Statistics
| Branch: | Revision:

root / cpu-exec.c @ 39d51eb8

History | View | Annotate | Download (48.6 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181
#else
182
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
183
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184
        | env->psrs;
185
#endif
186
    cs_base = env->npc;
187
    pc = env->pc;
188
#elif defined(TARGET_PPC)
189
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
191
    cs_base = 0;
192
    pc = env->nip;
193
#elif defined(TARGET_MIPS)
194
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195
    cs_base = 0;
196
    pc = env->PC;
197
#elif defined(TARGET_M68K)
198
    flags = env->fpcr & M68K_FPCR_PREC;
199
    cs_base = 0;
200
    pc = env->pc;
201
#elif defined(TARGET_SH4)
202
    flags = env->sr & (SR_MD | SR_RB);
203
    cs_base = 0;         /* XXXXX */
204
    pc = env->pc;
205
#else
206
#error unsupported CPU
207
#endif
208
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210
                         tb->flags != flags, 0)) {
211
        tb = tb_find_slow(pc, cs_base, flags);
212
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
213
           doing it in tb_find_slow */
214
        if (tb_invalidated_flag) {
215
            /* as some TB could have been invalidated because
216
               of memory exceptions while generating the code, we
217
               must recompute the hash index here */
218
            T0 = 0;
219
        }
220
    }
221
    return tb;
222
}
223

    
224

    
225
/* main execution loop */
226

    
227
int cpu_exec(CPUState *env1)
228
{
229
#define DECLARE_HOST_REGS 1
230
#include "hostregs_helper.h"
231
#if defined(TARGET_SPARC)
232
#if defined(reg_REGWPTR)
233
    uint32_t *saved_regwptr;
234
#endif
235
#endif
236
#if defined(__sparc__) && !defined(HOST_SOLARIS)
237
    int saved_i7;
238
    target_ulong tmp_T0;
239
#endif
240
    int ret, interrupt_request;
241
    void (*gen_func)(void);
242
    TranslationBlock *tb;
243
    uint8_t *tc_ptr;
244

    
245
#if defined(TARGET_I386)
246
    /* handle exit of HALTED state */
247
    if (env1->hflags & HF_HALTED_MASK) {
248
        /* disable halt condition */
249
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250
            (env1->eflags & IF_MASK)) {
251
            env1->hflags &= ~HF_HALTED_MASK;
252
        } else {
253
            return EXCP_HALTED;
254
        }
255
    }
256
#elif defined(TARGET_PPC)
257
    if (env1->halted) {
258
        if (env1->msr[MSR_EE] && 
259
            (env1->interrupt_request & 
260
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
261
            env1->halted = 0;
262
        } else {
263
            return EXCP_HALTED;
264
        }
265
    }
266
#elif defined(TARGET_SPARC)
267
    if (env1->halted) {
268
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269
            (env1->psret != 0)) {
270
            env1->halted = 0;
271
        } else {
272
            return EXCP_HALTED;
273
        }
274
    }
275
#elif defined(TARGET_ARM)
276
    if (env1->halted) {
277
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
278
           set.  */
279
        if (env1->interrupt_request
280
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
281
            env1->halted = 0;
282
        } else {
283
            return EXCP_HALTED;
284
        }
285
    }
286
#elif defined(TARGET_MIPS)
287
    if (env1->halted) {
288
        if (env1->interrupt_request &
289
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
290
            env1->halted = 0;
291
        } else {
292
            return EXCP_HALTED;
293
        }
294
    }
295
#endif
296

    
297
    cpu_single_env = env1; 
298

    
299
    /* first we save global registers */
300
#define SAVE_HOST_REGS 1
301
#include "hostregs_helper.h"
302
    env = env1;
303
#if defined(__sparc__) && !defined(HOST_SOLARIS)
304
    /* we also save i7 because longjmp may not restore it */
305
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
306
#endif
307

    
308
#if defined(TARGET_I386)
309
    env_to_regs();
310
    /* put eflags in CPU temporary format */
311
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
312
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
313
    CC_OP = CC_OP_EFLAGS;
314
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
315
#elif defined(TARGET_ARM)
316
#elif defined(TARGET_SPARC)
317
#if defined(reg_REGWPTR)
318
    saved_regwptr = REGWPTR;
319
#endif
320
#elif defined(TARGET_PPC)
321
#elif defined(TARGET_M68K)
322
    env->cc_op = CC_OP_FLAGS;
323
    env->cc_dest = env->sr & 0xf;
324
    env->cc_x = (env->sr >> 4) & 1;
325
#elif defined(TARGET_MIPS)
326
#elif defined(TARGET_SH4)
327
    /* XXXXX */
328
#else
329
#error unsupported target CPU
330
#endif
331
    env->exception_index = -1;
332

    
333
    /* prepare setjmp context for exception handling */
334
    for(;;) {
335
        if (setjmp(env->jmp_env) == 0) {
336
            env->current_tb = NULL;
337
            /* if an exception is pending, we execute it here */
338
            if (env->exception_index >= 0) {
339
                if (env->exception_index >= EXCP_INTERRUPT) {
340
                    /* exit request from the cpu execution loop */
341
                    ret = env->exception_index;
342
                    break;
343
                } else if (env->user_mode_only) {
344
                    /* if user mode only, we simulate a fake exception
345
                       which will be handled outside the cpu execution
346
                       loop */
347
#if defined(TARGET_I386)
348
                    do_interrupt_user(env->exception_index, 
349
                                      env->exception_is_int, 
350
                                      env->error_code, 
351
                                      env->exception_next_eip);
352
#endif
353
                    ret = env->exception_index;
354
                    break;
355
                } else {
356
#if defined(TARGET_I386)
357
                    /* simulate a real cpu exception. On i386, it can
358
                       trigger new exceptions, but we do not handle
359
                       double or triple faults yet. */
360
                    do_interrupt(env->exception_index, 
361
                                 env->exception_is_int, 
362
                                 env->error_code, 
363
                                 env->exception_next_eip, 0);
364
#elif defined(TARGET_PPC)
365
                    do_interrupt(env);
366
#elif defined(TARGET_MIPS)
367
                    do_interrupt(env);
368
#elif defined(TARGET_SPARC)
369
                    do_interrupt(env->exception_index);
370
#elif defined(TARGET_ARM)
371
                    do_interrupt(env);
372
#elif defined(TARGET_SH4)
373
                    do_interrupt(env);
374
#endif
375
                }
376
                env->exception_index = -1;
377
            } 
378
#ifdef USE_KQEMU
379
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
380
                int ret;
381
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
382
                ret = kqemu_cpu_exec(env);
383
                /* put eflags in CPU temporary format */
384
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
385
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
386
                CC_OP = CC_OP_EFLAGS;
387
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
388
                if (ret == 1) {
389
                    /* exception */
390
                    longjmp(env->jmp_env, 1);
391
                } else if (ret == 2) {
392
                    /* softmmu execution needed */
393
                } else {
394
                    if (env->interrupt_request != 0) {
395
                        /* hardware interrupt will be executed just after */
396
                    } else {
397
                        /* otherwise, we restart */
398
                        longjmp(env->jmp_env, 1);
399
                    }
400
                }
401
            }
402
#endif
403

    
404
            T0 = 0; /* force lookup of first TB */
405
            for(;;) {
406
#if defined(__sparc__) && !defined(HOST_SOLARIS)
407
                /* g1 can be modified by some libc? functions */ 
408
                tmp_T0 = T0;
409
#endif            
410
                interrupt_request = env->interrupt_request;
411
                if (__builtin_expect(interrupt_request, 0)) {
412
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
413
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
414
                        env->exception_index = EXCP_DEBUG;
415
                        cpu_loop_exit();
416
                    }
417
#if defined(TARGET_I386)
418
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
419
                        !(env->hflags & HF_SMM_MASK)) {
420
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
421
                        do_smm_enter();
422
#if defined(__sparc__) && !defined(HOST_SOLARIS)
423
                        tmp_T0 = 0;
424
#else
425
                        T0 = 0;
426
#endif
427
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
428
                        (env->eflags & IF_MASK) && 
429
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
430
                        int intno;
431
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
432
                        intno = cpu_get_pic_interrupt(env);
433
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
434
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
435
                        }
436
                        do_interrupt(intno, 0, 0, 0, 1);
437
                        /* ensure that no TB jump will be modified as
438
                           the program flow was changed */
439
#if defined(__sparc__) && !defined(HOST_SOLARIS)
440
                        tmp_T0 = 0;
441
#else
442
                        T0 = 0;
443
#endif
444
                    }
445
#elif defined(TARGET_PPC)
446
#if 0
447
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
448
                        cpu_ppc_reset(env);
449
                    }
450
#endif
451
                    if (msr_ee != 0) {
452
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
453
                            /* Raise it */
454
                            env->exception_index = EXCP_EXTERNAL;
455
                            env->error_code = 0;
456
                            do_interrupt(env);
457
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
458
#if defined(__sparc__) && !defined(HOST_SOLARIS)
459
                            tmp_T0 = 0;
460
#else
461
                            T0 = 0;
462
#endif
463
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
464
                            /* Raise it */
465
                            env->exception_index = EXCP_DECR;
466
                            env->error_code = 0;
467
                            do_interrupt(env);
468
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
469
#if defined(__sparc__) && !defined(HOST_SOLARIS)
470
                            tmp_T0 = 0;
471
#else
472
                            T0 = 0;
473
#endif
474
                        }
475
                    }
476
#elif defined(TARGET_MIPS)
477
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
478
                        (env->CP0_Status & (1 << CP0St_IE)) &&
479
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
480
                        !(env->hflags & MIPS_HFLAG_EXL) &&
481
                        !(env->hflags & MIPS_HFLAG_ERL) &&
482
                        !(env->hflags & MIPS_HFLAG_DM)) {
483
                        /* Raise it */
484
                        env->exception_index = EXCP_EXT_INTERRUPT;
485
                        env->error_code = 0;
486
                        do_interrupt(env);
487
#if defined(__sparc__) && !defined(HOST_SOLARIS)
488
                        tmp_T0 = 0;
489
#else
490
                        T0 = 0;
491
#endif
492
                    }
493
#elif defined(TARGET_SPARC)
494
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
495
                        (env->psret != 0)) {
496
                        int pil = env->interrupt_index & 15;
497
                        int type = env->interrupt_index & 0xf0;
498

    
499
                        if (((type == TT_EXTINT) &&
500
                             (pil == 15 || pil > env->psrpil)) ||
501
                            type != TT_EXTINT) {
502
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
503
                            do_interrupt(env->interrupt_index);
504
                            env->interrupt_index = 0;
505
#if defined(__sparc__) && !defined(HOST_SOLARIS)
506
                            tmp_T0 = 0;
507
#else
508
                            T0 = 0;
509
#endif
510
                        }
511
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
512
                        //do_interrupt(0, 0, 0, 0, 0);
513
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
514
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
515
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
516
                        env->halted = 1;
517
                        env->exception_index = EXCP_HLT;
518
                        cpu_loop_exit();
519
                    }
520
#elif defined(TARGET_ARM)
521
                    if (interrupt_request & CPU_INTERRUPT_FIQ
522
                        && !(env->uncached_cpsr & CPSR_F)) {
523
                        env->exception_index = EXCP_FIQ;
524
                        do_interrupt(env);
525
                    }
526
                    if (interrupt_request & CPU_INTERRUPT_HARD
527
                        && !(env->uncached_cpsr & CPSR_I)) {
528
                        env->exception_index = EXCP_IRQ;
529
                        do_interrupt(env);
530
                    }
531
#elif defined(TARGET_SH4)
532
                    /* XXXXX */
533
#endif
534
                   /* Don't use the cached interupt_request value,
535
                      do_interrupt may have updated the EXITTB flag. */
536
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
537
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
538
                        /* ensure that no TB jump will be modified as
539
                           the program flow was changed */
540
#if defined(__sparc__) && !defined(HOST_SOLARIS)
541
                        tmp_T0 = 0;
542
#else
543
                        T0 = 0;
544
#endif
545
                    }
546
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
547
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
548
                        env->exception_index = EXCP_INTERRUPT;
549
                        cpu_loop_exit();
550
                    }
551
                }
552
#ifdef DEBUG_EXEC
553
                if ((loglevel & CPU_LOG_TB_CPU)) {
554
#if defined(TARGET_I386)
555
                    /* restore flags in standard format */
556
#ifdef reg_EAX
557
                    env->regs[R_EAX] = EAX;
558
#endif
559
#ifdef reg_EBX
560
                    env->regs[R_EBX] = EBX;
561
#endif
562
#ifdef reg_ECX
563
                    env->regs[R_ECX] = ECX;
564
#endif
565
#ifdef reg_EDX
566
                    env->regs[R_EDX] = EDX;
567
#endif
568
#ifdef reg_ESI
569
                    env->regs[R_ESI] = ESI;
570
#endif
571
#ifdef reg_EDI
572
                    env->regs[R_EDI] = EDI;
573
#endif
574
#ifdef reg_EBP
575
                    env->regs[R_EBP] = EBP;
576
#endif
577
#ifdef reg_ESP
578
                    env->regs[R_ESP] = ESP;
579
#endif
580
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
581
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
582
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
583
#elif defined(TARGET_ARM)
584
                    cpu_dump_state(env, logfile, fprintf, 0);
585
#elif defined(TARGET_SPARC)
586
                    REGWPTR = env->regbase + (env->cwp * 16);
587
                    env->regwptr = REGWPTR;
588
                    cpu_dump_state(env, logfile, fprintf, 0);
589
#elif defined(TARGET_PPC)
590
                    cpu_dump_state(env, logfile, fprintf, 0);
591
#elif defined(TARGET_M68K)
592
                    cpu_m68k_flush_flags(env, env->cc_op);
593
                    env->cc_op = CC_OP_FLAGS;
594
                    env->sr = (env->sr & 0xffe0)
595
                              | env->cc_dest | (env->cc_x << 4);
596
                    cpu_dump_state(env, logfile, fprintf, 0);
597
#elif defined(TARGET_MIPS)
598
                    cpu_dump_state(env, logfile, fprintf, 0);
599
#elif defined(TARGET_SH4)
600
                    cpu_dump_state(env, logfile, fprintf, 0);
601
#else
602
#error unsupported target CPU 
603
#endif
604
                }
605
#endif
606
                tb = tb_find_fast();
607
#ifdef DEBUG_EXEC
608
                if ((loglevel & CPU_LOG_EXEC)) {
609
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
610
                            (long)tb->tc_ptr, tb->pc,
611
                            lookup_symbol(tb->pc));
612
                }
613
#endif
614
#if defined(__sparc__) && !defined(HOST_SOLARIS)
615
                T0 = tmp_T0;
616
#endif            
617
                /* see if we can patch the calling TB. When the TB
618
                   spans two pages, we cannot safely do a direct
619
                   jump. */
620
                {
621
                    if (T0 != 0 &&
622
#if USE_KQEMU
623
                        (env->kqemu_enabled != 2) &&
624
#endif
625
                        tb->page_addr[1] == -1
626
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
627
                    && (tb->cflags & CF_CODE_COPY) == 
628
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
629
#endif
630
                    ) {
631
                    spin_lock(&tb_lock);
632
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
633
#if defined(USE_CODE_COPY)
634
                    /* propagates the FP use info */
635
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
636
                        (tb->cflags & CF_FP_USED);
637
#endif
638
                    spin_unlock(&tb_lock);
639
                }
640
                }
641
                tc_ptr = tb->tc_ptr;
642
                env->current_tb = tb;
643
                /* execute the generated code */
644
                gen_func = (void *)tc_ptr;
645
#if defined(__sparc__)
646
                __asm__ __volatile__("call        %0\n\t"
647
                                     "mov        %%o7,%%i0"
648
                                     : /* no outputs */
649
                                     : "r" (gen_func) 
650
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
651
                                       "l0", "l1", "l2", "l3", "l4", "l5",
652
                                       "l6", "l7");
653
#elif defined(__arm__)
654
                asm volatile ("mov pc, %0\n\t"
655
                              ".global exec_loop\n\t"
656
                              "exec_loop:\n\t"
657
                              : /* no outputs */
658
                              : "r" (gen_func)
659
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
660
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
661
{
662
    if (!(tb->cflags & CF_CODE_COPY)) {
663
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
664
            save_native_fp_state(env);
665
        }
666
        gen_func();
667
    } else {
668
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
669
            restore_native_fp_state(env);
670
        }
671
        /* we work with native eflags */
672
        CC_SRC = cc_table[CC_OP].compute_all();
673
        CC_OP = CC_OP_EFLAGS;
674
        asm(".globl exec_loop\n"
675
            "\n"
676
            "debug1:\n"
677
            "    pushl %%ebp\n"
678
            "    fs movl %10, %9\n"
679
            "    fs movl %11, %%eax\n"
680
            "    andl $0x400, %%eax\n"
681
            "    fs orl %8, %%eax\n"
682
            "    pushl %%eax\n"
683
            "    popf\n"
684
            "    fs movl %%esp, %12\n"
685
            "    fs movl %0, %%eax\n"
686
            "    fs movl %1, %%ecx\n"
687
            "    fs movl %2, %%edx\n"
688
            "    fs movl %3, %%ebx\n"
689
            "    fs movl %4, %%esp\n"
690
            "    fs movl %5, %%ebp\n"
691
            "    fs movl %6, %%esi\n"
692
            "    fs movl %7, %%edi\n"
693
            "    fs jmp *%9\n"
694
            "exec_loop:\n"
695
            "    fs movl %%esp, %4\n"
696
            "    fs movl %12, %%esp\n"
697
            "    fs movl %%eax, %0\n"
698
            "    fs movl %%ecx, %1\n"
699
            "    fs movl %%edx, %2\n"
700
            "    fs movl %%ebx, %3\n"
701
            "    fs movl %%ebp, %5\n"
702
            "    fs movl %%esi, %6\n"
703
            "    fs movl %%edi, %7\n"
704
            "    pushf\n"
705
            "    popl %%eax\n"
706
            "    movl %%eax, %%ecx\n"
707
            "    andl $0x400, %%ecx\n"
708
            "    shrl $9, %%ecx\n"
709
            "    andl $0x8d5, %%eax\n"
710
            "    fs movl %%eax, %8\n"
711
            "    movl $1, %%eax\n"
712
            "    subl %%ecx, %%eax\n"
713
            "    fs movl %%eax, %11\n"
714
            "    fs movl %9, %%ebx\n" /* get T0 value */
715
            "    popl %%ebp\n"
716
            :
717
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
718
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
719
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
720
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
721
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
722
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
723
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
724
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
725
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
726
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
727
            "a" (gen_func),
728
            "m" (*(uint8_t *)offsetof(CPUState, df)),
729
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
730
            : "%ecx", "%edx"
731
            );
732
    }
733
}
734
#elif defined(__ia64)
735
                struct fptr {
736
                        void *ip;
737
                        void *gp;
738
                } fp;
739

    
740
                fp.ip = tc_ptr;
741
                fp.gp = code_gen_buffer + 2 * (1 << 20);
742
                (*(void (*)(void)) &fp)();
743
#else
744
                gen_func();
745
#endif
746
                env->current_tb = NULL;
747
                /* reset soft MMU for next block (it can currently
748
                   only be set by a memory fault) */
749
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
750
                if (env->hflags & HF_SOFTMMU_MASK) {
751
                    env->hflags &= ~HF_SOFTMMU_MASK;
752
                    /* do not allow linking to another block */
753
                    T0 = 0;
754
                }
755
#endif
756
#if defined(USE_KQEMU)
757
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
758
                if (kqemu_is_ok(env) &&
759
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
760
                    cpu_loop_exit();
761
                }
762
#endif
763
            }
764
        } else {
765
            env_to_regs();
766
        }
767
    } /* for(;;) */
768

    
769

    
770
#if defined(TARGET_I386)
771
#if defined(USE_CODE_COPY)
772
    if (env->native_fp_regs) {
773
        save_native_fp_state(env);
774
    }
775
#endif
776
    /* restore flags in standard format */
777
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
778
#elif defined(TARGET_ARM)
779
    /* XXX: Save/restore host fpu exception state?.  */
780
#elif defined(TARGET_SPARC)
781
#if defined(reg_REGWPTR)
782
    REGWPTR = saved_regwptr;
783
#endif
784
#elif defined(TARGET_PPC)
785
#elif defined(TARGET_M68K)
786
    cpu_m68k_flush_flags(env, env->cc_op);
787
    env->cc_op = CC_OP_FLAGS;
788
    env->sr = (env->sr & 0xffe0)
789
              | env->cc_dest | (env->cc_x << 4);
790
#elif defined(TARGET_MIPS)
791
#elif defined(TARGET_SH4)
792
    /* XXXXX */
793
#else
794
#error unsupported target CPU
795
#endif
796

    
797
    /* restore global registers */
798
#if defined(__sparc__) && !defined(HOST_SOLARIS)
799
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
800
#endif
801
#include "hostregs_helper.h"
802

    
803
    /* fail safe : never use cpu_single_env outside cpu_exec() */
804
    cpu_single_env = NULL; 
805
    return ret;
806
}
807

    
808
/* must only be called from the generated code as an exception can be
809
   generated */
810
void tb_invalidate_page_range(target_ulong start, target_ulong end)
811
{
812
    /* XXX: cannot enable it yet because it yields to MMU exception
813
       where NIP != read address on PowerPC */
814
#if 0
815
    target_ulong phys_addr;
816
    phys_addr = get_phys_addr_code(env, start);
817
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
818
#endif
819
}
820

    
821
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
822

    
823
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
824
{
825
    CPUX86State *saved_env;
826

    
827
    saved_env = env;
828
    env = s;
829
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
830
        selector &= 0xffff;
831
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
832
                               (selector << 4), 0xffff, 0);
833
    } else {
834
        load_seg(seg_reg, selector);
835
    }
836
    env = saved_env;
837
}
838

    
839
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
840
{
841
    CPUX86State *saved_env;
842

    
843
    saved_env = env;
844
    env = s;
845
    
846
    helper_fsave((target_ulong)ptr, data32);
847

    
848
    env = saved_env;
849
}
850

    
851
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
852
{
853
    CPUX86State *saved_env;
854

    
855
    saved_env = env;
856
    env = s;
857
    
858
    helper_frstor((target_ulong)ptr, data32);
859

    
860
    env = saved_env;
861
}
862

    
863
#endif /* TARGET_I386 */
864

    
865
#if !defined(CONFIG_SOFTMMU)
866

    
867
#if defined(TARGET_I386)
868

    
869
/* 'pc' is the host PC at which the exception was raised. 'address' is
870
   the effective address of the memory exception. 'is_write' is 1 if a
871
   write caused the exception and otherwise 0'. 'old_set' is the
872
   signal set which should be restored */
873
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
874
                                    int is_write, sigset_t *old_set, 
875
                                    void *puc)
876
{
877
    TranslationBlock *tb;
878
    int ret;
879

    
880
    if (cpu_single_env)
881
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
882
#if defined(DEBUG_SIGNAL)
883
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
884
                pc, address, is_write, *(unsigned long *)old_set);
885
#endif
886
    /* XXX: locking issue */
887
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
888
        return 1;
889
    }
890

    
891
    /* see if it is an MMU fault */
892
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
893
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
894
    if (ret < 0)
895
        return 0; /* not an MMU fault */
896
    if (ret == 0)
897
        return 1; /* the MMU fault was handled without causing real CPU fault */
898
    /* now we have a real cpu fault */
899
    tb = tb_find_pc(pc);
900
    if (tb) {
901
        /* the PC is inside the translated code. It means that we have
902
           a virtual CPU fault */
903
        cpu_restore_state(tb, env, pc, puc);
904
    }
905
    if (ret == 1) {
906
#if 0
907
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
908
               env->eip, env->cr[2], env->error_code);
909
#endif
910
        /* we restore the process signal mask as the sigreturn should
911
           do it (XXX: use sigsetjmp) */
912
        sigprocmask(SIG_SETMASK, old_set, NULL);
913
        raise_exception_err(env->exception_index, env->error_code);
914
    } else {
915
        /* activate soft MMU for this block */
916
        env->hflags |= HF_SOFTMMU_MASK;
917
        cpu_resume_from_signal(env, puc);
918
    }
919
    /* never comes here */
920
    return 1;
921
}
922

    
923
#elif defined(TARGET_ARM)
924
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
925
                                    int is_write, sigset_t *old_set,
926
                                    void *puc)
927
{
928
    TranslationBlock *tb;
929
    int ret;
930

    
931
    if (cpu_single_env)
932
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
933
#if defined(DEBUG_SIGNAL)
934
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
935
           pc, address, is_write, *(unsigned long *)old_set);
936
#endif
937
    /* XXX: locking issue */
938
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
939
        return 1;
940
    }
941
    /* see if it is an MMU fault */
942
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
943
    if (ret < 0)
944
        return 0; /* not an MMU fault */
945
    if (ret == 0)
946
        return 1; /* the MMU fault was handled without causing real CPU fault */
947
    /* now we have a real cpu fault */
948
    tb = tb_find_pc(pc);
949
    if (tb) {
950
        /* the PC is inside the translated code. It means that we have
951
           a virtual CPU fault */
952
        cpu_restore_state(tb, env, pc, puc);
953
    }
954
    /* we restore the process signal mask as the sigreturn should
955
       do it (XXX: use sigsetjmp) */
956
    sigprocmask(SIG_SETMASK, old_set, NULL);
957
    cpu_loop_exit();
958
}
959
#elif defined(TARGET_SPARC)
960
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
961
                                    int is_write, sigset_t *old_set,
962
                                    void *puc)
963
{
964
    TranslationBlock *tb;
965
    int ret;
966

    
967
    if (cpu_single_env)
968
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
969
#if defined(DEBUG_SIGNAL)
970
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
971
           pc, address, is_write, *(unsigned long *)old_set);
972
#endif
973
    /* XXX: locking issue */
974
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
975
        return 1;
976
    }
977
    /* see if it is an MMU fault */
978
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
979
    if (ret < 0)
980
        return 0; /* not an MMU fault */
981
    if (ret == 0)
982
        return 1; /* the MMU fault was handled without causing real CPU fault */
983
    /* now we have a real cpu fault */
984
    tb = tb_find_pc(pc);
985
    if (tb) {
986
        /* the PC is inside the translated code. It means that we have
987
           a virtual CPU fault */
988
        cpu_restore_state(tb, env, pc, puc);
989
    }
990
    /* we restore the process signal mask as the sigreturn should
991
       do it (XXX: use sigsetjmp) */
992
    sigprocmask(SIG_SETMASK, old_set, NULL);
993
    cpu_loop_exit();
994
}
995
#elif defined (TARGET_PPC)
996
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
997
                                    int is_write, sigset_t *old_set,
998
                                    void *puc)
999
{
1000
    TranslationBlock *tb;
1001
    int ret;
1002
    
1003
    if (cpu_single_env)
1004
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1005
#if defined(DEBUG_SIGNAL)
1006
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1007
           pc, address, is_write, *(unsigned long *)old_set);
1008
#endif
1009
    /* XXX: locking issue */
1010
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1011
        return 1;
1012
    }
1013

    
1014
    /* see if it is an MMU fault */
1015
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1016
    if (ret < 0)
1017
        return 0; /* not an MMU fault */
1018
    if (ret == 0)
1019
        return 1; /* the MMU fault was handled without causing real CPU fault */
1020

    
1021
    /* now we have a real cpu fault */
1022
    tb = tb_find_pc(pc);
1023
    if (tb) {
1024
        /* the PC is inside the translated code. It means that we have
1025
           a virtual CPU fault */
1026
        cpu_restore_state(tb, env, pc, puc);
1027
    }
1028
    if (ret == 1) {
1029
#if 0
1030
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1031
               env->nip, env->error_code, tb);
1032
#endif
1033
    /* we restore the process signal mask as the sigreturn should
1034
       do it (XXX: use sigsetjmp) */
1035
        sigprocmask(SIG_SETMASK, old_set, NULL);
1036
        do_raise_exception_err(env->exception_index, env->error_code);
1037
    } else {
1038
        /* activate soft MMU for this block */
1039
        cpu_resume_from_signal(env, puc);
1040
    }
1041
    /* never comes here */
1042
    return 1;
1043
}
1044

    
1045
#elif defined(TARGET_M68K)
1046
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1047
                                    int is_write, sigset_t *old_set,
1048
                                    void *puc)
1049
{
1050
    TranslationBlock *tb;
1051
    int ret;
1052

    
1053
    if (cpu_single_env)
1054
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1055
#if defined(DEBUG_SIGNAL)
1056
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1057
           pc, address, is_write, *(unsigned long *)old_set);
1058
#endif
1059
    /* XXX: locking issue */
1060
    if (is_write && page_unprotect(address, pc, puc)) {
1061
        return 1;
1062
    }
1063
    /* see if it is an MMU fault */
1064
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1065
    if (ret < 0)
1066
        return 0; /* not an MMU fault */
1067
    if (ret == 0)
1068
        return 1; /* the MMU fault was handled without causing real CPU fault */
1069
    /* now we have a real cpu fault */
1070
    tb = tb_find_pc(pc);
1071
    if (tb) {
1072
        /* the PC is inside the translated code. It means that we have
1073
           a virtual CPU fault */
1074
        cpu_restore_state(tb, env, pc, puc);
1075
    }
1076
    /* we restore the process signal mask as the sigreturn should
1077
       do it (XXX: use sigsetjmp) */
1078
    sigprocmask(SIG_SETMASK, old_set, NULL);
1079
    cpu_loop_exit();
1080
    /* never comes here */
1081
    return 1;
1082
}
1083

    
1084
#elif defined (TARGET_MIPS)
1085
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1086
                                    int is_write, sigset_t *old_set,
1087
                                    void *puc)
1088
{
1089
    TranslationBlock *tb;
1090
    int ret;
1091
    
1092
    if (cpu_single_env)
1093
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1094
#if defined(DEBUG_SIGNAL)
1095
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1096
           pc, address, is_write, *(unsigned long *)old_set);
1097
#endif
1098
    /* XXX: locking issue */
1099
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1100
        return 1;
1101
    }
1102

    
1103
    /* see if it is an MMU fault */
1104
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1105
    if (ret < 0)
1106
        return 0; /* not an MMU fault */
1107
    if (ret == 0)
1108
        return 1; /* the MMU fault was handled without causing real CPU fault */
1109

    
1110
    /* now we have a real cpu fault */
1111
    tb = tb_find_pc(pc);
1112
    if (tb) {
1113
        /* the PC is inside the translated code. It means that we have
1114
           a virtual CPU fault */
1115
        cpu_restore_state(tb, env, pc, puc);
1116
    }
1117
    if (ret == 1) {
1118
#if 0
1119
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1120
               env->nip, env->error_code, tb);
1121
#endif
1122
    /* we restore the process signal mask as the sigreturn should
1123
       do it (XXX: use sigsetjmp) */
1124
        sigprocmask(SIG_SETMASK, old_set, NULL);
1125
        do_raise_exception_err(env->exception_index, env->error_code);
1126
    } else {
1127
        /* activate soft MMU for this block */
1128
        cpu_resume_from_signal(env, puc);
1129
    }
1130
    /* never comes here */
1131
    return 1;
1132
}
1133

    
1134
#elif defined (TARGET_SH4)
1135
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1136
                                    int is_write, sigset_t *old_set,
1137
                                    void *puc)
1138
{
1139
    TranslationBlock *tb;
1140
    int ret;
1141
    
1142
    if (cpu_single_env)
1143
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1144
#if defined(DEBUG_SIGNAL)
1145
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1146
           pc, address, is_write, *(unsigned long *)old_set);
1147
#endif
1148
    /* XXX: locking issue */
1149
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1150
        return 1;
1151
    }
1152

    
1153
    /* see if it is an MMU fault */
1154
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1155
    if (ret < 0)
1156
        return 0; /* not an MMU fault */
1157
    if (ret == 0)
1158
        return 1; /* the MMU fault was handled without causing real CPU fault */
1159

    
1160
    /* now we have a real cpu fault */
1161
    tb = tb_find_pc(pc);
1162
    if (tb) {
1163
        /* the PC is inside the translated code. It means that we have
1164
           a virtual CPU fault */
1165
        cpu_restore_state(tb, env, pc, puc);
1166
    }
1167
#if 0
1168
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1169
               env->nip, env->error_code, tb);
1170
#endif
1171
    /* we restore the process signal mask as the sigreturn should
1172
       do it (XXX: use sigsetjmp) */
1173
    sigprocmask(SIG_SETMASK, old_set, NULL);
1174
    cpu_loop_exit();
1175
    /* never comes here */
1176
    return 1;
1177
}
1178
#else
1179
#error unsupported target CPU
1180
#endif
1181

    
1182
#if defined(__i386__)
1183

    
1184
#if defined(__APPLE__)
1185
# include <sys/ucontext.h>
1186

    
1187
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1188
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1189
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1190
#else
1191
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1192
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1193
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1194
#endif
1195

    
1196
#if defined(USE_CODE_COPY)
1197
static void cpu_send_trap(unsigned long pc, int trap, 
1198
                          struct ucontext *uc)
1199
{
1200
    TranslationBlock *tb;
1201

    
1202
    if (cpu_single_env)
1203
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1204
    /* now we have a real cpu fault */
1205
    tb = tb_find_pc(pc);
1206
    if (tb) {
1207
        /* the PC is inside the translated code. It means that we have
1208
           a virtual CPU fault */
1209
        cpu_restore_state(tb, env, pc, uc);
1210
    }
1211
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1212
    raise_exception_err(trap, env->error_code);
1213
}
1214
#endif
1215

    
1216
int cpu_signal_handler(int host_signum, void *pinfo, 
1217
                       void *puc)
1218
{
1219
    siginfo_t *info = pinfo;
1220
    struct ucontext *uc = puc;
1221
    unsigned long pc;
1222
    int trapno;
1223

    
1224
#ifndef REG_EIP
1225
/* for glibc 2.1 */
1226
#define REG_EIP    EIP
1227
#define REG_ERR    ERR
1228
#define REG_TRAPNO TRAPNO
1229
#endif
1230
    pc = EIP_sig(uc);
1231
    trapno = TRAP_sig(uc);
1232
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1233
    if (trapno == 0x00 || trapno == 0x05) {
1234
        /* send division by zero or bound exception */
1235
        cpu_send_trap(pc, trapno, uc);
1236
        return 1;
1237
    } else
1238
#endif
1239
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1240
                                 trapno == 0xe ? 
1241
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1242
                                 &uc->uc_sigmask, puc);
1243
}
1244

    
1245
#elif defined(__x86_64__)
1246

    
1247
int cpu_signal_handler(int host_signum, void *pinfo,
1248
                       void *puc)
1249
{
1250
    siginfo_t *info = pinfo;
1251
    struct ucontext *uc = puc;
1252
    unsigned long pc;
1253

    
1254
    pc = uc->uc_mcontext.gregs[REG_RIP];
1255
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1256
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1257
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1258
                             &uc->uc_sigmask, puc);
1259
}
1260

    
1261
#elif defined(__powerpc__)
1262

    
1263
/***********************************************************************
1264
 * signal context platform-specific definitions
1265
 * From Wine
1266
 */
1267
#ifdef linux
1268
/* All Registers access - only for local access */
1269
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1270
/* Gpr Registers access  */
1271
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1272
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1273
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1274
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1275
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1276
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1277
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1278
/* Float Registers access  */
1279
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1280
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1281
/* Exception Registers access */
1282
# define DAR_sig(context)                        REG_sig(dar, context)
1283
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1284
# define TRAP_sig(context)                        REG_sig(trap, context)
1285
#endif /* linux */
1286

    
1287
#ifdef __APPLE__
1288
# include <sys/ucontext.h>
1289
typedef struct ucontext SIGCONTEXT;
1290
/* All Registers access - only for local access */
1291
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1292
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1293
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1294
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1295
/* Gpr Registers access */
1296
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1297
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1298
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1299
# define CTR_sig(context)                        REG_sig(ctr, context)
1300
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1301
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1302
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1303
/* Float Registers access */
1304
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1305
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1306
/* Exception Registers access */
1307
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1308
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1309
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1310
#endif /* __APPLE__ */
1311

    
1312
int cpu_signal_handler(int host_signum, void *pinfo, 
1313
                       void *puc)
1314
{
1315
    siginfo_t *info = pinfo;
1316
    struct ucontext *uc = puc;
1317
    unsigned long pc;
1318
    int is_write;
1319

    
1320
    pc = IAR_sig(uc);
1321
    is_write = 0;
1322
#if 0
1323
    /* ppc 4xx case */
1324
    if (DSISR_sig(uc) & 0x00800000)
1325
        is_write = 1;
1326
#else
1327
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1328
        is_write = 1;
1329
#endif
1330
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1331
                             is_write, &uc->uc_sigmask, puc);
1332
}
1333

    
1334
#elif defined(__alpha__)
1335

    
1336
int cpu_signal_handler(int host_signum, void *pinfo, 
1337
                           void *puc)
1338
{
1339
    siginfo_t *info = pinfo;
1340
    struct ucontext *uc = puc;
1341
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1342
    uint32_t insn = *pc;
1343
    int is_write = 0;
1344

    
1345
    /* XXX: need kernel patch to get write flag faster */
1346
    switch (insn >> 26) {
1347
    case 0x0d: // stw
1348
    case 0x0e: // stb
1349
    case 0x0f: // stq_u
1350
    case 0x24: // stf
1351
    case 0x25: // stg
1352
    case 0x26: // sts
1353
    case 0x27: // stt
1354
    case 0x2c: // stl
1355
    case 0x2d: // stq
1356
    case 0x2e: // stl_c
1357
    case 0x2f: // stq_c
1358
        is_write = 1;
1359
    }
1360

    
1361
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1362
                             is_write, &uc->uc_sigmask, puc);
1363
}
1364
#elif defined(__sparc__)
1365

    
1366
int cpu_signal_handler(int host_signum, void *pinfo, 
1367
                       void *puc)
1368
{
1369
    siginfo_t *info = pinfo;
1370
    uint32_t *regs = (uint32_t *)(info + 1);
1371
    void *sigmask = (regs + 20);
1372
    unsigned long pc;
1373
    int is_write;
1374
    uint32_t insn;
1375
    
1376
    /* XXX: is there a standard glibc define ? */
1377
    pc = regs[1];
1378
    /* XXX: need kernel patch to get write flag faster */
1379
    is_write = 0;
1380
    insn = *(uint32_t *)pc;
1381
    if ((insn >> 30) == 3) {
1382
      switch((insn >> 19) & 0x3f) {
1383
      case 0x05: // stb
1384
      case 0x06: // sth
1385
      case 0x04: // st
1386
      case 0x07: // std
1387
      case 0x24: // stf
1388
      case 0x27: // stdf
1389
      case 0x25: // stfsr
1390
        is_write = 1;
1391
        break;
1392
      }
1393
    }
1394
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1395
                             is_write, sigmask, NULL);
1396
}
1397

    
1398
#elif defined(__arm__)
1399

    
1400
int cpu_signal_handler(int host_signum, void *pinfo, 
1401
                       void *puc)
1402
{
1403
    siginfo_t *info = pinfo;
1404
    struct ucontext *uc = puc;
1405
    unsigned long pc;
1406
    int is_write;
1407
    
1408
    pc = uc->uc_mcontext.gregs[R15];
1409
    /* XXX: compute is_write */
1410
    is_write = 0;
1411
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1412
                             is_write,
1413
                             &uc->uc_sigmask, puc);
1414
}
1415

    
1416
#elif defined(__mc68000)
1417

    
1418
int cpu_signal_handler(int host_signum, void *pinfo, 
1419
                       void *puc)
1420
{
1421
    siginfo_t *info = pinfo;
1422
    struct ucontext *uc = puc;
1423
    unsigned long pc;
1424
    int is_write;
1425
    
1426
    pc = uc->uc_mcontext.gregs[16];
1427
    /* XXX: compute is_write */
1428
    is_write = 0;
1429
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1430
                             is_write,
1431
                             &uc->uc_sigmask, puc);
1432
}
1433

    
1434
#elif defined(__ia64)
1435

    
1436
#ifndef __ISR_VALID
1437
  /* This ought to be in <bits/siginfo.h>... */
1438
# define __ISR_VALID        1
1439
#endif
1440

    
1441
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1442
{
1443
    siginfo_t *info = pinfo;
1444
    struct ucontext *uc = puc;
1445
    unsigned long ip;
1446
    int is_write = 0;
1447

    
1448
    ip = uc->uc_mcontext.sc_ip;
1449
    switch (host_signum) {
1450
      case SIGILL:
1451
      case SIGFPE:
1452
      case SIGSEGV:
1453
      case SIGBUS:
1454
      case SIGTRAP:
1455
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1456
              /* ISR.W (write-access) is bit 33:  */
1457
              is_write = (info->si_isr >> 33) & 1;
1458
          break;
1459

    
1460
      default:
1461
          break;
1462
    }
1463
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1464
                             is_write,
1465
                             &uc->uc_sigmask, puc);
1466
}
1467

    
1468
#elif defined(__s390__)
1469

    
1470
int cpu_signal_handler(int host_signum, void *pinfo, 
1471
                       void *puc)
1472
{
1473
    siginfo_t *info = pinfo;
1474
    struct ucontext *uc = puc;
1475
    unsigned long pc;
1476
    int is_write;
1477
    
1478
    pc = uc->uc_mcontext.psw.addr;
1479
    /* XXX: compute is_write */
1480
    is_write = 0;
1481
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1482
                             is_write,
1483
                             &uc->uc_sigmask, puc);
1484
}
1485

    
1486
#else
1487

    
1488
#error host CPU specific signal handler needed
1489

    
1490
#endif
1491

    
1492
#endif /* !defined(CONFIG_SOFTMMU) */