Statistics
| Branch: | Revision:

root / linux-user / vm86.c @ 3ebcc707

History | View | Annotate | Download (14.9 kB)

1
/*
2
 *  vm86 linux syscall support
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, write to the Free Software
18
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
 */
20
#include <stdlib.h>
21
#include <stdio.h>
22
#include <stdarg.h>
23
#include <string.h>
24
#include <errno.h>
25
#include <unistd.h>
26

    
27
#include "qemu.h"
28

    
29
//#define DEBUG_VM86
30

    
31
#define set_flags(X,new,mask) \
32
((X) = ((X) & ~(mask)) | ((new) & (mask)))
33

    
34
#define SAFE_MASK        (0xDD5)
35
#define RETURN_MASK        (0xDFF)
36

    
37
static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
38
{
39
    return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
40
}
41

    
42
static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val)
43
{
44
    *(uint16_t *)(segptr + (reg16 & 0xffff)) = tswap16(val);
45
}
46

    
47
static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val)
48
{
49
    *(uint32_t *)(segptr + (reg16 & 0xffff)) = tswap32(val);
50
}
51

    
52
static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16)
53
{
54
    return tswap16(*(uint16_t *)(segptr + (reg16 & 0xffff)));
55
}
56

    
57
static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16)
58
{
59
    return tswap32(*(uint16_t *)(segptr + (reg16 & 0xffff)));
60
}
61

    
62
void save_v86_state(CPUX86State *env)
63
{
64
    TaskState *ts = env->opaque;
65

    
66
    /* put the VM86 registers in the userspace register structure */
67
    ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
68
    ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
69
    ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
70
    ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
71
    ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
72
    ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
73
    ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
74
    ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
75
    ts->target_v86->regs.eip = tswap32(env->eip);
76
    ts->target_v86->regs.cs = tswap16(env->segs[R_CS]);
77
    ts->target_v86->regs.ss = tswap16(env->segs[R_SS]);
78
    ts->target_v86->regs.ds = tswap16(env->segs[R_DS]);
79
    ts->target_v86->regs.es = tswap16(env->segs[R_ES]);
80
    ts->target_v86->regs.fs = tswap16(env->segs[R_FS]);
81
    ts->target_v86->regs.gs = tswap16(env->segs[R_GS]);
82
    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
83
    ts->target_v86->regs.eflags = tswap32(env->eflags);
84
#ifdef DEBUG_VM86
85
    fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n", 
86
            env->eflags, env->segs[R_CS], env->eip);
87
#endif
88

    
89
    /* restore 32 bit registers */
90
    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
91
    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
92
    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
93
    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
94
    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
95
    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
96
    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
97
    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
98
    env->eflags = ts->vm86_saved_regs.eflags;
99
    env->eip = ts->vm86_saved_regs.eip;
100

    
101
    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
102
    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
103
    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
104
    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
105
    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
106
    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
107
}
108

    
109
/* return from vm86 mode to 32 bit. The vm86() syscall will return
110
   'retval' */
111
static inline void return_to_32bit(CPUX86State *env, int retval)
112
{
113
#ifdef DEBUG_VM86
114
    fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
115
#endif
116
    save_v86_state(env);
117
    env->regs[R_EAX] = retval;
118
}
119

    
120
static inline int set_IF(CPUX86State *env)
121
{
122
    TaskState *ts = env->opaque;
123
    
124
    ts->v86flags |= VIF_MASK;
125
    if (ts->v86flags & VIP_MASK) {
126
        return_to_32bit(env, TARGET_VM86_STI);
127
        return 1;
128
    }
129
    return 0;
130
}
131

    
132
static inline void clear_IF(CPUX86State *env)
133
{
134
    TaskState *ts = env->opaque;
135

    
136
    ts->v86flags &= ~VIF_MASK;
137
}
138

    
139
static inline void clear_TF(CPUX86State *env)
140
{
141
    env->eflags &= ~TF_MASK;
142
}
143

    
144
static inline void clear_AC(CPUX86State *env)
145
{
146
    env->eflags &= ~AC_MASK;
147
}
148

    
149
static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
150
{
151
    TaskState *ts = env->opaque;
152

    
153
    set_flags(ts->v86flags, eflags, ts->v86mask);
154
    set_flags(env->eflags, eflags, SAFE_MASK);
155
    if (eflags & IF_MASK)
156
        return set_IF(env);
157
    else
158
        clear_IF(env);
159
    return 0;
160
}
161

    
162
static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
163
{
164
    TaskState *ts = env->opaque;
165

    
166
    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
167
    set_flags(env->eflags, flags, SAFE_MASK);
168
    if (flags & IF_MASK)
169
        return set_IF(env);
170
    else
171
        clear_IF(env);
172
    return 0;
173
}
174

    
175
static inline unsigned int get_vflags(CPUX86State *env)
176
{
177
    TaskState *ts = env->opaque;
178
    unsigned int flags;
179

    
180
    flags = env->eflags & RETURN_MASK;
181
    if (ts->v86flags & VIF_MASK)
182
        flags |= IF_MASK;
183
    return flags | (ts->v86flags & ts->v86mask);
184
}
185

    
186
#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
187

    
188
/* handle VM86 interrupt (NOTE: the CPU core currently does not
189
   support TSS interrupt revectoring, so this code is always executed) */
190
static void do_int(CPUX86State *env, int intno)
191
{
192
    TaskState *ts = env->opaque;
193
    uint32_t *int_ptr, segoffs;
194
    uint8_t *ssp;
195
    unsigned int sp;
196

    
197
    if (env->segs[R_CS] == TARGET_BIOSSEG)
198
        goto cannot_handle;
199
    if (is_revectored(intno, &ts->vm86plus.int_revectored))
200
        goto cannot_handle;
201
    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, 
202
                                       &ts->vm86plus.int21_revectored))
203
        goto cannot_handle;
204
    int_ptr = (uint32_t *)(intno << 2);
205
    segoffs = tswap32(*int_ptr);
206
    if ((segoffs >> 16) == TARGET_BIOSSEG)
207
        goto cannot_handle;
208
#if defined(DEBUG_VM86)
209
    fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", 
210
            intno, segoffs >> 16, segoffs & 0xffff);
211
#endif
212
    /* save old state */
213
    ssp = (uint8_t *)(env->segs[R_SS] << 4);
214
    sp = env->regs[R_ESP] & 0xffff;
215
    vm_putw(ssp, sp - 2, get_vflags(env));
216
    vm_putw(ssp, sp - 4, env->segs[R_CS]);
217
    vm_putw(ssp, sp - 6, env->eip);
218
    ADD16(env->regs[R_ESP], -6);
219
    /* goto interrupt handler */
220
    env->eip = segoffs & 0xffff;
221
    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
222
    clear_TF(env);
223
    clear_IF(env);
224
    clear_AC(env);
225
    return;
226
 cannot_handle:
227
#if defined(DEBUG_VM86)
228
    fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
229
#endif
230
    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
231
}
232

    
233
void handle_vm86_trap(CPUX86State *env, int trapno)
234
{
235
    if (trapno == 1 || trapno == 3) {
236
        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
237
    } else {
238
        do_int(env, trapno);
239
    }
240
}
241

    
242
#define CHECK_IF_IN_TRAP() \
243
      if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
244
          (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
245
                newflags |= TF_MASK
246

    
247
#define VM86_FAULT_RETURN \
248
        if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
249
            (ts->v86flags & (IF_MASK | VIF_MASK))) \
250
            return_to_32bit(env, TARGET_VM86_PICRETURN); \
251
        return
252

    
253
void handle_vm86_fault(CPUX86State *env)
254
{
255
    TaskState *ts = env->opaque;
256
    uint8_t *csp, *pc, *ssp;
257
    unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
258
    int data32, pref_done;
259

    
260
    csp = (uint8_t *)(env->segs[R_CS] << 4);
261
    ip = env->eip & 0xffff;
262
    pc = csp + ip;
263
    
264
    ssp = (uint8_t *)(env->segs[R_SS] << 4);
265
    sp = env->regs[R_ESP] & 0xffff;
266

    
267
#if defined(DEBUG_VM86)
268
    fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n",
269
            env->segs[R_CS], env->eip, pc[0], pc[1]);
270
#endif
271

    
272
    data32 = 0;
273
    pref_done = 0;
274
    do {
275
        opcode = csp[ip];
276
        ADD16(ip, 1);
277
        switch (opcode) {
278
        case 0x66:      /* 32-bit data */     data32=1; break;
279
        case 0x67:      /* 32-bit address */  break;
280
        case 0x2e:      /* CS */              break;
281
        case 0x3e:      /* DS */              break;
282
        case 0x26:      /* ES */              break;
283
        case 0x36:      /* SS */              break;
284
        case 0x65:      /* GS */              break;
285
        case 0x64:      /* FS */              break;
286
        case 0xf2:      /* repnz */              break;
287
        case 0xf3:      /* rep */             break;
288
        default: pref_done = 1;
289
        }
290
    } while (!pref_done);
291

    
292
    /* VM86 mode */
293
    switch(opcode) {
294
    case 0x9c: /* pushf */
295
        if (data32) {
296
            vm_putl(ssp, sp - 4, get_vflags(env));
297
            ADD16(env->regs[R_ESP], -4);
298
        } else {
299
            vm_putw(ssp, sp - 2, get_vflags(env));
300
            ADD16(env->regs[R_ESP], -2);
301
        }
302
        env->eip = ip;
303
        VM86_FAULT_RETURN;
304

    
305
    case 0x9d: /* popf */
306
        if (data32) {
307
            newflags = vm_getl(ssp, sp);
308
            ADD16(env->regs[R_ESP], 4);
309
        } else {
310
            newflags = vm_getw(ssp, sp);
311
            ADD16(env->regs[R_ESP], 2);
312
        }
313
        env->eip = ip;
314
        CHECK_IF_IN_TRAP();
315
        if (data32) {
316
            if (set_vflags_long(newflags, env))
317
                return;
318
        } else {
319
            if (set_vflags_short(newflags, env))
320
                return;
321
        }
322
        VM86_FAULT_RETURN;
323

    
324
    case 0xcd: /* int */
325
        intno = csp[ip];
326
        ADD16(ip, 1);
327
        env->eip = ip;
328
        if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
329
            if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >> 
330
                  (intno &7)) & 1) {
331
                return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
332
                return;
333
            }
334
        }
335
        do_int(env, intno);
336
        break;
337

    
338
    case 0xcf: /* iret */
339
        if (data32) {
340
            newip = vm_getl(ssp, sp) & 0xffff;
341
            newcs = vm_getl(ssp, sp + 4) & 0xffff;
342
            newflags = vm_getl(ssp, sp + 8);
343
            ADD16(env->regs[R_ESP], 12);
344
        } else {
345
            newip = vm_getw(ssp, sp);
346
            newcs = vm_getw(ssp, sp + 2);
347
            newflags = vm_getw(ssp, sp + 4);
348
            ADD16(env->regs[R_ESP], 6);
349
        }
350
        env->eip = newip;
351
        cpu_x86_load_seg(env, R_CS, newcs);
352
        CHECK_IF_IN_TRAP();
353
        if (data32) {
354
            if (set_vflags_long(newflags, env))
355
                return;
356
        } else {
357
            if (set_vflags_short(newflags, env))
358
                return;
359
        }
360
        VM86_FAULT_RETURN;
361
        
362
    case 0xfa: /* cli */
363
        env->eip = ip;
364
        clear_IF(env);
365
        VM86_FAULT_RETURN;
366
        
367
    case 0xfb: /* sti */
368
        env->eip = ip;
369
        if (set_IF(env))
370
            return;
371
        VM86_FAULT_RETURN;
372

    
373
    default:
374
        /* real VM86 GPF exception */
375
        return_to_32bit(env, TARGET_VM86_UNKNOWN);
376
        break;
377
    }
378
}
379

    
380
int do_vm86(CPUX86State *env, long subfunction, 
381
            struct target_vm86plus_struct * target_v86)
382
{
383
    TaskState *ts = env->opaque;
384
    int ret;
385
    
386
    switch (subfunction) {
387
    case TARGET_VM86_REQUEST_IRQ:
388
    case TARGET_VM86_FREE_IRQ:
389
    case TARGET_VM86_GET_IRQ_BITS:
390
    case TARGET_VM86_GET_AND_RESET_IRQ:
391
        gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
392
        ret = -EINVAL;
393
        goto out;
394
    case TARGET_VM86_PLUS_INSTALL_CHECK:
395
        /* NOTE: on old vm86 stuff this will return the error
396
           from verify_area(), because the subfunction is
397
           interpreted as (invalid) address to vm86_struct.
398
           So the installation check works.
399
            */
400
        ret = 0;
401
        goto out;
402
    }
403

    
404
    ts->target_v86 = target_v86;
405
    /* save current CPU regs */
406
    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
407
    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
408
    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
409
    ts->vm86_saved_regs.edx = env->regs[R_EDX];
410
    ts->vm86_saved_regs.esi = env->regs[R_ESI];
411
    ts->vm86_saved_regs.edi = env->regs[R_EDI];
412
    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
413
    ts->vm86_saved_regs.esp = env->regs[R_ESP];
414
    ts->vm86_saved_regs.eflags = env->eflags;
415
    ts->vm86_saved_regs.eip  = env->eip;
416
    ts->vm86_saved_regs.cs = env->segs[R_CS];
417
    ts->vm86_saved_regs.ss = env->segs[R_SS];
418
    ts->vm86_saved_regs.ds = env->segs[R_DS];
419
    ts->vm86_saved_regs.es = env->segs[R_ES];
420
    ts->vm86_saved_regs.fs = env->segs[R_FS];
421
    ts->vm86_saved_regs.gs = env->segs[R_GS];
422

    
423
    /* build vm86 CPU state */
424
    ts->v86flags = tswap32(target_v86->regs.eflags);
425
    env->eflags = (env->eflags & ~SAFE_MASK) | 
426
        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
427

    
428
    ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
429
    switch (ts->vm86plus.cpu_type) {
430
    case TARGET_CPU_286:
431
        ts->v86mask = 0;
432
        break;
433
    case TARGET_CPU_386:
434
        ts->v86mask = NT_MASK | IOPL_MASK;
435
        break;
436
    case TARGET_CPU_486:
437
        ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
438
        break;
439
    default:
440
        ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
441
        break;
442
    }
443

    
444
    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
445
    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
446
    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
447
    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
448
    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
449
    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
450
    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
451
    env->eip = tswap32(target_v86->regs.eip);
452
    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
453
    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
454
    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
455
    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
456
    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
457
    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
458
    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
459
                                            the end of the syscall */
460
    memcpy(&ts->vm86plus.int_revectored, 
461
           &target_v86->int_revectored, 32);
462
    memcpy(&ts->vm86plus.int21_revectored, 
463
           &target_v86->int21_revectored, 32);
464
    ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
465
    memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab, 
466
           target_v86->vm86plus.vm86dbg_intxxtab, 32);
467
    
468
#ifdef DEBUG_VM86
469
    fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n", env->segs[R_CS], env->eip);
470
#endif
471
    /* now the virtual CPU is ready for vm86 execution ! */
472
 out:
473
    return ret;
474
}
475