Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 3c85e74f

History | View | Annotate | Download (76.3 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 8f40c388 bellard
@settitle QEMU Emulator User Documentation
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 386405f7 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 0806e3f6 bellard
@iftex
20 386405f7 bellard
@titlepage
21 386405f7 bellard
@sp 7
22 8f40c388 bellard
@center @titlefont{QEMU Emulator}
23 debc7065 bellard
@sp 1
24 debc7065 bellard
@center @titlefont{User Documentation}
25 386405f7 bellard
@sp 3
26 386405f7 bellard
@end titlepage
27 0806e3f6 bellard
@end iftex
28 386405f7 bellard
29 debc7065 bellard
@ifnottex
30 debc7065 bellard
@node Top
31 debc7065 bellard
@top
32 debc7065 bellard
33 debc7065 bellard
@menu
34 debc7065 bellard
* Introduction::
35 debc7065 bellard
* Installation::
36 debc7065 bellard
* QEMU PC System emulator::
37 debc7065 bellard
* QEMU System emulator for non PC targets::
38 83195237 bellard
* QEMU User space emulator::
39 debc7065 bellard
* compilation:: Compilation from the sources
40 7544a042 Stefan Weil
* License::
41 debc7065 bellard
* Index::
42 debc7065 bellard
@end menu
43 debc7065 bellard
@end ifnottex
44 debc7065 bellard
45 debc7065 bellard
@contents
46 debc7065 bellard
47 debc7065 bellard
@node Introduction
48 386405f7 bellard
@chapter Introduction
49 386405f7 bellard
50 debc7065 bellard
@menu
51 debc7065 bellard
* intro_features:: Features
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 322d0c66 bellard
@section Features
56 386405f7 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
58 1f673135 bellard
achieve good emulation speed.
59 1eb20527 bellard
60 1eb20527 bellard
QEMU has two operating modes:
61 0806e3f6 bellard
62 d7e5edca Stefan Weil
@itemize
63 7544a042 Stefan Weil
@cindex operating modes
64 0806e3f6 bellard
65 5fafdf24 ths
@item
66 7544a042 Stefan Weil
@cindex system emulation
67 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
68 3f9f3aa1 bellard
example a PC), including one or several processors and various
69 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
70 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
71 1eb20527 bellard
72 5fafdf24 ths
@item
73 7544a042 Stefan Weil
@cindex user mode emulation
74 83195237 bellard
User mode emulation. In this mode, QEMU can launch
75 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
76 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 1f673135 bellard
to ease cross-compilation and cross-debugging.
78 1eb20527 bellard
79 1eb20527 bellard
@end itemize
80 1eb20527 bellard
81 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
82 5fafdf24 ths
performance.
83 322d0c66 bellard
84 52c00a5f bellard
For system emulation, the following hardware targets are supported:
85 52c00a5f bellard
@itemize
86 7544a042 Stefan Weil
@cindex emulated target systems
87 7544a042 Stefan Weil
@cindex supported target systems
88 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
89 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
90 52c00a5f bellard
@item PREP (PowerPC processor)
91 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
92 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
93 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
96 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
97 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
98 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
99 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
100 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
104 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
106 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
107 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
108 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
110 4af39611 Paul Brook
@item Syborg SVP base model (ARM Cortex-A8).
111 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113 52c00a5f bellard
@end itemize
114 386405f7 bellard
115 7544a042 Stefan Weil
@cindex supported user mode targets
116 7544a042 Stefan Weil
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 7544a042 Stefan Weil
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 7544a042 Stefan Weil
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119 0806e3f6 bellard
120 debc7065 bellard
@node Installation
121 5b9f457a bellard
@chapter Installation
122 5b9f457a bellard
123 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
124 15a34c63 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* install_linux::   Linux
127 debc7065 bellard
* install_windows:: Windows
128 debc7065 bellard
* install_mac::     Macintosh
129 debc7065 bellard
@end menu
130 debc7065 bellard
131 debc7065 bellard
@node install_linux
132 1f673135 bellard
@section Linux
133 7544a042 Stefan Weil
@cindex installation (Linux)
134 1f673135 bellard
135 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
136 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
137 5b9f457a bellard
138 debc7065 bellard
@node install_windows
139 1f673135 bellard
@section Windows
140 7544a042 Stefan Weil
@cindex installation (Windows)
141 8cd0ac2f bellard
142 15a34c63 bellard
Download the experimental binary installer at
143 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
144 7544a042 Stefan Weil
TODO (no longer available)
145 d691f669 bellard
146 debc7065 bellard
@node install_mac
147 1f673135 bellard
@section Mac OS X
148 d691f669 bellard
149 15a34c63 bellard
Download the experimental binary installer at
150 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
151 7544a042 Stefan Weil
TODO (no longer available)
152 df0f11a0 bellard
153 debc7065 bellard
@node QEMU PC System emulator
154 3f9f3aa1 bellard
@chapter QEMU PC System emulator
155 7544a042 Stefan Weil
@cindex system emulation (PC)
156 1eb20527 bellard
157 debc7065 bellard
@menu
158 debc7065 bellard
* pcsys_introduction:: Introduction
159 debc7065 bellard
* pcsys_quickstart::   Quick Start
160 debc7065 bellard
* sec_invocation::     Invocation
161 debc7065 bellard
* pcsys_keys::         Keys
162 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
163 debc7065 bellard
* disk_images::        Disk Images
164 debc7065 bellard
* pcsys_network::      Network emulation
165 576fd0a1 Stefan Weil
* pcsys_other_devs::   Other Devices
166 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
167 debc7065 bellard
* pcsys_usb::          USB emulation
168 f858dcae ths
* vnc_security::       VNC security
169 debc7065 bellard
* gdb_usage::          GDB usage
170 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
171 debc7065 bellard
@end menu
172 debc7065 bellard
173 debc7065 bellard
@node pcsys_introduction
174 0806e3f6 bellard
@section Introduction
175 0806e3f6 bellard
176 0806e3f6 bellard
@c man begin DESCRIPTION
177 0806e3f6 bellard
178 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
179 3f9f3aa1 bellard
following peripherals:
180 0806e3f6 bellard
181 0806e3f6 bellard
@itemize @minus
182 5fafdf24 ths
@item
183 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184 0806e3f6 bellard
@item
185 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186 15a34c63 bellard
extensions (hardware level, including all non standard modes).
187 0806e3f6 bellard
@item
188 0806e3f6 bellard
PS/2 mouse and keyboard
189 5fafdf24 ths
@item
190 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
191 1f673135 bellard
@item
192 1f673135 bellard
Floppy disk
193 5fafdf24 ths
@item
194 3a2eeac0 Stefan Weil
PCI and ISA network adapters
195 0806e3f6 bellard
@item
196 05d5818c bellard
Serial ports
197 05d5818c bellard
@item
198 c0fe3827 bellard
Creative SoundBlaster 16 sound card
199 c0fe3827 bellard
@item
200 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
201 c0fe3827 bellard
@item
202 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
203 e5c9a13e balrog
@item
204 7d72e762 Gerd Hoffmann
Intel HD Audio Controller and HDA codec
205 7d72e762 Gerd Hoffmann
@item
206 2d983446 Stefan Weil
Adlib (OPL2) - Yamaha YM3812 compatible chip
207 b389dbfb bellard
@item
208 26463dbc balrog
Gravis Ultrasound GF1 sound card
209 26463dbc balrog
@item
210 cc53d26d malc
CS4231A compatible sound card
211 cc53d26d malc
@item
212 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
213 0806e3f6 bellard
@end itemize
214 0806e3f6 bellard
215 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
216 3f9f3aa1 bellard
217 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
218 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
219 e5178e8d malc
required card(s).
220 c0fe3827 bellard
221 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222 15a34c63 bellard
VGA BIOS.
223 15a34c63 bellard
224 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225 c0fe3827 bellard
226 2d983446 Stefan Weil
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227 26463dbc balrog
by Tibor "TS" Schรผtz.
228 423d65f4 balrog
229 720036a5 malc
Not that, by default, GUS shares IRQ(7) with parallel ports and so
230 720036a5 malc
qemu must be told to not have parallel ports to have working GUS
231 720036a5 malc
232 720036a5 malc
@example
233 720036a5 malc
qemu dos.img -soundhw gus -parallel none
234 720036a5 malc
@end example
235 720036a5 malc
236 720036a5 malc
Alternatively:
237 720036a5 malc
@example
238 720036a5 malc
qemu dos.img -device gus,irq=5
239 720036a5 malc
@end example
240 720036a5 malc
241 720036a5 malc
Or some other unclaimed IRQ.
242 720036a5 malc
243 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
244 cc53d26d malc
245 0806e3f6 bellard
@c man end
246 0806e3f6 bellard
247 debc7065 bellard
@node pcsys_quickstart
248 1eb20527 bellard
@section Quick Start
249 7544a042 Stefan Weil
@cindex quick start
250 1eb20527 bellard
251 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
252 0806e3f6 bellard
253 0806e3f6 bellard
@example
254 285dc330 bellard
qemu linux.img
255 0806e3f6 bellard
@end example
256 0806e3f6 bellard
257 0806e3f6 bellard
Linux should boot and give you a prompt.
258 0806e3f6 bellard
259 6cc721cf bellard
@node sec_invocation
260 ec410fc9 bellard
@section Invocation
261 ec410fc9 bellard
262 ec410fc9 bellard
@example
263 0806e3f6 bellard
@c man begin SYNOPSIS
264 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
265 0806e3f6 bellard
@c man end
266 ec410fc9 bellard
@end example
267 ec410fc9 bellard
268 0806e3f6 bellard
@c man begin OPTIONS
269 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270 d2c639d6 blueswir1
targets do not need a disk image.
271 ec410fc9 bellard
272 5824d651 blueswir1
@include qemu-options.texi
273 ec410fc9 bellard
274 3e11db9a bellard
@c man end
275 3e11db9a bellard
276 debc7065 bellard
@node pcsys_keys
277 3e11db9a bellard
@section Keys
278 3e11db9a bellard
279 3e11db9a bellard
@c man begin OPTIONS
280 3e11db9a bellard
281 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
282 a1b74fe8 bellard
@table @key
283 f9859310 bellard
@item Ctrl-Alt-f
284 7544a042 Stefan Weil
@kindex Ctrl-Alt-f
285 a1b74fe8 bellard
Toggle full screen
286 a0a821a4 bellard
287 c4a735f9 malc
@item Ctrl-Alt-u
288 7544a042 Stefan Weil
@kindex Ctrl-Alt-u
289 c4a735f9 malc
Restore the screen's un-scaled dimensions
290 c4a735f9 malc
291 f9859310 bellard
@item Ctrl-Alt-n
292 7544a042 Stefan Weil
@kindex Ctrl-Alt-n
293 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
294 a0a821a4 bellard
@table @emph
295 a0a821a4 bellard
@item 1
296 a0a821a4 bellard
Target system display
297 a0a821a4 bellard
@item 2
298 a0a821a4 bellard
Monitor
299 a0a821a4 bellard
@item 3
300 a0a821a4 bellard
Serial port
301 a1b74fe8 bellard
@end table
302 a1b74fe8 bellard
303 f9859310 bellard
@item Ctrl-Alt
304 7544a042 Stefan Weil
@kindex Ctrl-Alt
305 a0a821a4 bellard
Toggle mouse and keyboard grab.
306 a0a821a4 bellard
@end table
307 a0a821a4 bellard
308 7544a042 Stefan Weil
@kindex Ctrl-Up
309 7544a042 Stefan Weil
@kindex Ctrl-Down
310 7544a042 Stefan Weil
@kindex Ctrl-PageUp
311 7544a042 Stefan Weil
@kindex Ctrl-PageDown
312 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
313 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
314 3e11db9a bellard
315 7544a042 Stefan Weil
@kindex Ctrl-a h
316 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
317 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
318 ec410fc9 bellard
319 ec410fc9 bellard
@table @key
320 a1b74fe8 bellard
@item Ctrl-a h
321 7544a042 Stefan Weil
@kindex Ctrl-a h
322 d2c639d6 blueswir1
@item Ctrl-a ?
323 7544a042 Stefan Weil
@kindex Ctrl-a ?
324 ec410fc9 bellard
Print this help
325 3b46e624 ths
@item Ctrl-a x
326 7544a042 Stefan Weil
@kindex Ctrl-a x
327 366dfc52 ths
Exit emulator
328 3b46e624 ths
@item Ctrl-a s
329 7544a042 Stefan Weil
@kindex Ctrl-a s
330 1f47a922 bellard
Save disk data back to file (if -snapshot)
331 20d8a3ed ths
@item Ctrl-a t
332 7544a042 Stefan Weil
@kindex Ctrl-a t
333 d2c639d6 blueswir1
Toggle console timestamps
334 a1b74fe8 bellard
@item Ctrl-a b
335 7544a042 Stefan Weil
@kindex Ctrl-a b
336 1f673135 bellard
Send break (magic sysrq in Linux)
337 a1b74fe8 bellard
@item Ctrl-a c
338 7544a042 Stefan Weil
@kindex Ctrl-a c
339 1f673135 bellard
Switch between console and monitor
340 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
341 7544a042 Stefan Weil
@kindex Ctrl-a a
342 a1b74fe8 bellard
Send Ctrl-a
343 ec410fc9 bellard
@end table
344 0806e3f6 bellard
@c man end
345 0806e3f6 bellard
346 0806e3f6 bellard
@ignore
347 0806e3f6 bellard
348 1f673135 bellard
@c man begin SEEALSO
349 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
350 1f673135 bellard
user mode emulator invocation.
351 1f673135 bellard
@c man end
352 1f673135 bellard
353 1f673135 bellard
@c man begin AUTHOR
354 1f673135 bellard
Fabrice Bellard
355 1f673135 bellard
@c man end
356 1f673135 bellard
357 1f673135 bellard
@end ignore
358 1f673135 bellard
359 debc7065 bellard
@node pcsys_monitor
360 1f673135 bellard
@section QEMU Monitor
361 7544a042 Stefan Weil
@cindex QEMU monitor
362 1f673135 bellard
363 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
364 1f673135 bellard
emulator. You can use it to:
365 1f673135 bellard
366 1f673135 bellard
@itemize @minus
367 1f673135 bellard
368 1f673135 bellard
@item
369 e598752a ths
Remove or insert removable media images
370 89dfe898 ths
(such as CD-ROM or floppies).
371 1f673135 bellard
372 5fafdf24 ths
@item
373 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
374 1f673135 bellard
from a disk file.
375 1f673135 bellard
376 1f673135 bellard
@item Inspect the VM state without an external debugger.
377 1f673135 bellard
378 1f673135 bellard
@end itemize
379 1f673135 bellard
380 1f673135 bellard
@subsection Commands
381 1f673135 bellard
382 1f673135 bellard
The following commands are available:
383 1f673135 bellard
384 2313086a Blue Swirl
@include qemu-monitor.texi
385 0806e3f6 bellard
386 1f673135 bellard
@subsection Integer expressions
387 1f673135 bellard
388 1f673135 bellard
The monitor understands integers expressions for every integer
389 1f673135 bellard
argument. You can use register names to get the value of specifics
390 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
391 ec410fc9 bellard
392 1f47a922 bellard
@node disk_images
393 1f47a922 bellard
@section Disk Images
394 1f47a922 bellard
395 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
396 acd935ef bellard
growable disk images (their size increase as non empty sectors are
397 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
398 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
399 13a2e80f bellard
snapshots.
400 1f47a922 bellard
401 debc7065 bellard
@menu
402 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
403 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
404 13a2e80f bellard
* vm_snapshots::              VM snapshots
405 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
406 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
407 19cb3738 bellard
* host_drives::               Using host drives
408 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
409 75818250 ths
* disk_images_nbd::           NBD access
410 42af9c30 MORITA Kazutaka
* disk_images_sheepdog::      Sheepdog disk images
411 debc7065 bellard
@end menu
412 debc7065 bellard
413 debc7065 bellard
@node disk_images_quickstart
414 acd935ef bellard
@subsection Quick start for disk image creation
415 acd935ef bellard
416 acd935ef bellard
You can create a disk image with the command:
417 1f47a922 bellard
@example
418 acd935ef bellard
qemu-img create myimage.img mysize
419 1f47a922 bellard
@end example
420 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
421 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
422 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
423 acd935ef bellard
424 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
425 1f47a922 bellard
426 debc7065 bellard
@node disk_images_snapshot_mode
427 1f47a922 bellard
@subsection Snapshot mode
428 1f47a922 bellard
429 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
430 1f47a922 bellard
considered as read only. When sectors in written, they are written in
431 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
432 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
433 acd935ef bellard
command (or @key{C-a s} in the serial console).
434 1f47a922 bellard
435 13a2e80f bellard
@node vm_snapshots
436 13a2e80f bellard
@subsection VM snapshots
437 13a2e80f bellard
438 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
439 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
440 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
441 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
442 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
443 13a2e80f bellard
444 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
445 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
446 19d36792 bellard
snapshot in addition to its numerical ID.
447 13a2e80f bellard
448 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
449 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
450 13a2e80f bellard
with their associated information:
451 13a2e80f bellard
452 13a2e80f bellard
@example
453 13a2e80f bellard
(qemu) info snapshots
454 13a2e80f bellard
Snapshot devices: hda
455 13a2e80f bellard
Snapshot list (from hda):
456 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
457 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
458 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
459 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
460 13a2e80f bellard
@end example
461 13a2e80f bellard
462 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
463 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
464 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
465 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
466 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
467 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
468 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
469 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
470 19d36792 bellard
disk images).
471 13a2e80f bellard
472 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
473 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
474 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
475 13a2e80f bellard
476 13a2e80f bellard
VM snapshots currently have the following known limitations:
477 13a2e80f bellard
@itemize
478 5fafdf24 ths
@item
479 13a2e80f bellard
They cannot cope with removable devices if they are removed or
480 13a2e80f bellard
inserted after a snapshot is done.
481 5fafdf24 ths
@item
482 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
483 13a2e80f bellard
state is not saved or restored properly (in particular USB).
484 13a2e80f bellard
@end itemize
485 13a2e80f bellard
486 acd935ef bellard
@node qemu_img_invocation
487 acd935ef bellard
@subsection @code{qemu-img} Invocation
488 1f47a922 bellard
489 acd935ef bellard
@include qemu-img.texi
490 05efe46e bellard
491 975b092b ths
@node qemu_nbd_invocation
492 975b092b ths
@subsection @code{qemu-nbd} Invocation
493 975b092b ths
494 975b092b ths
@include qemu-nbd.texi
495 975b092b ths
496 19cb3738 bellard
@node host_drives
497 19cb3738 bellard
@subsection Using host drives
498 19cb3738 bellard
499 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
500 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
501 19cb3738 bellard
502 19cb3738 bellard
@subsubsection Linux
503 19cb3738 bellard
504 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
505 4be456f1 ths
disk image filename provided you have enough privileges to access
506 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
507 19cb3738 bellard
@file{/dev/fd0} for the floppy.
508 19cb3738 bellard
509 f542086d bellard
@table @code
510 19cb3738 bellard
@item CD
511 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
512 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
513 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
514 19cb3738 bellard
@item Floppy
515 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
516 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
517 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
518 19cb3738 bellard
OS will think that the same floppy is loaded).
519 19cb3738 bellard
@item Hard disks
520 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
521 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
522 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
523 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
524 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
525 19cb3738 bellard
line option or modify the device permissions accordingly).
526 19cb3738 bellard
@end table
527 19cb3738 bellard
528 19cb3738 bellard
@subsubsection Windows
529 19cb3738 bellard
530 01781963 bellard
@table @code
531 01781963 bellard
@item CD
532 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
533 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
534 01781963 bellard
supported as an alias to the first CDROM drive.
535 19cb3738 bellard
536 e598752a ths
Currently there is no specific code to handle removable media, so it
537 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
538 19cb3738 bellard
change or eject media.
539 01781963 bellard
@item Hard disks
540 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
541 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
542 01781963 bellard
543 01781963 bellard
WARNING: unless you know what you do, it is better to only make
544 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
545 01781963 bellard
host data (use the @option{-snapshot} command line so that the
546 01781963 bellard
modifications are written in a temporary file).
547 01781963 bellard
@end table
548 01781963 bellard
549 19cb3738 bellard
550 19cb3738 bellard
@subsubsection Mac OS X
551 19cb3738 bellard
552 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
553 19cb3738 bellard
554 e598752a ths
Currently there is no specific code to handle removable media, so it
555 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
556 19cb3738 bellard
change or eject media.
557 19cb3738 bellard
558 debc7065 bellard
@node disk_images_fat_images
559 2c6cadd4 bellard
@subsection Virtual FAT disk images
560 2c6cadd4 bellard
561 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
562 2c6cadd4 bellard
directory tree. In order to use it, just type:
563 2c6cadd4 bellard
564 5fafdf24 ths
@example
565 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
566 2c6cadd4 bellard
@end example
567 2c6cadd4 bellard
568 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
569 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
570 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
571 2c6cadd4 bellard
572 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
573 2c6cadd4 bellard
574 5fafdf24 ths
@example
575 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
576 2c6cadd4 bellard
@end example
577 2c6cadd4 bellard
578 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
579 2c6cadd4 bellard
@code{:rw:} option:
580 2c6cadd4 bellard
581 5fafdf24 ths
@example
582 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
583 2c6cadd4 bellard
@end example
584 2c6cadd4 bellard
585 2c6cadd4 bellard
What you should @emph{never} do:
586 2c6cadd4 bellard
@itemize
587 2c6cadd4 bellard
@item use non-ASCII filenames ;
588 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
589 85b2c688 bellard
@item expect it to work when loadvm'ing ;
590 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
591 2c6cadd4 bellard
@end itemize
592 2c6cadd4 bellard
593 75818250 ths
@node disk_images_nbd
594 75818250 ths
@subsection NBD access
595 75818250 ths
596 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
597 75818250 ths
protocol.
598 75818250 ths
599 75818250 ths
@example
600 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
601 75818250 ths
@end example
602 75818250 ths
603 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
604 75818250 ths
of an inet socket:
605 75818250 ths
606 75818250 ths
@example
607 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
608 75818250 ths
@end example
609 75818250 ths
610 75818250 ths
In this case, the block device must be exported using qemu-nbd:
611 75818250 ths
612 75818250 ths
@example
613 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
614 75818250 ths
@end example
615 75818250 ths
616 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
617 75818250 ths
@example
618 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
619 75818250 ths
@end example
620 75818250 ths
621 75818250 ths
and then you can use it with two guests:
622 75818250 ths
@example
623 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
624 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
625 75818250 ths
@end example
626 75818250 ths
627 1d45f8b5 Laurent Vivier
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
628 1d45f8b5 Laurent Vivier
"exportname" option:
629 1d45f8b5 Laurent Vivier
@example
630 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
631 1d45f8b5 Laurent Vivier
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
632 1d45f8b5 Laurent Vivier
@end example
633 1d45f8b5 Laurent Vivier
634 42af9c30 MORITA Kazutaka
@node disk_images_sheepdog
635 42af9c30 MORITA Kazutaka
@subsection Sheepdog disk images
636 42af9c30 MORITA Kazutaka
637 42af9c30 MORITA Kazutaka
Sheepdog is a distributed storage system for QEMU.  It provides highly
638 42af9c30 MORITA Kazutaka
available block level storage volumes that can be attached to
639 42af9c30 MORITA Kazutaka
QEMU-based virtual machines.
640 42af9c30 MORITA Kazutaka
641 42af9c30 MORITA Kazutaka
You can create a Sheepdog disk image with the command:
642 42af9c30 MORITA Kazutaka
@example
643 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{image} @var{size}
644 42af9c30 MORITA Kazutaka
@end example
645 42af9c30 MORITA Kazutaka
where @var{image} is the Sheepdog image name and @var{size} is its
646 42af9c30 MORITA Kazutaka
size.
647 42af9c30 MORITA Kazutaka
648 42af9c30 MORITA Kazutaka
To import the existing @var{filename} to Sheepdog, you can use a
649 42af9c30 MORITA Kazutaka
convert command.
650 42af9c30 MORITA Kazutaka
@example
651 42af9c30 MORITA Kazutaka
qemu-img convert @var{filename} sheepdog:@var{image}
652 42af9c30 MORITA Kazutaka
@end example
653 42af9c30 MORITA Kazutaka
654 42af9c30 MORITA Kazutaka
You can boot from the Sheepdog disk image with the command:
655 42af9c30 MORITA Kazutaka
@example
656 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{image}
657 42af9c30 MORITA Kazutaka
@end example
658 42af9c30 MORITA Kazutaka
659 42af9c30 MORITA Kazutaka
You can also create a snapshot of the Sheepdog image like qcow2.
660 42af9c30 MORITA Kazutaka
@example
661 42af9c30 MORITA Kazutaka
qemu-img snapshot -c @var{tag} sheepdog:@var{image}
662 42af9c30 MORITA Kazutaka
@end example
663 42af9c30 MORITA Kazutaka
where @var{tag} is a tag name of the newly created snapshot.
664 42af9c30 MORITA Kazutaka
665 42af9c30 MORITA Kazutaka
To boot from the Sheepdog snapshot, specify the tag name of the
666 42af9c30 MORITA Kazutaka
snapshot.
667 42af9c30 MORITA Kazutaka
@example
668 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{image}:@var{tag}
669 42af9c30 MORITA Kazutaka
@end example
670 42af9c30 MORITA Kazutaka
671 42af9c30 MORITA Kazutaka
You can create a cloned image from the existing snapshot.
672 42af9c30 MORITA Kazutaka
@example
673 42af9c30 MORITA Kazutaka
qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
674 42af9c30 MORITA Kazutaka
@end example
675 42af9c30 MORITA Kazutaka
where @var{base} is a image name of the source snapshot and @var{tag}
676 42af9c30 MORITA Kazutaka
is its tag name.
677 42af9c30 MORITA Kazutaka
678 42af9c30 MORITA Kazutaka
If the Sheepdog daemon doesn't run on the local host, you need to
679 42af9c30 MORITA Kazutaka
specify one of the Sheepdog servers to connect to.
680 42af9c30 MORITA Kazutaka
@example
681 42af9c30 MORITA Kazutaka
qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
682 42af9c30 MORITA Kazutaka
qemu sheepdog:@var{hostname}:@var{port}:@var{image}
683 42af9c30 MORITA Kazutaka
@end example
684 42af9c30 MORITA Kazutaka
685 debc7065 bellard
@node pcsys_network
686 9d4fb82e bellard
@section Network emulation
687 9d4fb82e bellard
688 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
689 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
690 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
691 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
692 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
693 41d03949 bellard
network stack can replace the TAP device to have a basic network
694 41d03949 bellard
connection.
695 41d03949 bellard
696 41d03949 bellard
@subsection VLANs
697 9d4fb82e bellard
698 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
699 41d03949 bellard
connection between several network devices. These devices can be for
700 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
701 41d03949 bellard
(TAP devices).
702 9d4fb82e bellard
703 41d03949 bellard
@subsection Using TAP network interfaces
704 41d03949 bellard
705 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
706 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
707 41d03949 bellard
can then configure it as if it was a real ethernet card.
708 9d4fb82e bellard
709 8f40c388 bellard
@subsubsection Linux host
710 8f40c388 bellard
711 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
712 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
713 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
714 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
715 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
716 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
717 9d4fb82e bellard
718 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
719 ee0f4751 bellard
TAP network interfaces.
720 9d4fb82e bellard
721 8f40c388 bellard
@subsubsection Windows host
722 8f40c388 bellard
723 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
724 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
725 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
726 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
727 8f40c388 bellard
728 9d4fb82e bellard
@subsection Using the user mode network stack
729 9d4fb82e bellard
730 41d03949 bellard
By using the option @option{-net user} (default configuration if no
731 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
732 4be456f1 ths
network stack (you don't need root privilege to use the virtual
733 41d03949 bellard
network). The virtual network configuration is the following:
734 9d4fb82e bellard
735 9d4fb82e bellard
@example
736 9d4fb82e bellard
737 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
738 41d03949 bellard
                           |          (10.0.2.2)
739 9d4fb82e bellard
                           |
740 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
741 3b46e624 ths
                           |
742 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
743 9d4fb82e bellard
@end example
744 9d4fb82e bellard
745 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
746 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
747 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
748 41d03949 bellard
to the hosts starting from 10.0.2.15.
749 9d4fb82e bellard
750 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
751 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
752 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
753 9d4fb82e bellard
754 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
755 4be456f1 ths
would require root privileges. It means you can only ping the local
756 b415a407 bellard
router (10.0.2.2).
757 b415a407 bellard
758 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
759 9bf05444 bellard
server.
760 9bf05444 bellard
761 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
762 9bf05444 bellard
redirected from the host to the guest. It allows for example to
763 9bf05444 bellard
redirect X11, telnet or SSH connections.
764 443f1376 bellard
765 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
766 41d03949 bellard
767 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
768 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
769 41d03949 bellard
basic example.
770 41d03949 bellard
771 576fd0a1 Stefan Weil
@node pcsys_other_devs
772 6cbf4c8c Cam Macdonell
@section Other Devices
773 6cbf4c8c Cam Macdonell
774 6cbf4c8c Cam Macdonell
@subsection Inter-VM Shared Memory device
775 6cbf4c8c Cam Macdonell
776 6cbf4c8c Cam Macdonell
With KVM enabled on a Linux host, a shared memory device is available.  Guests
777 6cbf4c8c Cam Macdonell
map a POSIX shared memory region into the guest as a PCI device that enables
778 6cbf4c8c Cam Macdonell
zero-copy communication to the application level of the guests.  The basic
779 6cbf4c8c Cam Macdonell
syntax is:
780 6cbf4c8c Cam Macdonell
781 6cbf4c8c Cam Macdonell
@example
782 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
783 6cbf4c8c Cam Macdonell
@end example
784 6cbf4c8c Cam Macdonell
785 6cbf4c8c Cam Macdonell
If desired, interrupts can be sent between guest VMs accessing the same shared
786 6cbf4c8c Cam Macdonell
memory region.  Interrupt support requires using a shared memory server and
787 6cbf4c8c Cam Macdonell
using a chardev socket to connect to it.  The code for the shared memory server
788 6cbf4c8c Cam Macdonell
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
789 6cbf4c8c Cam Macdonell
memory server is:
790 6cbf4c8c Cam Macdonell
791 6cbf4c8c Cam Macdonell
@example
792 6cbf4c8c Cam Macdonell
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
793 6cbf4c8c Cam Macdonell
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
794 6cbf4c8c Cam Macdonell
qemu -chardev socket,path=<path>,id=<id>
795 6cbf4c8c Cam Macdonell
@end example
796 6cbf4c8c Cam Macdonell
797 6cbf4c8c Cam Macdonell
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
798 6cbf4c8c Cam Macdonell
using the same server to communicate via interrupts.  Guests can read their
799 6cbf4c8c Cam Macdonell
VM ID from a device register (see example code).  Since receiving the shared
800 6cbf4c8c Cam Macdonell
memory region from the server is asynchronous, there is a (small) chance the
801 6cbf4c8c Cam Macdonell
guest may boot before the shared memory is attached.  To allow an application
802 6cbf4c8c Cam Macdonell
to ensure shared memory is attached, the VM ID register will return -1 (an
803 6cbf4c8c Cam Macdonell
invalid VM ID) until the memory is attached.  Once the shared memory is
804 6cbf4c8c Cam Macdonell
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
805 6cbf4c8c Cam Macdonell
the guest application can check to ensure the shared memory is attached to the
806 6cbf4c8c Cam Macdonell
guest before proceeding.
807 6cbf4c8c Cam Macdonell
808 6cbf4c8c Cam Macdonell
The @option{role} argument can be set to either master or peer and will affect
809 6cbf4c8c Cam Macdonell
how the shared memory is migrated.  With @option{role=master}, the guest will
810 6cbf4c8c Cam Macdonell
copy the shared memory on migration to the destination host.  With
811 6cbf4c8c Cam Macdonell
@option{role=peer}, the guest will not be able to migrate with the device attached.
812 6cbf4c8c Cam Macdonell
With the @option{peer} case, the device should be detached and then reattached
813 6cbf4c8c Cam Macdonell
after migration using the PCI hotplug support.
814 6cbf4c8c Cam Macdonell
815 9d4fb82e bellard
@node direct_linux_boot
816 9d4fb82e bellard
@section Direct Linux Boot
817 1f673135 bellard
818 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
819 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
820 ee0f4751 bellard
kernel testing.
821 1f673135 bellard
822 ee0f4751 bellard
The syntax is:
823 1f673135 bellard
@example
824 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
825 1f673135 bellard
@end example
826 1f673135 bellard
827 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
828 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
829 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
830 1f673135 bellard
831 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
832 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
833 ee0f4751 bellard
Linux kernel.
834 1f673135 bellard
835 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
836 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
837 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
838 1f673135 bellard
@example
839 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
840 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
841 1f673135 bellard
@end example
842 1f673135 bellard
843 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
844 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
845 1f673135 bellard
846 debc7065 bellard
@node pcsys_usb
847 b389dbfb bellard
@section USB emulation
848 b389dbfb bellard
849 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
850 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
851 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
852 f542086d bellard
as necessary to connect multiple USB devices.
853 b389dbfb bellard
854 0aff66b5 pbrook
@menu
855 0aff66b5 pbrook
* usb_devices::
856 0aff66b5 pbrook
* host_usb_devices::
857 0aff66b5 pbrook
@end menu
858 0aff66b5 pbrook
@node usb_devices
859 0aff66b5 pbrook
@subsection Connecting USB devices
860 b389dbfb bellard
861 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
862 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
863 b389dbfb bellard
864 db380c06 balrog
@table @code
865 db380c06 balrog
@item mouse
866 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
867 db380c06 balrog
@item tablet
868 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
869 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
870 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
871 db380c06 balrog
@item disk:@var{file}
872 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
873 db380c06 balrog
@item host:@var{bus.addr}
874 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
875 0aff66b5 pbrook
(Linux only)
876 db380c06 balrog
@item host:@var{vendor_id:product_id}
877 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
878 0aff66b5 pbrook
(Linux only)
879 db380c06 balrog
@item wacom-tablet
880 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
881 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
882 f6d2a316 balrog
coordinates it reports touch pressure.
883 db380c06 balrog
@item keyboard
884 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
885 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
886 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
887 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
888 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
889 0d6753e5 Stefan Weil
used to override the default 0403:6001. For instance,
890 db380c06 balrog
@example
891 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
892 db380c06 balrog
@end example
893 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
894 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
895 2e4d9fb1 aurel32
@item braille
896 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
897 2e4d9fb1 aurel32
or fake device.
898 9ad97e65 balrog
@item net:@var{options}
899 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
900 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
901 9ad97e65 balrog
For instance, user-mode networking can be used with
902 6c9f886c balrog
@example
903 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
904 6c9f886c balrog
@end example
905 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
906 2d564691 balrog
@item bt[:@var{hci-type}]
907 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
908 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
909 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
910 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
911 2d564691 balrog
usage:
912 2d564691 balrog
@example
913 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
914 2d564691 balrog
@end example
915 0aff66b5 pbrook
@end table
916 b389dbfb bellard
917 0aff66b5 pbrook
@node host_usb_devices
918 b389dbfb bellard
@subsection Using host USB devices on a Linux host
919 b389dbfb bellard
920 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
921 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
922 b389dbfb bellard
Cameras) are not supported yet.
923 b389dbfb bellard
924 b389dbfb bellard
@enumerate
925 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
926 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
927 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
928 b389dbfb bellard
to @file{mydriver.o.disabled}.
929 b389dbfb bellard
930 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
931 b389dbfb bellard
@example
932 b389dbfb bellard
ls /proc/bus/usb
933 b389dbfb bellard
001  devices  drivers
934 b389dbfb bellard
@end example
935 b389dbfb bellard
936 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
937 b389dbfb bellard
@example
938 b389dbfb bellard
chown -R myuid /proc/bus/usb
939 b389dbfb bellard
@end example
940 b389dbfb bellard
941 b389dbfb bellard
@item Launch QEMU and do in the monitor:
942 5fafdf24 ths
@example
943 b389dbfb bellard
info usbhost
944 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
945 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
946 b389dbfb bellard
@end example
947 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
948 b389dbfb bellard
hubs, it won't work).
949 b389dbfb bellard
950 b389dbfb bellard
@item Add the device in QEMU by using:
951 5fafdf24 ths
@example
952 b389dbfb bellard
usb_add host:1234:5678
953 b389dbfb bellard
@end example
954 b389dbfb bellard
955 b389dbfb bellard
Normally the guest OS should report that a new USB device is
956 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
957 b389dbfb bellard
958 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
959 b389dbfb bellard
960 b389dbfb bellard
@end enumerate
961 b389dbfb bellard
962 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
963 b389dbfb bellard
device to make it work again (this is a bug).
964 b389dbfb bellard
965 f858dcae ths
@node vnc_security
966 f858dcae ths
@section VNC security
967 f858dcae ths
968 f858dcae ths
The VNC server capability provides access to the graphical console
969 f858dcae ths
of the guest VM across the network. This has a number of security
970 f858dcae ths
considerations depending on the deployment scenarios.
971 f858dcae ths
972 f858dcae ths
@menu
973 f858dcae ths
* vnc_sec_none::
974 f858dcae ths
* vnc_sec_password::
975 f858dcae ths
* vnc_sec_certificate::
976 f858dcae ths
* vnc_sec_certificate_verify::
977 f858dcae ths
* vnc_sec_certificate_pw::
978 2f9606b3 aliguori
* vnc_sec_sasl::
979 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
980 f858dcae ths
* vnc_generate_cert::
981 2f9606b3 aliguori
* vnc_setup_sasl::
982 f858dcae ths
@end menu
983 f858dcae ths
@node vnc_sec_none
984 f858dcae ths
@subsection Without passwords
985 f858dcae ths
986 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
987 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
988 f858dcae ths
socket only. For example
989 f858dcae ths
990 f858dcae ths
@example
991 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
992 f858dcae ths
@end example
993 f858dcae ths
994 f858dcae ths
This ensures that only users on local box with read/write access to that
995 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
996 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
997 f858dcae ths
tunnel.
998 f858dcae ths
999 f858dcae ths
@node vnc_sec_password
1000 f858dcae ths
@subsection With passwords
1001 f858dcae ths
1002 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1003 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1004 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1005 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1006 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1007 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
1008 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1009 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1010 f858dcae ths
1011 f858dcae ths
@example
1012 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1013 f858dcae ths
(qemu) change vnc password
1014 f858dcae ths
Password: ********
1015 f858dcae ths
(qemu)
1016 f858dcae ths
@end example
1017 f858dcae ths
1018 f858dcae ths
@node vnc_sec_certificate
1019 f858dcae ths
@subsection With x509 certificates
1020 f858dcae ths
1021 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1022 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1023 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1024 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1025 f858dcae ths
support provides a secure session, but no authentication. This allows any
1026 f858dcae ths
client to connect, and provides an encrypted session.
1027 f858dcae ths
1028 f858dcae ths
@example
1029 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1030 f858dcae ths
@end example
1031 f858dcae ths
1032 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1033 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1034 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1035 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1036 f858dcae ths
only be readable by the user owning it.
1037 f858dcae ths
1038 f858dcae ths
@node vnc_sec_certificate_verify
1039 f858dcae ths
@subsection With x509 certificates and client verification
1040 f858dcae ths
1041 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1042 f858dcae ths
The server will request that the client provide a certificate, which it will
1043 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1044 f858dcae ths
in an environment with a private internal certificate authority.
1045 f858dcae ths
1046 f858dcae ths
@example
1047 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1048 f858dcae ths
@end example
1049 f858dcae ths
1050 f858dcae ths
1051 f858dcae ths
@node vnc_sec_certificate_pw
1052 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1053 f858dcae ths
1054 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1055 f858dcae ths
to provide two layers of authentication for clients.
1056 f858dcae ths
1057 f858dcae ths
@example
1058 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1059 f858dcae ths
(qemu) change vnc password
1060 f858dcae ths
Password: ********
1061 f858dcae ths
(qemu)
1062 f858dcae ths
@end example
1063 f858dcae ths
1064 2f9606b3 aliguori
1065 2f9606b3 aliguori
@node vnc_sec_sasl
1066 2f9606b3 aliguori
@subsection With SASL authentication
1067 2f9606b3 aliguori
1068 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
1069 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
1070 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
1071 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1072 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
1073 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
1074 2f9606b3 aliguori
it will encrypt the datastream as well.
1075 2f9606b3 aliguori
1076 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
1077 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
1078 2f9606b3 aliguori
then QEMU can be launched with:
1079 2f9606b3 aliguori
1080 2f9606b3 aliguori
@example
1081 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1082 2f9606b3 aliguori
@end example
1083 2f9606b3 aliguori
1084 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
1085 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
1086 2f9606b3 aliguori
1087 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
1088 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
1089 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
1090 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
1091 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
1092 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
1093 2f9606b3 aliguori
1094 2f9606b3 aliguori
@example
1095 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1096 2f9606b3 aliguori
@end example
1097 2f9606b3 aliguori
1098 2f9606b3 aliguori
1099 f858dcae ths
@node vnc_generate_cert
1100 f858dcae ths
@subsection Generating certificates for VNC
1101 f858dcae ths
1102 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1103 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1104 40c5c6cd Stefan Weil
is necessary to setup a certificate authority, and issue certificates to
1105 f858dcae ths
each server. If using certificates for authentication, then each client
1106 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1107 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1108 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1109 f858dcae ths
1110 f858dcae ths
@menu
1111 f858dcae ths
* vnc_generate_ca::
1112 f858dcae ths
* vnc_generate_server::
1113 f858dcae ths
* vnc_generate_client::
1114 f858dcae ths
@end menu
1115 f858dcae ths
@node vnc_generate_ca
1116 f858dcae ths
@subsubsection Setup the Certificate Authority
1117 f858dcae ths
1118 f858dcae ths
This step only needs to be performed once per organization / organizational
1119 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1120 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1121 f858dcae ths
issued with it is lost.
1122 f858dcae ths
1123 f858dcae ths
@example
1124 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1125 f858dcae ths
@end example
1126 f858dcae ths
1127 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1128 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1129 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1130 f858dcae ths
name of the organization.
1131 f858dcae ths
1132 f858dcae ths
@example
1133 f858dcae ths
# cat > ca.info <<EOF
1134 f858dcae ths
cn = Name of your organization
1135 f858dcae ths
ca
1136 f858dcae ths
cert_signing_key
1137 f858dcae ths
EOF
1138 f858dcae ths
# certtool --generate-self-signed \
1139 f858dcae ths
           --load-privkey ca-key.pem
1140 f858dcae ths
           --template ca.info \
1141 f858dcae ths
           --outfile ca-cert.pem
1142 f858dcae ths
@end example
1143 f858dcae ths
1144 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1145 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1146 f858dcae ths
1147 f858dcae ths
@node vnc_generate_server
1148 f858dcae ths
@subsubsection Issuing server certificates
1149 f858dcae ths
1150 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1151 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1152 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1153 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1154 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1155 f858dcae ths
secure CA private key:
1156 f858dcae ths
1157 f858dcae ths
@example
1158 f858dcae ths
# cat > server.info <<EOF
1159 f858dcae ths
organization = Name  of your organization
1160 f858dcae ths
cn = server.foo.example.com
1161 f858dcae ths
tls_www_server
1162 f858dcae ths
encryption_key
1163 f858dcae ths
signing_key
1164 f858dcae ths
EOF
1165 f858dcae ths
# certtool --generate-privkey > server-key.pem
1166 f858dcae ths
# certtool --generate-certificate \
1167 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1168 f858dcae ths
           --load-ca-privkey ca-key.pem \
1169 f858dcae ths
           --load-privkey server server-key.pem \
1170 f858dcae ths
           --template server.info \
1171 f858dcae ths
           --outfile server-cert.pem
1172 f858dcae ths
@end example
1173 f858dcae ths
1174 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1175 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1176 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1177 f858dcae ths
1178 f858dcae ths
@node vnc_generate_client
1179 f858dcae ths
@subsubsection Issuing client certificates
1180 f858dcae ths
1181 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1182 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1183 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1184 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1185 f858dcae ths
the secure CA private key:
1186 f858dcae ths
1187 f858dcae ths
@example
1188 f858dcae ths
# cat > client.info <<EOF
1189 f858dcae ths
country = GB
1190 f858dcae ths
state = London
1191 f858dcae ths
locality = London
1192 f858dcae ths
organiazation = Name of your organization
1193 f858dcae ths
cn = client.foo.example.com
1194 f858dcae ths
tls_www_client
1195 f858dcae ths
encryption_key
1196 f858dcae ths
signing_key
1197 f858dcae ths
EOF
1198 f858dcae ths
# certtool --generate-privkey > client-key.pem
1199 f858dcae ths
# certtool --generate-certificate \
1200 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1201 f858dcae ths
           --load-ca-privkey ca-key.pem \
1202 f858dcae ths
           --load-privkey client-key.pem \
1203 f858dcae ths
           --template client.info \
1204 f858dcae ths
           --outfile client-cert.pem
1205 f858dcae ths
@end example
1206 f858dcae ths
1207 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1208 f858dcae ths
copied to the client for which they were generated.
1209 f858dcae ths
1210 2f9606b3 aliguori
1211 2f9606b3 aliguori
@node vnc_setup_sasl
1212 2f9606b3 aliguori
1213 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1214 2f9606b3 aliguori
1215 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1216 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1217 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1218 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1219 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1220 2f9606b3 aliguori
to make it search alternate locations for the service config.
1221 2f9606b3 aliguori
1222 2f9606b3 aliguori
The default configuration might contain
1223 2f9606b3 aliguori
1224 2f9606b3 aliguori
@example
1225 2f9606b3 aliguori
mech_list: digest-md5
1226 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1227 2f9606b3 aliguori
@end example
1228 2f9606b3 aliguori
1229 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1230 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1231 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1232 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1233 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1234 2f9606b3 aliguori
ad-hoc testing.
1235 2f9606b3 aliguori
1236 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1237 2f9606b3 aliguori
mechanism
1238 2f9606b3 aliguori
1239 2f9606b3 aliguori
@example
1240 2f9606b3 aliguori
mech_list: gssapi
1241 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1242 2f9606b3 aliguori
@end example
1243 2f9606b3 aliguori
1244 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1245 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1246 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1247 40c5c6cd Stefan Weil
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1248 2f9606b3 aliguori
1249 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1250 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1251 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1252 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1253 2f9606b3 aliguori
1254 0806e3f6 bellard
@node gdb_usage
1255 da415d54 bellard
@section GDB usage
1256 da415d54 bellard
1257 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1258 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1259 da415d54 bellard
1260 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1261 da415d54 bellard
gdb connection:
1262 da415d54 bellard
@example
1263 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1264 debc7065 bellard
       -append "root=/dev/hda"
1265 da415d54 bellard
Connected to host network interface: tun0
1266 da415d54 bellard
Waiting gdb connection on port 1234
1267 da415d54 bellard
@end example
1268 da415d54 bellard
1269 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1270 da415d54 bellard
@example
1271 da415d54 bellard
> gdb vmlinux
1272 da415d54 bellard
@end example
1273 da415d54 bellard
1274 da415d54 bellard
In gdb, connect to QEMU:
1275 da415d54 bellard
@example
1276 6c9bf893 bellard
(gdb) target remote localhost:1234
1277 da415d54 bellard
@end example
1278 da415d54 bellard
1279 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1280 da415d54 bellard
@example
1281 da415d54 bellard
(gdb) c
1282 da415d54 bellard
@end example
1283 da415d54 bellard
1284 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1285 0806e3f6 bellard
1286 0806e3f6 bellard
@enumerate
1287 0806e3f6 bellard
@item
1288 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1289 0806e3f6 bellard
@item
1290 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1291 0806e3f6 bellard
@item
1292 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1293 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1294 0806e3f6 bellard
@end enumerate
1295 0806e3f6 bellard
1296 60897d36 edgar_igl
Advanced debugging options:
1297 60897d36 edgar_igl
1298 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1299 94d45e44 edgar_igl
@table @code
1300 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1301 60897d36 edgar_igl
1302 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1303 60897d36 edgar_igl
@example
1304 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1305 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1306 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1307 60897d36 edgar_igl
@end example
1308 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1309 60897d36 edgar_igl
1310 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1311 60897d36 edgar_igl
@example
1312 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1313 60897d36 edgar_igl
sending: "qqemu.sstep"
1314 60897d36 edgar_igl
received: "0x7"
1315 60897d36 edgar_igl
@end example
1316 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1317 60897d36 edgar_igl
1318 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1319 60897d36 edgar_igl
@example
1320 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1321 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1322 60897d36 edgar_igl
received: "OK"
1323 60897d36 edgar_igl
@end example
1324 94d45e44 edgar_igl
@end table
1325 60897d36 edgar_igl
1326 debc7065 bellard
@node pcsys_os_specific
1327 1a084f3d bellard
@section Target OS specific information
1328 1a084f3d bellard
1329 1a084f3d bellard
@subsection Linux
1330 1a084f3d bellard
1331 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1332 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1333 15a34c63 bellard
color depth in the guest and the host OS.
1334 1a084f3d bellard
1335 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1336 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1337 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1338 e3371e62 bellard
cannot simulate exactly.
1339 e3371e62 bellard
1340 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1341 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1342 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1343 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1344 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1345 7c3fc84d bellard
1346 1a084f3d bellard
@subsection Windows
1347 1a084f3d bellard
1348 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1349 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1350 1a084f3d bellard
1351 e3371e62 bellard
@subsubsection SVGA graphic modes support
1352 e3371e62 bellard
1353 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1354 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1355 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1356 15a34c63 bellard
depth in the guest and the host OS.
1357 1a084f3d bellard
1358 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1359 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1360 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1361 3cb0853a bellard
(option @option{-std-vga}).
1362 3cb0853a bellard
1363 e3371e62 bellard
@subsubsection CPU usage reduction
1364 e3371e62 bellard
1365 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1366 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1367 15a34c63 bellard
idle. You can install the utility from
1368 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1369 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1370 1a084f3d bellard
1371 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1372 e3371e62 bellard
1373 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1374 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1375 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1376 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1377 9d0a8e6f bellard
IDE transfers).
1378 e3371e62 bellard
1379 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1380 6cc721cf bellard
1381 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1382 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1383 6cc721cf bellard
use the APM driver provided by the BIOS.
1384 6cc721cf bellard
1385 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1386 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1387 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1388 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1389 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1390 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1391 6cc721cf bellard
1392 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1393 6cc721cf bellard
1394 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1395 6cc721cf bellard
1396 2192c332 bellard
@subsubsection Windows XP security problem
1397 e3371e62 bellard
1398 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1399 e3371e62 bellard
error when booting:
1400 e3371e62 bellard
@example
1401 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1402 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1403 e3371e62 bellard
@end example
1404 e3371e62 bellard
1405 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1406 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1407 2192c332 bellard
network while in safe mode, its recommended to download the full
1408 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1409 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1410 e3371e62 bellard
1411 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1412 a0a821a4 bellard
1413 a0a821a4 bellard
@subsubsection CPU usage reduction
1414 a0a821a4 bellard
1415 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1416 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1417 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1418 a0a821a4 bellard
problem.
1419 a0a821a4 bellard
1420 debc7065 bellard
@node QEMU System emulator for non PC targets
1421 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1422 3f9f3aa1 bellard
1423 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1424 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1425 4be456f1 ths
differences are mentioned in the following sections.
1426 3f9f3aa1 bellard
1427 debc7065 bellard
@menu
1428 7544a042 Stefan Weil
* PowerPC System emulator::
1429 24d4de45 ths
* Sparc32 System emulator::
1430 24d4de45 ths
* Sparc64 System emulator::
1431 24d4de45 ths
* MIPS System emulator::
1432 24d4de45 ths
* ARM System emulator::
1433 24d4de45 ths
* ColdFire System emulator::
1434 7544a042 Stefan Weil
* Cris System emulator::
1435 7544a042 Stefan Weil
* Microblaze System emulator::
1436 7544a042 Stefan Weil
* SH4 System emulator::
1437 debc7065 bellard
@end menu
1438 debc7065 bellard
1439 7544a042 Stefan Weil
@node PowerPC System emulator
1440 7544a042 Stefan Weil
@section PowerPC System emulator
1441 7544a042 Stefan Weil
@cindex system emulation (PowerPC)
1442 1a084f3d bellard
1443 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1444 15a34c63 bellard
or PowerMac PowerPC system.
1445 1a084f3d bellard
1446 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1447 1a084f3d bellard
1448 15a34c63 bellard
@itemize @minus
1449 5fafdf24 ths
@item
1450 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1451 15a34c63 bellard
@item
1452 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1453 5fafdf24 ths
@item
1454 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1455 5fafdf24 ths
@item
1456 15a34c63 bellard
NE2000 PCI adapters
1457 15a34c63 bellard
@item
1458 15a34c63 bellard
Non Volatile RAM
1459 15a34c63 bellard
@item
1460 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1461 1a084f3d bellard
@end itemize
1462 1a084f3d bellard
1463 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1464 52c00a5f bellard
1465 52c00a5f bellard
@itemize @minus
1466 5fafdf24 ths
@item
1467 15a34c63 bellard
PCI Bridge
1468 15a34c63 bellard
@item
1469 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1470 5fafdf24 ths
@item
1471 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1472 52c00a5f bellard
@item
1473 52c00a5f bellard
Floppy disk
1474 5fafdf24 ths
@item
1475 15a34c63 bellard
NE2000 network adapters
1476 52c00a5f bellard
@item
1477 52c00a5f bellard
Serial port
1478 52c00a5f bellard
@item
1479 52c00a5f bellard
PREP Non Volatile RAM
1480 15a34c63 bellard
@item
1481 15a34c63 bellard
PC compatible keyboard and mouse.
1482 52c00a5f bellard
@end itemize
1483 52c00a5f bellard
1484 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1485 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1486 52c00a5f bellard
1487 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1488 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1489 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1490 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1491 992e5acd blueswir1
1492 15a34c63 bellard
@c man begin OPTIONS
1493 15a34c63 bellard
1494 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1495 15a34c63 bellard
1496 15a34c63 bellard
@table @option
1497 15a34c63 bellard
1498 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1499 15a34c63 bellard
1500 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1501 15a34c63 bellard
1502 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1503 95efd11c blueswir1
1504 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1505 95efd11c blueswir1
1506 95efd11c blueswir1
@example
1507 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1508 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1509 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1510 95efd11c blueswir1
@end example
1511 95efd11c blueswir1
1512 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1513 95efd11c blueswir1
1514 15a34c63 bellard
@end table
1515 15a34c63 bellard
1516 5fafdf24 ths
@c man end
1517 15a34c63 bellard
1518 15a34c63 bellard
1519 52c00a5f bellard
More information is available at
1520 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1521 52c00a5f bellard
1522 24d4de45 ths
@node Sparc32 System emulator
1523 24d4de45 ths
@section Sparc32 System emulator
1524 7544a042 Stefan Weil
@cindex system emulation (Sparc32)
1525 e80cfcfc bellard
1526 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1527 34a3d239 blueswir1
Sun4m architecture machines:
1528 34a3d239 blueswir1
@itemize @minus
1529 34a3d239 blueswir1
@item
1530 34a3d239 blueswir1
SPARCstation 4
1531 34a3d239 blueswir1
@item
1532 34a3d239 blueswir1
SPARCstation 5
1533 34a3d239 blueswir1
@item
1534 34a3d239 blueswir1
SPARCstation 10
1535 34a3d239 blueswir1
@item
1536 34a3d239 blueswir1
SPARCstation 20
1537 34a3d239 blueswir1
@item
1538 34a3d239 blueswir1
SPARCserver 600MP
1539 34a3d239 blueswir1
@item
1540 34a3d239 blueswir1
SPARCstation LX
1541 34a3d239 blueswir1
@item
1542 34a3d239 blueswir1
SPARCstation Voyager
1543 34a3d239 blueswir1
@item
1544 34a3d239 blueswir1
SPARCclassic
1545 34a3d239 blueswir1
@item
1546 34a3d239 blueswir1
SPARCbook
1547 34a3d239 blueswir1
@end itemize
1548 34a3d239 blueswir1
1549 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1550 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1551 e80cfcfc bellard
1552 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1553 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1554 34a3d239 blueswir1
emulators are not usable yet.
1555 34a3d239 blueswir1
1556 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1557 e80cfcfc bellard
1558 e80cfcfc bellard
@itemize @minus
1559 3475187d bellard
@item
1560 7d85892b blueswir1
IOMMU or IO-UNITs
1561 e80cfcfc bellard
@item
1562 e80cfcfc bellard
TCX Frame buffer
1563 5fafdf24 ths
@item
1564 e80cfcfc bellard
Lance (Am7990) Ethernet
1565 e80cfcfc bellard
@item
1566 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1567 e80cfcfc bellard
@item
1568 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1569 3475187d bellard
and power/reset logic
1570 3475187d bellard
@item
1571 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1572 3475187d bellard
@item
1573 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1574 a2502b58 blueswir1
@item
1575 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1576 e80cfcfc bellard
@end itemize
1577 e80cfcfc bellard
1578 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1579 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1580 7d85892b blueswir1
others 2047MB.
1581 3475187d bellard
1582 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1583 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1584 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1585 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1586 3475187d bellard
1587 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1588 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1589 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1590 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1591 34a3d239 blueswir1
Solaris.
1592 3475187d bellard
1593 3475187d bellard
@c man begin OPTIONS
1594 3475187d bellard
1595 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1596 3475187d bellard
1597 3475187d bellard
@table @option
1598 3475187d bellard
1599 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1600 3475187d bellard
1601 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1602 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1603 3475187d bellard
1604 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1605 66508601 blueswir1
1606 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1607 66508601 blueswir1
1608 66508601 blueswir1
@example
1609 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1610 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1611 66508601 blueswir1
@end example
1612 66508601 blueswir1
1613 609c1dac Blue Swirl
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1614 a2502b58 blueswir1
1615 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1616 a2502b58 blueswir1
1617 3475187d bellard
@end table
1618 3475187d bellard
1619 5fafdf24 ths
@c man end
1620 3475187d bellard
1621 24d4de45 ths
@node Sparc64 System emulator
1622 24d4de45 ths
@section Sparc64 System emulator
1623 7544a042 Stefan Weil
@cindex system emulation (Sparc64)
1624 e80cfcfc bellard
1625 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1626 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1627 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1628 34a3d239 blueswir1
it can launch some kernels.
1629 b756921a bellard
1630 c7ba218d blueswir1
QEMU emulates the following peripherals:
1631 83469015 bellard
1632 83469015 bellard
@itemize @minus
1633 83469015 bellard
@item
1634 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1635 83469015 bellard
@item
1636 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1637 83469015 bellard
@item
1638 34a3d239 blueswir1
PS/2 mouse and keyboard
1639 34a3d239 blueswir1
@item
1640 83469015 bellard
Non Volatile RAM M48T59
1641 83469015 bellard
@item
1642 83469015 bellard
PC-compatible serial ports
1643 c7ba218d blueswir1
@item
1644 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1645 34a3d239 blueswir1
@item
1646 34a3d239 blueswir1
Floppy disk
1647 83469015 bellard
@end itemize
1648 83469015 bellard
1649 c7ba218d blueswir1
@c man begin OPTIONS
1650 c7ba218d blueswir1
1651 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1652 c7ba218d blueswir1
1653 c7ba218d blueswir1
@table @option
1654 c7ba218d blueswir1
1655 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1656 34a3d239 blueswir1
1657 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1658 34a3d239 blueswir1
1659 34a3d239 blueswir1
@example
1660 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1661 34a3d239 blueswir1
@end example
1662 34a3d239 blueswir1
1663 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1664 c7ba218d blueswir1
1665 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1666 c7ba218d blueswir1
1667 c7ba218d blueswir1
@end table
1668 c7ba218d blueswir1
1669 c7ba218d blueswir1
@c man end
1670 c7ba218d blueswir1
1671 24d4de45 ths
@node MIPS System emulator
1672 24d4de45 ths
@section MIPS System emulator
1673 7544a042 Stefan Weil
@cindex system emulation (MIPS)
1674 9d0a8e6f bellard
1675 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1676 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1677 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1678 88cb0a02 aurel32
Five different machine types are emulated:
1679 24d4de45 ths
1680 24d4de45 ths
@itemize @minus
1681 24d4de45 ths
@item
1682 24d4de45 ths
A generic ISA PC-like machine "mips"
1683 24d4de45 ths
@item
1684 24d4de45 ths
The MIPS Malta prototype board "malta"
1685 24d4de45 ths
@item
1686 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1687 6bf5b4e8 ths
@item
1688 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1689 88cb0a02 aurel32
@item
1690 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1691 24d4de45 ths
@end itemize
1692 24d4de45 ths
1693 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1694 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1695 24d4de45 ths
emulated:
1696 3f9f3aa1 bellard
1697 3f9f3aa1 bellard
@itemize @minus
1698 5fafdf24 ths
@item
1699 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1700 3f9f3aa1 bellard
@item
1701 3f9f3aa1 bellard
PC style serial port
1702 3f9f3aa1 bellard
@item
1703 24d4de45 ths
PC style IDE disk
1704 24d4de45 ths
@item
1705 3f9f3aa1 bellard
NE2000 network card
1706 3f9f3aa1 bellard
@end itemize
1707 3f9f3aa1 bellard
1708 24d4de45 ths
The Malta emulation supports the following devices:
1709 24d4de45 ths
1710 24d4de45 ths
@itemize @minus
1711 24d4de45 ths
@item
1712 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1713 24d4de45 ths
@item
1714 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1715 24d4de45 ths
@item
1716 24d4de45 ths
The Multi-I/O chip's serial device
1717 24d4de45 ths
@item
1718 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1719 24d4de45 ths
@item
1720 24d4de45 ths
Malta FPGA serial device
1721 24d4de45 ths
@item
1722 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1723 24d4de45 ths
@end itemize
1724 24d4de45 ths
1725 24d4de45 ths
The ACER Pica emulation supports:
1726 24d4de45 ths
1727 24d4de45 ths
@itemize @minus
1728 24d4de45 ths
@item
1729 24d4de45 ths
MIPS R4000 CPU
1730 24d4de45 ths
@item
1731 24d4de45 ths
PC-style IRQ and DMA controllers
1732 24d4de45 ths
@item
1733 24d4de45 ths
PC Keyboard
1734 24d4de45 ths
@item
1735 24d4de45 ths
IDE controller
1736 24d4de45 ths
@end itemize
1737 3f9f3aa1 bellard
1738 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
1739 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1740 f0fc6f8f ths
It supports:
1741 6bf5b4e8 ths
1742 6bf5b4e8 ths
@itemize @minus
1743 6bf5b4e8 ths
@item
1744 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1745 6bf5b4e8 ths
@item
1746 6bf5b4e8 ths
PC style serial port
1747 6bf5b4e8 ths
@item
1748 6bf5b4e8 ths
MIPSnet network emulation
1749 6bf5b4e8 ths
@end itemize
1750 6bf5b4e8 ths
1751 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1752 88cb0a02 aurel32
1753 88cb0a02 aurel32
@itemize @minus
1754 88cb0a02 aurel32
@item
1755 88cb0a02 aurel32
MIPS R4000 CPU
1756 88cb0a02 aurel32
@item
1757 88cb0a02 aurel32
PC-style IRQ controller
1758 88cb0a02 aurel32
@item
1759 88cb0a02 aurel32
PC Keyboard
1760 88cb0a02 aurel32
@item
1761 88cb0a02 aurel32
SCSI controller
1762 88cb0a02 aurel32
@item
1763 88cb0a02 aurel32
G364 framebuffer
1764 88cb0a02 aurel32
@end itemize
1765 88cb0a02 aurel32
1766 88cb0a02 aurel32
1767 24d4de45 ths
@node ARM System emulator
1768 24d4de45 ths
@section ARM System emulator
1769 7544a042 Stefan Weil
@cindex system emulation (ARM)
1770 3f9f3aa1 bellard
1771 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1772 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1773 3f9f3aa1 bellard
devices:
1774 3f9f3aa1 bellard
1775 3f9f3aa1 bellard
@itemize @minus
1776 3f9f3aa1 bellard
@item
1777 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1778 3f9f3aa1 bellard
@item
1779 3f9f3aa1 bellard
Two PL011 UARTs
1780 5fafdf24 ths
@item
1781 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1782 00a9bf19 pbrook
@item
1783 00a9bf19 pbrook
PL110 LCD controller
1784 00a9bf19 pbrook
@item
1785 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1786 a1bb27b1 pbrook
@item
1787 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1788 00a9bf19 pbrook
@end itemize
1789 00a9bf19 pbrook
1790 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1791 00a9bf19 pbrook
1792 00a9bf19 pbrook
@itemize @minus
1793 00a9bf19 pbrook
@item
1794 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1795 00a9bf19 pbrook
@item
1796 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1797 00a9bf19 pbrook
@item
1798 00a9bf19 pbrook
Four PL011 UARTs
1799 5fafdf24 ths
@item
1800 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1801 00a9bf19 pbrook
@item
1802 00a9bf19 pbrook
PL110 LCD controller
1803 00a9bf19 pbrook
@item
1804 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1805 00a9bf19 pbrook
@item
1806 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1807 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1808 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1809 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1810 00a9bf19 pbrook
mapped control registers.
1811 e6de1bad pbrook
@item
1812 e6de1bad pbrook
PCI OHCI USB controller.
1813 e6de1bad pbrook
@item
1814 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1815 a1bb27b1 pbrook
@item
1816 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1817 3f9f3aa1 bellard
@end itemize
1818 3f9f3aa1 bellard
1819 21a88941 Paul Brook
Several variants of the ARM RealView baseboard are emulated,
1820 21a88941 Paul Brook
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1821 21a88941 Paul Brook
bootloader, only certain Linux kernel configurations work out
1822 21a88941 Paul Brook
of the box on these boards.
1823 21a88941 Paul Brook
1824 21a88941 Paul Brook
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1825 21a88941 Paul Brook
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1826 21a88941 Paul Brook
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1827 21a88941 Paul Brook
disabled and expect 1024M RAM.
1828 21a88941 Paul Brook
1829 40c5c6cd Stefan Weil
The following devices are emulated:
1830 d7739d75 pbrook
1831 d7739d75 pbrook
@itemize @minus
1832 d7739d75 pbrook
@item
1833 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1834 d7739d75 pbrook
@item
1835 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1836 d7739d75 pbrook
@item
1837 d7739d75 pbrook
Four PL011 UARTs
1838 5fafdf24 ths
@item
1839 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1840 d7739d75 pbrook
@item
1841 d7739d75 pbrook
PL110 LCD controller
1842 d7739d75 pbrook
@item
1843 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1844 d7739d75 pbrook
@item
1845 d7739d75 pbrook
PCI host bridge
1846 d7739d75 pbrook
@item
1847 d7739d75 pbrook
PCI OHCI USB controller
1848 d7739d75 pbrook
@item
1849 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1850 a1bb27b1 pbrook
@item
1851 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1852 d7739d75 pbrook
@end itemize
1853 d7739d75 pbrook
1854 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1855 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1856 b00052e4 balrog
1857 b00052e4 balrog
@itemize @minus
1858 b00052e4 balrog
@item
1859 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1860 b00052e4 balrog
@item
1861 b00052e4 balrog
NAND Flash memory
1862 b00052e4 balrog
@item
1863 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1864 b00052e4 balrog
@item
1865 b00052e4 balrog
On-chip OHCI USB controller
1866 b00052e4 balrog
@item
1867 b00052e4 balrog
On-chip LCD controller
1868 b00052e4 balrog
@item
1869 b00052e4 balrog
On-chip Real Time Clock
1870 b00052e4 balrog
@item
1871 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
1872 b00052e4 balrog
@item
1873 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1874 b00052e4 balrog
@item
1875 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
1876 b00052e4 balrog
@item
1877 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
1878 b00052e4 balrog
@item
1879 b00052e4 balrog
Three on-chip UARTs
1880 b00052e4 balrog
@item
1881 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1882 b00052e4 balrog
@end itemize
1883 b00052e4 balrog
1884 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1885 02645926 balrog
following elements:
1886 02645926 balrog
1887 02645926 balrog
@itemize @minus
1888 02645926 balrog
@item
1889 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1890 02645926 balrog
@item
1891 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1892 02645926 balrog
@item
1893 02645926 balrog
On-chip LCD controller
1894 02645926 balrog
@item
1895 02645926 balrog
On-chip Real Time Clock
1896 02645926 balrog
@item
1897 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1898 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
1899 02645926 balrog
@item
1900 02645926 balrog
GPIO-connected matrix keypad
1901 02645926 balrog
@item
1902 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
1903 02645926 balrog
@item
1904 02645926 balrog
Three on-chip UARTs
1905 02645926 balrog
@end itemize
1906 02645926 balrog
1907 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1908 c30bb264 balrog
emulation supports the following elements:
1909 c30bb264 balrog
1910 c30bb264 balrog
@itemize @minus
1911 c30bb264 balrog
@item
1912 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1913 c30bb264 balrog
@item
1914 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
1915 c30bb264 balrog
@item
1916 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1917 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
1918 c30bb264 balrog
@item
1919 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1920 c30bb264 balrog
driven through SPI bus
1921 c30bb264 balrog
@item
1922 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
1923 c30bb264 balrog
through I@math{^2}C bus
1924 c30bb264 balrog
@item
1925 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
1926 c30bb264 balrog
@item
1927 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
1928 c30bb264 balrog
@item
1929 40c5c6cd Stefan Weil
A Bluetooth(R) transceiver and HCI connected to an UART
1930 2d564691 balrog
@item
1931 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1932 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
1933 c30bb264 balrog
@item
1934 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
1935 c30bb264 balrog
@item
1936 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1937 c30bb264 balrog
@item
1938 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1939 c30bb264 balrog
through CBUS
1940 c30bb264 balrog
@end itemize
1941 c30bb264 balrog
1942 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1943 9ee6e8bb pbrook
devices:
1944 9ee6e8bb pbrook
1945 9ee6e8bb pbrook
@itemize @minus
1946 9ee6e8bb pbrook
@item
1947 9ee6e8bb pbrook
Cortex-M3 CPU core.
1948 9ee6e8bb pbrook
@item
1949 9ee6e8bb pbrook
64k Flash and 8k SRAM.
1950 9ee6e8bb pbrook
@item
1951 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
1952 9ee6e8bb pbrook
@item
1953 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1954 9ee6e8bb pbrook
@end itemize
1955 9ee6e8bb pbrook
1956 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1957 9ee6e8bb pbrook
devices:
1958 9ee6e8bb pbrook
1959 9ee6e8bb pbrook
@itemize @minus
1960 9ee6e8bb pbrook
@item
1961 9ee6e8bb pbrook
Cortex-M3 CPU core.
1962 9ee6e8bb pbrook
@item
1963 9ee6e8bb pbrook
256k Flash and 64k SRAM.
1964 9ee6e8bb pbrook
@item
1965 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1966 9ee6e8bb pbrook
@item
1967 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1968 9ee6e8bb pbrook
@end itemize
1969 9ee6e8bb pbrook
1970 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
1971 57cd6e97 balrog
elements:
1972 57cd6e97 balrog
1973 57cd6e97 balrog
@itemize @minus
1974 57cd6e97 balrog
@item
1975 57cd6e97 balrog
Marvell MV88W8618 ARM core.
1976 57cd6e97 balrog
@item
1977 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
1978 57cd6e97 balrog
@item
1979 57cd6e97 balrog
Up to 2 16550 UARTs
1980 57cd6e97 balrog
@item
1981 57cd6e97 balrog
MV88W8xx8 Ethernet controller
1982 57cd6e97 balrog
@item
1983 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
1984 57cd6e97 balrog
@item
1985 e080e785 Stefan Weil
128ร—64 display with brightness control
1986 57cd6e97 balrog
@item
1987 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
1988 57cd6e97 balrog
@end itemize
1989 57cd6e97 balrog
1990 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
1991 40c5c6cd Stefan Weil
The emulation includes the following elements:
1992 997641a8 balrog
1993 997641a8 balrog
@itemize @minus
1994 997641a8 balrog
@item
1995 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1996 997641a8 balrog
@item
1997 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1998 997641a8 balrog
V1
1999 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2000 997641a8 balrog
V2
2001 997641a8 balrog
1 Flash of 32MB
2002 997641a8 balrog
@item
2003 997641a8 balrog
On-chip LCD controller
2004 997641a8 balrog
@item
2005 997641a8 balrog
On-chip Real Time Clock
2006 997641a8 balrog
@item
2007 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2008 997641a8 balrog
@item
2009 997641a8 balrog
Three on-chip UARTs
2010 997641a8 balrog
@end itemize
2011 997641a8 balrog
2012 4af39611 Paul Brook
The "Syborg" Symbian Virtual Platform base model includes the following
2013 4af39611 Paul Brook
elements:
2014 4af39611 Paul Brook
2015 4af39611 Paul Brook
@itemize @minus
2016 4af39611 Paul Brook
@item
2017 4af39611 Paul Brook
ARM Cortex-A8 CPU
2018 4af39611 Paul Brook
@item
2019 4af39611 Paul Brook
Interrupt controller
2020 4af39611 Paul Brook
@item
2021 4af39611 Paul Brook
Timer
2022 4af39611 Paul Brook
@item
2023 4af39611 Paul Brook
Real Time Clock
2024 4af39611 Paul Brook
@item
2025 4af39611 Paul Brook
Keyboard
2026 4af39611 Paul Brook
@item
2027 4af39611 Paul Brook
Framebuffer
2028 4af39611 Paul Brook
@item
2029 4af39611 Paul Brook
Touchscreen
2030 4af39611 Paul Brook
@item
2031 4af39611 Paul Brook
UARTs
2032 4af39611 Paul Brook
@end itemize
2033 4af39611 Paul Brook
2034 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2035 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2036 9d0a8e6f bellard
2037 d2c639d6 blueswir1
@c man begin OPTIONS
2038 d2c639d6 blueswir1
2039 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
2040 d2c639d6 blueswir1
2041 d2c639d6 blueswir1
@table @option
2042 d2c639d6 blueswir1
2043 d2c639d6 blueswir1
@item -semihosting
2044 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2045 d2c639d6 blueswir1
2046 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
2047 d2c639d6 blueswir1
2048 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2049 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2050 d2c639d6 blueswir1
2051 d2c639d6 blueswir1
@end table
2052 d2c639d6 blueswir1
2053 24d4de45 ths
@node ColdFire System emulator
2054 24d4de45 ths
@section ColdFire System emulator
2055 7544a042 Stefan Weil
@cindex system emulation (ColdFire)
2056 7544a042 Stefan Weil
@cindex system emulation (M68K)
2057 209a4e69 pbrook
2058 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2059 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2060 707e011b pbrook
2061 707e011b pbrook
The M5208EVB emulation includes the following devices:
2062 707e011b pbrook
2063 707e011b pbrook
@itemize @minus
2064 5fafdf24 ths
@item
2065 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2066 707e011b pbrook
@item
2067 707e011b pbrook
Three Two on-chip UARTs.
2068 707e011b pbrook
@item
2069 707e011b pbrook
Fast Ethernet Controller (FEC)
2070 707e011b pbrook
@end itemize
2071 707e011b pbrook
2072 707e011b pbrook
The AN5206 emulation includes the following devices:
2073 209a4e69 pbrook
2074 209a4e69 pbrook
@itemize @minus
2075 5fafdf24 ths
@item
2076 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2077 209a4e69 pbrook
@item
2078 209a4e69 pbrook
Two on-chip UARTs.
2079 209a4e69 pbrook
@end itemize
2080 209a4e69 pbrook
2081 d2c639d6 blueswir1
@c man begin OPTIONS
2082 d2c639d6 blueswir1
2083 7544a042 Stefan Weil
The following options are specific to the ColdFire emulation:
2084 d2c639d6 blueswir1
2085 d2c639d6 blueswir1
@table @option
2086 d2c639d6 blueswir1
2087 d2c639d6 blueswir1
@item -semihosting
2088 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2089 d2c639d6 blueswir1
2090 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2091 d2c639d6 blueswir1
2092 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2093 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2094 d2c639d6 blueswir1
2095 d2c639d6 blueswir1
@end table
2096 d2c639d6 blueswir1
2097 7544a042 Stefan Weil
@node Cris System emulator
2098 7544a042 Stefan Weil
@section Cris System emulator
2099 7544a042 Stefan Weil
@cindex system emulation (Cris)
2100 7544a042 Stefan Weil
2101 7544a042 Stefan Weil
TODO
2102 7544a042 Stefan Weil
2103 7544a042 Stefan Weil
@node Microblaze System emulator
2104 7544a042 Stefan Weil
@section Microblaze System emulator
2105 7544a042 Stefan Weil
@cindex system emulation (Microblaze)
2106 7544a042 Stefan Weil
2107 7544a042 Stefan Weil
TODO
2108 7544a042 Stefan Weil
2109 7544a042 Stefan Weil
@node SH4 System emulator
2110 7544a042 Stefan Weil
@section SH4 System emulator
2111 7544a042 Stefan Weil
@cindex system emulation (SH4)
2112 7544a042 Stefan Weil
2113 7544a042 Stefan Weil
TODO
2114 7544a042 Stefan Weil
2115 5fafdf24 ths
@node QEMU User space emulator
2116 5fafdf24 ths
@chapter QEMU User space emulator
2117 83195237 bellard
2118 83195237 bellard
@menu
2119 83195237 bellard
* Supported Operating Systems ::
2120 83195237 bellard
* Linux User space emulator::
2121 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2122 84778508 blueswir1
* BSD User space emulator ::
2123 83195237 bellard
@end menu
2124 83195237 bellard
2125 83195237 bellard
@node Supported Operating Systems
2126 83195237 bellard
@section Supported Operating Systems
2127 83195237 bellard
2128 83195237 bellard
The following OS are supported in user space emulation:
2129 83195237 bellard
2130 83195237 bellard
@itemize @minus
2131 83195237 bellard
@item
2132 4be456f1 ths
Linux (referred as qemu-linux-user)
2133 83195237 bellard
@item
2134 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2135 84778508 blueswir1
@item
2136 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2137 83195237 bellard
@end itemize
2138 83195237 bellard
2139 83195237 bellard
@node Linux User space emulator
2140 83195237 bellard
@section Linux User space emulator
2141 386405f7 bellard
2142 debc7065 bellard
@menu
2143 debc7065 bellard
* Quick Start::
2144 debc7065 bellard
* Wine launch::
2145 debc7065 bellard
* Command line options::
2146 79737e4a pbrook
* Other binaries::
2147 debc7065 bellard
@end menu
2148 debc7065 bellard
2149 debc7065 bellard
@node Quick Start
2150 83195237 bellard
@subsection Quick Start
2151 df0f11a0 bellard
2152 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2153 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2154 386405f7 bellard
2155 1f673135 bellard
@itemize
2156 386405f7 bellard
2157 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2158 1f673135 bellard
libraries:
2159 386405f7 bellard
2160 5fafdf24 ths
@example
2161 1f673135 bellard
qemu-i386 -L / /bin/ls
2162 1f673135 bellard
@end example
2163 386405f7 bellard
2164 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2165 1f673135 bellard
@file{/} prefix.
2166 386405f7 bellard
2167 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2168 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2169 386405f7 bellard
2170 5fafdf24 ths
@example
2171 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2172 1f673135 bellard
@end example
2173 386405f7 bellard
2174 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2175 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2176 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2177 df0f11a0 bellard
2178 1f673135 bellard
@example
2179 5fafdf24 ths
unset LD_LIBRARY_PATH
2180 1f673135 bellard
@end example
2181 1eb87257 bellard
2182 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2183 1eb87257 bellard
2184 1f673135 bellard
@example
2185 1f673135 bellard
qemu-i386 tests/i386/ls
2186 1f673135 bellard
@end example
2187 4c3b5a48 Blue Swirl
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2188 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2189 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2190 1f673135 bellard
Linux kernel.
2191 1eb87257 bellard
2192 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2193 1f673135 bellard
@example
2194 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2195 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2196 1f673135 bellard
@end example
2197 1eb20527 bellard
2198 1f673135 bellard
@end itemize
2199 1eb20527 bellard
2200 debc7065 bellard
@node Wine launch
2201 83195237 bellard
@subsection Wine launch
2202 1eb20527 bellard
2203 1f673135 bellard
@itemize
2204 386405f7 bellard
2205 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2206 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2207 1f673135 bellard
able to do:
2208 386405f7 bellard
2209 1f673135 bellard
@example
2210 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2211 1f673135 bellard
@end example
2212 386405f7 bellard
2213 1f673135 bellard
@item Download the binary x86 Wine install
2214 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2215 386405f7 bellard
2216 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2217 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2218 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2219 386405f7 bellard
2220 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2221 386405f7 bellard
2222 1f673135 bellard
@example
2223 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2224 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2225 1f673135 bellard
@end example
2226 386405f7 bellard
2227 1f673135 bellard
@end itemize
2228 fd429f2f bellard
2229 debc7065 bellard
@node Command line options
2230 83195237 bellard
@subsection Command line options
2231 1eb20527 bellard
2232 1f673135 bellard
@example
2233 68a1c816 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2234 1f673135 bellard
@end example
2235 1eb20527 bellard
2236 1f673135 bellard
@table @option
2237 1f673135 bellard
@item -h
2238 1f673135 bellard
Print the help
2239 3b46e624 ths
@item -L path
2240 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2241 1f673135 bellard
@item -s size
2242 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2243 34a3d239 blueswir1
@item -cpu model
2244 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2245 f66724c9 Stefan Weil
@item -ignore-environment
2246 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2247 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2248 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2249 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2250 f66724c9 Stefan Weil
@item -U @var{var}
2251 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2252 379f6698 Paul Brook
@item -B offset
2253 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2254 1f5c3f8c Stefan Weil
the address region required by guest applications is reserved on the host.
2255 1f5c3f8c Stefan Weil
This option is currently only supported on some hosts.
2256 68a1c816 Paul Brook
@item -R size
2257 68a1c816 Paul Brook
Pre-allocate a guest virtual address space of the given size (in bytes).
2258 0d6753e5 Stefan Weil
"G", "M", and "k" suffixes may be used when specifying the size.
2259 386405f7 bellard
@end table
2260 386405f7 bellard
2261 1f673135 bellard
Debug options:
2262 386405f7 bellard
2263 1f673135 bellard
@table @option
2264 1f673135 bellard
@item -d
2265 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2266 1f673135 bellard
@item -p pagesize
2267 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2268 34a3d239 blueswir1
@item -g port
2269 34a3d239 blueswir1
Wait gdb connection to port
2270 1b530a6d aurel32
@item -singlestep
2271 1b530a6d aurel32
Run the emulation in single step mode.
2272 1f673135 bellard
@end table
2273 386405f7 bellard
2274 b01bcae6 balrog
Environment variables:
2275 b01bcae6 balrog
2276 b01bcae6 balrog
@table @env
2277 b01bcae6 balrog
@item QEMU_STRACE
2278 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2279 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2280 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2281 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2282 b01bcae6 balrog
format are printed with information for six arguments.  Many
2283 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2284 5cfdf930 ths
@end table
2285 b01bcae6 balrog
2286 79737e4a pbrook
@node Other binaries
2287 83195237 bellard
@subsection Other binaries
2288 79737e4a pbrook
2289 7544a042 Stefan Weil
@cindex user mode (Alpha)
2290 7544a042 Stefan Weil
@command{qemu-alpha} TODO.
2291 7544a042 Stefan Weil
2292 7544a042 Stefan Weil
@cindex user mode (ARM)
2293 7544a042 Stefan Weil
@command{qemu-armeb} TODO.
2294 7544a042 Stefan Weil
2295 7544a042 Stefan Weil
@cindex user mode (ARM)
2296 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2297 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2298 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2299 79737e4a pbrook
2300 7544a042 Stefan Weil
@cindex user mode (ColdFire)
2301 7544a042 Stefan Weil
@cindex user mode (M68K)
2302 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2303 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2304 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2305 e6e5906b pbrook
2306 79737e4a pbrook
The binary format is detected automatically.
2307 79737e4a pbrook
2308 7544a042 Stefan Weil
@cindex user mode (Cris)
2309 7544a042 Stefan Weil
@command{qemu-cris} TODO.
2310 7544a042 Stefan Weil
2311 7544a042 Stefan Weil
@cindex user mode (i386)
2312 7544a042 Stefan Weil
@command{qemu-i386} TODO.
2313 7544a042 Stefan Weil
@command{qemu-x86_64} TODO.
2314 7544a042 Stefan Weil
2315 7544a042 Stefan Weil
@cindex user mode (Microblaze)
2316 7544a042 Stefan Weil
@command{qemu-microblaze} TODO.
2317 7544a042 Stefan Weil
2318 7544a042 Stefan Weil
@cindex user mode (MIPS)
2319 7544a042 Stefan Weil
@command{qemu-mips} TODO.
2320 7544a042 Stefan Weil
@command{qemu-mipsel} TODO.
2321 7544a042 Stefan Weil
2322 7544a042 Stefan Weil
@cindex user mode (PowerPC)
2323 7544a042 Stefan Weil
@command{qemu-ppc64abi32} TODO.
2324 7544a042 Stefan Weil
@command{qemu-ppc64} TODO.
2325 7544a042 Stefan Weil
@command{qemu-ppc} TODO.
2326 7544a042 Stefan Weil
2327 7544a042 Stefan Weil
@cindex user mode (SH4)
2328 7544a042 Stefan Weil
@command{qemu-sh4eb} TODO.
2329 7544a042 Stefan Weil
@command{qemu-sh4} TODO.
2330 7544a042 Stefan Weil
2331 7544a042 Stefan Weil
@cindex user mode (SPARC)
2332 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2333 34a3d239 blueswir1
2334 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2335 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2336 a785e42e blueswir1
2337 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2338 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2339 a785e42e blueswir1
2340 83195237 bellard
@node Mac OS X/Darwin User space emulator
2341 83195237 bellard
@section Mac OS X/Darwin User space emulator
2342 83195237 bellard
2343 83195237 bellard
@menu
2344 83195237 bellard
* Mac OS X/Darwin Status::
2345 83195237 bellard
* Mac OS X/Darwin Quick Start::
2346 83195237 bellard
* Mac OS X/Darwin Command line options::
2347 83195237 bellard
@end menu
2348 83195237 bellard
2349 83195237 bellard
@node Mac OS X/Darwin Status
2350 83195237 bellard
@subsection Mac OS X/Darwin Status
2351 83195237 bellard
2352 83195237 bellard
@itemize @minus
2353 83195237 bellard
@item
2354 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2355 83195237 bellard
@item
2356 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2357 83195237 bellard
@item
2358 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2359 83195237 bellard
@item
2360 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2361 83195237 bellard
@end itemize
2362 83195237 bellard
2363 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2364 83195237 bellard
2365 83195237 bellard
@node Mac OS X/Darwin Quick Start
2366 83195237 bellard
@subsection Quick Start
2367 83195237 bellard
2368 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2369 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2370 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2371 83195237 bellard
CD or compile them by hand.
2372 83195237 bellard
2373 83195237 bellard
@itemize
2374 83195237 bellard
2375 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2376 83195237 bellard
libraries:
2377 83195237 bellard
2378 5fafdf24 ths
@example
2379 dbcf5e82 ths
qemu-i386 /bin/ls
2380 83195237 bellard
@end example
2381 83195237 bellard
2382 83195237 bellard
or to run the ppc version of the executable:
2383 83195237 bellard
2384 5fafdf24 ths
@example
2385 dbcf5e82 ths
qemu-ppc /bin/ls
2386 83195237 bellard
@end example
2387 83195237 bellard
2388 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2389 83195237 bellard
are installed:
2390 83195237 bellard
2391 5fafdf24 ths
@example
2392 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2393 83195237 bellard
@end example
2394 83195237 bellard
2395 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2396 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2397 83195237 bellard
2398 83195237 bellard
@end itemize
2399 83195237 bellard
2400 83195237 bellard
@node Mac OS X/Darwin Command line options
2401 83195237 bellard
@subsection Command line options
2402 83195237 bellard
2403 83195237 bellard
@example
2404 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2405 83195237 bellard
@end example
2406 83195237 bellard
2407 83195237 bellard
@table @option
2408 83195237 bellard
@item -h
2409 83195237 bellard
Print the help
2410 3b46e624 ths
@item -L path
2411 83195237 bellard
Set the library root path (default=/)
2412 83195237 bellard
@item -s size
2413 83195237 bellard
Set the stack size in bytes (default=524288)
2414 83195237 bellard
@end table
2415 83195237 bellard
2416 83195237 bellard
Debug options:
2417 83195237 bellard
2418 83195237 bellard
@table @option
2419 83195237 bellard
@item -d
2420 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2421 83195237 bellard
@item -p pagesize
2422 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2423 1b530a6d aurel32
@item -singlestep
2424 1b530a6d aurel32
Run the emulation in single step mode.
2425 83195237 bellard
@end table
2426 83195237 bellard
2427 84778508 blueswir1
@node BSD User space emulator
2428 84778508 blueswir1
@section BSD User space emulator
2429 84778508 blueswir1
2430 84778508 blueswir1
@menu
2431 84778508 blueswir1
* BSD Status::
2432 84778508 blueswir1
* BSD Quick Start::
2433 84778508 blueswir1
* BSD Command line options::
2434 84778508 blueswir1
@end menu
2435 84778508 blueswir1
2436 84778508 blueswir1
@node BSD Status
2437 84778508 blueswir1
@subsection BSD Status
2438 84778508 blueswir1
2439 84778508 blueswir1
@itemize @minus
2440 84778508 blueswir1
@item
2441 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2442 84778508 blueswir1
@end itemize
2443 84778508 blueswir1
2444 84778508 blueswir1
@node BSD Quick Start
2445 84778508 blueswir1
@subsection Quick Start
2446 84778508 blueswir1
2447 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2448 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2449 84778508 blueswir1
2450 84778508 blueswir1
@itemize
2451 84778508 blueswir1
2452 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2453 84778508 blueswir1
libraries:
2454 84778508 blueswir1
2455 84778508 blueswir1
@example
2456 84778508 blueswir1
qemu-sparc64 /bin/ls
2457 84778508 blueswir1
@end example
2458 84778508 blueswir1
2459 84778508 blueswir1
@end itemize
2460 84778508 blueswir1
2461 84778508 blueswir1
@node BSD Command line options
2462 84778508 blueswir1
@subsection Command line options
2463 84778508 blueswir1
2464 84778508 blueswir1
@example
2465 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2466 84778508 blueswir1
@end example
2467 84778508 blueswir1
2468 84778508 blueswir1
@table @option
2469 84778508 blueswir1
@item -h
2470 84778508 blueswir1
Print the help
2471 84778508 blueswir1
@item -L path
2472 84778508 blueswir1
Set the library root path (default=/)
2473 84778508 blueswir1
@item -s size
2474 84778508 blueswir1
Set the stack size in bytes (default=524288)
2475 f66724c9 Stefan Weil
@item -ignore-environment
2476 f66724c9 Stefan Weil
Start with an empty environment. Without this option,
2477 40c5c6cd Stefan Weil
the initial environment is a copy of the caller's environment.
2478 f66724c9 Stefan Weil
@item -E @var{var}=@var{value}
2479 f66724c9 Stefan Weil
Set environment @var{var} to @var{value}.
2480 f66724c9 Stefan Weil
@item -U @var{var}
2481 f66724c9 Stefan Weil
Remove @var{var} from the environment.
2482 84778508 blueswir1
@item -bsd type
2483 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2484 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2485 84778508 blueswir1
@end table
2486 84778508 blueswir1
2487 84778508 blueswir1
Debug options:
2488 84778508 blueswir1
2489 84778508 blueswir1
@table @option
2490 84778508 blueswir1
@item -d
2491 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2492 84778508 blueswir1
@item -p pagesize
2493 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2494 1b530a6d aurel32
@item -singlestep
2495 1b530a6d aurel32
Run the emulation in single step mode.
2496 84778508 blueswir1
@end table
2497 84778508 blueswir1
2498 15a34c63 bellard
@node compilation
2499 15a34c63 bellard
@chapter Compilation from the sources
2500 15a34c63 bellard
2501 debc7065 bellard
@menu
2502 debc7065 bellard
* Linux/Unix::
2503 debc7065 bellard
* Windows::
2504 debc7065 bellard
* Cross compilation for Windows with Linux::
2505 debc7065 bellard
* Mac OS X::
2506 47eacb4f Stefan Weil
* Make targets::
2507 debc7065 bellard
@end menu
2508 debc7065 bellard
2509 debc7065 bellard
@node Linux/Unix
2510 7c3fc84d bellard
@section Linux/Unix
2511 7c3fc84d bellard
2512 7c3fc84d bellard
@subsection Compilation
2513 7c3fc84d bellard
2514 7c3fc84d bellard
First you must decompress the sources:
2515 7c3fc84d bellard
@example
2516 7c3fc84d bellard
cd /tmp
2517 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2518 7c3fc84d bellard
cd qemu-x.y.z
2519 7c3fc84d bellard
@end example
2520 7c3fc84d bellard
2521 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2522 7c3fc84d bellard
@example
2523 7c3fc84d bellard
./configure
2524 7c3fc84d bellard
make
2525 7c3fc84d bellard
@end example
2526 7c3fc84d bellard
2527 7c3fc84d bellard
Then type as root user:
2528 7c3fc84d bellard
@example
2529 7c3fc84d bellard
make install
2530 7c3fc84d bellard
@end example
2531 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2532 7c3fc84d bellard
2533 debc7065 bellard
@node Windows
2534 15a34c63 bellard
@section Windows
2535 15a34c63 bellard
2536 15a34c63 bellard
@itemize
2537 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2538 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2539 15a34c63 bellard
instructions in the download section and the FAQ.
2540 15a34c63 bellard
2541 5fafdf24 ths
@item Download
2542 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2543 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2544 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2545 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2546 15a34c63 bellard
correct SDL directory when invoked.
2547 15a34c63 bellard
2548 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2549 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2550 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2551 d0a96f3d Scott Tsai
2552 15a34c63 bellard
@item Extract the current version of QEMU.
2553 5fafdf24 ths
2554 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2555 15a34c63 bellard
2556 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2557 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2558 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2559 15a34c63 bellard
2560 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2561 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2562 15a34c63 bellard
@file{Program Files/Qemu}.
2563 15a34c63 bellard
2564 15a34c63 bellard
@end itemize
2565 15a34c63 bellard
2566 debc7065 bellard
@node Cross compilation for Windows with Linux
2567 15a34c63 bellard
@section Cross compilation for Windows with Linux
2568 15a34c63 bellard
2569 15a34c63 bellard
@itemize
2570 15a34c63 bellard
@item
2571 15a34c63 bellard
Install the MinGW cross compilation tools available at
2572 15a34c63 bellard
@url{http://www.mingw.org/}.
2573 15a34c63 bellard
2574 d0a96f3d Scott Tsai
@item Download
2575 d0a96f3d Scott Tsai
the MinGW development library of SDL 1.2.x
2576 d0a96f3d Scott Tsai
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2577 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2578 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2579 d0a96f3d Scott Tsai
correct SDL directory when invoked.  Set up the @code{PATH} environment
2580 d0a96f3d Scott Tsai
variable so that @file{sdl-config} can be launched by
2581 15a34c63 bellard
the QEMU configuration script.
2582 15a34c63 bellard
2583 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2584 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2585 40c5c6cd Stefan Weil
MinGW's default header and linker search paths.
2586 d0a96f3d Scott Tsai
2587 5fafdf24 ths
@item
2588 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2589 15a34c63 bellard
@example
2590 d0a96f3d Scott Tsai
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2591 d0a96f3d Scott Tsai
@end example
2592 d0a96f3d Scott Tsai
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2593 d0a96f3d Scott Tsai
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2594 40c5c6cd Stefan Weil
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2595 d0a96f3d Scott Tsai
use --cross-prefix to specify the name of the cross compiler.
2596 d0a96f3d Scott Tsai
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2597 d0a96f3d Scott Tsai
2598 d0a96f3d Scott Tsai
Under Fedora Linux, you can run:
2599 d0a96f3d Scott Tsai
@example
2600 d0a96f3d Scott Tsai
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2601 15a34c63 bellard
@end example
2602 d0a96f3d Scott Tsai
to get a suitable cross compilation environment.
2603 15a34c63 bellard
2604 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2605 d0a96f3d Scott Tsai
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2606 5fafdf24 ths
installation directory.
2607 15a34c63 bellard
2608 15a34c63 bellard
@end itemize
2609 15a34c63 bellard
2610 d0a96f3d Scott Tsai
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2611 15a34c63 bellard
2612 debc7065 bellard
@node Mac OS X
2613 15a34c63 bellard
@section Mac OS X
2614 15a34c63 bellard
2615 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2616 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2617 15a34c63 bellard
information.
2618 15a34c63 bellard
2619 47eacb4f Stefan Weil
@node Make targets
2620 47eacb4f Stefan Weil
@section Make targets
2621 47eacb4f Stefan Weil
2622 47eacb4f Stefan Weil
@table @code
2623 47eacb4f Stefan Weil
2624 47eacb4f Stefan Weil
@item make
2625 47eacb4f Stefan Weil
@item make all
2626 47eacb4f Stefan Weil
Make everything which is typically needed.
2627 47eacb4f Stefan Weil
2628 47eacb4f Stefan Weil
@item install
2629 47eacb4f Stefan Weil
TODO
2630 47eacb4f Stefan Weil
2631 47eacb4f Stefan Weil
@item install-doc
2632 47eacb4f Stefan Weil
TODO
2633 47eacb4f Stefan Weil
2634 47eacb4f Stefan Weil
@item make clean
2635 47eacb4f Stefan Weil
Remove most files which were built during make.
2636 47eacb4f Stefan Weil
2637 47eacb4f Stefan Weil
@item make distclean
2638 47eacb4f Stefan Weil
Remove everything which was built during make.
2639 47eacb4f Stefan Weil
2640 47eacb4f Stefan Weil
@item make dvi
2641 47eacb4f Stefan Weil
@item make html
2642 47eacb4f Stefan Weil
@item make info
2643 47eacb4f Stefan Weil
@item make pdf
2644 47eacb4f Stefan Weil
Create documentation in dvi, html, info or pdf format.
2645 47eacb4f Stefan Weil
2646 47eacb4f Stefan Weil
@item make cscope
2647 47eacb4f Stefan Weil
TODO
2648 47eacb4f Stefan Weil
2649 47eacb4f Stefan Weil
@item make defconfig
2650 47eacb4f Stefan Weil
(Re-)create some build configuration files.
2651 47eacb4f Stefan Weil
User made changes will be overwritten.
2652 47eacb4f Stefan Weil
2653 47eacb4f Stefan Weil
@item tar
2654 47eacb4f Stefan Weil
@item tarbin
2655 47eacb4f Stefan Weil
TODO
2656 47eacb4f Stefan Weil
2657 47eacb4f Stefan Weil
@end table
2658 47eacb4f Stefan Weil
2659 7544a042 Stefan Weil
@node License
2660 7544a042 Stefan Weil
@appendix License
2661 7544a042 Stefan Weil
2662 7544a042 Stefan Weil
QEMU is a trademark of Fabrice Bellard.
2663 7544a042 Stefan Weil
2664 7544a042 Stefan Weil
QEMU is released under the GNU General Public License (TODO: add link).
2665 7544a042 Stefan Weil
Parts of QEMU have specific licenses, see file LICENSE.
2666 7544a042 Stefan Weil
2667 7544a042 Stefan Weil
TODO (refer to file LICENSE, include it, include the GPL?)
2668 7544a042 Stefan Weil
2669 debc7065 bellard
@node Index
2670 7544a042 Stefan Weil
@appendix Index
2671 7544a042 Stefan Weil
@menu
2672 7544a042 Stefan Weil
* Concept Index::
2673 7544a042 Stefan Weil
* Function Index::
2674 7544a042 Stefan Weil
* Keystroke Index::
2675 7544a042 Stefan Weil
* Program Index::
2676 7544a042 Stefan Weil
* Data Type Index::
2677 7544a042 Stefan Weil
* Variable Index::
2678 7544a042 Stefan Weil
@end menu
2679 7544a042 Stefan Weil
2680 7544a042 Stefan Weil
@node Concept Index
2681 7544a042 Stefan Weil
@section Concept Index
2682 7544a042 Stefan Weil
This is the main index. Should we combine all keywords in one index? TODO
2683 debc7065 bellard
@printindex cp
2684 debc7065 bellard
2685 7544a042 Stefan Weil
@node Function Index
2686 7544a042 Stefan Weil
@section Function Index
2687 7544a042 Stefan Weil
This index could be used for command line options and monitor functions.
2688 7544a042 Stefan Weil
@printindex fn
2689 7544a042 Stefan Weil
2690 7544a042 Stefan Weil
@node Keystroke Index
2691 7544a042 Stefan Weil
@section Keystroke Index
2692 7544a042 Stefan Weil
2693 7544a042 Stefan Weil
This is a list of all keystrokes which have a special function
2694 7544a042 Stefan Weil
in system emulation.
2695 7544a042 Stefan Weil
2696 7544a042 Stefan Weil
@printindex ky
2697 7544a042 Stefan Weil
2698 7544a042 Stefan Weil
@node Program Index
2699 7544a042 Stefan Weil
@section Program Index
2700 7544a042 Stefan Weil
@printindex pg
2701 7544a042 Stefan Weil
2702 7544a042 Stefan Weil
@node Data Type Index
2703 7544a042 Stefan Weil
@section Data Type Index
2704 7544a042 Stefan Weil
2705 7544a042 Stefan Weil
This index could be used for qdev device names and options.
2706 7544a042 Stefan Weil
2707 7544a042 Stefan Weil
@printindex tp
2708 7544a042 Stefan Weil
2709 7544a042 Stefan Weil
@node Variable Index
2710 7544a042 Stefan Weil
@section Variable Index
2711 7544a042 Stefan Weil
@printindex vr
2712 7544a042 Stefan Weil
2713 debc7065 bellard
@bye