Statistics
| Branch: | Revision:

root / hw / esp.c @ 40545f84

History | View | Annotate | Download (10 kB)

1 6f7e9aec bellard
/*
2 6f7e9aec bellard
 * QEMU ESP emulation
3 6f7e9aec bellard
 * 
4 6f7e9aec bellard
 * Copyright (c) 2005 Fabrice Bellard
5 6f7e9aec bellard
 * 
6 6f7e9aec bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 6f7e9aec bellard
 * of this software and associated documentation files (the "Software"), to deal
8 6f7e9aec bellard
 * in the Software without restriction, including without limitation the rights
9 6f7e9aec bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 6f7e9aec bellard
 * copies of the Software, and to permit persons to whom the Software is
11 6f7e9aec bellard
 * furnished to do so, subject to the following conditions:
12 6f7e9aec bellard
 *
13 6f7e9aec bellard
 * The above copyright notice and this permission notice shall be included in
14 6f7e9aec bellard
 * all copies or substantial portions of the Software.
15 6f7e9aec bellard
 *
16 6f7e9aec bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 6f7e9aec bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 6f7e9aec bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 6f7e9aec bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 6f7e9aec bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 6f7e9aec bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 6f7e9aec bellard
 * THE SOFTWARE.
23 6f7e9aec bellard
 */
24 6f7e9aec bellard
#include "vl.h"
25 6f7e9aec bellard
26 6f7e9aec bellard
/* debug ESP card */
27 2f275b8f bellard
//#define DEBUG_ESP
28 6f7e9aec bellard
29 6f7e9aec bellard
#ifdef DEBUG_ESP
30 6f7e9aec bellard
#define DPRINTF(fmt, args...) \
31 6f7e9aec bellard
do { printf("ESP: " fmt , ##args); } while (0)
32 6f7e9aec bellard
#else
33 6f7e9aec bellard
#define DPRINTF(fmt, args...)
34 6f7e9aec bellard
#endif
35 6f7e9aec bellard
36 6f7e9aec bellard
#define ESPDMA_REGS 4
37 6f7e9aec bellard
#define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1)
38 6f7e9aec bellard
#define ESP_MAXREG 0x3f
39 6f7e9aec bellard
40 6f7e9aec bellard
typedef struct ESPState {
41 6f7e9aec bellard
    BlockDriverState **bd;
42 2f275b8f bellard
    uint8_t rregs[ESP_MAXREG];
43 2f275b8f bellard
    uint8_t wregs[ESP_MAXREG];
44 6f7e9aec bellard
    int irq;
45 6f7e9aec bellard
    uint32_t espdmaregs[ESPDMA_REGS];
46 2f275b8f bellard
    uint32_t ti_size;
47 2f275b8f bellard
    int ti_dir;
48 2f275b8f bellard
    uint8_t ti_buf[65536];
49 6f7e9aec bellard
} ESPState;
50 6f7e9aec bellard
51 2f275b8f bellard
#define STAT_DO 0x00
52 2f275b8f bellard
#define STAT_DI 0x01
53 2f275b8f bellard
#define STAT_CD 0x02
54 2f275b8f bellard
#define STAT_ST 0x03
55 2f275b8f bellard
#define STAT_MI 0x06
56 2f275b8f bellard
#define STAT_MO 0x07
57 2f275b8f bellard
58 2f275b8f bellard
#define STAT_TC 0x10
59 2f275b8f bellard
#define STAT_IN 0x80
60 2f275b8f bellard
61 2f275b8f bellard
#define INTR_FC 0x08
62 2f275b8f bellard
#define INTR_BS 0x10
63 2f275b8f bellard
#define INTR_DC 0x20
64 2f275b8f bellard
65 2f275b8f bellard
#define SEQ_0 0x0
66 2f275b8f bellard
#define SEQ_CD 0x4
67 2f275b8f bellard
68 2f275b8f bellard
static void handle_satn(ESPState *s)
69 2f275b8f bellard
{
70 2f275b8f bellard
    uint8_t buf[32];
71 2f275b8f bellard
    uint32_t dmaptr, dmalen;
72 2f275b8f bellard
    unsigned int i;
73 2f275b8f bellard
    int64_t nb_sectors;
74 2f275b8f bellard
    int target;
75 2f275b8f bellard
76 2f275b8f bellard
    dmaptr = iommu_translate(s->espdmaregs[1]);
77 2f275b8f bellard
    dmalen = s->wregs[0] | (s->wregs[1] << 8);
78 2f275b8f bellard
    DPRINTF("Select with ATN at %8.8x len %d\n", dmaptr, dmalen);
79 2f275b8f bellard
    DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
80 2f275b8f bellard
    cpu_physical_memory_read(dmaptr, buf, dmalen);
81 2f275b8f bellard
    for (i = 0; i < dmalen; i++) {
82 2f275b8f bellard
        DPRINTF("Command %2.2x\n", buf[i]);
83 2f275b8f bellard
    }
84 2f275b8f bellard
    s->ti_dir = 0;
85 2f275b8f bellard
    s->ti_size = 0;
86 2f275b8f bellard
    target = s->wregs[4] & 7;
87 2f275b8f bellard
88 2f275b8f bellard
    if (target > 4 || !s->bd[target]) { // No such drive
89 2f275b8f bellard
        s->rregs[4] = STAT_IN;
90 2f275b8f bellard
        s->rregs[5] = INTR_DC;
91 2f275b8f bellard
        s->rregs[6] = SEQ_0;
92 2f275b8f bellard
        s->espdmaregs[0] |= 1;
93 2f275b8f bellard
        pic_set_irq(s->irq, 1);
94 2f275b8f bellard
        return;
95 2f275b8f bellard
    }
96 2f275b8f bellard
    switch (buf[1]) {
97 2f275b8f bellard
    case 0x0:
98 2f275b8f bellard
        DPRINTF("Test Unit Ready (len %d)\n", buf[5]);
99 2f275b8f bellard
        break;
100 2f275b8f bellard
    case 0x12:
101 2f275b8f bellard
        DPRINTF("Inquiry (len %d)\n", buf[5]);
102 2f275b8f bellard
        memset(s->ti_buf, 0, 36);
103 2f275b8f bellard
        if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) {
104 2f275b8f bellard
            s->ti_buf[0] = 5;
105 2f275b8f bellard
            memcpy(&s->ti_buf[16], "QEMU CDROM     ", 16);
106 2f275b8f bellard
        } else {
107 2f275b8f bellard
            s->ti_buf[0] = 0;
108 2f275b8f bellard
            memcpy(&s->ti_buf[16], "QEMU HARDDISK  ", 16);
109 2f275b8f bellard
        }
110 2f275b8f bellard
        memcpy(&s->ti_buf[8], "QEMU   ", 8);
111 2f275b8f bellard
        s->ti_buf[2] = 1;
112 2f275b8f bellard
        s->ti_buf[3] = 2;
113 2f275b8f bellard
        s->ti_dir = 1;
114 2f275b8f bellard
        s->ti_size = 36;
115 2f275b8f bellard
        break;
116 2f275b8f bellard
    case 0x1a:
117 2f275b8f bellard
        DPRINTF("Mode Sense(6) (page %d, len %d)\n", buf[3], buf[5]);
118 2f275b8f bellard
        break;
119 2f275b8f bellard
    case 0x25:
120 2f275b8f bellard
        DPRINTF("Read Capacity (len %d)\n", buf[5]);
121 2f275b8f bellard
        memset(s->ti_buf, 0, 8);
122 2f275b8f bellard
        bdrv_get_geometry(s->bd[target], &nb_sectors);
123 2f275b8f bellard
        s->ti_buf[0] = (nb_sectors >> 24) & 0xff;
124 2f275b8f bellard
        s->ti_buf[1] = (nb_sectors >> 16) & 0xff;
125 2f275b8f bellard
        s->ti_buf[2] = (nb_sectors >> 8) & 0xff;
126 2f275b8f bellard
        s->ti_buf[3] = nb_sectors & 0xff;
127 2f275b8f bellard
        s->ti_buf[4] = 0;
128 2f275b8f bellard
        s->ti_buf[5] = 0;
129 2f275b8f bellard
        s->ti_buf[6] = 2;
130 2f275b8f bellard
        s->ti_buf[7] = 0;
131 2f275b8f bellard
        s->ti_dir = 1;
132 2f275b8f bellard
        s->ti_size = 8;
133 2f275b8f bellard
        break;
134 2f275b8f bellard
    case 0x28:
135 2f275b8f bellard
        {
136 2f275b8f bellard
            int64_t offset, len;
137 2f275b8f bellard
138 2f275b8f bellard
            offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
139 2f275b8f bellard
            len = (buf[8] << 8) | buf[9];
140 2f275b8f bellard
            DPRINTF("Read (10) (offset %lld len %lld)\n", offset, len);
141 2f275b8f bellard
            bdrv_read(s->bd[target], offset, s->ti_buf, len);
142 2f275b8f bellard
            s->ti_dir = 1;
143 2f275b8f bellard
            s->ti_size = len * 512;
144 2f275b8f bellard
            break;
145 2f275b8f bellard
        }
146 2f275b8f bellard
    case 0x2a:
147 2f275b8f bellard
        {
148 2f275b8f bellard
            int64_t offset, len;
149 2f275b8f bellard
150 2f275b8f bellard
            offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6];
151 2f275b8f bellard
            len = (buf[8] << 8) | buf[9];
152 2f275b8f bellard
            DPRINTF("Write (10) (offset %lld len %lld)\n", offset, len);
153 2f275b8f bellard
            bdrv_write(s->bd[target], offset, s->ti_buf, len);
154 2f275b8f bellard
            s->ti_dir = 0;
155 2f275b8f bellard
            s->ti_size = len * 512;
156 2f275b8f bellard
            break;
157 2f275b8f bellard
        }
158 2f275b8f bellard
    default:
159 2f275b8f bellard
        DPRINTF("Unknown command (%2.2x)\n", buf[1]);
160 2f275b8f bellard
        break;
161 2f275b8f bellard
    }
162 2f275b8f bellard
    s->rregs[4] = STAT_IN | STAT_TC | STAT_DI;
163 2f275b8f bellard
    s->rregs[5] = INTR_BS | INTR_FC;
164 2f275b8f bellard
    s->rregs[6] = SEQ_CD;
165 2f275b8f bellard
    s->espdmaregs[0] |= 1;
166 2f275b8f bellard
    pic_set_irq(s->irq, 1);
167 2f275b8f bellard
}
168 2f275b8f bellard
169 2f275b8f bellard
static void dma_write(ESPState *s, const uint8_t *buf, uint32_t len)
170 2f275b8f bellard
{
171 2f275b8f bellard
    uint32_t dmaptr, dmalen;
172 2f275b8f bellard
173 2f275b8f bellard
    dmaptr = iommu_translate(s->espdmaregs[1]);
174 2f275b8f bellard
    dmalen = s->wregs[0] | (s->wregs[1] << 8);
175 2f275b8f bellard
    DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
176 2f275b8f bellard
    cpu_physical_memory_write(dmaptr, buf, len);
177 2f275b8f bellard
    s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
178 2f275b8f bellard
    s->rregs[5] = INTR_BS | INTR_FC;
179 2f275b8f bellard
    s->rregs[6] = SEQ_CD;
180 2f275b8f bellard
    s->espdmaregs[0] |= 1;
181 2f275b8f bellard
    pic_set_irq(s->irq, 1);
182 2f275b8f bellard
183 2f275b8f bellard
}
184 2f275b8f bellard
static const uint8_t okbuf[] = {0, 0};
185 2f275b8f bellard
186 2f275b8f bellard
static void handle_ti(ESPState *s)
187 2f275b8f bellard
{
188 2f275b8f bellard
    uint32_t dmaptr, dmalen;
189 2f275b8f bellard
    unsigned int i;
190 2f275b8f bellard
191 2f275b8f bellard
    dmaptr = iommu_translate(s->espdmaregs[1]);
192 2f275b8f bellard
    dmalen = s->wregs[0] | (s->wregs[1] << 8);
193 2f275b8f bellard
    DPRINTF("Transfer Information at %8.8x len %d\n", dmaptr, dmalen);
194 2f275b8f bellard
    DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r');
195 2f275b8f bellard
    for (i = 0; i < s->ti_size; i++) {
196 2f275b8f bellard
        dmaptr = iommu_translate(s->espdmaregs[1] + i);
197 2f275b8f bellard
        if (s->ti_dir)
198 2f275b8f bellard
            cpu_physical_memory_write(dmaptr, &s->ti_buf[i], 1);
199 2f275b8f bellard
        else
200 2f275b8f bellard
            cpu_physical_memory_read(dmaptr, &s->ti_buf[i], 1);
201 2f275b8f bellard
    }
202 2f275b8f bellard
    s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
203 2f275b8f bellard
    s->rregs[5] = INTR_BS;
204 2f275b8f bellard
    s->rregs[6] = 0;
205 2f275b8f bellard
    s->espdmaregs[0] |= 1;
206 2f275b8f bellard
    pic_set_irq(s->irq, 1);
207 2f275b8f bellard
}
208 2f275b8f bellard
209 6f7e9aec bellard
static void esp_reset(void *opaque)
210 6f7e9aec bellard
{
211 6f7e9aec bellard
    ESPState *s = opaque;
212 2f275b8f bellard
    memset(s->rregs, 0, ESP_MAXREG);
213 2f275b8f bellard
    s->rregs[0x0e] = 0x4; // Indicate fas100a
214 6f7e9aec bellard
    memset(s->espdmaregs, 0, ESPDMA_REGS * 4);
215 6f7e9aec bellard
}
216 6f7e9aec bellard
217 6f7e9aec bellard
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
218 6f7e9aec bellard
{
219 6f7e9aec bellard
    ESPState *s = opaque;
220 6f7e9aec bellard
    uint32_t saddr;
221 6f7e9aec bellard
222 6f7e9aec bellard
    saddr = (addr & ESP_MAXREG) >> 2;
223 6f7e9aec bellard
    switch (saddr) {
224 6f7e9aec bellard
    default:
225 6f7e9aec bellard
        break;
226 6f7e9aec bellard
    }
227 2f275b8f bellard
    DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
228 2f275b8f bellard
    return s->rregs[saddr];
229 6f7e9aec bellard
}
230 6f7e9aec bellard
231 6f7e9aec bellard
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
232 6f7e9aec bellard
{
233 6f7e9aec bellard
    ESPState *s = opaque;
234 6f7e9aec bellard
    uint32_t saddr;
235 6f7e9aec bellard
236 6f7e9aec bellard
    saddr = (addr & ESP_MAXREG) >> 2;
237 2f275b8f bellard
    DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
238 6f7e9aec bellard
    switch (saddr) {
239 6f7e9aec bellard
    case 3:
240 6f7e9aec bellard
        // Command
241 6f7e9aec bellard
        switch(val & 0x7f) {
242 6f7e9aec bellard
        case 0:
243 2f275b8f bellard
            DPRINTF("NOP (%2.2x)\n", val);
244 2f275b8f bellard
            break;
245 2f275b8f bellard
        case 1:
246 2f275b8f bellard
            DPRINTF("Flush FIFO (%2.2x)\n", val);
247 2f275b8f bellard
            s->rregs[6] = 0;
248 2f275b8f bellard
            s->rregs[5] = INTR_FC;
249 6f7e9aec bellard
            break;
250 6f7e9aec bellard
        case 2:
251 2f275b8f bellard
            DPRINTF("Chip reset (%2.2x)\n", val);
252 6f7e9aec bellard
            esp_reset(s);
253 6f7e9aec bellard
            break;
254 6f7e9aec bellard
        case 3:
255 2f275b8f bellard
            DPRINTF("Bus reset (%2.2x)\n", val);
256 2f275b8f bellard
            break;
257 2f275b8f bellard
        case 0x10:
258 2f275b8f bellard
            handle_ti(s);
259 2f275b8f bellard
            break;
260 2f275b8f bellard
        case 0x11:
261 2f275b8f bellard
            DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
262 2f275b8f bellard
            dma_write(s, okbuf, 2);
263 2f275b8f bellard
            break;
264 2f275b8f bellard
        case 0x12:
265 2f275b8f bellard
            DPRINTF("Message Accepted (%2.2x)\n", val);
266 2f275b8f bellard
            dma_write(s, okbuf, 2);
267 2f275b8f bellard
            s->rregs[5] = INTR_DC;
268 2f275b8f bellard
            s->rregs[6] = 0;
269 6f7e9aec bellard
            break;
270 6f7e9aec bellard
        case 0x1a:
271 2f275b8f bellard
            DPRINTF("Set ATN (%2.2x)\n", val);
272 6f7e9aec bellard
            break;
273 6f7e9aec bellard
        case 0x42:
274 2f275b8f bellard
            handle_satn(s);
275 2f275b8f bellard
            break;
276 2f275b8f bellard
        case 0x43:
277 2f275b8f bellard
            DPRINTF("Set ATN & stop (%2.2x)\n", val);
278 2f275b8f bellard
            handle_satn(s);
279 2f275b8f bellard
            break;
280 2f275b8f bellard
        default:
281 2f275b8f bellard
            DPRINTF("Unhandled command (%2.2x)\n", val);
282 6f7e9aec bellard
            break;
283 6f7e9aec bellard
        }
284 6f7e9aec bellard
        break;
285 6f7e9aec bellard
    case 4 ... 7:
286 6f7e9aec bellard
    case 9 ... 0xf:
287 6f7e9aec bellard
        break;
288 6f7e9aec bellard
    default:
289 6f7e9aec bellard
        break;
290 6f7e9aec bellard
    }
291 2f275b8f bellard
    s->wregs[saddr] = val;
292 6f7e9aec bellard
}
293 6f7e9aec bellard
294 6f7e9aec bellard
static CPUReadMemoryFunc *esp_mem_read[3] = {
295 6f7e9aec bellard
    esp_mem_readb,
296 6f7e9aec bellard
    esp_mem_readb,
297 6f7e9aec bellard
    esp_mem_readb,
298 6f7e9aec bellard
};
299 6f7e9aec bellard
300 6f7e9aec bellard
static CPUWriteMemoryFunc *esp_mem_write[3] = {
301 6f7e9aec bellard
    esp_mem_writeb,
302 6f7e9aec bellard
    esp_mem_writeb,
303 6f7e9aec bellard
    esp_mem_writeb,
304 6f7e9aec bellard
};
305 6f7e9aec bellard
306 6f7e9aec bellard
static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr)
307 6f7e9aec bellard
{
308 6f7e9aec bellard
    ESPState *s = opaque;
309 6f7e9aec bellard
    uint32_t saddr;
310 6f7e9aec bellard
311 6f7e9aec bellard
    saddr = (addr & ESPDMA_MAXADDR) >> 2;
312 2f275b8f bellard
    DPRINTF("read dmareg[%d]: 0x%2.2x\n", saddr, s->espdmaregs[saddr]);
313 6f7e9aec bellard
    return s->espdmaregs[saddr];
314 6f7e9aec bellard
}
315 6f7e9aec bellard
316 6f7e9aec bellard
static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
317 6f7e9aec bellard
{
318 6f7e9aec bellard
    ESPState *s = opaque;
319 6f7e9aec bellard
    uint32_t saddr;
320 6f7e9aec bellard
321 6f7e9aec bellard
    saddr = (addr & ESPDMA_MAXADDR) >> 2;
322 2f275b8f bellard
    DPRINTF("write dmareg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->espdmaregs[saddr], val);
323 2f275b8f bellard
    switch (saddr) {
324 2f275b8f bellard
    case 0:
325 2f275b8f bellard
        if (!(val & 0x10))
326 2f275b8f bellard
            pic_set_irq(s->irq, 0);
327 2f275b8f bellard
        break;
328 2f275b8f bellard
    default:
329 2f275b8f bellard
        break;
330 2f275b8f bellard
    }
331 6f7e9aec bellard
    s->espdmaregs[saddr] = val;
332 6f7e9aec bellard
}
333 6f7e9aec bellard
334 6f7e9aec bellard
static CPUReadMemoryFunc *espdma_mem_read[3] = {
335 6f7e9aec bellard
    espdma_mem_readl,
336 6f7e9aec bellard
    espdma_mem_readl,
337 6f7e9aec bellard
    espdma_mem_readl,
338 6f7e9aec bellard
};
339 6f7e9aec bellard
340 6f7e9aec bellard
static CPUWriteMemoryFunc *espdma_mem_write[3] = {
341 6f7e9aec bellard
    espdma_mem_writel,
342 6f7e9aec bellard
    espdma_mem_writel,
343 6f7e9aec bellard
    espdma_mem_writel,
344 6f7e9aec bellard
};
345 6f7e9aec bellard
346 6f7e9aec bellard
static void esp_save(QEMUFile *f, void *opaque)
347 6f7e9aec bellard
{
348 6f7e9aec bellard
    ESPState *s = opaque;
349 2f275b8f bellard
    unsigned int i;
350 2f275b8f bellard
351 2f275b8f bellard
    qemu_put_buffer(f, s->rregs, ESP_MAXREG);
352 2f275b8f bellard
    qemu_put_buffer(f, s->wregs, ESP_MAXREG);
353 2f275b8f bellard
    qemu_put_be32s(f, &s->irq);
354 2f275b8f bellard
    for (i = 0; i < ESPDMA_REGS; i++)
355 2f275b8f bellard
        qemu_put_be32s(f, &s->espdmaregs[i]);
356 6f7e9aec bellard
}
357 6f7e9aec bellard
358 6f7e9aec bellard
static int esp_load(QEMUFile *f, void *opaque, int version_id)
359 6f7e9aec bellard
{
360 6f7e9aec bellard
    ESPState *s = opaque;
361 2f275b8f bellard
    unsigned int i;
362 6f7e9aec bellard
    
363 6f7e9aec bellard
    if (version_id != 1)
364 6f7e9aec bellard
        return -EINVAL;
365 6f7e9aec bellard
366 2f275b8f bellard
    qemu_get_buffer(f, s->rregs, ESP_MAXREG);
367 2f275b8f bellard
    qemu_get_buffer(f, s->wregs, ESP_MAXREG);
368 2f275b8f bellard
    qemu_get_be32s(f, &s->irq);
369 2f275b8f bellard
    for (i = 0; i < ESPDMA_REGS; i++)
370 2f275b8f bellard
        qemu_get_be32s(f, &s->espdmaregs[i]);
371 2f275b8f bellard
372 6f7e9aec bellard
    return 0;
373 6f7e9aec bellard
}
374 6f7e9aec bellard
375 6f7e9aec bellard
void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr)
376 6f7e9aec bellard
{
377 6f7e9aec bellard
    ESPState *s;
378 6f7e9aec bellard
    int esp_io_memory, espdma_io_memory;
379 6f7e9aec bellard
380 6f7e9aec bellard
    s = qemu_mallocz(sizeof(ESPState));
381 6f7e9aec bellard
    if (!s)
382 6f7e9aec bellard
        return;
383 6f7e9aec bellard
384 6f7e9aec bellard
    s->bd = bd;
385 6f7e9aec bellard
    s->irq = irq;
386 6f7e9aec bellard
387 6f7e9aec bellard
    esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
388 6f7e9aec bellard
    cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory);
389 6f7e9aec bellard
390 6f7e9aec bellard
    espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s);
391 6f7e9aec bellard
    cpu_register_physical_memory(espdaddr, 16, espdma_io_memory);
392 6f7e9aec bellard
393 6f7e9aec bellard
    esp_reset(s);
394 6f7e9aec bellard
395 6f7e9aec bellard
    register_savevm("esp", espaddr, 1, esp_save, esp_load, s);
396 6f7e9aec bellard
    qemu_register_reset(esp_reset, s);
397 6f7e9aec bellard
}