Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 40545f84

History | View | Annotate | Download (20.6 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug NE2000 card */
27
//#define DEBUG_NE2000
28

    
29
#define MAX_ETH_FRAME_SIZE 1514
30

    
31
#define E8390_CMD        0x00  /* The command register (for all pages) */
32
/* Page 0 register offsets. */
33
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38
#define EN0_TSR                0x04        /* Transmit status reg RD */
39
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40
#define EN0_NCR                0x05        /* Number of collision reg RD */
41
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42
#define EN0_FIFO        0x06        /* FIFO RD */
43
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
51
#define EN0_RSR                0x0c        /* rx status reg RD */
52
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
53
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
54
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
55
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
56
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
57
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
58
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
59

    
60
#define EN1_PHYS        0x11
61
#define EN1_CURPAG      0x17
62
#define EN1_MULT        0x18
63

    
64
/*  Register accessed at EN_CMD, the 8390 base addr.  */
65
#define E8390_STOP        0x01        /* Stop and reset the chip */
66
#define E8390_START        0x02        /* Start the chip, clear reset */
67
#define E8390_TRANS        0x04        /* Transmit a frame */
68
#define E8390_RREAD        0x08        /* Remote read */
69
#define E8390_RWRITE        0x10        /* Remote write  */
70
#define E8390_NODMA        0x20        /* Remote DMA */
71
#define E8390_PAGE0        0x00        /* Select page chip registers */
72
#define E8390_PAGE1        0x40        /* using the two high-order bits */
73
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
74

    
75
/* Bits in EN0_ISR - Interrupt status register */
76
#define ENISR_RX        0x01        /* Receiver, no error */
77
#define ENISR_TX        0x02        /* Transmitter, no error */
78
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
79
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
80
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
81
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
82
#define ENISR_RDC        0x40        /* remote dma complete */
83
#define ENISR_RESET        0x80        /* Reset completed */
84
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
85

    
86
/* Bits in received packet status byte and EN0_RSR*/
87
#define ENRSR_RXOK        0x01        /* Received a good packet */
88
#define ENRSR_CRC        0x02        /* CRC error */
89
#define ENRSR_FAE        0x04        /* frame alignment error */
90
#define ENRSR_FO        0x08        /* FIFO overrun */
91
#define ENRSR_MPA        0x10        /* missed pkt */
92
#define ENRSR_PHY        0x20        /* physical/multicast address */
93
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
94
#define ENRSR_DEF        0x80        /* deferring */
95

    
96
/* Transmitted packet status, EN0_TSR. */
97
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
98
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
99
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
100
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
101
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
102
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
103
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
104
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
105

    
106
#define NE2000_PMEM_SIZE    (32*1024)
107
#define NE2000_PMEM_START   (16*1024)
108
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
109
#define NE2000_MEM_SIZE     NE2000_PMEM_END
110

    
111
typedef struct NE2000State {
112
    uint8_t cmd;
113
    uint32_t start;
114
    uint32_t stop;
115
    uint8_t boundary;
116
    uint8_t tsr;
117
    uint8_t tpsr;
118
    uint16_t tcnt;
119
    uint16_t rcnt;
120
    uint32_t rsar;
121
    uint8_t rsr;
122
    uint8_t isr;
123
    uint8_t dcfg;
124
    uint8_t imr;
125
    uint8_t phys[6]; /* mac address */
126
    uint8_t curpag;
127
    uint8_t mult[8]; /* multicast mask array */
128
    int irq;
129
    PCIDevice *pci_dev;
130
    NetDriverState *nd;
131
    uint8_t mem[NE2000_MEM_SIZE];
132
} NE2000State;
133

    
134
static void ne2000_reset(NE2000State *s)
135
{
136
    int i;
137

    
138
    s->isr = ENISR_RESET;
139
    memcpy(s->mem, s->nd->macaddr, 6);
140
    s->mem[14] = 0x57;
141
    s->mem[15] = 0x57;
142

    
143
    /* duplicate prom data */
144
    for(i = 15;i >= 0; i--) {
145
        s->mem[2 * i] = s->mem[i];
146
        s->mem[2 * i + 1] = s->mem[i];
147
    }
148
}
149

    
150
static void ne2000_update_irq(NE2000State *s)
151
{
152
    int isr;
153
    isr = s->isr & s->imr;
154
#if defined(DEBUG_NE2000)
155
    printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
156
           s->irq, isr ? 1 : 0, s->isr, s->imr);
157
#endif
158
    if (s->irq == 16) {
159
        /* PCI irq */
160
        pci_set_irq(s->pci_dev, 0, (isr != 0));
161
    } else {
162
        /* ISA irq */
163
        pic_set_irq(s->irq, (isr != 0));
164
    }
165
}
166

    
167
/* return the max buffer size if the NE2000 can receive more data */
168
static int ne2000_can_receive(void *opaque)
169
{
170
    NE2000State *s = opaque;
171
    int avail, index, boundary;
172
    
173
    if (s->cmd & E8390_STOP)
174
        return 0;
175
    index = s->curpag << 8;
176
    boundary = s->boundary << 8;
177
    if (index < boundary)
178
        avail = boundary - index;
179
    else
180
        avail = (s->stop - s->start) - (index - boundary);
181
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
182
        return 0;
183
    return MAX_ETH_FRAME_SIZE;
184
}
185

    
186
#define MIN_BUF_SIZE 60
187

    
188
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
189
{
190
    NE2000State *s = opaque;
191
    uint8_t *p;
192
    int total_len, next, avail, len, index;
193
    uint8_t buf1[60];
194
    
195
#if defined(DEBUG_NE2000)
196
    printf("NE2000: received len=%d\n", size);
197
#endif
198

    
199
    /* if too small buffer, then expand it */
200
    if (size < MIN_BUF_SIZE) {
201
        memcpy(buf1, buf, size);
202
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
203
        buf = buf1;
204
        size = MIN_BUF_SIZE;
205
    }
206

    
207
    index = s->curpag << 8;
208
    /* 4 bytes for header */
209
    total_len = size + 4;
210
    /* address for next packet (4 bytes for CRC) */
211
    next = index + ((total_len + 4 + 255) & ~0xff);
212
    if (next >= s->stop)
213
        next -= (s->stop - s->start);
214
    /* prepare packet header */
215
    p = s->mem + index;
216
    s->rsr = ENRSR_RXOK; /* receive status */
217
    /* XXX: check this */
218
    if (buf[0] & 0x01)
219
        s->rsr |= ENRSR_PHY;
220
    p[0] = s->rsr;
221
    p[1] = next >> 8;
222
    p[2] = total_len;
223
    p[3] = total_len >> 8;
224
    index += 4;
225

    
226
    /* write packet data */
227
    while (size > 0) {
228
        avail = s->stop - index;
229
        len = size;
230
        if (len > avail)
231
            len = avail;
232
        memcpy(s->mem + index, buf, len);
233
        buf += len;
234
        index += len;
235
        if (index == s->stop)
236
            index = s->start;
237
        size -= len;
238
    }
239
    s->curpag = next >> 8;
240

    
241
    /* now we can signal we have receive something */
242
    s->isr |= ENISR_RX;
243
    ne2000_update_irq(s);
244
}
245

    
246
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
247
{
248
    NE2000State *s = opaque;
249
    int offset, page, index;
250

    
251
    addr &= 0xf;
252
#ifdef DEBUG_NE2000
253
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
254
#endif
255
    if (addr == E8390_CMD) {
256
        /* control register */
257
        s->cmd = val;
258
        if (val & E8390_START) {
259
            s->isr &= ~ENISR_RESET;
260
            /* test specific case: zero length transfert */
261
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
262
                s->rcnt == 0) {
263
                s->isr |= ENISR_RDC;
264
                ne2000_update_irq(s);
265
            }
266
            if (val & E8390_TRANS) {
267
                index = (s->tpsr << 8);
268
                /* XXX: next 2 lines are a hack to make netware 3.11 work */ 
269
                if (index >= NE2000_PMEM_END)
270
                    index -= NE2000_PMEM_SIZE;
271
                /* fail safe: check range on the transmitted length  */
272
                if (index + s->tcnt <= NE2000_PMEM_END) {
273
                    qemu_send_packet(s->nd, s->mem + index, s->tcnt);
274
                }
275
                /* signal end of transfert */
276
                s->tsr = ENTSR_PTX;
277
                s->isr |= ENISR_TX;
278
                s->cmd &= ~E8390_TRANS; 
279
                ne2000_update_irq(s);
280
            }
281
        }
282
    } else {
283
        page = s->cmd >> 6;
284
        offset = addr | (page << 4);
285
        switch(offset) {
286
        case EN0_STARTPG:
287
            s->start = val << 8;
288
            break;
289
        case EN0_STOPPG:
290
            s->stop = val << 8;
291
            break;
292
        case EN0_BOUNDARY:
293
            s->boundary = val;
294
            break;
295
        case EN0_IMR:
296
            s->imr = val;
297
            ne2000_update_irq(s);
298
            break;
299
        case EN0_TPSR:
300
            s->tpsr = val;
301
            break;
302
        case EN0_TCNTLO:
303
            s->tcnt = (s->tcnt & 0xff00) | val;
304
            break;
305
        case EN0_TCNTHI:
306
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
307
            break;
308
        case EN0_RSARLO:
309
            s->rsar = (s->rsar & 0xff00) | val;
310
            break;
311
        case EN0_RSARHI:
312
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
313
            break;
314
        case EN0_RCNTLO:
315
            s->rcnt = (s->rcnt & 0xff00) | val;
316
            break;
317
        case EN0_RCNTHI:
318
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
319
            break;
320
        case EN0_DCFG:
321
            s->dcfg = val;
322
            break;
323
        case EN0_ISR:
324
            s->isr &= ~(val & 0x7f);
325
            ne2000_update_irq(s);
326
            break;
327
        case EN1_PHYS ... EN1_PHYS + 5:
328
            s->phys[offset - EN1_PHYS] = val;
329
            break;
330
        case EN1_CURPAG:
331
            s->curpag = val;
332
            break;
333
        case EN1_MULT ... EN1_MULT + 7:
334
            s->mult[offset - EN1_MULT] = val;
335
            break;
336
        }
337
    }
338
}
339

    
340
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
341
{
342
    NE2000State *s = opaque;
343
    int offset, page, ret;
344

    
345
    addr &= 0xf;
346
    if (addr == E8390_CMD) {
347
        ret = s->cmd;
348
    } else {
349
        page = s->cmd >> 6;
350
        offset = addr | (page << 4);
351
        switch(offset) {
352
        case EN0_TSR:
353
            ret = s->tsr;
354
            break;
355
        case EN0_BOUNDARY:
356
            ret = s->boundary;
357
            break;
358
        case EN0_ISR:
359
            ret = s->isr;
360
            break;
361
        case EN0_RSARLO:
362
            ret = s->rsar & 0x00ff;
363
            break;
364
        case EN0_RSARHI:
365
            ret = s->rsar >> 8;
366
            break;
367
        case EN1_PHYS ... EN1_PHYS + 5:
368
            ret = s->phys[offset - EN1_PHYS];
369
            break;
370
        case EN1_CURPAG:
371
            ret = s->curpag;
372
            break;
373
        case EN1_MULT ... EN1_MULT + 7:
374
            ret = s->mult[offset - EN1_MULT];
375
            break;
376
        case EN0_RSR:
377
            ret = s->rsr;
378
            break;
379
        default:
380
            ret = 0x00;
381
            break;
382
        }
383
    }
384
#ifdef DEBUG_NE2000
385
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
386
#endif
387
    return ret;
388
}
389

    
390
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
391
                                     uint32_t val)
392
{
393
    if (addr < 32 || 
394
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
395
        s->mem[addr] = val;
396
    }
397
}
398

    
399
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
400
                                     uint32_t val)
401
{
402
    addr &= ~1; /* XXX: check exact behaviour if not even */
403
    if (addr < 32 || 
404
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
405
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
406
    }
407
}
408

    
409
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
410
                                     uint32_t val)
411
{
412
    addr &= ~1; /* XXX: check exact behaviour if not even */
413
    if (addr < 32 || 
414
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
415
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
416
    }
417
}
418

    
419
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
420
{
421
    if (addr < 32 || 
422
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
423
        return s->mem[addr];
424
    } else {
425
        return 0xff;
426
    }
427
}
428

    
429
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
430
{
431
    addr &= ~1; /* XXX: check exact behaviour if not even */
432
    if (addr < 32 || 
433
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
434
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
435
    } else {
436
        return 0xffff;
437
    }
438
}
439

    
440
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
441
{
442
    addr &= ~1; /* XXX: check exact behaviour if not even */
443
    if (addr < 32 || 
444
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
445
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
446
    } else {
447
        return 0xffffffff;
448
    }
449
}
450

    
451
static inline void ne2000_dma_update(NE2000State *s, int len)
452
{
453
    s->rsar += len;
454
    /* wrap */
455
    /* XXX: check what to do if rsar > stop */
456
    if (s->rsar == s->stop)
457
        s->rsar = s->start;
458

    
459
    if (s->rcnt <= len) {
460
        s->rcnt = 0;
461
        /* signal end of transfert */
462
        s->isr |= ENISR_RDC;
463
        ne2000_update_irq(s);
464
    } else {
465
        s->rcnt -= len;
466
    }
467
}
468

    
469
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
470
{
471
    NE2000State *s = opaque;
472

    
473
#ifdef DEBUG_NE2000
474
    printf("NE2000: asic write val=0x%04x\n", val);
475
#endif
476
    if (s->rcnt == 0)
477
        return;
478
    if (s->dcfg & 0x01) {
479
        /* 16 bit access */
480
        ne2000_mem_writew(s, s->rsar, val);
481
        ne2000_dma_update(s, 2);
482
    } else {
483
        /* 8 bit access */
484
        ne2000_mem_writeb(s, s->rsar, val);
485
        ne2000_dma_update(s, 1);
486
    }
487
}
488

    
489
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
490
{
491
    NE2000State *s = opaque;
492
    int ret;
493

    
494
    if (s->dcfg & 0x01) {
495
        /* 16 bit access */
496
        ret = ne2000_mem_readw(s, s->rsar);
497
        ne2000_dma_update(s, 2);
498
    } else {
499
        /* 8 bit access */
500
        ret = ne2000_mem_readb(s, s->rsar);
501
        ne2000_dma_update(s, 1);
502
    }
503
#ifdef DEBUG_NE2000
504
    printf("NE2000: asic read val=0x%04x\n", ret);
505
#endif
506
    return ret;
507
}
508

    
509
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
510
{
511
    NE2000State *s = opaque;
512

    
513
#ifdef DEBUG_NE2000
514
    printf("NE2000: asic writel val=0x%04x\n", val);
515
#endif
516
    if (s->rcnt == 0)
517
        return;
518
    /* 32 bit access */
519
    ne2000_mem_writel(s, s->rsar, val);
520
    ne2000_dma_update(s, 4);
521
}
522

    
523
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
524
{
525
    NE2000State *s = opaque;
526
    int ret;
527

    
528
    /* 32 bit access */
529
    ret = ne2000_mem_readl(s, s->rsar);
530
    ne2000_dma_update(s, 4);
531
#ifdef DEBUG_NE2000
532
    printf("NE2000: asic readl val=0x%04x\n", ret);
533
#endif
534
    return ret;
535
}
536

    
537
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
538
{
539
    /* nothing to do (end of reset pulse) */
540
}
541

    
542
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
543
{
544
    NE2000State *s = opaque;
545
    ne2000_reset(s);
546
    return 0;
547
}
548

    
549
static void ne2000_save(QEMUFile* f,void* opaque)
550
{
551
        NE2000State* s=(NE2000State*)opaque;
552

    
553
        qemu_put_8s(f, &s->cmd);
554
        qemu_put_be32s(f, &s->start);
555
        qemu_put_be32s(f, &s->stop);
556
        qemu_put_8s(f, &s->boundary);
557
        qemu_put_8s(f, &s->tsr);
558
        qemu_put_8s(f, &s->tpsr);
559
        qemu_put_be16s(f, &s->tcnt);
560
        qemu_put_be16s(f, &s->rcnt);
561
        qemu_put_be32s(f, &s->rsar);
562
        qemu_put_8s(f, &s->rsr);
563
        qemu_put_8s(f, &s->isr);
564
        qemu_put_8s(f, &s->dcfg);
565
        qemu_put_8s(f, &s->imr);
566
        qemu_put_buffer(f, s->phys, 6);
567
        qemu_put_8s(f, &s->curpag);
568
        qemu_put_buffer(f, s->mult, 8);
569
        qemu_put_be32s(f, &s->irq);
570
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
571
}
572

    
573
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
574
{
575
        NE2000State* s=(NE2000State*)opaque;
576

    
577
        if (version_id != 1)
578
            return -EINVAL;
579

    
580
        qemu_get_8s(f, &s->cmd);
581
        qemu_get_be32s(f, &s->start);
582
        qemu_get_be32s(f, &s->stop);
583
        qemu_get_8s(f, &s->boundary);
584
        qemu_get_8s(f, &s->tsr);
585
        qemu_get_8s(f, &s->tpsr);
586
        qemu_get_be16s(f, &s->tcnt);
587
        qemu_get_be16s(f, &s->rcnt);
588
        qemu_get_be32s(f, &s->rsar);
589
        qemu_get_8s(f, &s->rsr);
590
        qemu_get_8s(f, &s->isr);
591
        qemu_get_8s(f, &s->dcfg);
592
        qemu_get_8s(f, &s->imr);
593
        qemu_get_buffer(f, s->phys, 6);
594
        qemu_get_8s(f, &s->curpag);
595
        qemu_get_buffer(f, s->mult, 8);
596
        qemu_get_be32s(f, &s->irq);
597
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
598

    
599
        return 0;
600
}
601

    
602
void isa_ne2000_init(int base, int irq, NetDriverState *nd)
603
{
604
    NE2000State *s;
605

    
606
    s = qemu_mallocz(sizeof(NE2000State));
607
    if (!s)
608
        return;
609
    
610
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
611
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
612

    
613
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
614
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
615
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
616
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
617

    
618
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
619
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
620
    s->irq = irq;
621
    s->nd = nd;
622

    
623
    ne2000_reset(s);
624

    
625
    qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
626

    
627
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
628

    
629
}
630

    
631
/***********************************************************/
632
/* PCI NE2000 definitions */
633

    
634
typedef struct PCINE2000State {
635
    PCIDevice dev;
636
    NE2000State ne2000;
637
} PCINE2000State;
638

    
639
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
640
                       uint32_t addr, uint32_t size, int type)
641
{
642
    PCINE2000State *d = (PCINE2000State *)pci_dev;
643
    NE2000State *s = &d->ne2000;
644

    
645
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
646
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
647

    
648
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
649
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
650
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
651
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
652
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
653
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
654

    
655
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
656
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
657
}
658

    
659
void pci_ne2000_init(PCIBus *bus, NetDriverState *nd)
660
{
661
    PCINE2000State *d;
662
    NE2000State *s;
663
    uint8_t *pci_conf;
664
    
665
    d = (PCINE2000State *)pci_register_device(bus,
666
                                              "NE2000", sizeof(PCINE2000State),
667
                                              -1, 
668
                                              NULL, NULL);
669
    pci_conf = d->dev.config;
670
    pci_conf[0x00] = 0xec; // Realtek 8029
671
    pci_conf[0x01] = 0x10;
672
    pci_conf[0x02] = 0x29;
673
    pci_conf[0x03] = 0x80;
674
    pci_conf[0x0a] = 0x00; // ethernet network controller 
675
    pci_conf[0x0b] = 0x02;
676
    pci_conf[0x0e] = 0x00; // header_type
677
    pci_conf[0x3d] = 1; // interrupt pin 0
678
    
679
    pci_register_io_region(&d->dev, 0, 0x100, 
680
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
681
    s = &d->ne2000;
682
    s->irq = 16; // PCI interrupt
683
    s->pci_dev = (PCIDevice *)d;
684
    s->nd = nd;
685
    ne2000_reset(s);
686
    qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
687

    
688
    /* XXX: instance number ? */
689
    register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
690
    register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load, 
691
                    &d->dev);
692
}