Statistics
| Branch: | Revision:

root / target-arm / cpu.h @ 3cc1d208

History | View | Annotate | Download (26.4 kB)

1
/*
2
 * ARM virtual CPU header
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ARM_H
20
#define CPU_ARM_H
21

    
22
#define TARGET_LONG_BITS 32
23

    
24
#define ELF_MACHINE        EM_ARM
25

    
26
#define CPUArchState struct CPUARMState
27

    
28
#include "config.h"
29
#include "qemu-common.h"
30
#include "exec/cpu-defs.h"
31

    
32
#include "fpu/softfloat.h"
33

    
34
#define TARGET_HAS_ICE 1
35

    
36
#define EXCP_UDEF            1   /* undefined instruction */
37
#define EXCP_SWI             2   /* software interrupt */
38
#define EXCP_PREFETCH_ABORT  3
39
#define EXCP_DATA_ABORT      4
40
#define EXCP_IRQ             5
41
#define EXCP_FIQ             6
42
#define EXCP_BKPT            7
43
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45
#define EXCP_STREX          10
46

    
47
#define ARMV7M_EXCP_RESET   1
48
#define ARMV7M_EXCP_NMI     2
49
#define ARMV7M_EXCP_HARD    3
50
#define ARMV7M_EXCP_MEM     4
51
#define ARMV7M_EXCP_BUS     5
52
#define ARMV7M_EXCP_USAGE   6
53
#define ARMV7M_EXCP_SVC     11
54
#define ARMV7M_EXCP_DEBUG   12
55
#define ARMV7M_EXCP_PENDSV  14
56
#define ARMV7M_EXCP_SYSTICK 15
57

    
58
/* ARM-specific interrupt pending bits.  */
59
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
60

    
61

    
62
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63
                            int srcreg, int operand, uint32_t value);
64
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65
                               int dstreg, int operand);
66

    
67
struct arm_boot_info;
68

    
69
#define NB_MMU_MODES 2
70

    
71
/* We currently assume float and double are IEEE single and double
72
   precision respectively.
73
   Doing runtime conversions is tricky because VFP registers may contain
74
   integer values (eg. as the result of a FTOSI instruction).
75
   s<2n> maps to the least significant half of d<n>
76
   s<2n+1> maps to the most significant half of d<n>
77
 */
78

    
79
typedef struct CPUARMState {
80
    /* Regs for current mode.  */
81
    uint32_t regs[16];
82
    /* Frequently accessed CPSR bits are stored separately for efficiency.
83
       This contains all the other bits.  Use cpsr_{read,write} to access
84
       the whole CPSR.  */
85
    uint32_t uncached_cpsr;
86
    uint32_t spsr;
87

    
88
    /* Banked registers.  */
89
    uint32_t banked_spsr[6];
90
    uint32_t banked_r13[6];
91
    uint32_t banked_r14[6];
92

    
93
    /* These hold r8-r12.  */
94
    uint32_t usr_regs[5];
95
    uint32_t fiq_regs[5];
96

    
97
    /* cpsr flag cache for faster execution */
98
    uint32_t CF; /* 0 or 1 */
99
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
100
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
101
    uint32_t ZF; /* Z set if zero.  */
102
    uint32_t QF; /* 0 or 1 */
103
    uint32_t GE; /* cpsr[19:16] */
104
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
106

    
107
    /* System control coprocessor (cp15) */
108
    struct {
109
        uint32_t c0_cpuid;
110
        uint32_t c0_cssel; /* Cache size selection.  */
111
        uint32_t c1_sys; /* System control register.  */
112
        uint32_t c1_coproc; /* Coprocessor access register.  */
113
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
114
        uint32_t c1_scr; /* secure config register.  */
115
        uint32_t c2_base0; /* MMU translation table base 0.  */
116
        uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
117
        uint32_t c2_base1; /* MMU translation table base 0.  */
118
        uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
119
        uint32_t c2_control; /* MMU translation table base control.  */
120
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
121
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
122
        uint32_t c2_data; /* MPU data cachable bits.  */
123
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
124
        uint32_t c3; /* MMU domain access control register
125
                        MPU write buffer control.  */
126
        uint32_t c5_insn; /* Fault status registers.  */
127
        uint32_t c5_data;
128
        uint32_t c6_region[8]; /* MPU base/size registers.  */
129
        uint32_t c6_insn; /* Fault address registers.  */
130
        uint32_t c6_data;
131
        uint32_t c7_par;  /* Translation result. */
132
        uint32_t c7_par_hi;  /* Translation result, high 32 bits */
133
        uint32_t c9_insn; /* Cache lockdown registers.  */
134
        uint32_t c9_data;
135
        uint32_t c9_pmcr; /* performance monitor control register */
136
        uint32_t c9_pmcnten; /* perf monitor counter enables */
137
        uint32_t c9_pmovsr; /* perf monitor overflow status */
138
        uint32_t c9_pmxevtyper; /* perf monitor event type */
139
        uint32_t c9_pmuserenr; /* perf monitor user enable */
140
        uint32_t c9_pminten; /* perf monitor interrupt enables */
141
        uint32_t c13_fcse; /* FCSE PID.  */
142
        uint32_t c13_context; /* Context ID.  */
143
        uint32_t c13_tls1; /* User RW Thread register.  */
144
        uint32_t c13_tls2; /* User RO Thread register.  */
145
        uint32_t c13_tls3; /* Privileged Thread register.  */
146
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
147
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
148
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
149
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
150
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
151
        uint32_t c15_config_base_address; /* SCU base address.  */
152
        uint32_t c15_diagnostic; /* diagnostic register */
153
        uint32_t c15_power_diagnostic;
154
        uint32_t c15_power_control; /* power control */
155
    } cp15;
156

    
157
    struct {
158
        uint32_t other_sp;
159
        uint32_t vecbase;
160
        uint32_t basepri;
161
        uint32_t control;
162
        int current_sp;
163
        int exception;
164
        int pending_exception;
165
    } v7m;
166

    
167
    /* Thumb-2 EE state.  */
168
    uint32_t teecr;
169
    uint32_t teehbr;
170

    
171
    /* VFP coprocessor state.  */
172
    struct {
173
        float64 regs[32];
174

    
175
        uint32_t xregs[16];
176
        /* We store these fpcsr fields separately for convenience.  */
177
        int vec_len;
178
        int vec_stride;
179

    
180
        /* scratch space when Tn are not sufficient.  */
181
        uint32_t scratch[8];
182

    
183
        /* fp_status is the "normal" fp status. standard_fp_status retains
184
         * values corresponding to the ARM "Standard FPSCR Value", ie
185
         * default-NaN, flush-to-zero, round-to-nearest and is used by
186
         * any operations (generally Neon) which the architecture defines
187
         * as controlled by the standard FPSCR value rather than the FPSCR.
188
         *
189
         * To avoid having to transfer exception bits around, we simply
190
         * say that the FPSCR cumulative exception flags are the logical
191
         * OR of the flags in the two fp statuses. This relies on the
192
         * only thing which needs to read the exception flags being
193
         * an explicit FPSCR read.
194
         */
195
        float_status fp_status;
196
        float_status standard_fp_status;
197
    } vfp;
198
    uint32_t exclusive_addr;
199
    uint32_t exclusive_val;
200
    uint32_t exclusive_high;
201
#if defined(CONFIG_USER_ONLY)
202
    uint32_t exclusive_test;
203
    uint32_t exclusive_info;
204
#endif
205

    
206
    /* iwMMXt coprocessor state.  */
207
    struct {
208
        uint64_t regs[16];
209
        uint64_t val;
210

    
211
        uint32_t cregs[16];
212
    } iwmmxt;
213

    
214
    /* For mixed endian mode.  */
215
    bool bswap_code;
216

    
217
#if defined(CONFIG_USER_ONLY)
218
    /* For usermode syscall translation.  */
219
    int eabi;
220
#endif
221

    
222
    CPU_COMMON
223

    
224
    /* These fields after the common ones so they are preserved on reset.  */
225

    
226
    /* Internal CPU feature flags.  */
227
    uint64_t features;
228

    
229
    void *nvic;
230
    const struct arm_boot_info *boot_info;
231
} CPUARMState;
232

    
233
#include "cpu-qom.h"
234

    
235
ARMCPU *cpu_arm_init(const char *cpu_model);
236
void arm_translate_init(void);
237
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
238
int cpu_arm_exec(CPUARMState *s);
239
int bank_number(int mode);
240
void switch_mode(CPUARMState *, int);
241
uint32_t do_arm_semihosting(CPUARMState *env);
242

    
243
/* you can call this signal handler from your SIGBUS and SIGSEGV
244
   signal handlers to inform the virtual CPU of exceptions. non zero
245
   is returned if the signal was handled by the virtual CPU.  */
246
int cpu_arm_signal_handler(int host_signum, void *pinfo,
247
                           void *puc);
248
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
249
                              int mmu_idx);
250
#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
251

    
252
static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
253
{
254
  env->cp15.c13_tls2 = newtls;
255
}
256

    
257
#define CPSR_M (0x1f)
258
#define CPSR_T (1 << 5)
259
#define CPSR_F (1 << 6)
260
#define CPSR_I (1 << 7)
261
#define CPSR_A (1 << 8)
262
#define CPSR_E (1 << 9)
263
#define CPSR_IT_2_7 (0xfc00)
264
#define CPSR_GE (0xf << 16)
265
#define CPSR_RESERVED (0xf << 20)
266
#define CPSR_J (1 << 24)
267
#define CPSR_IT_0_1 (3 << 25)
268
#define CPSR_Q (1 << 27)
269
#define CPSR_V (1 << 28)
270
#define CPSR_C (1 << 29)
271
#define CPSR_Z (1 << 30)
272
#define CPSR_N (1 << 31)
273
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
274

    
275
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
276
#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
277
/* Bits writable in user mode.  */
278
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
279
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
280
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
281

    
282
/* Return the current CPSR value.  */
283
uint32_t cpsr_read(CPUARMState *env);
284
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
285
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
286

    
287
/* Return the current xPSR value.  */
288
static inline uint32_t xpsr_read(CPUARMState *env)
289
{
290
    int ZF;
291
    ZF = (env->ZF == 0);
292
    return (env->NF & 0x80000000) | (ZF << 30)
293
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
294
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
295
        | ((env->condexec_bits & 0xfc) << 8)
296
        | env->v7m.exception;
297
}
298

    
299
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
300
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
301
{
302
    if (mask & CPSR_NZCV) {
303
        env->ZF = (~val) & CPSR_Z;
304
        env->NF = val;
305
        env->CF = (val >> 29) & 1;
306
        env->VF = (val << 3) & 0x80000000;
307
    }
308
    if (mask & CPSR_Q)
309
        env->QF = ((val & CPSR_Q) != 0);
310
    if (mask & (1 << 24))
311
        env->thumb = ((val & (1 << 24)) != 0);
312
    if (mask & CPSR_IT_0_1) {
313
        env->condexec_bits &= ~3;
314
        env->condexec_bits |= (val >> 25) & 3;
315
    }
316
    if (mask & CPSR_IT_2_7) {
317
        env->condexec_bits &= 3;
318
        env->condexec_bits |= (val >> 8) & 0xfc;
319
    }
320
    if (mask & 0x1ff) {
321
        env->v7m.exception = val & 0x1ff;
322
    }
323
}
324

    
325
/* Return the current FPSCR value.  */
326
uint32_t vfp_get_fpscr(CPUARMState *env);
327
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
328

    
329
enum arm_cpu_mode {
330
  ARM_CPU_MODE_USR = 0x10,
331
  ARM_CPU_MODE_FIQ = 0x11,
332
  ARM_CPU_MODE_IRQ = 0x12,
333
  ARM_CPU_MODE_SVC = 0x13,
334
  ARM_CPU_MODE_ABT = 0x17,
335
  ARM_CPU_MODE_UND = 0x1b,
336
  ARM_CPU_MODE_SYS = 0x1f
337
};
338

    
339
/* VFP system registers.  */
340
#define ARM_VFP_FPSID   0
341
#define ARM_VFP_FPSCR   1
342
#define ARM_VFP_MVFR1   6
343
#define ARM_VFP_MVFR0   7
344
#define ARM_VFP_FPEXC   8
345
#define ARM_VFP_FPINST  9
346
#define ARM_VFP_FPINST2 10
347

    
348
/* iwMMXt coprocessor control registers.  */
349
#define ARM_IWMMXT_wCID                0
350
#define ARM_IWMMXT_wCon                1
351
#define ARM_IWMMXT_wCSSF        2
352
#define ARM_IWMMXT_wCASF        3
353
#define ARM_IWMMXT_wCGR0        8
354
#define ARM_IWMMXT_wCGR1        9
355
#define ARM_IWMMXT_wCGR2        10
356
#define ARM_IWMMXT_wCGR3        11
357

    
358
/* If adding a feature bit which corresponds to a Linux ELF
359
 * HWCAP bit, remember to update the feature-bit-to-hwcap
360
 * mapping in linux-user/elfload.c:get_elf_hwcap().
361
 */
362
enum arm_features {
363
    ARM_FEATURE_VFP,
364
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
365
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
366
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
367
    ARM_FEATURE_V6,
368
    ARM_FEATURE_V6K,
369
    ARM_FEATURE_V7,
370
    ARM_FEATURE_THUMB2,
371
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
372
    ARM_FEATURE_VFP3,
373
    ARM_FEATURE_VFP_FP16,
374
    ARM_FEATURE_NEON,
375
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
376
    ARM_FEATURE_M, /* Microcontroller profile.  */
377
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
378
    ARM_FEATURE_THUMB2EE,
379
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
380
    ARM_FEATURE_V4T,
381
    ARM_FEATURE_V5,
382
    ARM_FEATURE_STRONGARM,
383
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
384
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
385
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
386
    ARM_FEATURE_GENERIC_TIMER,
387
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
388
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
389
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
390
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
391
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
392
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
393
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
394
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
395
};
396

    
397
static inline int arm_feature(CPUARMState *env, int feature)
398
{
399
    return (env->features & (1ULL << feature)) != 0;
400
}
401

    
402
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
403

    
404
/* Interface between CPU and Interrupt controller.  */
405
void armv7m_nvic_set_pending(void *opaque, int irq);
406
int armv7m_nvic_acknowledge_irq(void *opaque);
407
void armv7m_nvic_complete_irq(void *opaque, int irq);
408

    
409
/* Interface for defining coprocessor registers.
410
 * Registers are defined in tables of arm_cp_reginfo structs
411
 * which are passed to define_arm_cp_regs().
412
 */
413

    
414
/* When looking up a coprocessor register we look for it
415
 * via an integer which encodes all of:
416
 *  coprocessor number
417
 *  Crn, Crm, opc1, opc2 fields
418
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
419
 *    or via MRRC/MCRR?)
420
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
421
 * (In this case crn and opc2 should be zero.)
422
 */
423
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
424
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
425
     ((crm) << 7) | ((opc1) << 3) | (opc2))
426

    
427
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
428
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
429
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
430
 * TCG can assume the value to be constant (ie load at translate time)
431
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
432
 * indicates that the TB should not be ended after a write to this register
433
 * (the default is that the TB ends after cp writes). OVERRIDE permits
434
 * a register definition to override a previous definition for the
435
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
436
 * old must have the OVERRIDE bit set.
437
 */
438
#define ARM_CP_SPECIAL 1
439
#define ARM_CP_CONST 2
440
#define ARM_CP_64BIT 4
441
#define ARM_CP_SUPPRESS_TB_END 8
442
#define ARM_CP_OVERRIDE 16
443
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
444
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
445
#define ARM_LAST_SPECIAL ARM_CP_WFI
446
/* Used only as a terminator for ARMCPRegInfo lists */
447
#define ARM_CP_SENTINEL 0xffff
448
/* Mask of only the flag bits in a type field */
449
#define ARM_CP_FLAG_MASK 0x1f
450

    
451
/* Return true if cptype is a valid type field. This is used to try to
452
 * catch errors where the sentinel has been accidentally left off the end
453
 * of a list of registers.
454
 */
455
static inline bool cptype_valid(int cptype)
456
{
457
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
458
        || ((cptype & ARM_CP_SPECIAL) &&
459
            (cptype <= ARM_LAST_SPECIAL));
460
}
461

    
462
/* Access rights:
463
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
464
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
465
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
466
 * (ie any of the privileged modes in Secure state, or Monitor mode).
467
 * If a register is accessible in one privilege level it's always accessible
468
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
469
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
470
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
471
 * terminology a little and call this PL3.
472
 *
473
 * If access permissions for a register are more complex than can be
474
 * described with these bits, then use a laxer set of restrictions, and
475
 * do the more restrictive/complex check inside a helper function.
476
 */
477
#define PL3_R 0x80
478
#define PL3_W 0x40
479
#define PL2_R (0x20 | PL3_R)
480
#define PL2_W (0x10 | PL3_W)
481
#define PL1_R (0x08 | PL2_R)
482
#define PL1_W (0x04 | PL2_W)
483
#define PL0_R (0x02 | PL1_R)
484
#define PL0_W (0x01 | PL1_W)
485

    
486
#define PL3_RW (PL3_R | PL3_W)
487
#define PL2_RW (PL2_R | PL2_W)
488
#define PL1_RW (PL1_R | PL1_W)
489
#define PL0_RW (PL0_R | PL0_W)
490

    
491
static inline int arm_current_pl(CPUARMState *env)
492
{
493
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
494
        return 0;
495
    }
496
    /* We don't currently implement the Virtualization or TrustZone
497
     * extensions, so PL2 and PL3 don't exist for us.
498
     */
499
    return 1;
500
}
501

    
502
typedef struct ARMCPRegInfo ARMCPRegInfo;
503

    
504
/* Access functions for coprocessor registers. These should return
505
 * 0 on success, or one of the EXCP_* constants if access should cause
506
 * an exception (in which case *value is not written).
507
 */
508
typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
509
                     uint64_t *value);
510
typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
511
                      uint64_t value);
512
/* Hook function for register reset */
513
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
514

    
515
#define CP_ANY 0xff
516

    
517
/* Definition of an ARM coprocessor register */
518
struct ARMCPRegInfo {
519
    /* Name of register (useful mainly for debugging, need not be unique) */
520
    const char *name;
521
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
522
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
523
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
524
     * will be decoded to this register. The register read and write
525
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
526
     * used by the program, so it is possible to register a wildcard and
527
     * then behave differently on read/write if necessary.
528
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
529
     * must both be zero.
530
     */
531
    uint8_t cp;
532
    uint8_t crn;
533
    uint8_t crm;
534
    uint8_t opc1;
535
    uint8_t opc2;
536
    /* Register type: ARM_CP_* bits/values */
537
    int type;
538
    /* Access rights: PL*_[RW] */
539
    int access;
540
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
541
     * this register was defined: can be used to hand data through to the
542
     * register read/write functions, since they are passed the ARMCPRegInfo*.
543
     */
544
    void *opaque;
545
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
546
     * fieldoffset is non-zero, the reset value of the register.
547
     */
548
    uint64_t resetvalue;
549
    /* Offset of the field in CPUARMState for this register. This is not
550
     * needed if either:
551
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
552
     *  2. both readfn and writefn are specified
553
     */
554
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
555
    /* Function for handling reads of this register. If NULL, then reads
556
     * will be done by loading from the offset into CPUARMState specified
557
     * by fieldoffset.
558
     */
559
    CPReadFn *readfn;
560
    /* Function for handling writes of this register. If NULL, then writes
561
     * will be done by writing to the offset into CPUARMState specified
562
     * by fieldoffset.
563
     */
564
    CPWriteFn *writefn;
565
    /* Function for resetting the register. If NULL, then reset will be done
566
     * by writing resetvalue to the field specified in fieldoffset. If
567
     * fieldoffset is 0 then no reset will be done.
568
     */
569
    CPResetFn *resetfn;
570
};
571

    
572
/* Macros which are lvalues for the field in CPUARMState for the
573
 * ARMCPRegInfo *ri.
574
 */
575
#define CPREG_FIELD32(env, ri) \
576
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
577
#define CPREG_FIELD64(env, ri) \
578
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
579

    
580
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
581

    
582
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
583
                                    const ARMCPRegInfo *regs, void *opaque);
584
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
585
                                       const ARMCPRegInfo *regs, void *opaque);
586
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
587
{
588
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
589
}
590
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
591
{
592
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
593
}
594
const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
595

    
596
/* CPWriteFn that can be used to implement writes-ignored behaviour */
597
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
598
                        uint64_t value);
599
/* CPReadFn that can be used for read-as-zero behaviour */
600
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
601

    
602
static inline bool cp_access_ok(CPUARMState *env,
603
                                const ARMCPRegInfo *ri, int isread)
604
{
605
    return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
606
}
607

    
608
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
609
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
610
   conventional cores (ie. Application or Realtime profile).  */
611

    
612
#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
613

    
614
#define ARM_CPUID_TI915T      0x54029152
615
#define ARM_CPUID_TI925T      0x54029252
616

    
617
#if defined(CONFIG_USER_ONLY)
618
#define TARGET_PAGE_BITS 12
619
#else
620
/* The ARM MMU allows 1k pages.  */
621
/* ??? Linux doesn't actually use these, and they're deprecated in recent
622
   architecture revisions.  Maybe a configure option to disable them.  */
623
#define TARGET_PAGE_BITS 10
624
#endif
625

    
626
#define TARGET_PHYS_ADDR_SPACE_BITS 40
627
#define TARGET_VIRT_ADDR_SPACE_BITS 32
628

    
629
static inline CPUARMState *cpu_init(const char *cpu_model)
630
{
631
    ARMCPU *cpu = cpu_arm_init(cpu_model);
632
    if (cpu) {
633
        return &cpu->env;
634
    }
635
    return NULL;
636
}
637

    
638
#define cpu_exec cpu_arm_exec
639
#define cpu_gen_code cpu_arm_gen_code
640
#define cpu_signal_handler cpu_arm_signal_handler
641
#define cpu_list arm_cpu_list
642

    
643
/* MMU modes definitions */
644
#define MMU_MODE0_SUFFIX _kernel
645
#define MMU_MODE1_SUFFIX _user
646
#define MMU_USER_IDX 1
647
static inline int cpu_mmu_index (CPUARMState *env)
648
{
649
    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
650
}
651

    
652
#if defined(CONFIG_USER_ONLY)
653
static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
654
{
655
    if (newsp)
656
        env->regs[13] = newsp;
657
    env->regs[0] = 0;
658
}
659
#endif
660

    
661
#include "exec/cpu-all.h"
662

    
663
/* Bit usage in the TB flags field: */
664
#define ARM_TBFLAG_THUMB_SHIFT      0
665
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
666
#define ARM_TBFLAG_VECLEN_SHIFT     1
667
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
668
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
669
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
670
#define ARM_TBFLAG_PRIV_SHIFT       6
671
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
672
#define ARM_TBFLAG_VFPEN_SHIFT      7
673
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
674
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
675
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
676
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
677
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
678
/* Bits 31..17 are currently unused. */
679

    
680
/* some convenience accessor macros */
681
#define ARM_TBFLAG_THUMB(F) \
682
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
683
#define ARM_TBFLAG_VECLEN(F) \
684
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
685
#define ARM_TBFLAG_VECSTRIDE(F) \
686
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
687
#define ARM_TBFLAG_PRIV(F) \
688
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
689
#define ARM_TBFLAG_VFPEN(F) \
690
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
691
#define ARM_TBFLAG_CONDEXEC(F) \
692
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
693
#define ARM_TBFLAG_BSWAP_CODE(F) \
694
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
695

    
696
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
697
                                        target_ulong *cs_base, int *flags)
698
{
699
    int privmode;
700
    *pc = env->regs[15];
701
    *cs_base = 0;
702
    *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
703
        | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
704
        | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
705
        | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
706
        | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
707
    if (arm_feature(env, ARM_FEATURE_M)) {
708
        privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
709
    } else {
710
        privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
711
    }
712
    if (privmode) {
713
        *flags |= ARM_TBFLAG_PRIV_MASK;
714
    }
715
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
716
        *flags |= ARM_TBFLAG_VFPEN_MASK;
717
    }
718
}
719

    
720
static inline bool cpu_has_work(CPUState *cpu)
721
{
722
    return cpu->interrupt_request &
723
        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
724
}
725

    
726
#include "exec/exec-all.h"
727

    
728
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
729
{
730
    env->regs[15] = tb->pc;
731
}
732

    
733
/* Load an instruction and return it in the standard little-endian order */
734
static inline uint32_t arm_ldl_code(CPUARMState *env, uint32_t addr,
735
                                    bool do_swap)
736
{
737
    uint32_t insn = cpu_ldl_code(env, addr);
738
    if (do_swap) {
739
        return bswap32(insn);
740
    }
741
    return insn;
742
}
743

    
744
/* Ditto, for a halfword (Thumb) instruction */
745
static inline uint16_t arm_lduw_code(CPUARMState *env, uint32_t addr,
746
                                     bool do_swap)
747
{
748
    uint16_t insn = cpu_lduw_code(env, addr);
749
    if (do_swap) {
750
        return bswap16(insn);
751
    }
752
    return insn;
753
}
754

    
755
#endif