Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 4018bae9

History | View | Annotate | Download (11.4 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "console.h"
27

    
28
//#define DEBUG_IRQ_COUNT
29
//#define DEBUG_IRQ
30

    
31
#ifdef DEBUG_IRQ
32
#define DPRINTF(fmt, args...) \
33
do { printf("IRQ: " fmt , ##args); } while (0)
34
#else
35
#define DPRINTF(fmt, args...)
36
#endif
37

    
38
/*
39
 * Registers of interrupt controller in sun4m.
40
 *
41
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 *
45
 * There is a system master controller and one for each cpu.
46
 *
47
 */
48

    
49
#define MAX_CPUS 16
50
#define MAX_PILS 16
51

    
52
typedef struct SLAVIO_INTCTLState {
53
    uint32_t intreg_pending[MAX_CPUS];
54
    uint32_t intregm_pending;
55
    uint32_t intregm_disabled;
56
    uint32_t target_cpu;
57
#ifdef DEBUG_IRQ_COUNT
58
    uint64_t irq_count[32];
59
#endif
60
    qemu_irq *cpu_irqs[MAX_CPUS];
61
    const uint32_t *intbit_to_level;
62
    uint32_t cputimer_bit;
63
    uint32_t pil_out[MAX_CPUS];
64
} SLAVIO_INTCTLState;
65

    
66
#define INTCTL_MAXADDR 0xf
67
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
68
#define INTCTLM_MAXADDR 0x13
69
#define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
70
#define INTCTLM_MASK 0x1f
71
#define MASTER_IRQ_MASK ~0x4fb2007f
72
#define MASTER_DISABLE 0x80000000
73
#define CPU_IRQ_MASK 0xfffe0000
74
#define CPU_IRQ_INT15_IN 0x0004000
75
#define CPU_IRQ_INT15_MASK 0x80000000
76

    
77
static void slavio_check_interrupts(void *opaque);
78

    
79
// per-cpu interrupt controller
80
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
81
{
82
    SLAVIO_INTCTLState *s = opaque;
83
    uint32_t saddr, ret;
84
    int cpu;
85

    
86
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
87
    saddr = (addr & INTCTL_MAXADDR) >> 2;
88
    switch (saddr) {
89
    case 0:
90
        ret = s->intreg_pending[cpu];
91
        break;
92
    default:
93
        ret = 0;
94
        break;
95
    }
96
    DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
97

    
98
    return ret;
99
}
100

    
101
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
102
{
103
    SLAVIO_INTCTLState *s = opaque;
104
    uint32_t saddr;
105
    int cpu;
106

    
107
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
108
    saddr = (addr & INTCTL_MAXADDR) >> 2;
109
    DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
110
    switch (saddr) {
111
    case 1: // clear pending softints
112
        if (val & CPU_IRQ_INT15_IN)
113
            val |= CPU_IRQ_INT15_MASK;
114
        val &= CPU_IRQ_MASK;
115
        s->intreg_pending[cpu] &= ~val;
116
        slavio_check_interrupts(s);
117
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
118
        break;
119
    case 2: // set softint
120
        val &= CPU_IRQ_MASK;
121
        s->intreg_pending[cpu] |= val;
122
        slavio_check_interrupts(s);
123
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
124
        break;
125
    default:
126
        break;
127
    }
128
}
129

    
130
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
131
    slavio_intctl_mem_readl,
132
    slavio_intctl_mem_readl,
133
    slavio_intctl_mem_readl,
134
};
135

    
136
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
137
    slavio_intctl_mem_writel,
138
    slavio_intctl_mem_writel,
139
    slavio_intctl_mem_writel,
140
};
141

    
142
// master system interrupt controller
143
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
144
{
145
    SLAVIO_INTCTLState *s = opaque;
146
    uint32_t saddr, ret;
147

    
148
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
149
    switch (saddr) {
150
    case 0:
151
        ret = s->intregm_pending & ~MASTER_DISABLE;
152
        break;
153
    case 1:
154
        ret = s->intregm_disabled;
155
        break;
156
    case 4:
157
        ret = s->target_cpu;
158
        break;
159
    default:
160
        ret = 0;
161
        break;
162
    }
163
    DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
164

    
165
    return ret;
166
}
167

    
168
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
169
{
170
    SLAVIO_INTCTLState *s = opaque;
171
    uint32_t saddr;
172

    
173
    saddr = (addr & INTCTLM_MASK) >> 2;
174
    DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
175
    switch (saddr) {
176
    case 2: // clear (enable)
177
        // Force clear unused bits
178
        val &= MASTER_IRQ_MASK;
179
        s->intregm_disabled &= ~val;
180
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
181
        slavio_check_interrupts(s);
182
        break;
183
    case 3: // set (disable, clear pending)
184
        // Force clear unused bits
185
        val &= MASTER_IRQ_MASK;
186
        s->intregm_disabled |= val;
187
        s->intregm_pending &= ~val;
188
        slavio_check_interrupts(s);
189
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
190
        break;
191
    case 4:
192
        s->target_cpu = val & (MAX_CPUS - 1);
193
        slavio_check_interrupts(s);
194
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
195
        break;
196
    default:
197
        break;
198
    }
199
}
200

    
201
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
202
    slavio_intctlm_mem_readl,
203
    slavio_intctlm_mem_readl,
204
    slavio_intctlm_mem_readl,
205
};
206

    
207
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
208
    slavio_intctlm_mem_writel,
209
    slavio_intctlm_mem_writel,
210
    slavio_intctlm_mem_writel,
211
};
212

    
213
void slavio_pic_info(void *opaque)
214
{
215
    SLAVIO_INTCTLState *s = opaque;
216
    int i;
217

    
218
    for (i = 0; i < MAX_CPUS; i++) {
219
        term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
220
    }
221
    term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
222
}
223

    
224
void slavio_irq_info(void *opaque)
225
{
226
#ifndef DEBUG_IRQ_COUNT
227
    term_printf("irq statistic code not compiled.\n");
228
#else
229
    SLAVIO_INTCTLState *s = opaque;
230
    int i;
231
    int64_t count;
232

    
233
    term_printf("IRQ statistics:\n");
234
    for (i = 0; i < 32; i++) {
235
        count = s->irq_count[i];
236
        if (count > 0)
237
            term_printf("%2d: %" PRId64 "\n", i, count);
238
    }
239
#endif
240
}
241

    
242
static void slavio_check_interrupts(void *opaque)
243
{
244
    SLAVIO_INTCTLState *s = opaque;
245
    uint32_t pending = s->intregm_pending, pil_pending;
246
    unsigned int i, j;
247

    
248
    pending &= ~s->intregm_disabled;
249

    
250
    DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
251
    for (i = 0; i < MAX_CPUS; i++) {
252
        pil_pending = 0;
253
        if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
254
            (i == s->target_cpu)) {
255
            for (j = 0; j < 32; j++) {
256
                if (pending & (1 << j))
257
                    pil_pending |= 1 << s->intbit_to_level[j];
258
            }
259
        }
260
        pil_pending |= (s->intreg_pending[i] & CPU_IRQ_MASK) >> 16;
261

    
262
        for (j = 0; j < MAX_PILS; j++) {
263
            if (pil_pending & (1 << j)) {
264
                if (!(s->pil_out[i] & (1 << j)))
265
                    qemu_irq_raise(s->cpu_irqs[i][j]);
266
            } else {
267
                if (s->pil_out[i] & (1 << j))
268
                    qemu_irq_lower(s->cpu_irqs[i][j]);
269
            }
270
        }
271
        s->pil_out[i] = pil_pending;
272
    }
273
}
274

    
275
/*
276
 * "irq" here is the bit number in the system interrupt register to
277
 * separate serial and keyboard interrupts sharing a level.
278
 */
279
static void slavio_set_irq(void *opaque, int irq, int level)
280
{
281
    SLAVIO_INTCTLState *s = opaque;
282
    uint32_t mask = 1 << irq;
283
    uint32_t pil = s->intbit_to_level[irq];
284

    
285
    DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
286
            level);
287
    if (pil > 0) {
288
        if (level) {
289
#ifdef DEBUG_IRQ_COUNT
290
            s->irq_count[pil]++;
291
#endif
292
            s->intregm_pending |= mask;
293
            s->intreg_pending[s->target_cpu] |= 1 << pil;
294
        } else {
295
            s->intregm_pending &= ~mask;
296
            s->intreg_pending[s->target_cpu] &= ~(1 << pil);
297
        }
298
        slavio_check_interrupts(s);
299
    }
300
}
301

    
302
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
303
{
304
    SLAVIO_INTCTLState *s = opaque;
305

    
306
    DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
307

    
308
    if (level)
309
        s->intreg_pending[cpu] |= s->cputimer_bit;
310
    else
311
        s->intreg_pending[cpu] &= ~s->cputimer_bit;
312

    
313
    slavio_check_interrupts(s);
314
}
315

    
316
static void slavio_intctl_save(QEMUFile *f, void *opaque)
317
{
318
    SLAVIO_INTCTLState *s = opaque;
319
    int i;
320

    
321
    for (i = 0; i < MAX_CPUS; i++) {
322
        qemu_put_be32s(f, &s->intreg_pending[i]);
323
    }
324
    qemu_put_be32s(f, &s->intregm_pending);
325
    qemu_put_be32s(f, &s->intregm_disabled);
326
    qemu_put_be32s(f, &s->target_cpu);
327
}
328

    
329
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
330
{
331
    SLAVIO_INTCTLState *s = opaque;
332
    int i;
333

    
334
    if (version_id != 1)
335
        return -EINVAL;
336

    
337
    for (i = 0; i < MAX_CPUS; i++) {
338
        qemu_get_be32s(f, &s->intreg_pending[i]);
339
    }
340
    qemu_get_be32s(f, &s->intregm_pending);
341
    qemu_get_be32s(f, &s->intregm_disabled);
342
    qemu_get_be32s(f, &s->target_cpu);
343
    slavio_check_interrupts(s);
344
    return 0;
345
}
346

    
347
static void slavio_intctl_reset(void *opaque)
348
{
349
    SLAVIO_INTCTLState *s = opaque;
350
    int i;
351

    
352
    for (i = 0; i < MAX_CPUS; i++) {
353
        s->intreg_pending[i] = 0;
354
    }
355
    s->intregm_disabled = ~MASTER_IRQ_MASK;
356
    s->intregm_pending = 0;
357
    s->target_cpu = 0;
358
    slavio_check_interrupts(s);
359
}
360

    
361
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
362
                         const uint32_t *intbit_to_level,
363
                         qemu_irq **irq, qemu_irq **cpu_irq,
364
                         qemu_irq **parent_irq, unsigned int cputimer)
365
{
366
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
367
    SLAVIO_INTCTLState *s;
368

    
369
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
370
    if (!s)
371
        return NULL;
372

    
373
    s->intbit_to_level = intbit_to_level;
374
    for (i = 0; i < MAX_CPUS; i++) {
375
        slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
376
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
377
                                     slavio_intctl_io_memory);
378
        s->cpu_irqs[i] = parent_irq[i];
379
    }
380

    
381
    slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
382
    cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
383

    
384
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
385
    qemu_register_reset(slavio_intctl_reset, s);
386
    *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
387

    
388
    *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
389
    s->cputimer_bit = 1 << s->intbit_to_level[cputimer];
390
    slavio_intctl_reset(s);
391
    return s;
392
}
393