 75818250 ths
@example
636 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
637 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
638 75818250 ths
@end example
639 75818250 ths
640 1d45f8b5 Laurent Vivier
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641 1d45f8b5 Laurent Vivier
"exportname" option:
642 1d45f8b5 Laurent Vivier
@example
643 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
645 1d45f8b5 Laurent Vivier
@end example
646 1d45f8b5 Laurent Vivier
647 42af9c30 MORITA Kazutaka
@node disk_images_sheepdog
648 42af9c30 MORITA Kazutaka
@subsection Sheepdog disk images
649 42af9c30 MORITA Kazutaka
650 42af9c30 MORITA Kazutaka
Sheepdog is a distributed storage system for QEMU.  It provides highly
651 42af9c30 MORITA Kazutaka
available block level storage volumes that can be attached to
652 42af9c30 MORITA Kazutaka
QEMU-based virtual machines.
653 42af9c30 MORITA Kazutaka
654 42af9c30 MORITA Kazutaka
You can create a Sheepdog disk image with the command:
655 42af9c30 MORITA Kazutaka
@example
656 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{image} @var{size}
657 42af9c30 MORITA Kazutaka
@end example
658 42af9c30 MORITA Kazutaka
where @var{image} is the Sheepdog image name and @var{size} is its
659 42af9c30 MORITA Kazutaka
size.
660 42af9c30 MORITA Kazutaka
661 42af9c30 MORITA Kazutaka
To import the existing @var{filename} to Sheepdog, you can use a
662 42af9c30 MORITA Kazutaka
convert command.
663 42af9c30 MORITA Kazutaka
@example
664 42af9c30 MORITA Kazutaka
qemu-img convert @var{filename} sheepdog:@var{image}
665 42af9c30 MORITA Kazutaka
@end example
666 42af9c30 MORITA Kazutaka
667 42af9c30 MORITA Kazutaka
You can boot from the Sheepdog disk image with the command:
668 42af9c30 MORITA Kazutaka
@example
669 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{image}
670 42af9c30 MORITA Kazutaka
@end example
671 42af9c30 MORITA Kazutaka
672 42af9c30 MORITA Kazutaka
You can also create a snapshot of the Sheepdog image like qcow2.
673 42af9c30 MORITA Kazutaka
@example
674 42af9c30 MORITA Kazutaka
qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675 42af9c30 MORITA Kazutaka
@end example
676 42af9c30 MORITA Kazutaka
where @var{tag} is a tag name of the newly created snapshot.
677 42af9c30 MORITA Kazutaka
678 42af9c30 MORITA Kazutaka
To boot from the Sheepdog snapshot, specify the tag name of the
679 42af9c30 MORITA Kazutaka
snapshot.
680 42af9c30 MORITA Kazutaka
@example
681 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{image}:@var{tag}
682 42af9c30 MORITA Kazutaka
@end example
683 42af9c30 MORITA Kazutaka
684 42af9c30 MORITA Kazutaka
You can create a cloned image from the existing snapshot.
685 42af9c30 MORITA Kazutaka
@example
686 42af9c30 MORITA Kazutaka
qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687 42af9c30 MORITA Kazutaka
@end example
688 42af9c30 MORITA Kazutaka
where @var{base} is a image name of the source snapshot and @var{tag}
689 42af9c30 MORITA Kazutaka
is its tag name.
690 42af9c30 MORITA Kazutaka
691 42af9c30 MORITA Kazutaka
If the Sheepdog daemon doesn't run on the local host, you need to
692 42af9c30 MORITA Kazutaka
specify one of the Sheepdog servers to connect to.
693 42af9c30 MORITA Kazutaka
@example
694 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
695 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{hostname}:@var{port}:@var{image}
696 42af9c30 MORITA Kazutaka
@end example
697 42af9c30 MORITA Kazutaka
698 00984e39 Ronnie Sahlberg
@node disk_images_iscsi
699 00984e39 Ronnie Sahlberg
@subsection iSCSI LUNs
700 00984e39 Ronnie Sahlberg
701 00984e39 Ronnie Sahlberg
iSCSI is a popular protocol used to access SCSI devices across a computer
702 00984e39 Ronnie Sahlberg
network.
703 00984e39 Ronnie Sahlberg
704 00984e39 Ronnie Sahlberg
There are two different ways iSCSI devices can be used by QEMU.
705 00984e39 Ronnie Sahlberg
706 00984e39 Ronnie Sahlberg
The first method is to mount the iSCSI LUN on the host, and make it appear as
707 00984e39 Ronnie Sahlberg
any other ordinary SCSI device on the host and then to access this device as a
708 00984e39 Ronnie Sahlberg
/dev/sd device from QEMU. How to do this differs between host OSes.
709 00984e39 Ronnie Sahlberg
710 00984e39 Ronnie Sahlberg
The second method involves using the iSCSI initiator that is built into
711 00984e39 Ronnie Sahlberg
QEMU. This provides a mechanism that works the same way regardless of which
712 00984e39 Ronnie Sahlberg
host OS you are running QEMU on. This section will describe this second method
713 00984e39 Ronnie Sahlberg
of using iSCSI together with QEMU.
714 00984e39 Ronnie Sahlberg
715 00984e39 Ronnie Sahlberg
In QEMU, iSCSI devices are described using special iSCSI URLs
716 00984e39 Ronnie Sahlberg
717 00984e39 Ronnie Sahlberg
@example
718 00984e39 Ronnie Sahlberg
URL syntax:
719 00984e39 Ronnie Sahlberg
iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
720 00984e39 Ronnie Sahlberg
@end example
721 00984e39 Ronnie Sahlberg
722 00984e39 Ronnie Sahlberg
Username and password are optional and only used if your target is set up
723 00984e39 Ronnie Sahlberg
using CHAP authentication for access control.
724 00984e39 Ronnie Sahlberg
Alternatively the username and password can also be set via environment
725 00984e39 Ronnie Sahlberg
variables to have these not show up in the process list
726 00984e39 Ronnie Sahlberg
727 00984e39 Ronnie Sahlberg
@example
728 00984e39 Ronnie Sahlberg
export LIBISCSI_CHAP_USERNAME=<username>
729 00984e39 Ronnie Sahlberg
export LIBISCSI_CHAP_PASSWORD=<password>
730 00984e39 Ronnie Sahlberg
iscsi://<host>/<target-iqn-name>/<lun>
731 00984e39 Ronnie Sahlberg
@end example
732 00984e39 Ronnie Sahlberg
733 00984e39 Ronnie Sahlberg
Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
734 00984e39 Ronnie Sahlberg
@example
735 00984e39 Ronnie Sahlberg
This example shows how to set up an iSCSI target with one CDROM and one DISK
736 00984e39 Ronnie Sahlberg
using the Linux STGT software target. This target is available on Red Hat based
737 00984e39 Ronnie Sahlberg
systems as the package 'scsi-target-utils'.
738 00984e39 Ronnie Sahlberg
739 00984e39 Ronnie Sahlberg
tgtd --iscsi portal=127.0.0.1:3260
740 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
741 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
742 00984e39 Ronnie Sahlberg
    -b /IMAGES/disk.img --device-type=disk
743 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
744 00984e39 Ronnie Sahlberg
    -b /IMAGES/cd.iso --device-type=cd
745 00984e39 Ronnie Sahlberg
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
746 00984e39 Ronnie Sahlberg
747 00984e39 Ronnie Sahlberg
qemu-system-i386 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
748 00984e39 Ronnie Sahlberg
    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
749 00984e39 Ronnie Sahlberg
@end example
750 00984e39 Ronnie Sahlberg
751 00984e39 Ronnie Sahlberg
752 00984e39 Ronnie Sahlberg
753 debc7065 bellard
@node pcsys_network
754 9d4fb82e bellard
@section Network emulation
755 9d4fb82e bellard
756 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
757 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
758 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
759 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
760 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
761 41d03949 bellard
network stack can replace the TAP device to have a basic network
762 41d03949 bellard
connection.
763 41d03949 bellard
764 41d03949 bellard
@subsection VLANs
765 9d4fb82e bellard
766 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
767 41d03949 bellard
connection between several network devices. These devices can be for
768 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
769 41d03949 bellard
(TAP devices).
770 9d4fb82e bellard
771 41d03949 bellard
@subsection Using TAP network interfaces
772 41d03949 bellard
773 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
774 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
775 41d03949 bellard
can then configure it as if it was a real ethernet card.
776 9d4fb82e bellard
777 8f40c388 bellard
@subsubsection Linux host
778 8f40c388 bellard
779 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
780 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
781 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
782 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
783 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
784 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
785 9d4fb82e bellard
786 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
787 ee0f4751 bellard
TAP network interfaces.
788 9d4fb82e bellard
789 8f40c388 bellard
@subsubsection Windows host
790 8f40c388 bellard
791 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
792 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
793 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
794 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
795 8f40c388 bellard
796 9d4fb82e bellard
@subsection Using the user mode network stack
797 9d4fb82e bellard
798 41d03949 bellard
By using the option @option{-net user} (default configuration if no
799 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
800 4be456f1 ths
network stack (you don't need root privilege to use the virtual
801 41d03949 bellard
network). The virtual network configuration is the following:
802 9d4fb82e bellard
803 9d4fb82e bellard
@example
804 9d4fb82e bellard
805 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
806 41d03949 bellard
                           |          (10.0.2.2)
807 9d4fb82e bellard
                           |
808 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
809 3b46e624 ths
                           |
810 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
811 9d4fb82e bellard
@end example
812 9d4fb82e bellard
813 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
814 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
815 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
816 41d03949 bellard
to the hosts starting from 10.0.2.15.
817 9d4fb82e bellard
818 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
819 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
820 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
821 9d4fb82e bellard
822 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
823 4be456f1 ths
would require root privileges. It means you can only ping the local
824 b415a407 bellard
router (10.0.2.2).
825 b415a407 bellard
826 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
827 9bf05444 bellard
server.
828 9bf05444 bellard
829 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
830 9bf05444 bellard
redirected from the host to the guest. It allows for example to
831 9bf05444 bellard
redirect X11, telnet or SSH connections.
832 443f1376 bellard
833 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
834 41d03949 bellard
835 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
836 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
837 41d03949 bellard
basic example.
838 41d03949 bellard
839 576fd0a1 Stefan Weil
@node pcsys_other_devs
840 6cbf4c8c Cam Macdonell
@section Other Devices
841 6cbf4c8c Cam Macdonell
842 6cbf4c8c Cam Macdonell
@subsection Inter-VM Shared Memory device
843 6cbf4c8c Cam Macdonell
844 6cbf4c8c Cam Macdonell
With KVM enabled on a Linux host, a shared memory device is available.  Guests
845 6cbf4c8c Cam Macdonell
map a POSIX shared memory region into the guest as a PCI device that enables
846 6cbf4c8c Cam Macdonell
zero-copy communication to the application level of the guests.  The basic
847 6cbf4c8c Cam Macdonell
syntax is:
848 6cbf4c8c Cam Macdonell
849 6cbf4c8c Cam Macdonell
@example
850 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
851 6cbf4c8c Cam Macdonell
@end example
852 6cbf4c8c Cam Macdonell
853 6cbf4c8c Cam Macdonell
If desired, interrupts can be sent between guest VMs accessing the same shared
854 6cbf4c8c Cam Macdonell
memory region.  Interrupt support requires using a shared memory server and
855 6cbf4c8c Cam Macdonell
using a chardev socket to connect to it.  The code for the shared memory server
856 6cbf4c8c Cam Macdonell
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
857 6cbf4c8c Cam Macdonell
memory server is:
858 6cbf4c8c Cam Macdonell
859 6cbf4c8c Cam Macdonell
@example
860 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
861 6cbf4c8c Cam Macdonell
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
862 6cbf4c8c Cam Macdonell
qemu -chardev socket,path=<path>,id=<id>
863 6cbf4c8c Cam Macdonell
@end example
864 6cbf4c8c Cam Macdonell
865 6cbf4c8c Cam Macdonell
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
866 6cbf4c8c Cam Macdonell
using the same server to communicate via interrupts.  Guests can read their
867 6cbf4c8c Cam Macdonell
VM ID from a device register (see example code).  Since receiving the shared
868 6cbf4c8c Cam Macdonell
memory region from the server is asynchronous, there is a (small) chance the
869 6cbf4c8c Cam Macdonell
guest may boot before the shared memory is attached.  To allow an application
870 6cbf4c8c Cam Macdonell
to ensure shared memory is attached, the VM ID register will return -1 (an
871 6cbf4c8c Cam Macdonell
invalid VM ID) until the memory is attached.  Once the shared memory is
872 6cbf4c8c Cam Macdonell
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
873 6cbf4c8c Cam Macdonell
the guest application can check to ensure the shared memory is attached to the
874 6cbf4c8c Cam Macdonell
guest before proceeding.
875 6cbf4c8c Cam Macdonell
876 6cbf4c8c Cam Macdonell
The @option{role} argument can be set to either master or peer and will affect
877 6cbf4c8c Cam Macdonell
how the shared memory is migrated.  With @option{role=master}, the guest will
878 6cbf4c8c Cam Macdonell
copy the shared memory on migration to the destination host.  With
879 6cbf4c8c Cam Macdonell
@option{role=peer}, the guest will not be able to migrate with the device attached.
880 6cbf4c8c Cam Macdonell
With the @option{peer} case, the device should be detached and then reattached
881 6cbf4c8c Cam Macdonell
after migration using the PCI hotplug support.
882 6cbf4c8c Cam Macdonell
883 9d4fb82e bellard
@node direct_linux_boot
884 9d4fb82e bellard
@section Direct Linux Boot
885 1f673135 bellard
886 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
887 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
888 ee0f4751 bellard
kernel testing.
889 1f673135 bellard
890 ee0f4751 bellard
The syntax is:
891 1f673135 bellard
@example
892 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
893 1f673135 bellard
@end example
894 1f673135 bellard
895 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
896 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
897 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
898 1f673135 bellard
899 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
900 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
901 ee0f4751 bellard
Linux kernel.
902 1f673135 bellard
903 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
904 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
905 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
906 1f673135 bellard
@example
907 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
908 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
909 1f673135 bellard
@end example
910 1f673135 bellard
911 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
912 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
913 1f673135 bellard
914 debc7065 bellard
@node pcsys_usb
915 b389dbfb bellard
@section USB emulation
916 b389dbfb bellard
917 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
918 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
919 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
920 f542086d bellard
as necessary to connect multiple USB devices.
921 b389dbfb bellard
922 0aff66b5 pbrook
@menu
923 0aff66b5 pbrook
* usb_devices::
924 0aff66b5 pbrook
* host_usb_devices::
925 0aff66b5 pbrook
@end menu
926 0aff66b5 pbrook
@node usb_devices
927 0aff66b5 pbrook
@subsection Connecting USB devices
928 b389dbfb bellard
929 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
930 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
931 b389dbfb bellard
932 db380c06 balrog
@table @code
933 db380c06 balrog
@item mouse
934 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
935 db380c06 balrog
@item tablet
936 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
937 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
938 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
939 db380c06 balrog
@item disk:@var{file}
940 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
941 db380c06 balrog
@item host:@var{bus.addr}
942 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
943 0aff66b5 pbrook
(Linux only)
944 db380c06 balrog
@item host:@var{vendor_id:product_id}
945 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
946 0aff66b5 pbrook
(Linux only)
947 db380c06 balrog
@item wacom-tablet
948 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
949 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
950 f6d2a316 balrog
coordinates it reports touch pressure.
951 db380c06 balrog
@item keyboard
952 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
953 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
954 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
955 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
956 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
957 0d6753e5 Stefan Weil
used to override the default 0403:6001. For instance,
958 db380c06 balrog
@example
959 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
960 db380c06 balrog
@end example
961 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
962 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
963 2e4d9fb1 aurel32
@item braille
964 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
965 2e4d9fb1 aurel32
or fake device.
966 9ad97e65 balrog
@item net:@var{options}
967 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
968 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
969 9ad97e65 balrog
For instance, user-mode networking can be used with
970 6c9f886c balrog
@example
971 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
972 6c9f886c balrog
@end example
973 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
974 2d564691 balrog
@item bt[:@var{hci-type}]
975 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
976 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
977 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
978 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
979 2d564691 balrog
usage:
980 2d564691 balrog
@example
981 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
982 2d564691 balrog
@end example
983 0aff66b5 pbrook
@end table
984 b389dbfb bellard
985 0aff66b5 pbrook
@node host_usb_devices
986 b389dbfb bellard
@subsection Using host USB devices on a Linux host
987 b389dbfb bellard
988 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
989 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
990 b389dbfb bellard
Cameras) are not supported yet.
991 b389dbfb bellard
992 b389dbfb bellard
@enumerate
993 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
994 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
995 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
996 b389dbfb bellard
to @file{mydriver.o.disabled}.
997 b389dbfb bellard
998 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
999 b389dbfb bellard
@example
1000 b389dbfb bellard
ls /proc/bus/usb
1001 b389dbfb bellard
001  devices  drivers
1002 b389dbfb bellard
@end example
1003 b389dbfb bellard
1004 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1005 b389dbfb bellard
@example
1006 b389dbfb bellard
chown -R myuid /proc/bus/usb
1007 b389dbfb bellard
@end example
1008 b389dbfb bellard
1009 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1010 5fafdf24 ths
@example
1011 b389dbfb bellard
info usbhost
1012 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1013 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1014 b389dbfb bellard
@end example
1015 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1016 b389dbfb bellard
hubs, it won't work).
1017 b389dbfb bellard
1018 b389dbfb bellard
@item Add the device in QEMU by using:
1019 5fafdf24 ths
@example
1020 b389dbfb bellard
usb_add host:1234:5678
1021 b389dbfb bellard
@end example
1022 b389dbfb bellard
1023 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1024 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1025 b389dbfb bellard
1026 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1027 b389dbfb bellard
1028 b389dbfb bellard
@end enumerate
1029 b389dbfb bellard
1030 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1031 b389dbfb bellard
device to make it work again (this is a bug).
1032 b389dbfb bellard
1033 f858dcae ths
@node vnc_security
1034 f858dcae ths
@section VNC security
1035 f858dcae ths
1036 f858dcae ths
The VNC server capability provides access to the graphical console
1037 f858dcae ths
of the guest VM across the network. This has a number of security
1038 f858dcae ths
considerations depending on the deployment scenarios.
1039 f858dcae ths
1040 f858dcae ths
@menu
1041 f858dcae ths
* vnc_sec_none::
1042 f858dcae ths
* vnc_sec_password::
1043 f858dcae ths
* vnc_sec_certificate::
1044 f858dcae ths
* vnc_sec_certificate_verify::
1045 f858dcae ths
* vnc_sec_certificate_pw::
1046 2f9606b3 aliguori
* vnc_sec_sasl::
1047 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
1048 f858dcae ths
* vnc_generate_cert::
1049 2f9606b3 aliguori
* vnc_setup_sasl::
1050 f858dcae ths
@end menu
1051 f858dcae ths
@node vnc_sec_none
1052 f858dcae ths
@subsection Without passwords
1053 f858dcae ths
1054 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1055 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1056 f858dcae ths
socket only. For example
1057 f858dcae ths
1058 f858dcae ths
@example
1059 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1060 f858dcae ths
@end example
1061 f858dcae ths
1062 f858dcae ths
This ensures that only users on local box with read/write access to that
1063 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1064 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1065 f858dcae ths
tunnel.
1066 f858dcae ths
1067 f858dcae ths
@node vnc_sec_password
1068 f858dcae ths
@subsection With passwords
1069 f858dcae ths
1070 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1071 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1072 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1073 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1074 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1075 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
1076 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1077 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1078 f858dcae ths
1079 f858dcae ths
@example
1080 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1081 f858dcae ths
(qemu) change vnc password
1082 f858dcae ths
Password: ********
1083 f858dcae ths
(qemu)
1084 f858dcae ths
@end example
1085 f858dcae ths
1086 f858dcae ths
@node vnc_sec_certificate
1087 f858dcae ths
@subsection With x509 certificates
1088 f858dcae ths
1089 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1090 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1091 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1092 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1093 f858dcae ths
support provides a secure session, but no authentication. This allows any
1094 f858dcae ths
client to connect, and provides an encrypted session.
1095 f858dcae ths
1096 f858dcae ths
@example
1097 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1098 f858dcae ths
@end example
1099 f858dcae ths
1100 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1101 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1102 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1103 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1104 f858dcae ths
only be readable by the user owning it.
1105 f858dcae ths
1106 f858dcae ths
@node vnc_sec_certificate_verify
1107 f858dcae ths
@subsection With x509 certificates and client verification
1108 f858dcae ths
1109 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1110 f858dcae ths
The server will request that the client provide a certificate, which it will
1111 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1112 f858dcae ths
in an environment with a private internal certificate authority.
1113 f858dcae ths
1114 f858dcae ths
@example
1115 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1116 f858dcae ths
@end example
1117 f858dcae ths
1118 f858dcae ths
1119 f858dcae ths
@node vnc_sec_certificate_pw
1120 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1121 f858dcae ths
1122 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1123 f858dcae ths
to provide two layers of authentication for clients.
1124 f858dcae ths
1125 f858dcae ths
@example
1126 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1127 f858dcae ths
(qemu) change vnc password
1128 f858dcae ths
Password: ********
1129 f858dcae ths
(qemu)
1130 f858dcae ths
@end example
1131 f858dcae ths
1132 2f9606b3 aliguori
1133 2f9606b3 aliguori
@node vnc_sec_sasl
1134 2f9606b3 aliguori
@subsection With SASL authentication
1135 2f9606b3 aliguori
1136 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
1137 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
1138 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
1139 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1140 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
1141 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
1142 2f9606b3 aliguori
it will encrypt the datastream as well.
1143 2f9606b3 aliguori
1144 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
1145 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
1146 2f9606b3 aliguori
then QEMU can be launched with:
1147 2f9606b3 aliguori
1148 2f9606b3 aliguori
@example
1149 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1150 2f9606b3 aliguori
@end example
1151 2f9606b3 aliguori
1152 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
1153 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
1154 2f9606b3 aliguori
1155 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
1156 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
1157 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
1158 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
1159 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
1160 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
1161 2f9606b3 aliguori
1162 2f9606b3 aliguori
@example
1163 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1164 2f9606b3 aliguori
@end example
1165 2f9606b3 aliguori
1166 2f9606b3 aliguori
1167 f858dcae ths
@node vnc_generate_cert
1168 f858dcae ths
@subsection Generating certificates for VNC
1169 f858dcae ths
1170 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1171 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1172 40c5c6cd Stefan Weil
is necessary to setup a certificate authority, and issue certificates to
1173 f858dcae ths
each server. If using certificates for authentication, then each client
1174 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1175 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1176 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1177 f858dcae ths
1178 f858dcae ths
@menu
1179 f858dcae ths
* vnc_generate_ca::
1180 f858dcae ths
* vnc_generate_server::
1181 f858dcae ths
* vnc_generate_client::
1182 f858dcae ths
@end menu
1183 f858dcae ths
@node vnc_generate_ca
1184 f858dcae ths
@subsubsection Setup the Certificate Authority
1185 f858dcae ths
1186 f858dcae ths
This step only needs to be performed once per organization / organizational
1187 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1188 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1189 f858dcae ths
issued with it is lost.
1190 f858dcae ths
1191 f858dcae ths
@example
1192 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1193 f858dcae ths
@end example
1194 f858dcae ths
1195 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1196 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1197 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1198 f858dcae ths
name of the organization.
1199 f858dcae ths
1200 f858dcae ths
@example
1201 f858dcae ths
# cat > ca.info <<EOF
1202 f858dcae ths
cn = Name of your organization
1203 f858dcae ths
ca
1204 f858dcae ths
cert_signing_key
1205 f858dcae ths
EOF
1206 f858dcae ths
# certtool --generate-self-signed \
1207 f858dcae ths
           --load-privkey ca-key.pem
1208 f858dcae ths
           --template ca.info \
1209 f858dcae ths
           --outfile ca-cert.pem
1210 f858dcae ths
@end example
1211 f858dcae ths
1212 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1213 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1214 f858dcae ths
1215 f858dcae ths
@node vnc_generate_server
1216 f858dcae ths
@subsubsection Issuing server certificates
1217 f858dcae ths
1218 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1219 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1220 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1221 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1222 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1223 f858dcae ths
secure CA private key:
1224 f858dcae ths
1225 f858dcae ths
@example
1226 f858dcae ths
# cat > server.info <<EOF
1227 f858dcae ths
organization = Name  of your organization
1228 f858dcae ths
cn = server.foo.example.com
1229 f858dcae ths
tls_www_server
1230 f858dcae ths
encryption_key
1231 f858dcae ths
signing_key
1232 f858dcae ths
EOF
1233 f858dcae ths
# certtool --generate-privkey > server-key.pem
1234 f858dcae ths
# certtool --generate-certificate \
1235 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1236 f858dcae ths
           --load-ca-privkey ca-key.pem \
1237 f858dcae ths
           --load-privkey server server-key.pem \
1238 f858dcae ths
           --template server.info \
1239 f858dcae ths
           --outfile server-cert.pem
1240 f858dcae ths
@end example
1241 f858dcae ths
1242 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1243 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1244 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1245 f858dcae ths
1246 f858dcae ths
@node vnc_generate_client
1247 f858dcae ths
@subsubsection Issuing client certificates
1248 f858dcae ths
1249 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1250 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1251 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1252 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1253 f858dcae ths
the secure CA private key:
1254 f858dcae ths
1255 f858dcae ths
@example
1256 f858dcae ths
# cat > client.info <<EOF
1257 f858dcae ths
country = GB
1258 f858dcae ths
state = London
1259 f858dcae ths
locality = London
1260 f858dcae ths
organiazation = Name of your organization
1261 f858dcae ths
cn = client.foo.example.com
1262 f858dcae ths
tls_www_client
1263 f858dcae ths
encryption_key
1264 f858dcae ths
signing_key
1265 f858dcae ths
EOF
1266 f858dcae ths
# certtool --generate-privkey > client-key.pem
1267 f858dcae ths
# certtool --generate-certificate \
1268 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1269 f858dcae ths
           --load-ca-privkey ca-key.pem \
1270 f858dcae ths
           --load-privkey client-key.pem \
1271 f858dcae ths
           --template client.info \
1272 f858dcae ths
           --outfile client-cert.pem
1273 f858dcae ths
@end example
1274 f858dcae ths
1275 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1276 f858dcae ths
copied to the client for which they were generated.
1277 f858dcae ths
1278 2f9606b3 aliguori
1279 2f9606b3 aliguori
@node vnc_setup_sasl
1280 2f9606b3 aliguori
1281 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1282 2f9606b3 aliguori
1283 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1284 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1285 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1286 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1287 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1288 2f9606b3 aliguori
to make it search alternate locations for the service config.
1289 2f9606b3 aliguori
1290 2f9606b3 aliguori
The default configuration might contain
1291 2f9606b3 aliguori
1292 2f9606b3 aliguori
@example
1293 2f9606b3 aliguori
mech_list: digest-md5
1294 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1295 2f9606b3 aliguori
@end example
1296 2f9606b3 aliguori
1297 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1298 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1299 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1300 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1301 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1302 2f9606b3 aliguori
ad-hoc testing.
1303 2f9606b3 aliguori
1304 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1305 2f9606b3 aliguori
mechanism
1306 2f9606b3 aliguori
1307 2f9606b3 aliguori
@example
1308 2f9606b3 aliguori
mech_list: gssapi
1309 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1310 2f9606b3 aliguori
@end example
1311 2f9606b3 aliguori
1312 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1313 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1314 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1315 40c5c6cd Stefan Weil
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1316 2f9606b3 aliguori
1317 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1318 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1319 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1320 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1321 2f9606b3 aliguori
1322 0806e3f6 bellard
@node gdb_usage
1323 da415d54 bellard
@section GDB usage
1324 da415d54 bellard
1325 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1326 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1327 da415d54 bellard
1328 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1329 da415d54 bellard
gdb connection:
1330 da415d54 bellard
@example
1331 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1332 debc7065 bellard
       -append "root=/dev/hda"
1333 da415d54 bellard
Connected to host network interface: tun0
1334 da415d54 bellard
Waiting gdb connection on port 1234
1335 da415d54 bellard
@end example
1336 da415d54 bellard
1337 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1338 da415d54 bellard
@example
1339 da415d54 bellard
> gdb vmlinux
1340 da415d54 bellard
@end example
1341 da415d54 bellard
1342 da415d54 bellard
In gdb, connect to QEMU:
1343 da415d54 bellard
@example
1344 6c9bf893 bellard
(gdb) target remote localhost:1234
1345 da415d54 bellard
@end example
1346 da415d54 bellard
1347 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1348 da415d54 bellard
@example
1349 da415d54 bellard
(gdb) c
1350 da415d54 bellard
@end example
1351 da415d54 bellard
1352 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1353 0806e3f6 bellard
1354 0806e3f6 bellard
@enumerate
1355 0806e3f6 bellard
@item
1356 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1357 0806e3f6 bellard
@item
1358 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1359 0806e3f6 bellard
@item
1360 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1361 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1362 0806e3f6 bellard
@end enumerate
1363 0806e3f6 bellard
1364 60897d36 edgar_igl
Advanced debugging options:
1365 60897d36 edgar_igl
1366 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1367 94d45e44 edgar_igl
@table @code
1368 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1369 60897d36 edgar_igl
1370 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1371 60897d36 edgar_igl
@example
1372 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1373 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1374 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1375 60897d36 edgar_igl
@end example
1376 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1377 60897d36 edgar_igl
1378 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1379 60897d36 edgar_igl
@example
1380 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1381 60897d36 edgar_igl
sending: "qqemu.sstep"
1382 60897d36 edgar_igl
received: "0x7"
1383 60897d36 edgar_igl
@end example
1384 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1385 60897d36 edgar_igl
1386 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1387 60897d36 edgar_igl
@example
1388 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1389 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1390 60897d36 edgar_igl
received: "OK"
1391 60897d36 edgar_igl
@end example
1392 94d45e44 edgar_igl
@end table
1393 60897d36 edgar_igl
1394 debc7065 bellard
@node pcsys_os_specific
1395 1a084f3d bellard
@section Target OS specific information
1396 1a084f3d bellard
1397 1a084f3d bellard
@subsection Linux
1398 1a084f3d bellard
1399 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1400 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1401 15a34c63 bellard
color depth in the guest and the host OS.
1402 1a084f3d bellard
1403 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1404 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1405 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1406 e3371e62 bellard
cannot simulate exactly.
1407 e3371e62 bellard
1408 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1409 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1410 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1411 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1412 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1413 7c3fc84d bellard
1414 1a084f3d bellard
@subsection Windows
1415 1a084f3d bellard
1416 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1417 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1418 1a084f3d bellard
1419 e3371e62 bellard
@subsubsection SVGA graphic modes support
1420 e3371e62 bellard
1421 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1422 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1423 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1424 15a34c63 bellard
depth in the guest and the host OS.
1425 1a084f3d bellard
1426 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1427 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1428 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1429 3cb0853a bellard
(option @option{-std-vga}).
1430 3cb0853a bellard
1431 e3371e62 bellard
@subsubsection CPU usage reduction
1432 e3371e62 bellard
1433 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1434 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1435 15a34c63 bellard
idle. You can install the utility from
1436 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1437 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1438 1a084f3d bellard
1439 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1440 e3371e62 bellard
1441 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1442 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1443 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1444 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1445 9d0a8e6f bellard
IDE transfers).
1446 e3371e62 bellard
1447 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1448 6cc721cf bellard
1449 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1450 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1451 6cc721cf bellard
use the APM driver provided by the BIOS.
1452 6cc721cf bellard
1453 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1454 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1455 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1456 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1457 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1458 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1459 6cc721cf bellard
1460 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1461 6cc721cf bellard
1462 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1463 6cc721cf bellard
1464 2192c332 bellard
@subsubsection Windows XP security problem
1465 e3371e62 bellard
1466 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1467 e3371e62 bellard
error when booting:
1468 e3371e62 bellard
@example
1469 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1470 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1471 e3371e62 bellard
@end example
1472 e3371e62 bellard
1473 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1474 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1475 2192c332 bellard
network while in safe mode, its recommended to download the full
1476 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1477 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1478 e3371e62 bellard
1479 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1480 a0a821a4 bellard
1481 a0a821a4 bellard
@subsubsection CPU usage reduction
1482 a0a821a4 bellard
1483 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1484 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1485 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1486 a0a821a4 bellard
problem.
1487 a0a821a4 bellard
1488 debc7065 bellard
@node QEMU System emulator for non PC targets
1489 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1490 3f9f3aa1 bellard
1491 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1492 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1493 4be456f1 ths
differences are mentioned in the following sections.
1494 3f9f3aa1 bellard
1495 debc7065 bellard
@menu
1496 7544a042 Stefan Weil
* PowerPC System emulator::
1497 24d4de45 ths
* Sparc32 System emulator::
1498 24d4de45 ths
* Sparc64 System emulator::
1499 24d4de45 ths
* MIPS System emulator::
1500 24d4de45 ths
* ARM System emulator::
1501 24d4de45 ths
* ColdFire System emulator::
1502 7544a042 Stefan Weil
* Cris System emulator::
1503 7544a042 Stefan Weil
* Microblaze System emulator::
1504 7544a042 Stefan Weil
* SH4 System emulator::
1505 3aeaea65 Max Filippov
* Xtensa System emulator::
1506 debc7065 bellard
@end menu
1507 debc7065 bellard
1508 7544a042 Stefan Weil
@node PowerPC System emulator
1509 7544a042 Stefan Weil
@section PowerPC System emulator
1510 7544a042 Stefan Weil
@cindex system emulation (PowerPC)
1511 1a084f3d bellard
1512 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1513 15a34c63 bellard
or PowerMac PowerPC system.
1514 1a084f3d bellard
1515 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1516 1a084f3d bellard
1517 15a34c63 bellard
@itemize @minus
1518 5fafdf24 ths
@item
1519 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1520 15a34c63 bellard
@item
1521 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1522 5fafdf24 ths
@item
1523 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1524 5fafdf24 ths
@item
1525 15a34c63 bellard
NE2000 PCI adapters
1526 15a34c63 bellard
@item
1527 15a34c63 bellard
Non Volatile RAM
1528 15a34c63 bellard
@item
1529 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1530 1a084f3d bellard
@end itemize
1531 1a084f3d bellard
1532 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1533 52c00a5f bellard
1534 52c00a5f bellard
@itemize @minus
1535 5fafdf24 ths
@item
1536 15a34c63 bellard
PCI Bridge
1537 15a34c63 bellard
@item
1538 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1539 5fafdf24 ths
@item
1540 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1541 52c00a5f bellard
@item
1542 52c00a5f bellard
Floppy disk
1543 5fafdf24 ths
@item
1544 15a34c63 bellard
NE2000 network adapters
1545 52c00a5f bellard
@item
1546 52c00a5f bellard
Serial port
1547 52c00a5f bellard
@item
1548 52c00a5f bellard
PREP Non Volatile RAM
1549 15a34c63 bellard
@item
1550 15a34c63 bellard
PC compatible keyboard and mouse.
1551 52c00a5f bellard
@end itemize
1552 52c00a5f bellard
1553 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1554 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1555 52c00a5f bellard
1556 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1557 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1558 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1559 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1560 992e5acd blueswir1
1561 15a34c63 bellard
@c man begin OPTIONS
1562 15a34c63 bellard
1563 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1564 15a34c63 bellard
1565 15a34c63 bellard
@table @option
1566 15a34c63 bellard
1567 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1568 15a34c63 bellard
1569 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1570 15a34c63 bellard
1571 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1572 95efd11c blueswir1
1573 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1574 95efd11c blueswir1
1575 95efd11c blueswir1
@example
1576 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1577 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1578 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1579 95efd11c blueswir1
@end example
1580 95efd11c blueswir1
1581 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1582 95efd11c blueswir1
1583 15a34c63 bellard
@end table
1584 15a34c63 bellard
1585 5fafdf24 ths
@c man end
1586 15a34c63 bellard
1587 15a34c63 bellard
1588 52c00a5f bellard
More information is available at
1589 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1590 52c00a5f bellard
1591 24d4de45 ths
@node Sparc32 System emulator
1592 24d4de45 ths
@section Sparc32 System emulator
1593 7544a042 Stefan Weil
@cindex system emulation (Sparc32)
1594 e80cfcfc bellard
1595 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1596 34a3d239 blueswir1
Sun4m architecture machines:
1597 34a3d239 blueswir1
@itemize @minus
1598 34a3d239 blueswir1
@item
1599 34a3d239 blueswir1
SPARCstation 4
1600 34a3d239 blueswir1
@item
1601 34a3d239 blueswir1
SPARCstation 5
1602 34a3d239 blueswir1
@item
1603 34a3d239 blueswir1
SPARCstation 10
1604 34a3d239 blueswir1
@item
1605 34a3d239 blueswir1
SPARCstation 20
1606 34a3d239 blueswir1
@item
1607 34a3d239 blueswir1
SPARCserver 600MP
1608 34a3d239 blueswir1
@item
1609 34a3d239 blueswir1
SPARCstation LX
1610 34a3d239 blueswir1
@item
1611 34a3d239 blueswir1
SPARCstation Voyager
1612 34a3d239 blueswir1
@item
1613 34a3d239 blueswir1
SPARCclassic
1614 34a3d239 blueswir1
@item
1615 34a3d239 blueswir1
SPARCbook
1616 34a3d239 blueswir1
@end itemize
1617 34a3d239 blueswir1
1618 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1619 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1620 e80cfcfc bellard
1621 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1622 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1623 34a3d239 blueswir1
emulators are not usable yet.
1624 34a3d239 blueswir1
1625 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1626 e80cfcfc bellard
1627 e80cfcfc bellard
@itemize @minus
1628 3475187d bellard
@item
1629 7d85892b blueswir1
IOMMU or IO-UNITs
1630 e80cfcfc bellard
@item
1631 e80cfcfc bellard
TCX Frame buffer
1632 5fafdf24 ths
@item
1633 e80cfcfc bellard
Lance (Am7990) Ethernet
1634 e80cfcfc bellard
@item
1635 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1636 e80cfcfc bellard
@item
1637 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1638 3475187d bellard
and power/reset logic
1639 3475187d bellard
@item
1640 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1641 3475187d bellard
@item
1642 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1643 a2502b58 blueswir1
@item
1644 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1645 e80cfcfc bellard
@end itemize
1646 e80cfcfc bellard
1647 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1648 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1649 7d85892b blueswir1
others 2047MB.
1650 3475187d bellard
1651 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1652 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1653 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1654 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1655 3475187d bellard
1656 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1657 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1658 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1659 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1660 34a3d239 blueswir1
Solaris.
1661 3475187d bellard
1662 3475187d bellard
@c man begin OPTIONS
1663 3475187d bellard
1664 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1665 3475187d bellard
1666 3475187d bellard
@table @option
1667 3475187d bellard
1668 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1669 3475187d bellard
1670 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1671 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1672 3475187d bellard
1673 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1674 66508601 blueswir1
1675 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1676 66508601 blueswir1
1677 66508601 blueswir1
@example
1678 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1679 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1680 66508601 blueswir1
@end example
1681 66508601 blueswir1
1682 609c1dac Blue Swirl
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1683 a2502b58 blueswir1
1684 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1685 a2502b58 blueswir1
1686 3475187d bellard
@end table
1687 3475187d bellard
1688 5fafdf24 ths
@c man end
1689 3475187d bellard
1690 24d4de45 ths
@node Sparc64 System emulator
1691 24d4de45 ths
@section Sparc64 System emulator
1692 7544a042 Stefan Weil
@cindex system emulation (Sparc64)
1693 e80cfcfc bellard
1694 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1695 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1696 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1697 34a3d239 blueswir1
it can launch some kernels.
1698 b756921a bellard
1699 c7ba218d blueswir1
QEMU emulates the following peripherals:
1700 83469015 bellard
1701 83469015 bellard
@itemize @minus
1702 83469015 bellard
@item
1703 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1704 83469015 bellard
@item
1705 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1706 83469015 bellard
@item
1707 34a3d239 blueswir1
PS/2 mouse and keyboard
1708 34a3d239 blueswir1
@item
1709 83469015 bellard
Non Volatile RAM M48T59
1710 83469015 bellard
@item
1711 83469015 bellard
PC-compatible serial ports
1712 c7ba218d blueswir1
@item
1713 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1714 34a3d239 blueswir1
@item
1715 34a3d239 blueswir1
Floppy disk
1716 83469015 bellard
@end itemize
1717 83469015 bellard
1718 c7ba218d blueswir1
@c man begin OPTIONS
1719 c7ba218d blueswir1
1720 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1721 c7ba218d blueswir1
1722 c7ba218d blueswir1
@table @option
1723 c7ba218d blueswir1
1724 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1725 34a3d239 blueswir1
1726 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1727 34a3d239 blueswir1
1728 34a3d239 blueswir1
@example
1729 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1730 34a3d239 blueswir1
@end example
1731 34a3d239 blueswir1
1732 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1733 c7ba218d blueswir1
1734 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1735 c7ba218d blueswir1
1736 c7ba218d blueswir1
@end table
1737 c7ba218d blueswir1
1738 c7ba218d blueswir1
@c man end
1739 c7ba218d blueswir1
1740 24d4de45 ths
@node MIPS System emulator
1741 24d4de45 ths
@section MIPS System emulator
1742 7544a042 Stefan Weil
@cindex system emulation (MIPS)
1743 9d0a8e6f bellard
1744 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1745 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1746 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1747 88cb0a02 aurel32
Five different machine types are emulated:
1748 24d4de45 ths
1749 24d4de45 ths
@itemize @minus
1750 24d4de45 ths
@item
1751 24d4de45 ths
A generic ISA PC-like machine "mips"
1752 24d4de45 ths
@item
1753 24d4de45 ths
The MIPS Malta prototype board "malta"
1754 24d4de45 ths
@item
1755 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1756 6bf5b4e8 ths
@item
1757 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1758 88cb0a02 aurel32
@item
1759 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1760 24d4de45 ths
@end itemize
1761 24d4de45 ths
1762 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1763 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1764 24d4de45 ths
emulated:
1765 3f9f3aa1 bellard
1766 3f9f3aa1 bellard
@itemize @minus
1767 5fafdf24 ths
@item
1768 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1769 3f9f3aa1 bellard
@item
1770 3f9f3aa1 bellard
PC style serial port
1771 3f9f3aa1 bellard
@item
1772 24d4de45 ths
PC style IDE disk
1773 24d4de45 ths
@item
1774 3f9f3aa1 bellard
NE2000 network card
1775 3f9f3aa1 bellard
@end itemize
1776 3f9f3aa1 bellard
1777 24d4de45 ths
The Malta emulation supports the following devices:
1778 24d4de45 ths
1779 24d4de45 ths
@itemize @minus
1780 24d4de45 ths
@item
1781 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1782 24d4de45 ths
@item
1783 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1784 24d4de45 ths
@item
1785 24d4de45 ths
The Multi-I/O chip's serial device
1786 24d4de45 ths
@item
1787 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1788 24d4de45 ths
@item
1789 24d4de45 ths
Malta FPGA serial device
1790 24d4de45 ths
@item
1791 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1792 24d4de45 ths
@end itemize
1793 24d4de45 ths
1794 24d4de45 ths
The ACER Pica emulation supports:
1795 24d4de45 ths
1796 24d4de45 ths
@itemize @minus
1797 24d4de45 ths
@item
1798 24d4de45 ths
MIPS R4000 CPU
1799 24d4de45 ths
@item
1800 24d4de45 ths
PC-style IRQ and DMA controllers
1801 24d4de45 ths
@item
1802 24d4de45 ths
PC Keyboard
1803 24d4de45 ths
@item
1804 24d4de45 ths
IDE controller
1805 24d4de45 ths
@end itemize
1806 3f9f3aa1 bellard
1807 b5e4946f Stefan Weil
The mipssim pseudo board emulation provides an environment similar
1808 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1809 f0fc6f8f ths
It supports:
1810 6bf5b4e8 ths
1811 6bf5b4e8 ths
@itemize @minus
1812 6bf5b4e8 ths
@item
1813 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1814 6bf5b4e8 ths
@item
1815 6bf5b4e8 ths
PC style serial port
1816 6bf5b4e8 ths
@item
1817 6bf5b4e8 ths
MIPSnet network emulation
1818 6bf5b4e8 ths
@end itemize
1819 6bf5b4e8 ths
1820 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1821 88cb0a02 aurel32
1822 88cb0a02 aurel32
@itemize @minus
1823 88cb0a02 aurel32
@item
1824 88cb0a02 aurel32
MIPS R4000 CPU
1825 88cb0a02 aurel32
@item
1826 88cb0a02 aurel32
PC-style IRQ controller
1827 88cb0a02 aurel32
@item
1828 88cb0a02 aurel32
PC Keyboard
1829 88cb0a02 aurel32
@item
1830 88cb0a02 aurel32
SCSI controller
1831 88cb0a02 aurel32
@item
1832 88cb0a02 aurel32
G364 framebuffer
1833 88cb0a02 aurel32
@end itemize
1834 88cb0a02 aurel32
1835 88cb0a02 aurel32
1836 24d4de45 ths
@node ARM System emulator
1837 24d4de45 ths
@section ARM System emulator
1838 7544a042 Stefan Weil
@cindex system emulation (ARM)
1839 3f9f3aa1 bellard
1840 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1841 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1842 3f9f3aa1 bellard
devices:
1843 3f9f3aa1 bellard
1844 3f9f3aa1 bellard
@itemize @minus
1845 3f9f3aa1 bellard
@item
1846 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1847 3f9f3aa1 bellard
@item
1848 3f9f3aa1 bellard
Two PL011 UARTs
1849 5fafdf24 ths
@item
1850 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1851 00a9bf19 pbrook
@item
1852 00a9bf19 pbrook
PL110 LCD controller
1853 00a9bf19 pbrook
@item
1854 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1855 a1bb27b1 pbrook
@item
1856 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1857 00a9bf19 pbrook
@end itemize
1858 00a9bf19 pbrook
1859 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1860 00a9bf19 pbrook
1861 00a9bf19 pbrook
@itemize @minus
1862 00a9bf19 pbrook
@item
1863 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1864 00a9bf19 pbrook
@item
1865 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1866 00a9bf19 pbrook
@item
1867 00a9bf19 pbrook
Four PL011 UARTs
1868 5fafdf24 ths
@item
1869 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1870 00a9bf19 pbrook
@item
1871 00a9bf19 pbrook
PL110 LCD controller
1872 00a9bf19 pbrook
@item
1873 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1874 00a9bf19 pbrook
@item
1875 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1876 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1877 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1878 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1879 00a9bf19 pbrook
mapped control registers.
1880 e6de1bad pbrook
@item
1881 e6de1bad pbrook
PCI OHCI USB controller.
1882 e6de1bad pbrook
@item
1883 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1884 a1bb27b1 pbrook
@item
1885 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1886 3f9f3aa1 bellard
@end itemize
1887 3f9f3aa1 bellard
1888 21a88941 Paul Brook
Several variants of the ARM RealView baseboard are emulated,
1889 21a88941 Paul Brook
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1890 21a88941 Paul Brook
bootloader, only certain Linux kernel configurations work out
1891 21a88941 Paul Brook
of the box on these boards.
1892 21a88941 Paul Brook
1893 21a88941 Paul Brook
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1894 21a88941 Paul Brook
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1895 21a88941 Paul Brook
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1896 21a88941 Paul Brook
disabled and expect 1024M RAM.
1897 21a88941 Paul Brook
1898 40c5c6cd Stefan Weil
The following devices are emulated:
1899 d7739d75 pbrook
1900 d7739d75 pbrook
@itemize @minus
1901 d7739d75 pbrook
@item
1902 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1903 d7739d75 pbrook
@item
1904 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1905 d7739d75 pbrook
@item
1906 d7739d75 pbrook
Four PL011 UARTs
1907 5fafdf24 ths
@item
1908 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1909 d7739d75 pbrook
@item
1910 d7739d75 pbrook
PL110 LCD controller
1911 d7739d75 pbrook
@item
1912 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1913 d7739d75 pbrook
@item
1914 d7739d75 pbrook
PCI host bridge
1915 d7739d75 pbrook
@item
1916 d7739d75 pbrook
PCI OHCI USB controller
1917 d7739d75 pbrook
@item
1918 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1919 a1bb27b1 pbrook
@item
1920 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1921 d7739d75 pbrook
@end itemize
1922 d7739d75 pbrook
1923 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1924 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1925 b00052e4 balrog
1926 b00052e4 balrog
@itemize @minus
1927 b00052e4 balrog
@item
1928 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1929 b00052e4 balrog
@item
1930 b00052e4 balrog
NAND Flash memory
1931 b00052e4 balrog
@item
1932 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1933 b00052e4 balrog
@item
1934 b00052e4 balrog
On-chip OHCI USB controller
1935 b00052e4 balrog
@item
1936 b00052e4 balrog
On-chip LCD controller
1937 b00052e4 balrog
@item
1938 b00052e4 balrog
On-chip Real Time Clock
1939 b00052e4 balrog
@item
1940 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
1941 b00052e4 balrog
@item
1942 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1943 b00052e4 balrog
@item
1944 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
1945 b00052e4 balrog
@item
1946 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
1947 b00052e4 balrog
@item
1948 b00052e4 balrog
Three on-chip UARTs
1949 b00052e4 balrog
@item
1950 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1951 b00052e4 balrog
@end itemize
1952 b00052e4 balrog
1953 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1954 02645926 balrog
following elements:
1955 02645926 balrog
1956 02645926 balrog
@itemize @minus
1957 02645926 balrog
@item
1958 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1959 02645926 balrog
@item
1960 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1961 02645926 balrog
@item
1962 02645926 balrog
On-chip LCD controller
1963 02645926 balrog
@item
1964 02645926 balrog
On-chip Real Time Clock
1965 02645926 balrog
@item
1966 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1967 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
1968 02645926 balrog
@item
1969 02645926 balrog
GPIO-connected matrix keypad
1970 02645926 balrog
@item
1971 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
1972 02645926 balrog
@item
1973 02645926 balrog
Three on-chip UARTs
1974 02645926 balrog
@end itemize
1975 02645926 balrog
1976 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1977 c30bb264 balrog
emulation supports the following elements:
1978 c30bb264 balrog
1979 c30bb264 balrog
@itemize @minus
1980 c30bb264 balrog
@item
1981 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1982 c30bb264 balrog
@item
1983 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
1984 c30bb264 balrog
@item
1985 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1986 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
1987 c30bb264 balrog
@item
1988 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1989 c30bb264 balrog
driven through SPI bus
1990 c30bb264 balrog
@item
1991 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
1992 c30bb264 balrog
through I@math{^2}C bus
1993 c30bb264 balrog
@item
1994 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
1995 c30bb264 balrog
@item
1996 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
1997 c30bb264 balrog
@item
1998 40c5c6cd Stefan Weil
A Bluetooth(R) transceiver and HCI connected to an UART
1999 2d564691 balrog
@item
2000 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2001 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2002 c30bb264 balrog
@item
2003 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2004 c30bb264 balrog
@item
2005 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2006 c30bb264 balrog
@item
2007 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2008 c30bb264 balrog
through CBUS
2009 c30bb264 balrog
@end itemize
2010 c30bb264 balrog
2011 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2012 9ee6e8bb pbrook
devices:
2013 9ee6e8bb pbrook
2014 9ee6e8bb pbrook
@itemize @minus
2015 9ee6e8bb pbrook
@item
2016 9ee6e8bb pbrook
Cortex-M3 CPU core.
2017 9ee6e8bb pbrook
@item
2018 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2019 9ee6e8bb pbrook
@item
2020 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2021 9ee6e8bb pbrook
@item
2022 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2023 9ee6e8bb pbrook
@end itemize
2024 9ee6e8bb pbrook
2025 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2026 9ee6e8bb pbrook
devices:
2027 9ee6e8bb pbrook
2028 9ee6e8bb pbrook
@itemize @minus
2029 9ee6e8bb pbrook
@item
2030 9ee6e8bb pbrook
Cortex-M3 CPU core.
2031 9ee6e8bb pbrook
@item
2032 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2033 9ee6e8bb pbrook
@item
2034 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2035 9ee6e8bb pbrook
@item
2036 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2037 9ee6e8bb pbrook
@end itemize
2038 9ee6e8bb pbrook
2039 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2040 57cd6e97 balrog
elements:
2041 57cd6e97 balrog
2042 57cd6e97 balrog
@itemize @minus
2043 57cd6e97 balrog
@item
2044 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2045 57cd6e97 balrog
@item
2046 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2047 57cd6e97 balrog
@item
2048 57cd6e97 balrog
Up to 2 16550 UARTs
2049 57cd6e97 balrog
@item
2050 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2051 57cd6e97 balrog
@item
2052 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2053 57cd6e97 balrog
@item
2054 e080e785 Stefan Weil
128ร—64 display with brightness control
2055 57cd6e97 balrog
@item
2056 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2057 57cd6e97 balrog
@end itemize
2058 57cd6e97 balrog
2059 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
2060 40c5c6cd Stefan Weil
The emulation includes the following elements:
2061 997641a8 balrog
2062 997641a8 balrog
@itemize @minus
2063 997641a8 balrog
@item
2064 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2065 997641a8 balrog
@item
2066 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2067 997641a8 balrog
V1
2068 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2069 997641a8 balrog
V2
2070 997641a8 balrog
1 Flash of 32MB
2071 997641a8 balrog
@item
2072 997641a8 balrog
On-chip LCD controller
2073 997641a8 balrog
@item
2074 997641a8 balrog
On-chip Real Time Clock
2075 997641a8 balrog
@item
2076 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2077 997641a8 balrog
@item
2078 997641a8 balrog
Three on-chip UARTs
2079 997641a8 balrog
@end itemize
2080 997641a8 balrog
2081 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2082 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2083 9d0a8e6f bellard
2084 d2c639d6 blueswir1
@c man begin OPTIONS
2085 d2c639d6 blueswir1
2086 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
2087 d2c639d6 blueswir1
2088 d2c639d6 blueswir1
@table @option
2089 d2c639d6 blueswir1
2090 d2c639d6 blueswir1
@item -semihosting
2091 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2092 d2c639d6 blueswir1
2093 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
2094 d2c639d6 blueswir1
2095 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2096 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2097 d2c639d6 blueswir1
2098 d2c639d6 blueswir1
@end table
2099 d2c639d6 blueswir1
2100 24d4de45 ths
@node ColdFire System emulator
2101 24d4de45 ths
@section ColdFire System emulator
2102 7544a042 Stefan Weil
@cindex system emulation (ColdFire)
2103 7544a042 Stefan Weil
@cindex system emulation (M68K)
2104 209a4e69 pbrook
2105 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2106 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2107 707e011b pbrook
2108 707e011b pbrook
The M5208EVB emulation includes the following devices:
2109 707e011b pbrook
2110 707e011b pbrook
@itemize @minus
2111 5fafdf24 ths
@item
2112 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2113 707e011b pbrook
@item
2114 707e011b pbrook
Three Two on-chip UARTs.
2115 707e011b pbrook
@item
2116 707e011b pbrook
Fast Ethernet Controller (FEC)
2117 707e011b pbrook
@end itemize
2118 707e011b pbrook
2119 707e011b pbrook
The AN5206 emulation includes the following devices:
2120 209a4e69 pbrook
2121 209a4e69 pbrook
@itemize @minus
2122 5fafdf24 ths
@item
2123 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2124 209a4e69 pbrook
@item
2125 209a4e69 pbrook
Two on-chip UARTs.
2126 209a4e69 pbrook
@end itemize
2127 209a4e69 pbrook
2128 d2c639d6 blueswir1
@c man begin OPTIONS
2129 d2c639d6 blueswir1
2130 7544a042 Stefan Weil
The following options are specific to the ColdFire emulation:
2131 d2c639d6 blueswir1
2132 d2c639d6 blueswir1
@table @option
2133 d2c639d6 blueswir1
2134 d2c639d6 blueswir1
@item -semihosting
2135 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2136 d2c639d6 blueswir1
2137 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2138 d2c639d6 blueswir1
2139 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2140 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2141 d2c639d6 blueswir1
2142 d2c639d6 blueswir1
@end table
2143 d2c639d6 blueswir1
2144 7544a042 Stefan Weil
@node Cris System emulator
2145 7544a042 Stefan Weil
@section Cris System emulator
2146 7544a042 Stefan Weil
@cindex system emulation (Cris)
2147 7544a042 Stefan Weil
2148 7544a042 Stefan Weil
TODO
2149 7544a042 Stefan Weil
2150 7544a042 Stefan Weil
@node Microblaze System emulator
2151 7544a042 Stefan Weil
@section Microblaze System emulator
2152 7544a042 Stefan Weil
@cindex system emulation (Microblaze)
2153 7544a042 Stefan Weil
2154 7544a042 Stefan Weil
TODO
2155 7544a042 Stefan Weil
2156 7544a042 Stefan Weil
@node SH4 System emulator
2157 7544a042 Stefan Weil
@section SH4 System emulator
2158 7544a042 Stefan Weil
@cindex system emulation (SH4)
2159 7544a042 Stefan Weil
2160 7544a042 Stefan Weil
TODO
2161 7544a042 Stefan Weil
2162 3aeaea65 Max Filippov
@node Xtensa System emulator
2163 3aeaea65 Max Filippov
@section Xtensa System emulator
2164 3aeaea65 Max Filippov
@cindex system emulation (Xtensa)
2165 3aeaea65 Max Filippov
2166 3aeaea65 Max Filippov
Two executables cover simulation of both Xtensa endian options,
2167 3aeaea65 Max Filippov
@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2168 3aeaea65 Max Filippov
Two different machine types are emulated:
2169 3aeaea65 Max Filippov
2170 3aeaea65 Max Filippov
@itemize @minus
2171 3aeaea65 Max Filippov
@item
2172 3aeaea65 Max Filippov
Xtensa emulator pseudo board "sim"
2173 3aeaea65 Max Filippov
@item
2174 3aeaea65 Max Filippov
Avnet LX60/LX110/LX200 board
2175 3aeaea65 Max Filippov
@end itemize
2176 3aeaea65 Max Filippov
2177 b5e4946f Stefan Weil
The sim pseudo board emulation provides an environment similar
2178 3aeaea65 Max Filippov
to one provided by the proprietary Tensilica ISS.
2179 3aeaea65 Max Filippov
It supports:
2180 3aeaea65 Max Filippov
2181 3aeaea65 Max Filippov
@itemize @minus
2182 3aeaea65 Max Filippov
@item
2183 3aeaea65 Max Filippov
A range of Xtensa CPUs, default is the DC232B
2184 3aeaea65 Max Filippov
@item
2185 3aeaea65 Max Filippov
Console and filesystem access via semihosting calls
2186 3aeaea65 Max Filippov
@end itemize
2187 3aeaea65 Max Filippov
2188 3aeaea65 Max Filippov
The Avnet LX60/LX110/LX200 emulation supports:
2189 3aeaea65 Max Filippov
2190 3aeaea65 Max Filippov
@itemize @minus
2191 3aeaea65 Max Filippov
@item
2192 3aeaea65 Max Filippov
A range of Xtensa CPUs, default is the DC232B
2193 3aeaea65 Max Filippov
@item
2194 3aeaea65 Max Filippov
16550 UART
2195 3aeaea65 Max Filippov
@item
2196 3aeaea65 Max Filippov
OpenCores 10/100 Mbps Ethernet MAC
2197 3aeaea65 Max Filippov
@end itemize
2198 3aeaea65 Max Filippov
2199 3aeaea65 Max Filippov
@c man begin OPTIONS
2200 3aeaea65 Max Filippov
2201 3aeaea65 Max Filippov
The following options are specific to the Xtensa emulation:
2202 3aeaea65 Max Filippov
2203 3aeaea65 Max Filippov
@table @option
2204 3aeaea65 Max Filippov
2205 3aeaea65 Max Filippov
@item -semihosting
2206 3aeaea65 Max Filippov
Enable semihosting syscall emulation.
2207 3aeaea65 Max Filippov
2208 3aeaea65 Max Filippov
Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2209 3aeaea65 Max Filippov
Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2210 3aeaea65 Max Filippov
2211 3aeaea65 Max Filippov
Note that this allows guest direct access to the host filesystem,
2212 3aeaea65 Max Filippov
so should only be used with trusted guest OS.
2213 3aeaea65 Max Filippov
2214 3aeaea65 Max Filippov
@end table
2215 5fafdf24 ths
@node QEMU User space emulator
2216 5fafdf24 ths
@chapter QEMU User space emulator
2217 83195237 bellard
2218 83195237 bellard
@menu
2219 83195237 bellard
* Supported Operating Systems ::
2220 83195237 bellard
* Linux User space emulator::
2221 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2222 84778508 blueswir1
* BSD User space emulator ::
2223 83195237 bellard
@end menu
2224 83195237 bellard
2225 83195237 bellard
@node Supported Operating Systems
2226 83195237 bellard
@section Supported Operating Systems
2227 83195237 bellard
2228 83195237 bellard
The following OS are supported in user space emulation:
2229 83195237 bellard
2230 83195237 bellard
@itemize @minus
2231 83195237 bellard
@item
2232 4be456f1 ths
Linux (referred as qemu-linux-user)
2233 83195237 bellard
@item
2234 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2235 84778508 blueswir1
@item
2236 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2237 83195237 bellard
@end itemize
2238 83195237 bellard
2239 83195237 bellard
@node Linux User space emulator
2240 83195237 bellard
@section Linux User space emulator
2241 386405f7 bellard
2242 debc7065 bellard
@menu
2243 debc7065 bellard
* Quick Start::
2244 debc7065 bellard
* Wine launch::
2245 debc7065 bellard
* Command line options::
2246 79737e4a pbrook
* Other binaries::
2247 debc7065 bellard
@end menu
2248 debc7065 bellard
2249 debc7065 bellard
@node Quick Start
2250 83195237 bellard
@subsection Quick Start
2251 df0f11a0 bellard
2252 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2253 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2254 386405f7 bellard
2255 1f673135 bellard
@itemize
2256 386405f7 bellard
2257 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2258 1f673135 bellard
libraries:
2259 386405f7 bellard
2260 5fafdf24 ths
@example
2261 1f673135 bellard
qemu-i386 -L / /bin/ls
2262 1f673135 bellard
@end example
2263 386405f7 bellard
2264 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2265 1f673135 bellard
@file{/} prefix.
2266 386405f7 bellard
2267 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2268 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2269 386405f7 bellard
2270 5fafdf24 ths
@example
2271 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2272 1f673135 bellard
@end example
2273 386405f7 bellard
2274 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2275 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2276 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2277 df0f11a0 bellard
2278 1f673135 bellard
@example
2279 5fafdf24 ths
unset LD_LIBRARY_PATH
2280 1f673135 bellard
@end example
2281 1eb87257 bellard
2282 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2283 1eb87257 bellard
2284 1f673135 bellard
@example
2285 1f673135 bellard
qemu-i386 tests/i386/ls
2286 1f673135 bellard
@end example
2287 4c3b5a48 Blue Swirl
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2288 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2289 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2290 1f673135 bellard
Linux kernel.
2291 1eb87257 bellard
2292 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2293 1f673135 bellard
@example
2294 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2295 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2296 1f673135 bellard
@end example
2297 1eb20527 bellard
2298 1f673135 bellard
@end itemize
2299 1eb20527 bellard
2300 debc7065 bellard
@node Wine launch
2301 83195237 bellard
@subsection Wine launch
2302 1eb20527 bellard
2303 1f673135 bellard
@itemize
2304 386405f7 bellard
2305 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2306 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2307 1f673135 bellard
able to do:
2308 386405f7 bellard
2309 1f673135 bellard
@example
2310 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2311 1f673135 bellard
@end example
2312 386405f7 bellard
2313 1f673135 bellard
@item Download the binary x86 Wine install
2314 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2315 386405f7 bellard
2316 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2317 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2318 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2319 386405f7 bellard
2320 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2321 386405f7 bellard
2322 1f673135 bellard
@example
2323 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2324 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2325 1f673135 bellard
@end example
2326 386405f7 bellard
2327 1f673135 bellard
@end itemize
2328 fd429f2f bellard
2329 debc7065 bellard
@node Command line options
2330 83195237 bellard
@subsection Command line options
2331 1eb20527 bellard
2332 1f673135 bellard
@example
2333 68a1c816 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2334 1f673135 bellard
@end example
2335 1eb20527 bellard
2336 1f673135 bellard
@table @option
2337 1f673135 bellard
@item -h
2338 1f673135 bellard
Print the help
2339 3b46e624 ths
@item -L path
2340 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2341 1f673135 bellard
@item -s size
2342 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2343 34a3d239 blueswir1
@item -cpu model
2344 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2345 f66724c9 Stefan Weil
@item -ignore-environment
2346 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2347 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2348 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2349 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2350 f66724c9 Stefan Weil
@item -U @var{var}
2351 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2352 379f6698 Paul Brook
@item -B offset
2353 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2354 1f5c3f8c Stefan Weil
the address region required by guest applications is reserved on the host.
2355 1f5c3f8c Stefan Weil
This option is currently only supported on some hosts.
2356 68a1c816 Paul Brook
@item -R size
2357 68a1c816 Paul Brook
Pre-allocate a guest virtual address space of the given size (in bytes).
2358 0d6753e5 Stefan Weil
"G", "M", and "k" suffixes may be used when specifying the size.
2359 386405f7 bellard
@end table
2360 386405f7 bellard
2361 1f673135 bellard
Debug options:
2362 386405f7 bellard
2363 1f673135 bellard
@table @option
2364 1f673135 bellard
@item -d
2365 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2366 1f673135 bellard
@item -p pagesize
2367 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2368 34a3d239 blueswir1
@item -g port
2369 34a3d239 blueswir1
Wait gdb connection to port
2370 1b530a6d aurel32
@item -singlestep
2371 1b530a6d aurel32
Run the emulation in single step mode.
2372 1f673135 bellard
@end table
2373 386405f7 bellard
2374 b01bcae6 balrog
Environment variables:
2375 b01bcae6 balrog
2376 b01bcae6 balrog
@table @env
2377 b01bcae6 balrog
@item QEMU_STRACE
2378 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2379 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2380 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2381 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2382 b01bcae6 balrog
format are printed with information for six arguments.  Many
2383 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2384 5cfdf930 ths
@end table
2385 b01bcae6 balrog
2386 79737e4a pbrook
@node Other binaries
2387 83195237 bellard
@subsection Other binaries
2388 79737e4a pbrook
2389 7544a042 Stefan Weil
@cindex user mode (Alpha)
2390 7544a042 Stefan Weil
@command{qemu-alpha} TODO.
2391 7544a042 Stefan Weil
2392 7544a042 Stefan Weil
@cindex user mode (ARM)
2393 7544a042 Stefan Weil
@command{qemu-armeb} TODO.
2394 7544a042 Stefan Weil
2395 7544a042 Stefan Weil
@cindex user mode (ARM)
2396 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2397 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2398 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2399 79737e4a pbrook
2400 7544a042 Stefan Weil
@cindex user mode (ColdFire)
2401 7544a042 Stefan Weil
@cindex user mode (M68K)
2402 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2403 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2404 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2405 e6e5906b pbrook
2406 79737e4a pbrook
The binary format is detected automatically.
2407 79737e4a pbrook
2408 7544a042 Stefan Weil
@cindex user mode (Cris)
2409 7544a042 Stefan Weil
@command{qemu-cris} TODO.
2410 7544a042 Stefan Weil
2411 7544a042 Stefan Weil
@cindex user mode (i386)
2412 7544a042 Stefan Weil
@command{qemu-i386} TODO.
2413 7544a042 Stefan Weil
@command{qemu-x86_64} TODO.
2414 7544a042 Stefan Weil
2415 7544a042 Stefan Weil
@cindex user mode (Microblaze)
2416 7544a042 Stefan Weil
@command{qemu-microblaze} TODO.
2417 7544a042 Stefan Weil
2418 7544a042 Stefan Weil
@cindex user mode (MIPS)
2419 7544a042 Stefan Weil
@command{qemu-mips} TODO.
2420 7544a042 Stefan Weil
@command{qemu-mipsel} TODO.
2421 7544a042 Stefan Weil
2422 7544a042 Stefan Weil
@cindex user mode (PowerPC)
2423 7544a042 Stefan Weil
@command{qemu-ppc64abi32} TODO.
2424 7544a042 Stefan Weil
@command{qemu-ppc64} TODO.
2425 7544a042 Stefan Weil
@command{qemu-ppc} TODO.
2426 7544a042 Stefan Weil
2427 7544a042 Stefan Weil
@cindex user mode (SH4)
2428 7544a042 Stefan Weil
@command{qemu-sh4eb} TODO.
2429 7544a042 Stefan Weil
@command{qemu-sh4} TODO.
2430 7544a042 Stefan Weil
2431 7544a042 Stefan Weil
@cindex user mode (SPARC)
2432 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2433 34a3d239 blueswir1
2434 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2435 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2436 a785e42e blueswir1
2437 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2438 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2439 a785e42e blueswir1
2440 83195237 bellard
@node Mac OS X/Darwin User space emulator
2441 83195237 bellard
@section Mac OS X/Darwin User space emulator
2442 83195237 bellard
2443 83195237 bellard
@menu
2444 83195237 bellard
* Mac OS X/Darwin Status::
2445 83195237 bellard
* Mac OS X/Darwin Quick Start::
2446 83195237 bellard
* Mac OS X/Darwin Command line options::
2447 83195237 bellard
@end menu
2448 83195237 bellard
2449 83195237 bellard
@node Mac OS X/Darwin Status
2450 83195237 bellard
@subsection Mac OS X/Darwin Status
2451 83195237 bellard
2452 83195237 bellard
@itemize @minus
2453 83195237 bellard
@item
2454 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2455 83195237 bellard
@item
2456 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2457 83195237 bellard
@item
2458 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2459 83195237 bellard
@item
2460 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2461 83195237 bellard
@end itemize
2462 83195237 bellard
2463 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2464 83195237 bellard
2465 83195237 bellard
@node Mac OS X/Darwin Quick Start
2466 83195237 bellard
@subsection Quick Start
2467 83195237 bellard
2468 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2469 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2470 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2471 83195237 bellard
CD or compile them by hand.
2472 83195237 bellard
2473 83195237 bellard
@itemize
2474 83195237 bellard
2475 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2476 83195237 bellard
libraries:
2477 83195237 bellard
2478 5fafdf24 ths
@example
2479 dbcf5e82 ths
qemu-i386 /bin/ls
2480 83195237 bellard
@end example
2481 83195237 bellard
2482 83195237 bellard
or to run the ppc version of the executable:
2483 83195237 bellard
2484 5fafdf24 ths
@example
2485 dbcf5e82 ths
qemu-ppc /bin/ls
2486 83195237 bellard
@end example
2487 83195237 bellard
2488 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2489 83195237 bellard
are installed:
2490 83195237 bellard
2491 5fafdf24 ths
@example
2492 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2493 83195237 bellard
@end example
2494 83195237 bellard
2495 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2496 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2497 83195237 bellard
2498 83195237 bellard
@end itemize
2499 83195237 bellard
2500 83195237 bellard
@node Mac OS X/Darwin Command line options
2501 83195237 bellard
@subsection Command line options
2502 83195237 bellard
2503 83195237 bellard
@example
2504 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2505 83195237 bellard
@end example
2506 83195237 bellard
2507 83195237 bellard
@table @option
2508 83195237 bellard
@item -h
2509 83195237 bellard
Print the help
2510 3b46e624 ths
@item -L path
2511 83195237 bellard
Set the library root path (default=/)
2512 83195237 bellard
@item -s size
2513 83195237 bellard
Set the stack size in bytes (default=524288)
2514 83195237 bellard
@end table
2515 83195237 bellard
2516 83195237 bellard
Debug options:
2517 83195237 bellard
2518 83195237 bellard
@table @option
2519 83195237 bellard
@item -d
2520 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2521 83195237 bellard
@item -p pagesize
2522 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2523 1b530a6d aurel32
@item -singlestep
2524 1b530a6d aurel32
Run the emulation in single step mode.
2525 83195237 bellard
@end table
2526 83195237 bellard
2527 84778508 blueswir1
@node BSD User space emulator
2528 84778508 blueswir1
@section BSD User space emulator
2529 84778508 blueswir1
2530 84778508 blueswir1
@menu
2531 84778508 blueswir1
* BSD Status::
2532 84778508 blueswir1
* BSD Quick Start::
2533 84778508 blueswir1
* BSD Command line options::
2534 84778508 blueswir1
@end menu
2535 84778508 blueswir1
2536 84778508 blueswir1
@node BSD Status
2537 84778508 blueswir1
@subsection BSD Status
2538 84778508 blueswir1
2539 84778508 blueswir1
@itemize @minus
2540 84778508 blueswir1
@item
2541 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2542 84778508 blueswir1
@end itemize
2543 84778508 blueswir1
2544 84778508 blueswir1
@node BSD Quick Start
2545 84778508 blueswir1
@subsection Quick Start
2546 84778508 blueswir1
2547 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2548 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2549 84778508 blueswir1
2550 84778508 blueswir1
@itemize
2551 84778508 blueswir1
2552 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2553 84778508 blueswir1
libraries:
2554 84778508 blueswir1
2555 84778508 blueswir1
@example
2556 84778508 blueswir1
qemu-sparc64 /bin/ls
2557 84778508 blueswir1
@end example
2558 84778508 blueswir1
2559 84778508 blueswir1
@end itemize
2560 84778508 blueswir1
2561 84778508 blueswir1
@node BSD Command line options
2562 84778508 blueswir1
@subsection Command line options
2563 84778508 blueswir1
2564 84778508 blueswir1
@example
2565 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2566 84778508 blueswir1
@end example
2567 84778508 blueswir1
2568 84778508 blueswir1
@table @option
2569 84778508 blueswir1
@item -h
2570 84778508 blueswir1
Print the help
2571 84778508 blueswir1
@item -L path
2572 84778508 blueswir1
Set the library root path (default=/)
2573 84778508 blueswir1
@item -s size
2574 84778508 blueswir1
Set the stack size in bytes (default=524288)
2575 f66724c9 Stefan Weil
@item -ignore-environment
2576 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2577 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2578 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2579 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2580 f66724c9 Stefan Weil
@item -U @var{var}
2581 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2582 84778508 blueswir1
@item -bsd type
2583 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2584 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2585 84778508 blueswir1
@end table
2586 84778508 blueswir1
2587 84778508 blueswir1
Debug options:
2588 84778508 blueswir1
2589 84778508 blueswir1
@table @option
2590 84778508 blueswir1
@item -d
2591 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2592 84778508 blueswir1
@item -p pagesize
2593 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2594 1b530a6d aurel32
@item -singlestep
2595 1b530a6d aurel32
Run the emulation in single step mode.
2596 84778508 blueswir1
@end table
2597 84778508 blueswir1
2598 15a34c63 bellard
@node compilation
2599 15a34c63 bellard
@chapter Compilation from the sources
2600 15a34c63 bellard
2601 debc7065 bellard
@menu
2602 debc7065 bellard
* Linux/Unix::
2603 debc7065 bellard
* Windows::
2604 debc7065 bellard
* Cross compilation for Windows with Linux::
2605 debc7065 bellard
* Mac OS X::
2606 47eacb4f Stefan Weil
* Make targets::
2607 debc7065 bellard
@end menu
2608 debc7065 bellard
2609 debc7065 bellard
@node Linux/Unix
2610 7c3fc84d bellard
@section Linux/Unix
2611 7c3fc84d bellard
2612 7c3fc84d bellard
@subsection Compilation
2613 7c3fc84d bellard
2614 7c3fc84d bellard
First you must decompress the sources:
2615 7c3fc84d bellard
@example
2616 7c3fc84d bellard
cd /tmp
2617 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2618 7c3fc84d bellard
cd qemu-x.y.z
2619 7c3fc84d bellard
@end example
2620 7c3fc84d bellard
2621 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2622 7c3fc84d bellard
@example
2623 7c3fc84d bellard
./configure
2624 7c3fc84d bellard
make
2625 7c3fc84d bellard
@end example
2626 7c3fc84d bellard
2627 7c3fc84d bellard
Then type as root user:
2628 7c3fc84d bellard
@example
2629 7c3fc84d bellard
make install
2630 7c3fc84d bellard
@end example
2631 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2632 7c3fc84d bellard
2633 debc7065 bellard
@node Windows
2634 15a34c63 bellard
@section Windows
2635 15a34c63 bellard
2636 15a34c63 bellard
@itemize
2637 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2638 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2639 15a34c63 bellard
instructions in the download section and the FAQ.
2640 15a34c63 bellard
2641 5fafdf24 ths
@item Download
2642 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2643 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2644 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2645 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2646 15a34c63 bellard
correct SDL directory when invoked.
2647 15a34c63 bellard
2648 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2649 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2650 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2651 d0a96f3d Scott Tsai
2652 15a34c63 bellard
@item Extract the current version of QEMU.
2653 5fafdf24 ths
2654 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2655 15a34c63 bellard
2656 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2657 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2658 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2659 15a34c63 bellard
2660 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2661 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2662 15a34c63 bellard
@file{Program Files/Qemu}.
2663 15a34c63 bellard
2664 15a34c63 bellard
@end itemize
2665 15a34c63 bellard
2666 debc7065 bellard
@node Cross compilation for Windows with Linux
2667 15a34c63 bellard
@section Cross compilation for Windows with Linux
2668 15a34c63 bellard
2669 15a34c63 bellard
@itemize
2670 15a34c63 bellard
@item
2671 15a34c63 bellard
Install the MinGW cross compilation tools available at
2672 15a34c63 bellard
@url{http://www.mingw.org/}.
2673 15a34c63 bellard
2674 d0a96f3d Scott Tsai
@item Download
2675 d0a96f3d Scott Tsai
the MinGW development library of SDL 1.2.x
2676 d0a96f3d Scott Tsai
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2677 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2678 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2679 d0a96f3d Scott Tsai
correct SDL directory when invoked.  Set up the @code{PATH} environment
2680 d0a96f3d Scott Tsai
variable so that @file{sdl-config} can be launched by
2681 15a34c63 bellard
the QEMU configuration script.
2682 15a34c63 bellard
2683 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2684 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2685 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2686 d0a96f3d Scott Tsai
2687 5fafdf24 ths
@item
2688 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2689 15a34c63 bellard
@example
2690 d0a96f3d Scott Tsai
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2691 d0a96f3d Scott Tsai
@end example
2692 d0a96f3d Scott Tsai
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2693 d0a96f3d Scott Tsai
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2694 40c5c6cd Stefan Weil
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2695 d0a96f3d Scott Tsai
use --cross-prefix to specify the name of the cross compiler.
2696 d0a96f3d Scott Tsai
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2697 d0a96f3d Scott Tsai
2698 d0a96f3d Scott Tsai
Under Fedora Linux, you can run:
2699 d0a96f3d Scott Tsai
@example
2700 d0a96f3d Scott Tsai
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2701 15a34c63 bellard
@end example
2702 d0a96f3d Scott Tsai
to get a suitable cross compilation environment.
2703 15a34c63 bellard
2704 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2705 d0a96f3d Scott Tsai
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2706 5fafdf24 ths
installation directory.
2707 15a34c63 bellard
2708 15a34c63 bellard
@end itemize
2709 15a34c63 bellard
2710 d0a96f3d Scott Tsai
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2711 15a34c63 bellard
2712 debc7065 bellard
@node Mac OS X
2713 15a34c63 bellard
@section Mac OS X
2714 15a34c63 bellard
2715 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2716 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2717 15a34c63 bellard
information.
2718 15a34c63 bellard
2719 47eacb4f Stefan Weil
@node Make targets
2720 47eacb4f Stefan Weil
@section Make targets
2721 47eacb4f Stefan Weil
2722 47eacb4f Stefan Weil
@table @code
2723 47eacb4f Stefan Weil
2724 47eacb4f Stefan Weil
@item make
2725 47eacb4f Stefan Weil
@item make all
2726 47eacb4f Stefan Weil
Make everything which is typically needed.
2727 47eacb4f Stefan Weil
2728 47eacb4f Stefan Weil
@item install
2729 47eacb4f Stefan Weil
TODO
2730 47eacb4f Stefan Weil
2731 47eacb4f Stefan Weil
@item install-doc
2732 47eacb4f Stefan Weil
TODO
2733 47eacb4f Stefan Weil
2734 47eacb4f Stefan Weil
@item make clean
2735 47eacb4f Stefan Weil
Remove most files which were built during make.
2736 47eacb4f Stefan Weil
2737 47eacb4f Stefan Weil
@item make distclean
2738 47eacb4f Stefan Weil
Remove everything which was built during make.
2739 47eacb4f Stefan Weil
2740 47eacb4f Stefan Weil
@item make dvi
2741 47eacb4f Stefan Weil
@item make html
2742 47eacb4f Stefan Weil
@item make info
2743 47eacb4f Stefan Weil
@item make pdf
2744 47eacb4f Stefan Weil
Create documentation in dvi, html, info or pdf format.
2745 47eacb4f Stefan Weil
2746 47eacb4f Stefan Weil
@item make cscope
2747 47eacb4f Stefan Weil
TODO
2748 47eacb4f Stefan Weil
2749 47eacb4f Stefan Weil
@item make defconfig
2750 47eacb4f Stefan Weil
(Re-)create some build configuration files.
2751 47eacb4f Stefan Weil
User made changes will be overwritten.
2752 47eacb4f Stefan Weil
2753 47eacb4f Stefan Weil
@item tar
2754 47eacb4f Stefan Weil
@item tarbin
2755 47eacb4f Stefan Weil
TODO
2756 47eacb4f Stefan Weil
2757 47eacb4f Stefan Weil
@end table
2758 47eacb4f Stefan Weil
2759 7544a042 Stefan Weil
@node License
2760 7544a042 Stefan Weil
@appendix License
2761 7544a042 Stefan Weil
2762 7544a042 Stefan Weil
QEMU is a trademark of Fabrice Bellard.
2763 7544a042 Stefan Weil
2764 7544a042 Stefan Weil
QEMU is released under the GNU General Public License (TODO: add link).
2765 7544a042 Stefan Weil
Parts of QEMU have specific licenses, see file LICENSE.
2766 7544a042 Stefan Weil
2767 7544a042 Stefan Weil
TODO (refer to file LICENSE, include it, include the GPL?)
2768 7544a042 Stefan Weil
2769 debc7065 bellard
@node Index
2770 7544a042 Stefan Weil
@appendix Index
2771 7544a042 Stefan Weil
@menu
2772 7544a042 Stefan Weil
* Concept Index::
2773 7544a042 Stefan Weil
* Function Index::
2774 7544a042 Stefan Weil
* Keystroke Index::
2775 7544a042 Stefan Weil
* Program Index::
2776 7544a042 Stefan Weil
* Data Type Index::
2777 7544a042 Stefan Weil
* Variable Index::
2778 7544a042 Stefan Weil
@end menu
2779 7544a042 Stefan Weil
2780 7544a042 Stefan Weil
@node Concept Index
2781 7544a042 Stefan Weil
@section Concept Index
2782 7544a042 Stefan Weil
This is the main index. Should we combine all keywords in one index? TODO
2783 debc7065 bellard
@printindex cp
2784 debc7065 bellard
2785 7544a042 Stefan Weil
@node Function Index
2786 7544a042 Stefan Weil
@section Function Index
2787 7544a042 Stefan Weil
This index could be used for command line options and monitor functions.
2788 7544a042 Stefan Weil
@printindex fn
2789 7544a042 Stefan Weil
2790 7544a042 Stefan Weil
@node Keystroke Index
2791 7544a042 Stefan Weil
@section Keystroke Index
2792 7544a042 Stefan Weil
2793 7544a042 Stefan Weil
This is a list of all keystrokes which have a special function
2794 7544a042 Stefan Weil
in system emulation.
2795 7544a042 Stefan Weil
2796 7544a042 Stefan Weil
@printindex ky
2797 7544a042 Stefan Weil
2798 7544a042 Stefan Weil
@node Program Index
2799 7544a042 Stefan Weil
@section Program Index
2800 7544a042 Stefan Weil
@printindex pg
2801 7544a042 Stefan Weil
2802 7544a042 Stefan Weil
@node Data Type Index
2803 7544a042 Stefan Weil
@section Data Type Index
2804 7544a042 Stefan Weil
2805 7544a042 Stefan Weil
This index could be used for qdev device names and options.
2806 7544a042 Stefan Weil
2807 7544a042 Stefan Weil
@printindex tp
2808 7544a042 Stefan Weil
2809 7544a042 Stefan Weil
@node Variable Index
2810 7544a042 Stefan Weil
@section Variable Index
2811 7544a042 Stefan Weil
@printindex vr
2812 7544a042 Stefan Weil
2813 debc7065 bellard
@bye