Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 414f0dab

History | View | Annotate | Download (91.2 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@end itemize
93

    
94
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95

    
96
@node Installation
97
@chapter Installation
98

    
99
If you want to compile QEMU yourself, see @ref{compilation}.
100

    
101
@menu
102
* install_linux::   Linux
103
* install_windows:: Windows
104
* install_mac::     Macintosh
105
@end menu
106

    
107
@node install_linux
108
@section Linux
109

    
110
If a precompiled package is available for your distribution - you just
111
have to install it. Otherwise, see @ref{compilation}.
112

    
113
@node install_windows
114
@section Windows
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node install_mac
120
@section Mac OS X
121

    
122
Download the experimental binary installer at
123
@url{http://www.free.oszoo.org/@/download.html}.
124

    
125
@node QEMU PC System emulator
126
@chapter QEMU PC System emulator
127

    
128
@menu
129
* pcsys_introduction:: Introduction
130
* pcsys_quickstart::   Quick Start
131
* sec_invocation::     Invocation
132
* pcsys_keys::         Keys
133
* pcsys_monitor::      QEMU Monitor
134
* disk_images::        Disk Images
135
* pcsys_network::      Network emulation
136
* direct_linux_boot::  Direct Linux Boot
137
* pcsys_usb::          USB emulation
138
* vnc_security::       VNC security
139
* gdb_usage::          GDB usage
140
* pcsys_os_specific::  Target OS specific information
141
@end menu
142

    
143
@node pcsys_introduction
144
@section Introduction
145

    
146
@c man begin DESCRIPTION
147

    
148
The QEMU PC System emulator simulates the
149
following peripherals:
150

    
151
@itemize @minus
152
@item
153
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154
@item
155
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156
extensions (hardware level, including all non standard modes).
157
@item
158
PS/2 mouse and keyboard
159
@item
160
2 PCI IDE interfaces with hard disk and CD-ROM support
161
@item
162
Floppy disk
163
@item
164
PCI/ISA PCI network adapters
165
@item
166
Serial ports
167
@item
168
Creative SoundBlaster 16 sound card
169
@item
170
ENSONIQ AudioPCI ES1370 sound card
171
@item
172
Intel 82801AA AC97 Audio compatible sound card
173
@item
174
Adlib(OPL2) - Yamaha YM3812 compatible chip
175
@item
176
Gravis Ultrasound GF1 sound card
177
@item
178
CS4231A compatible sound card
179
@item
180
PCI UHCI USB controller and a virtual USB hub.
181
@end itemize
182

    
183
SMP is supported with up to 255 CPUs.
184

    
185
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186
was configured with --audio-card-list option containing the name(s) of
187
required card(s).
188

    
189
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190
VGA BIOS.
191

    
192
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193

    
194
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195
by Tibor "TS" Sch?tz.
196

    
197
CS4231A is the chip used in Windows Sound System and GUSMAX products
198

    
199
@c man end
200

    
201
@node pcsys_quickstart
202
@section Quick Start
203

    
204
Download and uncompress the linux image (@file{linux.img}) and type:
205

    
206
@example
207
qemu linux.img
208
@end example
209

    
210
Linux should boot and give you a prompt.
211

    
212
@node sec_invocation
213
@section Invocation
214

    
215
@example
216
@c man begin SYNOPSIS
217
usage: qemu [options] [@var{disk_image}]
218
@c man end
219
@end example
220

    
221
@c man begin OPTIONS
222
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223

    
224
General options:
225
@table @option
226
@item -M @var{machine}
227
Select the emulated @var{machine} (@code{-M ?} for list)
228

    
229
@item -fda @var{file}
230
@item -fdb @var{file}
231
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233

    
234
@item -hda @var{file}
235
@item -hdb @var{file}
236
@item -hdc @var{file}
237
@item -hdd @var{file}
238
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239

    
240
@item -cdrom @var{file}
241
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242
@option{-cdrom} at the same time). You can use the host CD-ROM by
243
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244

    
245
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246

    
247
Define a new drive. Valid options are:
248

    
249
@table @code
250
@item file=@var{file}
251
This option defines which disk image (@pxref{disk_images}) to use with
252
this drive. If the filename contains comma, you must double it
253
(for instance, "file=my,,file" to use file "my,file").
254
@item if=@var{interface}
255
This option defines on which type on interface the drive is connected.
256
Available types are: ide, scsi, sd, mtd, floppy, pflash.
257
@item bus=@var{bus},unit=@var{unit}
258
These options define where is connected the drive by defining the bus number and
259
the unit id.
260
@item index=@var{index}
261
This option defines where is connected the drive by using an index in the list
262
of available connectors of a given interface type.
263
@item media=@var{media}
264
This option defines the type of the media: disk or cdrom.
265
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266
These options have the same definition as they have in @option{-hdachs}.
267
@item snapshot=@var{snapshot}
268
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269
@item cache=@var{cache}
270
@var{cache} is "on" or "off" and allows to disable host cache to access data.
271
@item format=@var{format}
272
Specify which disk @var{format} will be used rather than detecting
273
the format.  Can be used to specifiy format=raw to avoid interpreting
274
an untrusted format header.
275
@end table
276

    
277
Instead of @option{-cdrom} you can use:
278
@example
279
qemu -drive file=file,index=2,media=cdrom
280
@end example
281

    
282
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283
use:
284
@example
285
qemu -drive file=file,index=0,media=disk
286
qemu -drive file=file,index=1,media=disk
287
qemu -drive file=file,index=2,media=disk
288
qemu -drive file=file,index=3,media=disk
289
@end example
290

    
291
You can connect a CDROM to the slave of ide0:
292
@example
293
qemu -drive file=file,if=ide,index=1,media=cdrom
294
@end example
295

    
296
If you don't specify the "file=" argument, you define an empty drive:
297
@example
298
qemu -drive if=ide,index=1,media=cdrom
299
@end example
300

    
301
You can connect a SCSI disk with unit ID 6 on the bus #0:
302
@example
303
qemu -drive file=file,if=scsi,bus=0,unit=6
304
@end example
305

    
306
Instead of @option{-fda}, @option{-fdb}, you can use:
307
@example
308
qemu -drive file=file,index=0,if=floppy
309
qemu -drive file=file,index=1,if=floppy
310
@end example
311

    
312
By default, @var{interface} is "ide" and @var{index} is automatically
313
incremented:
314
@example
315
qemu -drive file=a -drive file=b"
316
@end example
317
is interpreted like:
318
@example
319
qemu -hda a -hdb b
320
@end example
321

    
322
@item -boot [a|c|d|n]
323
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324
is the default.
325

    
326
@item -snapshot
327
Write to temporary files instead of disk image files. In this case,
328
the raw disk image you use is not written back. You can however force
329
the write back by pressing @key{C-a s} (@pxref{disk_images}).
330

    
331
@item -no-fd-bootchk
332
Disable boot signature checking for floppy disks in Bochs BIOS. It may
333
be needed to boot from old floppy disks.
334

    
335
@item -m @var{megs}
336
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
337
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338
gigabytes respectively.
339

    
340
@item -smp @var{n}
341
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343
to 4.
344

    
345
@item -audio-help
346

    
347
Will show the audio subsystem help: list of drivers, tunable
348
parameters.
349

    
350
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351

    
352
Enable audio and selected sound hardware. Use ? to print all
353
available sound hardware.
354

    
355
@example
356
qemu -soundhw sb16,adlib hda
357
qemu -soundhw es1370 hda
358
qemu -soundhw ac97 hda
359
qemu -soundhw all hda
360
qemu -soundhw ?
361
@end example
362

    
363
Note that Linux's i810_audio OSS kernel (for AC97) module might
364
require manually specifying clocking.
365

    
366
@example
367
modprobe i810_audio clocking=48000
368
@end example
369

    
370
@item -localtime
371
Set the real time clock to local time (the default is to UTC
372
time). This option is needed to have correct date in MS-DOS or
373
Windows.
374

    
375
@item -startdate @var{date}
376
Set the initial date of the real time clock. Valid format for
377
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378
@code{2006-06-17}. The default value is @code{now}.
379

    
380
@item -pidfile @var{file}
381
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382
from a script.
383

    
384
@item -daemonize
385
Daemonize the QEMU process after initialization.  QEMU will not detach from
386
standard IO until it is ready to receive connections on any of its devices.
387
This option is a useful way for external programs to launch QEMU without having
388
to cope with initialization race conditions.
389

    
390
@item -win2k-hack
391
Use it when installing Windows 2000 to avoid a disk full bug. After
392
Windows 2000 is installed, you no longer need this option (this option
393
slows down the IDE transfers).
394

    
395
@item -option-rom @var{file}
396
Load the contents of @var{file} as an option ROM.
397
This option is useful to load things like EtherBoot.
398

    
399
@item -name @var{name}
400
Sets the @var{name} of the guest.
401
This name will be display in the SDL window caption.
402
The @var{name} will also be used for the VNC server.
403

    
404
@end table
405

    
406
Display options:
407
@table @option
408

    
409
@item -nographic
410

    
411
Normally, QEMU uses SDL to display the VGA output. With this option,
412
you can totally disable graphical output so that QEMU is a simple
413
command line application. The emulated serial port is redirected on
414
the console. Therefore, you can still use QEMU to debug a Linux kernel
415
with a serial console.
416

    
417
@item -curses
418

    
419
Normally, QEMU uses SDL to display the VGA output.  With this option,
420
QEMU can display the VGA output when in text mode using a 
421
curses/ncurses interface.  Nothing is displayed in graphical mode.
422

    
423
@item -no-frame
424

    
425
Do not use decorations for SDL windows and start them using the whole
426
available screen space. This makes the using QEMU in a dedicated desktop
427
workspace more convenient.
428

    
429
@item -no-quit
430

    
431
Disable SDL window close capability.
432

    
433
@item -full-screen
434
Start in full screen.
435

    
436
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437

    
438
Normally, QEMU uses SDL to display the VGA output.  With this option,
439
you can have QEMU listen on VNC display @var{display} and redirect the VGA
440
display over the VNC session.  It is very useful to enable the usb
441
tablet device when using this option (option @option{-usbdevice
442
tablet}). When using the VNC display, you must use the @option{-k}
443
parameter to set the keyboard layout if you are not using en-us. Valid
444
syntax for the @var{display} is
445

    
446
@table @code
447

    
448
@item @var{host}:@var{d}
449

    
450
TCP connections will only be allowed from @var{host} on display @var{d}.
451
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452
be omitted in which case the server will accept connections from any host.
453

    
454
@item @code{unix}:@var{path}
455

    
456
Connections will be allowed over UNIX domain sockets where @var{path} is the
457
location of a unix socket to listen for connections on.
458

    
459
@item none
460

    
461
VNC is initialized but not started. The monitor @code{change} command
462
can be used to later start the VNC server.
463

    
464
@end table
465

    
466
Following the @var{display} value there may be one or more @var{option} flags
467
separated by commas. Valid options are
468

    
469
@table @code
470

    
471
@item reverse
472

    
473
Connect to a listening VNC client via a ``reverse'' connection. The
474
client is specified by the @var{display}. For reverse network
475
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476
is a TCP port number, not a display number.
477

    
478
@item password
479

    
480
Require that password based authentication is used for client connections.
481
The password must be set separately using the @code{change} command in the
482
@ref{pcsys_monitor}
483

    
484
@item tls
485

    
486
Require that client use TLS when communicating with the VNC server. This
487
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488
attack. It is recommended that this option be combined with either the
489
@var{x509} or @var{x509verify} options.
490

    
491
@item x509=@var{/path/to/certificate/dir}
492

    
493
Valid if @option{tls} is specified. Require that x509 credentials are used
494
for negotiating the TLS session. The server will send its x509 certificate
495
to the client. It is recommended that a password be set on the VNC server
496
to provide authentication of the client when this is used. The path following
497
this option specifies where the x509 certificates are to be loaded from.
498
See the @ref{vnc_security} section for details on generating certificates.
499

    
500
@item x509verify=@var{/path/to/certificate/dir}
501

    
502
Valid if @option{tls} is specified. Require that x509 credentials are used
503
for negotiating the TLS session. The server will send its x509 certificate
504
to the client, and request that the client send its own x509 certificate.
505
The server will validate the client's certificate against the CA certificate,
506
and reject clients when validation fails. If the certificate authority is
507
trusted, this is a sufficient authentication mechanism. You may still wish
508
to set a password on the VNC server as a second authentication layer. The
509
path following this option specifies where the x509 certificates are to
510
be loaded from. See the @ref{vnc_security} section for details on generating
511
certificates.
512

    
513
@end table
514

    
515
@item -k @var{language}
516

    
517
Use keyboard layout @var{language} (for example @code{fr} for
518
French). This option is only needed where it is not easy to get raw PC
519
keycodes (e.g. on Macs, with some X11 servers or with a VNC
520
display). You don't normally need to use it on PC/Linux or PC/Windows
521
hosts.
522

    
523
The available layouts are:
524
@example
525
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
526
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
527
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
528
@end example
529

    
530
The default is @code{en-us}.
531

    
532
@end table
533

    
534
USB options:
535
@table @option
536

    
537
@item -usb
538
Enable the USB driver (will be the default soon)
539

    
540
@item -usbdevice @var{devname}
541
Add the USB device @var{devname}. @xref{usb_devices}.
542

    
543
@table @code
544

    
545
@item mouse
546
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547

    
548
@item tablet
549
Pointer device that uses absolute coordinates (like a touchscreen). This
550
means qemu is able to report the mouse position without having to grab the
551
mouse. Also overrides the PS/2 mouse emulation when activated.
552

    
553
@item disk:file
554
Mass storage device based on file
555

    
556
@item host:bus.addr
557
Pass through the host device identified by bus.addr (Linux only).
558

    
559
@item host:vendor_id:product_id
560
Pass through the host device identified by vendor_id:product_id (Linux only).
561

    
562
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
563
Serial converter to host character device @var{dev}, see @code{-serial} for the
564
available devices.
565

    
566
@item braille
567
Braille device.  This will use BrlAPI to display the braille output on a real
568
or fake device.
569

    
570
@item net:options
571
Network adapter that supports CDC ethernet and RNDIS protocols.
572

    
573
@end table
574

    
575
@end table
576

    
577
Network options:
578

    
579
@table @option
580

    
581
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
582
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
583
= 0 is the default). The NIC is an ne2k_pci by default on the PC
584
target. Optionally, the MAC address can be changed. If no
585
@option{-net} option is specified, a single NIC is created.
586
Qemu can emulate several different models of network card.
587
Valid values for @var{type} are
588
@code{i82551}, @code{i82557b}, @code{i82559er},
589
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
590
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
591
Not all devices are supported on all targets.  Use -net nic,model=?
592
for a list of available devices for your target.
593

    
594
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
595
Use the user mode network stack which requires no administrator
596
privilege to run.  @option{hostname=name} can be used to specify the client
597
hostname reported by the builtin DHCP server.
598

    
599
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
600
Connect the host TAP network interface @var{name} to VLAN @var{n} and
601
use the network script @var{file} to configure it. The default
602
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
603
disable script execution. If @var{name} is not
604
provided, the OS automatically provides one. @option{fd}=@var{h} can be
605
used to specify the handle of an already opened host TAP interface. Example:
606

    
607
@example
608
qemu linux.img -net nic -net tap
609
@end example
610

    
611
More complicated example (two NICs, each one connected to a TAP device)
612
@example
613
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
614
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
615
@end example
616

    
617

    
618
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
619

    
620
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
621
machine using a TCP socket connection. If @option{listen} is
622
specified, QEMU waits for incoming connections on @var{port}
623
(@var{host} is optional). @option{connect} is used to connect to
624
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
625
specifies an already opened TCP socket.
626

    
627
Example:
628
@example
629
# launch a first QEMU instance
630
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
631
               -net socket,listen=:1234
632
# connect the VLAN 0 of this instance to the VLAN 0
633
# of the first instance
634
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
635
               -net socket,connect=127.0.0.1:1234
636
@end example
637

    
638
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
639

    
640
Create a VLAN @var{n} shared with another QEMU virtual
641
machines using a UDP multicast socket, effectively making a bus for
642
every QEMU with same multicast address @var{maddr} and @var{port}.
643
NOTES:
644
@enumerate
645
@item
646
Several QEMU can be running on different hosts and share same bus (assuming
647
correct multicast setup for these hosts).
648
@item
649
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
650
@url{http://user-mode-linux.sf.net}.
651
@item
652
Use @option{fd=h} to specify an already opened UDP multicast socket.
653
@end enumerate
654

    
655
Example:
656
@example
657
# launch one QEMU instance
658
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
659
               -net socket,mcast=230.0.0.1:1234
660
# launch another QEMU instance on same "bus"
661
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
662
               -net socket,mcast=230.0.0.1:1234
663
# launch yet another QEMU instance on same "bus"
664
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
665
               -net socket,mcast=230.0.0.1:1234
666
@end example
667

    
668
Example (User Mode Linux compat.):
669
@example
670
# launch QEMU instance (note mcast address selected
671
# is UML's default)
672
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
673
               -net socket,mcast=239.192.168.1:1102
674
# launch UML
675
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
676
@end example
677

    
678
@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
679
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
680
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
681
and MODE @var{octalmode} to change default ownership and permissions for
682
communication port. This option is available only if QEMU has been compiled
683
with vde support enabled.
684

    
685
Example:
686
@example
687
# launch vde switch
688
vde_switch -F -sock /tmp/myswitch
689
# launch QEMU instance
690
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
691
@end example
692

    
693
@item -net none
694
Indicate that no network devices should be configured. It is used to
695
override the default configuration (@option{-net nic -net user}) which
696
is activated if no @option{-net} options are provided.
697

    
698
@item -tftp @var{dir}
699
When using the user mode network stack, activate a built-in TFTP
700
server. The files in @var{dir} will be exposed as the root of a TFTP server.
701
The TFTP client on the guest must be configured in binary mode (use the command
702
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
703
usual 10.0.2.2.
704

    
705
@item -bootp @var{file}
706
When using the user mode network stack, broadcast @var{file} as the BOOTP
707
filename.  In conjunction with @option{-tftp}, this can be used to network boot
708
a guest from a local directory.
709

    
710
Example (using pxelinux):
711
@example
712
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
713
@end example
714

    
715
@item -smb @var{dir}
716
When using the user mode network stack, activate a built-in SMB
717
server so that Windows OSes can access to the host files in @file{@var{dir}}
718
transparently.
719

    
720
In the guest Windows OS, the line:
721
@example
722
10.0.2.4 smbserver
723
@end example
724
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
725
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
726

    
727
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
728

    
729
Note that a SAMBA server must be installed on the host OS in
730
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
731
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
732

    
733
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
734

    
735
When using the user mode network stack, redirect incoming TCP or UDP
736
connections to the host port @var{host-port} to the guest
737
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
738
is not specified, its value is 10.0.2.15 (default address given by the
739
built-in DHCP server).
740

    
741
For example, to redirect host X11 connection from screen 1 to guest
742
screen 0, use the following:
743

    
744
@example
745
# on the host
746
qemu -redir tcp:6001::6000 [...]
747
# this host xterm should open in the guest X11 server
748
xterm -display :1
749
@end example
750

    
751
To redirect telnet connections from host port 5555 to telnet port on
752
the guest, use the following:
753

    
754
@example
755
# on the host
756
qemu -redir tcp:5555::23 [...]
757
telnet localhost 5555
758
@end example
759

    
760
Then when you use on the host @code{telnet localhost 5555}, you
761
connect to the guest telnet server.
762

    
763
@end table
764

    
765
Linux boot specific: When using these options, you can use a given
766
Linux kernel without installing it in the disk image. It can be useful
767
for easier testing of various kernels.
768

    
769
@table @option
770

    
771
@item -kernel @var{bzImage}
772
Use @var{bzImage} as kernel image.
773

    
774
@item -append @var{cmdline}
775
Use @var{cmdline} as kernel command line
776

    
777
@item -initrd @var{file}
778
Use @var{file} as initial ram disk.
779

    
780
@end table
781

    
782
Debug/Expert options:
783
@table @option
784

    
785
@item -serial @var{dev}
786
Redirect the virtual serial port to host character device
787
@var{dev}. The default device is @code{vc} in graphical mode and
788
@code{stdio} in non graphical mode.
789

    
790
This option can be used several times to simulate up to 4 serials
791
ports.
792

    
793
Use @code{-serial none} to disable all serial ports.
794

    
795
Available character devices are:
796
@table @code
797
@item vc[:WxH]
798
Virtual console. Optionally, a width and height can be given in pixel with
799
@example
800
vc:800x600
801
@end example
802
It is also possible to specify width or height in characters:
803
@example
804
vc:80Cx24C
805
@end example
806
@item pty
807
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
808
@item none
809
No device is allocated.
810
@item null
811
void device
812
@item /dev/XXX
813
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
814
parameters are set according to the emulated ones.
815
@item /dev/parport@var{N}
816
[Linux only, parallel port only] Use host parallel port
817
@var{N}. Currently SPP and EPP parallel port features can be used.
818
@item file:@var{filename}
819
Write output to @var{filename}. No character can be read.
820
@item stdio
821
[Unix only] standard input/output
822
@item pipe:@var{filename}
823
name pipe @var{filename}
824
@item COM@var{n}
825
[Windows only] Use host serial port @var{n}
826
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
827
This implements UDP Net Console.
828
When @var{remote_host} or @var{src_ip} are not specified
829
they default to @code{0.0.0.0}.
830
When not using a specified @var{src_port} a random port is automatically chosen.
831

    
832
If you just want a simple readonly console you can use @code{netcat} or
833
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
834
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
835
will appear in the netconsole session.
836

    
837
If you plan to send characters back via netconsole or you want to stop
838
and start qemu a lot of times, you should have qemu use the same
839
source port each time by using something like @code{-serial
840
udp::4555@@:4556} to qemu. Another approach is to use a patched
841
version of netcat which can listen to a TCP port and send and receive
842
characters via udp.  If you have a patched version of netcat which
843
activates telnet remote echo and single char transfer, then you can
844
use the following options to step up a netcat redirector to allow
845
telnet on port 5555 to access the qemu port.
846
@table @code
847
@item Qemu Options:
848
-serial udp::4555@@:4556
849
@item netcat options:
850
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
851
@item telnet options:
852
localhost 5555
853
@end table
854

    
855

    
856
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
857
The TCP Net Console has two modes of operation.  It can send the serial
858
I/O to a location or wait for a connection from a location.  By default
859
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
860
the @var{server} option QEMU will wait for a client socket application
861
to connect to the port before continuing, unless the @code{nowait}
862
option was specified.  The @code{nodelay} option disables the Nagle buffering
863
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
864
one TCP connection at a time is accepted. You can use @code{telnet} to
865
connect to the corresponding character device.
866
@table @code
867
@item Example to send tcp console to 192.168.0.2 port 4444
868
-serial tcp:192.168.0.2:4444
869
@item Example to listen and wait on port 4444 for connection
870
-serial tcp::4444,server
871
@item Example to not wait and listen on ip 192.168.0.100 port 4444
872
-serial tcp:192.168.0.100:4444,server,nowait
873
@end table
874

    
875
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
876
The telnet protocol is used instead of raw tcp sockets.  The options
877
work the same as if you had specified @code{-serial tcp}.  The
878
difference is that the port acts like a telnet server or client using
879
telnet option negotiation.  This will also allow you to send the
880
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
881
sequence.  Typically in unix telnet you do it with Control-] and then
882
type "send break" followed by pressing the enter key.
883

    
884
@item unix:@var{path}[,server][,nowait]
885
A unix domain socket is used instead of a tcp socket.  The option works the
886
same as if you had specified @code{-serial tcp} except the unix domain socket
887
@var{path} is used for connections.
888

    
889
@item mon:@var{dev_string}
890
This is a special option to allow the monitor to be multiplexed onto
891
another serial port.  The monitor is accessed with key sequence of
892
@key{Control-a} and then pressing @key{c}. See monitor access
893
@ref{pcsys_keys} in the -nographic section for more keys.
894
@var{dev_string} should be any one of the serial devices specified
895
above.  An example to multiplex the monitor onto a telnet server
896
listening on port 4444 would be:
897
@table @code
898
@item -serial mon:telnet::4444,server,nowait
899
@end table
900

    
901
@item braille
902
Braille device.  This will use BrlAPI to display the braille output on a real
903
or fake device.
904

    
905
@end table
906

    
907
@item -parallel @var{dev}
908
Redirect the virtual parallel port to host device @var{dev} (same
909
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
910
be used to use hardware devices connected on the corresponding host
911
parallel port.
912

    
913
This option can be used several times to simulate up to 3 parallel
914
ports.
915

    
916
Use @code{-parallel none} to disable all parallel ports.
917

    
918
@item -monitor @var{dev}
919
Redirect the monitor to host device @var{dev} (same devices as the
920
serial port).
921
The default device is @code{vc} in graphical mode and @code{stdio} in
922
non graphical mode.
923

    
924
@item -echr numeric_ascii_value
925
Change the escape character used for switching to the monitor when using
926
monitor and serial sharing.  The default is @code{0x01} when using the
927
@code{-nographic} option.  @code{0x01} is equal to pressing
928
@code{Control-a}.  You can select a different character from the ascii
929
control keys where 1 through 26 map to Control-a through Control-z.  For
930
instance you could use the either of the following to change the escape
931
character to Control-t.
932
@table @code
933
@item -echr 0x14
934
@item -echr 20
935
@end table
936

    
937
@item -s
938
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
939
@item -p @var{port}
940
Change gdb connection port.  @var{port} can be either a decimal number
941
to specify a TCP port, or a host device (same devices as the serial port).
942
@item -S
943
Do not start CPU at startup (you must type 'c' in the monitor).
944
@item -d
945
Output log in /tmp/qemu.log
946
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
947
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
948
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
949
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
950
all those parameters. This option is useful for old MS-DOS disk
951
images.
952

    
953
@item -L path
954
Set the directory for the BIOS, VGA BIOS and keymaps.
955

    
956
@item -std-vga
957
Simulate a standard VGA card with Bochs VBE extensions (default is
958
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
959
VBE extensions (e.g. Windows XP) and if you want to use high
960
resolution modes (>= 1280x1024x16) then you should use this option.
961

    
962
@item -no-acpi
963
Disable ACPI (Advanced Configuration and Power Interface) support. Use
964
it if your guest OS complains about ACPI problems (PC target machine
965
only).
966

    
967
@item -no-reboot
968
Exit instead of rebooting.
969

    
970
@item -no-shutdown
971
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
972
This allows for instance switching to monitor to commit changes to the
973
disk image.
974

    
975
@item -loadvm file
976
Start right away with a saved state (@code{loadvm} in monitor)
977

    
978
@item -semihosting
979
Enable semihosting syscall emulation (ARM and M68K target machines only).
980

    
981
On ARM this implements the "Angel" interface.
982
On M68K this implements the "ColdFire GDB" interface used by libgloss.
983

    
984
Note that this allows guest direct access to the host filesystem,
985
so should only be used with trusted guest OS.
986

    
987
@item -icount [N|auto]
988
Enable virtual instruction counter.  The virtual cpu will execute one
989
instruction every 2^N ns of virtual time.  If @code{auto} is specified
990
then the virtual cpu speed will be automatically adjusted to keep virtual
991
time within a few seconds of real time.
992

    
993
Note that while this option can give deterministic behavior, it does not
994
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
995
order cores with complex cache hierarchies.  The number of instructions
996
executed often has little or no correlation with actual performance.
997
@end table
998

    
999
@c man end
1000

    
1001
@node pcsys_keys
1002
@section Keys
1003

    
1004
@c man begin OPTIONS
1005

    
1006
During the graphical emulation, you can use the following keys:
1007
@table @key
1008
@item Ctrl-Alt-f
1009
Toggle full screen
1010

    
1011
@item Ctrl-Alt-n
1012
Switch to virtual console 'n'. Standard console mappings are:
1013
@table @emph
1014
@item 1
1015
Target system display
1016
@item 2
1017
Monitor
1018
@item 3
1019
Serial port
1020
@end table
1021

    
1022
@item Ctrl-Alt
1023
Toggle mouse and keyboard grab.
1024
@end table
1025

    
1026
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1027
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1028

    
1029
During emulation, if you are using the @option{-nographic} option, use
1030
@key{Ctrl-a h} to get terminal commands:
1031

    
1032
@table @key
1033
@item Ctrl-a h
1034
Print this help
1035
@item Ctrl-a x
1036
Exit emulator
1037
@item Ctrl-a s
1038
Save disk data back to file (if -snapshot)
1039
@item Ctrl-a t
1040
toggle console timestamps
1041
@item Ctrl-a b
1042
Send break (magic sysrq in Linux)
1043
@item Ctrl-a c
1044
Switch between console and monitor
1045
@item Ctrl-a Ctrl-a
1046
Send Ctrl-a
1047
@end table
1048
@c man end
1049

    
1050
@ignore
1051

    
1052
@c man begin SEEALSO
1053
The HTML documentation of QEMU for more precise information and Linux
1054
user mode emulator invocation.
1055
@c man end
1056

    
1057
@c man begin AUTHOR
1058
Fabrice Bellard
1059
@c man end
1060

    
1061
@end ignore
1062

    
1063
@node pcsys_monitor
1064
@section QEMU Monitor
1065

    
1066
The QEMU monitor is used to give complex commands to the QEMU
1067
emulator. You can use it to:
1068

    
1069
@itemize @minus
1070

    
1071
@item
1072
Remove or insert removable media images
1073
(such as CD-ROM or floppies).
1074

    
1075
@item
1076
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1077
from a disk file.
1078

    
1079
@item Inspect the VM state without an external debugger.
1080

    
1081
@end itemize
1082

    
1083
@subsection Commands
1084

    
1085
The following commands are available:
1086

    
1087
@table @option
1088

    
1089
@item help or ? [@var{cmd}]
1090
Show the help for all commands or just for command @var{cmd}.
1091

    
1092
@item commit
1093
Commit changes to the disk images (if -snapshot is used).
1094

    
1095
@item info @var{subcommand}
1096
Show various information about the system state.
1097

    
1098
@table @option
1099
@item info network
1100
show the various VLANs and the associated devices
1101
@item info block
1102
show the block devices
1103
@item info registers
1104
show the cpu registers
1105
@item info history
1106
show the command line history
1107
@item info pci
1108
show emulated PCI device
1109
@item info usb
1110
show USB devices plugged on the virtual USB hub
1111
@item info usbhost
1112
show all USB host devices
1113
@item info capture
1114
show information about active capturing
1115
@item info snapshots
1116
show list of VM snapshots
1117
@item info mice
1118
show which guest mouse is receiving events
1119
@end table
1120

    
1121
@item q or quit
1122
Quit the emulator.
1123

    
1124
@item eject [-f] @var{device}
1125
Eject a removable medium (use -f to force it).
1126

    
1127
@item change @var{device} @var{setting}
1128

    
1129
Change the configuration of a device.
1130

    
1131
@table @option
1132
@item change @var{diskdevice} @var{filename}
1133
Change the medium for a removable disk device to point to @var{filename}. eg
1134

    
1135
@example
1136
(qemu) change ide1-cd0 /path/to/some.iso
1137
@end example
1138

    
1139
@item change vnc @var{display},@var{options}
1140
Change the configuration of the VNC server. The valid syntax for @var{display}
1141
and @var{options} are described at @ref{sec_invocation}. eg
1142

    
1143
@example
1144
(qemu) change vnc localhost:1
1145
@end example
1146

    
1147
@item change vnc password
1148

    
1149
Change the password associated with the VNC server. The monitor will prompt for
1150
the new password to be entered. VNC passwords are only significant upto 8 letters.
1151
eg.
1152

    
1153
@example
1154
(qemu) change vnc password
1155
Password: ********
1156
@end example
1157

    
1158
@end table
1159

    
1160
@item screendump @var{filename}
1161
Save screen into PPM image @var{filename}.
1162

    
1163
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1164
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1165
with optional scroll axis @var{dz}.
1166

    
1167
@item mouse_button @var{val}
1168
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1169

    
1170
@item mouse_set @var{index}
1171
Set which mouse device receives events at given @var{index}, index
1172
can be obtained with
1173
@example
1174
info mice
1175
@end example
1176

    
1177
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1178
Capture audio into @var{filename}. Using sample rate @var{frequency}
1179
bits per sample @var{bits} and number of channels @var{channels}.
1180

    
1181
Defaults:
1182
@itemize @minus
1183
@item Sample rate = 44100 Hz - CD quality
1184
@item Bits = 16
1185
@item Number of channels = 2 - Stereo
1186
@end itemize
1187

    
1188
@item stopcapture @var{index}
1189
Stop capture with a given @var{index}, index can be obtained with
1190
@example
1191
info capture
1192
@end example
1193

    
1194
@item log @var{item1}[,...]
1195
Activate logging of the specified items to @file{/tmp/qemu.log}.
1196

    
1197
@item savevm [@var{tag}|@var{id}]
1198
Create a snapshot of the whole virtual machine. If @var{tag} is
1199
provided, it is used as human readable identifier. If there is already
1200
a snapshot with the same tag or ID, it is replaced. More info at
1201
@ref{vm_snapshots}.
1202

    
1203
@item loadvm @var{tag}|@var{id}
1204
Set the whole virtual machine to the snapshot identified by the tag
1205
@var{tag} or the unique snapshot ID @var{id}.
1206

    
1207
@item delvm @var{tag}|@var{id}
1208
Delete the snapshot identified by @var{tag} or @var{id}.
1209

    
1210
@item stop
1211
Stop emulation.
1212

    
1213
@item c or cont
1214
Resume emulation.
1215

    
1216
@item gdbserver [@var{port}]
1217
Start gdbserver session (default @var{port}=1234)
1218

    
1219
@item x/fmt @var{addr}
1220
Virtual memory dump starting at @var{addr}.
1221

    
1222
@item xp /@var{fmt} @var{addr}
1223
Physical memory dump starting at @var{addr}.
1224

    
1225
@var{fmt} is a format which tells the command how to format the
1226
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1227

    
1228
@table @var
1229
@item count
1230
is the number of items to be dumped.
1231

    
1232
@item format
1233
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1234
c (char) or i (asm instruction).
1235

    
1236
@item size
1237
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1238
@code{h} or @code{w} can be specified with the @code{i} format to
1239
respectively select 16 or 32 bit code instruction size.
1240

    
1241
@end table
1242

    
1243
Examples:
1244
@itemize
1245
@item
1246
Dump 10 instructions at the current instruction pointer:
1247
@example
1248
(qemu) x/10i $eip
1249
0x90107063:  ret
1250
0x90107064:  sti
1251
0x90107065:  lea    0x0(%esi,1),%esi
1252
0x90107069:  lea    0x0(%edi,1),%edi
1253
0x90107070:  ret
1254
0x90107071:  jmp    0x90107080
1255
0x90107073:  nop
1256
0x90107074:  nop
1257
0x90107075:  nop
1258
0x90107076:  nop
1259
@end example
1260

    
1261
@item
1262
Dump 80 16 bit values at the start of the video memory.
1263
@smallexample
1264
(qemu) xp/80hx 0xb8000
1265
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1266
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1267
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1268
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1269
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1270
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1271
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1272
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1273
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1274
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1275
@end smallexample
1276
@end itemize
1277

    
1278
@item p or print/@var{fmt} @var{expr}
1279

    
1280
Print expression value. Only the @var{format} part of @var{fmt} is
1281
used.
1282

    
1283
@item sendkey @var{keys}
1284

    
1285
Send @var{keys} to the emulator. Use @code{-} to press several keys
1286
simultaneously. Example:
1287
@example
1288
sendkey ctrl-alt-f1
1289
@end example
1290

    
1291
This command is useful to send keys that your graphical user interface
1292
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1293

    
1294
@item system_reset
1295

    
1296
Reset the system.
1297

    
1298
@item boot_set @var{bootdevicelist}
1299

    
1300
Define new values for the boot device list. Those values will override
1301
the values specified on the command line through the @code{-boot} option.
1302

    
1303
The values that can be specified here depend on the machine type, but are
1304
the same that can be specified in the @code{-boot} command line option.
1305

    
1306
@item usb_add @var{devname}
1307

    
1308
Add the USB device @var{devname}.  For details of available devices see
1309
@ref{usb_devices}
1310

    
1311
@item usb_del @var{devname}
1312

    
1313
Remove the USB device @var{devname} from the QEMU virtual USB
1314
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1315
command @code{info usb} to see the devices you can remove.
1316

    
1317
@end table
1318

    
1319
@subsection Integer expressions
1320

    
1321
The monitor understands integers expressions for every integer
1322
argument. You can use register names to get the value of specifics
1323
CPU registers by prefixing them with @emph{$}.
1324

    
1325
@node disk_images
1326
@section Disk Images
1327

    
1328
Since version 0.6.1, QEMU supports many disk image formats, including
1329
growable disk images (their size increase as non empty sectors are
1330
written), compressed and encrypted disk images. Version 0.8.3 added
1331
the new qcow2 disk image format which is essential to support VM
1332
snapshots.
1333

    
1334
@menu
1335
* disk_images_quickstart::    Quick start for disk image creation
1336
* disk_images_snapshot_mode:: Snapshot mode
1337
* vm_snapshots::              VM snapshots
1338
* qemu_img_invocation::       qemu-img Invocation
1339
* qemu_nbd_invocation::       qemu-nbd Invocation
1340
* host_drives::               Using host drives
1341
* disk_images_fat_images::    Virtual FAT disk images
1342
* disk_images_nbd::           NBD access
1343
@end menu
1344

    
1345
@node disk_images_quickstart
1346
@subsection Quick start for disk image creation
1347

    
1348
You can create a disk image with the command:
1349
@example
1350
qemu-img create myimage.img mysize
1351
@end example
1352
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1353
size in kilobytes. You can add an @code{M} suffix to give the size in
1354
megabytes and a @code{G} suffix for gigabytes.
1355

    
1356
See @ref{qemu_img_invocation} for more information.
1357

    
1358
@node disk_images_snapshot_mode
1359
@subsection Snapshot mode
1360

    
1361
If you use the option @option{-snapshot}, all disk images are
1362
considered as read only. When sectors in written, they are written in
1363
a temporary file created in @file{/tmp}. You can however force the
1364
write back to the raw disk images by using the @code{commit} monitor
1365
command (or @key{C-a s} in the serial console).
1366

    
1367
@node vm_snapshots
1368
@subsection VM snapshots
1369

    
1370
VM snapshots are snapshots of the complete virtual machine including
1371
CPU state, RAM, device state and the content of all the writable
1372
disks. In order to use VM snapshots, you must have at least one non
1373
removable and writable block device using the @code{qcow2} disk image
1374
format. Normally this device is the first virtual hard drive.
1375

    
1376
Use the monitor command @code{savevm} to create a new VM snapshot or
1377
replace an existing one. A human readable name can be assigned to each
1378
snapshot in addition to its numerical ID.
1379

    
1380
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1381
a VM snapshot. @code{info snapshots} lists the available snapshots
1382
with their associated information:
1383

    
1384
@example
1385
(qemu) info snapshots
1386
Snapshot devices: hda
1387
Snapshot list (from hda):
1388
ID        TAG                 VM SIZE                DATE       VM CLOCK
1389
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1390
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1391
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1392
@end example
1393

    
1394
A VM snapshot is made of a VM state info (its size is shown in
1395
@code{info snapshots}) and a snapshot of every writable disk image.
1396
The VM state info is stored in the first @code{qcow2} non removable
1397
and writable block device. The disk image snapshots are stored in
1398
every disk image. The size of a snapshot in a disk image is difficult
1399
to evaluate and is not shown by @code{info snapshots} because the
1400
associated disk sectors are shared among all the snapshots to save
1401
disk space (otherwise each snapshot would need a full copy of all the
1402
disk images).
1403

    
1404
When using the (unrelated) @code{-snapshot} option
1405
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1406
but they are deleted as soon as you exit QEMU.
1407

    
1408
VM snapshots currently have the following known limitations:
1409
@itemize
1410
@item
1411
They cannot cope with removable devices if they are removed or
1412
inserted after a snapshot is done.
1413
@item
1414
A few device drivers still have incomplete snapshot support so their
1415
state is not saved or restored properly (in particular USB).
1416
@end itemize
1417

    
1418
@node qemu_img_invocation
1419
@subsection @code{qemu-img} Invocation
1420

    
1421
@include qemu-img.texi
1422

    
1423
@node qemu_nbd_invocation
1424
@subsection @code{qemu-nbd} Invocation
1425

    
1426
@include qemu-nbd.texi
1427

    
1428
@node host_drives
1429
@subsection Using host drives
1430

    
1431
In addition to disk image files, QEMU can directly access host
1432
devices. We describe here the usage for QEMU version >= 0.8.3.
1433

    
1434
@subsubsection Linux
1435

    
1436
On Linux, you can directly use the host device filename instead of a
1437
disk image filename provided you have enough privileges to access
1438
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1439
@file{/dev/fd0} for the floppy.
1440

    
1441
@table @code
1442
@item CD
1443
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1444
specific code to detect CDROM insertion or removal. CDROM ejection by
1445
the guest OS is supported. Currently only data CDs are supported.
1446
@item Floppy
1447
You can specify a floppy device even if no floppy is loaded. Floppy
1448
removal is currently not detected accurately (if you change floppy
1449
without doing floppy access while the floppy is not loaded, the guest
1450
OS will think that the same floppy is loaded).
1451
@item Hard disks
1452
Hard disks can be used. Normally you must specify the whole disk
1453
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1454
see it as a partitioned disk. WARNING: unless you know what you do, it
1455
is better to only make READ-ONLY accesses to the hard disk otherwise
1456
you may corrupt your host data (use the @option{-snapshot} command
1457
line option or modify the device permissions accordingly).
1458
@end table
1459

    
1460
@subsubsection Windows
1461

    
1462
@table @code
1463
@item CD
1464
The preferred syntax is the drive letter (e.g. @file{d:}). The
1465
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1466
supported as an alias to the first CDROM drive.
1467

    
1468
Currently there is no specific code to handle removable media, so it
1469
is better to use the @code{change} or @code{eject} monitor commands to
1470
change or eject media.
1471
@item Hard disks
1472
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1473
where @var{N} is the drive number (0 is the first hard disk).
1474

    
1475
WARNING: unless you know what you do, it is better to only make
1476
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1477
host data (use the @option{-snapshot} command line so that the
1478
modifications are written in a temporary file).
1479
@end table
1480

    
1481

    
1482
@subsubsection Mac OS X
1483

    
1484
@file{/dev/cdrom} is an alias to the first CDROM.
1485

    
1486
Currently there is no specific code to handle removable media, so it
1487
is better to use the @code{change} or @code{eject} monitor commands to
1488
change or eject media.
1489

    
1490
@node disk_images_fat_images
1491
@subsection Virtual FAT disk images
1492

    
1493
QEMU can automatically create a virtual FAT disk image from a
1494
directory tree. In order to use it, just type:
1495

    
1496
@example
1497
qemu linux.img -hdb fat:/my_directory
1498
@end example
1499

    
1500
Then you access access to all the files in the @file{/my_directory}
1501
directory without having to copy them in a disk image or to export
1502
them via SAMBA or NFS. The default access is @emph{read-only}.
1503

    
1504
Floppies can be emulated with the @code{:floppy:} option:
1505

    
1506
@example
1507
qemu linux.img -fda fat:floppy:/my_directory
1508
@end example
1509

    
1510
A read/write support is available for testing (beta stage) with the
1511
@code{:rw:} option:
1512

    
1513
@example
1514
qemu linux.img -fda fat:floppy:rw:/my_directory
1515
@end example
1516

    
1517
What you should @emph{never} do:
1518
@itemize
1519
@item use non-ASCII filenames ;
1520
@item use "-snapshot" together with ":rw:" ;
1521
@item expect it to work when loadvm'ing ;
1522
@item write to the FAT directory on the host system while accessing it with the guest system.
1523
@end itemize
1524

    
1525
@node disk_images_nbd
1526
@subsection NBD access
1527

    
1528
QEMU can access directly to block device exported using the Network Block Device
1529
protocol.
1530

    
1531
@example
1532
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1533
@end example
1534

    
1535
If the NBD server is located on the same host, you can use an unix socket instead
1536
of an inet socket:
1537

    
1538
@example
1539
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1540
@end example
1541

    
1542
In this case, the block device must be exported using qemu-nbd:
1543

    
1544
@example
1545
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1546
@end example
1547

    
1548
The use of qemu-nbd allows to share a disk between several guests:
1549
@example
1550
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1551
@end example
1552

    
1553
and then you can use it with two guests:
1554
@example
1555
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1556
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1557
@end example
1558

    
1559
@node pcsys_network
1560
@section Network emulation
1561

    
1562
QEMU can simulate several network cards (PCI or ISA cards on the PC
1563
target) and can connect them to an arbitrary number of Virtual Local
1564
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1565
VLAN. VLAN can be connected between separate instances of QEMU to
1566
simulate large networks. For simpler usage, a non privileged user mode
1567
network stack can replace the TAP device to have a basic network
1568
connection.
1569

    
1570
@subsection VLANs
1571

    
1572
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1573
connection between several network devices. These devices can be for
1574
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1575
(TAP devices).
1576

    
1577
@subsection Using TAP network interfaces
1578

    
1579
This is the standard way to connect QEMU to a real network. QEMU adds
1580
a virtual network device on your host (called @code{tapN}), and you
1581
can then configure it as if it was a real ethernet card.
1582

    
1583
@subsubsection Linux host
1584

    
1585
As an example, you can download the @file{linux-test-xxx.tar.gz}
1586
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1587
configure properly @code{sudo} so that the command @code{ifconfig}
1588
contained in @file{qemu-ifup} can be executed as root. You must verify
1589
that your host kernel supports the TAP network interfaces: the
1590
device @file{/dev/net/tun} must be present.
1591

    
1592
See @ref{sec_invocation} to have examples of command lines using the
1593
TAP network interfaces.
1594

    
1595
@subsubsection Windows host
1596

    
1597
There is a virtual ethernet driver for Windows 2000/XP systems, called
1598
TAP-Win32. But it is not included in standard QEMU for Windows,
1599
so you will need to get it separately. It is part of OpenVPN package,
1600
so download OpenVPN from : @url{http://openvpn.net/}.
1601

    
1602
@subsection Using the user mode network stack
1603

    
1604
By using the option @option{-net user} (default configuration if no
1605
@option{-net} option is specified), QEMU uses a completely user mode
1606
network stack (you don't need root privilege to use the virtual
1607
network). The virtual network configuration is the following:
1608

    
1609
@example
1610

    
1611
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1612
                           |          (10.0.2.2)
1613
                           |
1614
                           ---->  DNS server (10.0.2.3)
1615
                           |
1616
                           ---->  SMB server (10.0.2.4)
1617
@end example
1618

    
1619
The QEMU VM behaves as if it was behind a firewall which blocks all
1620
incoming connections. You can use a DHCP client to automatically
1621
configure the network in the QEMU VM. The DHCP server assign addresses
1622
to the hosts starting from 10.0.2.15.
1623

    
1624
In order to check that the user mode network is working, you can ping
1625
the address 10.0.2.2 and verify that you got an address in the range
1626
10.0.2.x from the QEMU virtual DHCP server.
1627

    
1628
Note that @code{ping} is not supported reliably to the internet as it
1629
would require root privileges. It means you can only ping the local
1630
router (10.0.2.2).
1631

    
1632
When using the built-in TFTP server, the router is also the TFTP
1633
server.
1634

    
1635
When using the @option{-redir} option, TCP or UDP connections can be
1636
redirected from the host to the guest. It allows for example to
1637
redirect X11, telnet or SSH connections.
1638

    
1639
@subsection Connecting VLANs between QEMU instances
1640

    
1641
Using the @option{-net socket} option, it is possible to make VLANs
1642
that span several QEMU instances. See @ref{sec_invocation} to have a
1643
basic example.
1644

    
1645
@node direct_linux_boot
1646
@section Direct Linux Boot
1647

    
1648
This section explains how to launch a Linux kernel inside QEMU without
1649
having to make a full bootable image. It is very useful for fast Linux
1650
kernel testing.
1651

    
1652
The syntax is:
1653
@example
1654
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1655
@end example
1656

    
1657
Use @option{-kernel} to provide the Linux kernel image and
1658
@option{-append} to give the kernel command line arguments. The
1659
@option{-initrd} option can be used to provide an INITRD image.
1660

    
1661
When using the direct Linux boot, a disk image for the first hard disk
1662
@file{hda} is required because its boot sector is used to launch the
1663
Linux kernel.
1664

    
1665
If you do not need graphical output, you can disable it and redirect
1666
the virtual serial port and the QEMU monitor to the console with the
1667
@option{-nographic} option. The typical command line is:
1668
@example
1669
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1670
     -append "root=/dev/hda console=ttyS0" -nographic
1671
@end example
1672

    
1673
Use @key{Ctrl-a c} to switch between the serial console and the
1674
monitor (@pxref{pcsys_keys}).
1675

    
1676
@node pcsys_usb
1677
@section USB emulation
1678

    
1679
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1680
virtual USB devices or real host USB devices (experimental, works only
1681
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1682
as necessary to connect multiple USB devices.
1683

    
1684
@menu
1685
* usb_devices::
1686
* host_usb_devices::
1687
@end menu
1688
@node usb_devices
1689
@subsection Connecting USB devices
1690

    
1691
USB devices can be connected with the @option{-usbdevice} commandline option
1692
or the @code{usb_add} monitor command.  Available devices are:
1693

    
1694
@table @code
1695
@item mouse
1696
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1697
@item tablet
1698
Pointer device that uses absolute coordinates (like a touchscreen).
1699
This means qemu is able to report the mouse position without having
1700
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1701
@item disk:@var{file}
1702
Mass storage device based on @var{file} (@pxref{disk_images})
1703
@item host:@var{bus.addr}
1704
Pass through the host device identified by @var{bus.addr}
1705
(Linux only)
1706
@item host:@var{vendor_id:product_id}
1707
Pass through the host device identified by @var{vendor_id:product_id}
1708
(Linux only)
1709
@item wacom-tablet
1710
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1711
above but it can be used with the tslib library because in addition to touch
1712
coordinates it reports touch pressure.
1713
@item keyboard
1714
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1715
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1716
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1717
device @var{dev}. The available character devices are the same as for the
1718
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1719
used to override the default 0403:6001. For instance, 
1720
@example
1721
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1722
@end example
1723
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1724
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1725
@item braille
1726
Braille device.  This will use BrlAPI to display the braille output on a real
1727
or fake device.
1728
@item net:@var{options}
1729
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1730
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1731
For instance, user-mode networking can be used with
1732
@example
1733
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1734
@end example
1735
Currently this cannot be used in machines that support PCI NICs.
1736
@end table
1737

    
1738
@node host_usb_devices
1739
@subsection Using host USB devices on a Linux host
1740

    
1741
WARNING: this is an experimental feature. QEMU will slow down when
1742
using it. USB devices requiring real time streaming (i.e. USB Video
1743
Cameras) are not supported yet.
1744

    
1745
@enumerate
1746
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1747
is actually using the USB device. A simple way to do that is simply to
1748
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1749
to @file{mydriver.o.disabled}.
1750

    
1751
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1752
@example
1753
ls /proc/bus/usb
1754
001  devices  drivers
1755
@end example
1756

    
1757
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1758
@example
1759
chown -R myuid /proc/bus/usb
1760
@end example
1761

    
1762
@item Launch QEMU and do in the monitor:
1763
@example
1764
info usbhost
1765
  Device 1.2, speed 480 Mb/s
1766
    Class 00: USB device 1234:5678, USB DISK
1767
@end example
1768
You should see the list of the devices you can use (Never try to use
1769
hubs, it won't work).
1770

    
1771
@item Add the device in QEMU by using:
1772
@example
1773
usb_add host:1234:5678
1774
@end example
1775

    
1776
Normally the guest OS should report that a new USB device is
1777
plugged. You can use the option @option{-usbdevice} to do the same.
1778

    
1779
@item Now you can try to use the host USB device in QEMU.
1780

    
1781
@end enumerate
1782

    
1783
When relaunching QEMU, you may have to unplug and plug again the USB
1784
device to make it work again (this is a bug).
1785

    
1786
@node vnc_security
1787
@section VNC security
1788

    
1789
The VNC server capability provides access to the graphical console
1790
of the guest VM across the network. This has a number of security
1791
considerations depending on the deployment scenarios.
1792

    
1793
@menu
1794
* vnc_sec_none::
1795
* vnc_sec_password::
1796
* vnc_sec_certificate::
1797
* vnc_sec_certificate_verify::
1798
* vnc_sec_certificate_pw::
1799
* vnc_generate_cert::
1800
@end menu
1801
@node vnc_sec_none
1802
@subsection Without passwords
1803

    
1804
The simplest VNC server setup does not include any form of authentication.
1805
For this setup it is recommended to restrict it to listen on a UNIX domain
1806
socket only. For example
1807

    
1808
@example
1809
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1810
@end example
1811

    
1812
This ensures that only users on local box with read/write access to that
1813
path can access the VNC server. To securely access the VNC server from a
1814
remote machine, a combination of netcat+ssh can be used to provide a secure
1815
tunnel.
1816

    
1817
@node vnc_sec_password
1818
@subsection With passwords
1819

    
1820
The VNC protocol has limited support for password based authentication. Since
1821
the protocol limits passwords to 8 characters it should not be considered
1822
to provide high security. The password can be fairly easily brute-forced by
1823
a client making repeat connections. For this reason, a VNC server using password
1824
authentication should be restricted to only listen on the loopback interface
1825
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1826
option, and then once QEMU is running the password is set with the monitor. Until
1827
the monitor is used to set the password all clients will be rejected.
1828

    
1829
@example
1830
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1831
(qemu) change vnc password
1832
Password: ********
1833
(qemu)
1834
@end example
1835

    
1836
@node vnc_sec_certificate
1837
@subsection With x509 certificates
1838

    
1839
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1840
TLS for encryption of the session, and x509 certificates for authentication.
1841
The use of x509 certificates is strongly recommended, because TLS on its
1842
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1843
support provides a secure session, but no authentication. This allows any
1844
client to connect, and provides an encrypted session.
1845

    
1846
@example
1847
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1848
@end example
1849

    
1850
In the above example @code{/etc/pki/qemu} should contain at least three files,
1851
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1852
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1853
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1854
only be readable by the user owning it.
1855

    
1856
@node vnc_sec_certificate_verify
1857
@subsection With x509 certificates and client verification
1858

    
1859
Certificates can also provide a means to authenticate the client connecting.
1860
The server will request that the client provide a certificate, which it will
1861
then validate against the CA certificate. This is a good choice if deploying
1862
in an environment with a private internal certificate authority.
1863

    
1864
@example
1865
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1866
@end example
1867

    
1868

    
1869
@node vnc_sec_certificate_pw
1870
@subsection With x509 certificates, client verification and passwords
1871

    
1872
Finally, the previous method can be combined with VNC password authentication
1873
to provide two layers of authentication for clients.
1874

    
1875
@example
1876
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1877
(qemu) change vnc password
1878
Password: ********
1879
(qemu)
1880
@end example
1881

    
1882
@node vnc_generate_cert
1883
@subsection Generating certificates for VNC
1884

    
1885
The GNU TLS packages provides a command called @code{certtool} which can
1886
be used to generate certificates and keys in PEM format. At a minimum it
1887
is neccessary to setup a certificate authority, and issue certificates to
1888
each server. If using certificates for authentication, then each client
1889
will also need to be issued a certificate. The recommendation is for the
1890
server to keep its certificates in either @code{/etc/pki/qemu} or for
1891
unprivileged users in @code{$HOME/.pki/qemu}.
1892

    
1893
@menu
1894
* vnc_generate_ca::
1895
* vnc_generate_server::
1896
* vnc_generate_client::
1897
@end menu
1898
@node vnc_generate_ca
1899
@subsubsection Setup the Certificate Authority
1900

    
1901
This step only needs to be performed once per organization / organizational
1902
unit. First the CA needs a private key. This key must be kept VERY secret
1903
and secure. If this key is compromised the entire trust chain of the certificates
1904
issued with it is lost.
1905

    
1906
@example
1907
# certtool --generate-privkey > ca-key.pem
1908
@end example
1909

    
1910
A CA needs to have a public certificate. For simplicity it can be a self-signed
1911
certificate, or one issue by a commercial certificate issuing authority. To
1912
generate a self-signed certificate requires one core piece of information, the
1913
name of the organization.
1914

    
1915
@example
1916
# cat > ca.info <<EOF
1917
cn = Name of your organization
1918
ca
1919
cert_signing_key
1920
EOF
1921
# certtool --generate-self-signed \
1922
           --load-privkey ca-key.pem
1923
           --template ca.info \
1924
           --outfile ca-cert.pem
1925
@end example
1926

    
1927
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1928
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1929

    
1930
@node vnc_generate_server
1931
@subsubsection Issuing server certificates
1932

    
1933
Each server (or host) needs to be issued with a key and certificate. When connecting
1934
the certificate is sent to the client which validates it against the CA certificate.
1935
The core piece of information for a server certificate is the hostname. This should
1936
be the fully qualified hostname that the client will connect with, since the client
1937
will typically also verify the hostname in the certificate. On the host holding the
1938
secure CA private key:
1939

    
1940
@example
1941
# cat > server.info <<EOF
1942
organization = Name  of your organization
1943
cn = server.foo.example.com
1944
tls_www_server
1945
encryption_key
1946
signing_key
1947
EOF
1948
# certtool --generate-privkey > server-key.pem
1949
# certtool --generate-certificate \
1950
           --load-ca-certificate ca-cert.pem \
1951
           --load-ca-privkey ca-key.pem \
1952
           --load-privkey server server-key.pem \
1953
           --template server.info \
1954
           --outfile server-cert.pem
1955
@end example
1956

    
1957
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1958
to the server for which they were generated. The @code{server-key.pem} is security
1959
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1960

    
1961
@node vnc_generate_client
1962
@subsubsection Issuing client certificates
1963

    
1964
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1965
certificates as its authentication mechanism, each client also needs to be issued
1966
a certificate. The client certificate contains enough metadata to uniquely identify
1967
the client, typically organization, state, city, building, etc. On the host holding
1968
the secure CA private key:
1969

    
1970
@example
1971
# cat > client.info <<EOF
1972
country = GB
1973
state = London
1974
locality = London
1975
organiazation = Name of your organization
1976
cn = client.foo.example.com
1977
tls_www_client
1978
encryption_key
1979
signing_key
1980
EOF
1981
# certtool --generate-privkey > client-key.pem
1982
# certtool --generate-certificate \
1983
           --load-ca-certificate ca-cert.pem \
1984
           --load-ca-privkey ca-key.pem \
1985
           --load-privkey client-key.pem \
1986
           --template client.info \
1987
           --outfile client-cert.pem
1988
@end example
1989

    
1990
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1991
copied to the client for which they were generated.
1992

    
1993
@node gdb_usage
1994
@section GDB usage
1995

    
1996
QEMU has a primitive support to work with gdb, so that you can do
1997
'Ctrl-C' while the virtual machine is running and inspect its state.
1998

    
1999
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2000
gdb connection:
2001
@example
2002
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2003
       -append "root=/dev/hda"
2004
Connected to host network interface: tun0
2005
Waiting gdb connection on port 1234
2006
@end example
2007

    
2008
Then launch gdb on the 'vmlinux' executable:
2009
@example
2010
> gdb vmlinux
2011
@end example
2012

    
2013
In gdb, connect to QEMU:
2014
@example
2015
(gdb) target remote localhost:1234
2016
@end example
2017

    
2018
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2019
@example
2020
(gdb) c
2021
@end example
2022

    
2023
Here are some useful tips in order to use gdb on system code:
2024

    
2025
@enumerate
2026
@item
2027
Use @code{info reg} to display all the CPU registers.
2028
@item
2029
Use @code{x/10i $eip} to display the code at the PC position.
2030
@item
2031
Use @code{set architecture i8086} to dump 16 bit code. Then use
2032
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2033
@end enumerate
2034

    
2035
Advanced debugging options:
2036

    
2037
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2038
@table @code
2039
@item maintenance packet qqemu.sstepbits
2040

    
2041
This will display the MASK bits used to control the single stepping IE:
2042
@example
2043
(gdb) maintenance packet qqemu.sstepbits
2044
sending: "qqemu.sstepbits"
2045
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2046
@end example
2047
@item maintenance packet qqemu.sstep
2048

    
2049
This will display the current value of the mask used when single stepping IE:
2050
@example
2051
(gdb) maintenance packet qqemu.sstep
2052
sending: "qqemu.sstep"
2053
received: "0x7"
2054
@end example
2055
@item maintenance packet Qqemu.sstep=HEX_VALUE
2056

    
2057
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2058
@example
2059
(gdb) maintenance packet Qqemu.sstep=0x5
2060
sending: "qemu.sstep=0x5"
2061
received: "OK"
2062
@end example
2063
@end table
2064

    
2065
@node pcsys_os_specific
2066
@section Target OS specific information
2067

    
2068
@subsection Linux
2069

    
2070
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2071
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2072
color depth in the guest and the host OS.
2073

    
2074
When using a 2.6 guest Linux kernel, you should add the option
2075
@code{clock=pit} on the kernel command line because the 2.6 Linux
2076
kernels make very strict real time clock checks by default that QEMU
2077
cannot simulate exactly.
2078

    
2079
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2080
not activated because QEMU is slower with this patch. The QEMU
2081
Accelerator Module is also much slower in this case. Earlier Fedora
2082
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2083
patch by default. Newer kernels don't have it.
2084

    
2085
@subsection Windows
2086

    
2087
If you have a slow host, using Windows 95 is better as it gives the
2088
best speed. Windows 2000 is also a good choice.
2089

    
2090
@subsubsection SVGA graphic modes support
2091

    
2092
QEMU emulates a Cirrus Logic GD5446 Video
2093
card. All Windows versions starting from Windows 95 should recognize
2094
and use this graphic card. For optimal performances, use 16 bit color
2095
depth in the guest and the host OS.
2096

    
2097
If you are using Windows XP as guest OS and if you want to use high
2098
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2099
1280x1024x16), then you should use the VESA VBE virtual graphic card
2100
(option @option{-std-vga}).
2101

    
2102
@subsubsection CPU usage reduction
2103

    
2104
Windows 9x does not correctly use the CPU HLT
2105
instruction. The result is that it takes host CPU cycles even when
2106
idle. You can install the utility from
2107
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2108
problem. Note that no such tool is needed for NT, 2000 or XP.
2109

    
2110
@subsubsection Windows 2000 disk full problem
2111

    
2112
Windows 2000 has a bug which gives a disk full problem during its
2113
installation. When installing it, use the @option{-win2k-hack} QEMU
2114
option to enable a specific workaround. After Windows 2000 is
2115
installed, you no longer need this option (this option slows down the
2116
IDE transfers).
2117

    
2118
@subsubsection Windows 2000 shutdown
2119

    
2120
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2121
can. It comes from the fact that Windows 2000 does not automatically
2122
use the APM driver provided by the BIOS.
2123

    
2124
In order to correct that, do the following (thanks to Struan
2125
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2126
Add/Troubleshoot a device => Add a new device & Next => No, select the
2127
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2128
(again) a few times. Now the driver is installed and Windows 2000 now
2129
correctly instructs QEMU to shutdown at the appropriate moment.
2130

    
2131
@subsubsection Share a directory between Unix and Windows
2132

    
2133
See @ref{sec_invocation} about the help of the option @option{-smb}.
2134

    
2135
@subsubsection Windows XP security problem
2136

    
2137
Some releases of Windows XP install correctly but give a security
2138
error when booting:
2139
@example
2140
A problem is preventing Windows from accurately checking the
2141
license for this computer. Error code: 0x800703e6.
2142
@end example
2143

    
2144
The workaround is to install a service pack for XP after a boot in safe
2145
mode. Then reboot, and the problem should go away. Since there is no
2146
network while in safe mode, its recommended to download the full
2147
installation of SP1 or SP2 and transfer that via an ISO or using the
2148
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2149

    
2150
@subsection MS-DOS and FreeDOS
2151

    
2152
@subsubsection CPU usage reduction
2153

    
2154
DOS does not correctly use the CPU HLT instruction. The result is that
2155
it takes host CPU cycles even when idle. You can install the utility
2156
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2157
problem.
2158

    
2159
@node QEMU System emulator for non PC targets
2160
@chapter QEMU System emulator for non PC targets
2161

    
2162
QEMU is a generic emulator and it emulates many non PC
2163
machines. Most of the options are similar to the PC emulator. The
2164
differences are mentioned in the following sections.
2165

    
2166
@menu
2167
* QEMU PowerPC System emulator::
2168
* Sparc32 System emulator::
2169
* Sparc64 System emulator::
2170
* MIPS System emulator::
2171
* ARM System emulator::
2172
* ColdFire System emulator::
2173
@end menu
2174

    
2175
@node QEMU PowerPC System emulator
2176
@section QEMU PowerPC System emulator
2177

    
2178
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2179
or PowerMac PowerPC system.
2180

    
2181
QEMU emulates the following PowerMac peripherals:
2182

    
2183
@itemize @minus
2184
@item
2185
UniNorth PCI Bridge
2186
@item
2187
PCI VGA compatible card with VESA Bochs Extensions
2188
@item
2189
2 PMAC IDE interfaces with hard disk and CD-ROM support
2190
@item
2191
NE2000 PCI adapters
2192
@item
2193
Non Volatile RAM
2194
@item
2195
VIA-CUDA with ADB keyboard and mouse.
2196
@end itemize
2197

    
2198
QEMU emulates the following PREP peripherals:
2199

    
2200
@itemize @minus
2201
@item
2202
PCI Bridge
2203
@item
2204
PCI VGA compatible card with VESA Bochs Extensions
2205
@item
2206
2 IDE interfaces with hard disk and CD-ROM support
2207
@item
2208
Floppy disk
2209
@item
2210
NE2000 network adapters
2211
@item
2212
Serial port
2213
@item
2214
PREP Non Volatile RAM
2215
@item
2216
PC compatible keyboard and mouse.
2217
@end itemize
2218

    
2219
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2220
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2221

    
2222
@c man begin OPTIONS
2223

    
2224
The following options are specific to the PowerPC emulation:
2225

    
2226
@table @option
2227

    
2228
@item -g WxH[xDEPTH]
2229

    
2230
Set the initial VGA graphic mode. The default is 800x600x15.
2231

    
2232
@end table
2233

    
2234
@c man end
2235

    
2236

    
2237
More information is available at
2238
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2239

    
2240
@node Sparc32 System emulator
2241
@section Sparc32 System emulator
2242

    
2243
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2244
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2245
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2246
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2247
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2248
of usable CPUs to 4.
2249

    
2250
QEMU emulates the following sun4m/sun4d peripherals:
2251

    
2252
@itemize @minus
2253
@item
2254
IOMMU or IO-UNITs
2255
@item
2256
TCX Frame buffer
2257
@item
2258
Lance (Am7990) Ethernet
2259
@item
2260
Non Volatile RAM M48T08
2261
@item
2262
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2263
and power/reset logic
2264
@item
2265
ESP SCSI controller with hard disk and CD-ROM support
2266
@item
2267
Floppy drive (not on SS-600MP)
2268
@item
2269
CS4231 sound device (only on SS-5, not working yet)
2270
@end itemize
2271

    
2272
The number of peripherals is fixed in the architecture.  Maximum
2273
memory size depends on the machine type, for SS-5 it is 256MB and for
2274
others 2047MB.
2275

    
2276
Since version 0.8.2, QEMU uses OpenBIOS
2277
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2278
firmware implementation. The goal is to implement a 100% IEEE
2279
1275-1994 (referred to as Open Firmware) compliant firmware.
2280

    
2281
A sample Linux 2.6 series kernel and ram disk image are available on
2282
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2283
Solaris kernels don't work.
2284

    
2285
@c man begin OPTIONS
2286

    
2287
The following options are specific to the Sparc32 emulation:
2288

    
2289
@table @option
2290

    
2291
@item -g WxHx[xDEPTH]
2292

    
2293
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2294
the only other possible mode is 1024x768x24.
2295

    
2296
@item -prom-env string
2297

    
2298
Set OpenBIOS variables in NVRAM, for example:
2299

    
2300
@example
2301
qemu-system-sparc -prom-env 'auto-boot?=false' \
2302
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2303
@end example
2304

    
2305
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2306

    
2307
Set the emulated machine type. Default is SS-5.
2308

    
2309
@end table
2310

    
2311
@c man end
2312

    
2313
@node Sparc64 System emulator
2314
@section Sparc64 System emulator
2315

    
2316
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u or
2317
Sun4v machine. The emulator is not usable for anything yet.
2318

    
2319
QEMU emulates the following peripherals:
2320

    
2321
@itemize @minus
2322
@item
2323
UltraSparc IIi APB PCI Bridge
2324
@item
2325
PCI VGA compatible card with VESA Bochs Extensions
2326
@item
2327
Non Volatile RAM M48T59
2328
@item
2329
PC-compatible serial ports
2330
@item
2331
2 PCI IDE interfaces with hard disk and CD-ROM support
2332
@end itemize
2333

    
2334
@c man begin OPTIONS
2335

    
2336
The following options are specific to the Sparc64 emulation:
2337

    
2338
@table @option
2339

    
2340
@item -M [sun4u|sun4v]
2341

    
2342
Set the emulated machine type. The default is sun4u.
2343

    
2344
@end table
2345

    
2346
@c man end
2347

    
2348
@node MIPS System emulator
2349
@section MIPS System emulator
2350

    
2351
Four executables cover simulation of 32 and 64-bit MIPS systems in
2352
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2353
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2354
Five different machine types are emulated:
2355

    
2356
@itemize @minus
2357
@item
2358
A generic ISA PC-like machine "mips"
2359
@item
2360
The MIPS Malta prototype board "malta"
2361
@item
2362
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2363
@item
2364
MIPS emulator pseudo board "mipssim"
2365
@item
2366
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2367
@end itemize
2368

    
2369
The generic emulation is supported by Debian 'Etch' and is able to
2370
install Debian into a virtual disk image. The following devices are
2371
emulated:
2372

    
2373
@itemize @minus
2374
@item
2375
A range of MIPS CPUs, default is the 24Kf
2376
@item
2377
PC style serial port
2378
@item
2379
PC style IDE disk
2380
@item
2381
NE2000 network card
2382
@end itemize
2383

    
2384
The Malta emulation supports the following devices:
2385

    
2386
@itemize @minus
2387
@item
2388
Core board with MIPS 24Kf CPU and Galileo system controller
2389
@item
2390
PIIX4 PCI/USB/SMbus controller
2391
@item
2392
The Multi-I/O chip's serial device
2393
@item
2394
PCnet32 PCI network card
2395
@item
2396
Malta FPGA serial device
2397
@item
2398
Cirrus VGA graphics card
2399
@end itemize
2400

    
2401
The ACER Pica emulation supports:
2402

    
2403
@itemize @minus
2404
@item
2405
MIPS R4000 CPU
2406
@item
2407
PC-style IRQ and DMA controllers
2408
@item
2409
PC Keyboard
2410
@item
2411
IDE controller
2412
@end itemize
2413

    
2414
The mipssim pseudo board emulation provides an environment similiar
2415
to what the proprietary MIPS emulator uses for running Linux.
2416
It supports:
2417

    
2418
@itemize @minus
2419
@item
2420
A range of MIPS CPUs, default is the 24Kf
2421
@item
2422
PC style serial port
2423
@item
2424
MIPSnet network emulation
2425
@end itemize
2426

    
2427
The MIPS Magnum R4000 emulation supports:
2428

    
2429
@itemize @minus
2430
@item
2431
MIPS R4000 CPU
2432
@item
2433
PC-style IRQ controller
2434
@item
2435
PC Keyboard
2436
@item
2437
SCSI controller
2438
@item
2439
G364 framebuffer
2440
@end itemize
2441

    
2442

    
2443
@node ARM System emulator
2444
@section ARM System emulator
2445

    
2446
Use the executable @file{qemu-system-arm} to simulate a ARM
2447
machine. The ARM Integrator/CP board is emulated with the following
2448
devices:
2449

    
2450
@itemize @minus
2451
@item
2452
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2453
@item
2454
Two PL011 UARTs
2455
@item
2456
SMC 91c111 Ethernet adapter
2457
@item
2458
PL110 LCD controller
2459
@item
2460
PL050 KMI with PS/2 keyboard and mouse.
2461
@item
2462
PL181 MultiMedia Card Interface with SD card.
2463
@end itemize
2464

    
2465
The ARM Versatile baseboard is emulated with the following devices:
2466

    
2467
@itemize @minus
2468
@item
2469
ARM926E, ARM1136 or Cortex-A8 CPU
2470
@item
2471
PL190 Vectored Interrupt Controller
2472
@item
2473
Four PL011 UARTs
2474
@item
2475
SMC 91c111 Ethernet adapter
2476
@item
2477
PL110 LCD controller
2478
@item
2479
PL050 KMI with PS/2 keyboard and mouse.
2480
@item
2481
PCI host bridge.  Note the emulated PCI bridge only provides access to
2482
PCI memory space.  It does not provide access to PCI IO space.
2483
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2484
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2485
mapped control registers.
2486
@item
2487
PCI OHCI USB controller.
2488
@item
2489
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2490
@item
2491
PL181 MultiMedia Card Interface with SD card.
2492
@end itemize
2493

    
2494
The ARM RealView Emulation baseboard is emulated with the following devices:
2495

    
2496
@itemize @minus
2497
@item
2498
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2499
@item
2500
ARM AMBA Generic/Distributed Interrupt Controller
2501
@item
2502
Four PL011 UARTs
2503
@item
2504
SMC 91c111 Ethernet adapter
2505
@item
2506
PL110 LCD controller
2507
@item
2508
PL050 KMI with PS/2 keyboard and mouse
2509
@item
2510
PCI host bridge
2511
@item
2512
PCI OHCI USB controller
2513
@item
2514
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2515
@item
2516
PL181 MultiMedia Card Interface with SD card.
2517
@end itemize
2518

    
2519
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2520
and "Terrier") emulation includes the following peripherals:
2521

    
2522
@itemize @minus
2523
@item
2524
Intel PXA270 System-on-chip (ARM V5TE core)
2525
@item
2526
NAND Flash memory
2527
@item
2528
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2529
@item
2530
On-chip OHCI USB controller
2531
@item
2532
On-chip LCD controller
2533
@item
2534
On-chip Real Time Clock
2535
@item
2536
TI ADS7846 touchscreen controller on SSP bus
2537
@item
2538
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2539
@item
2540
GPIO-connected keyboard controller and LEDs
2541
@item
2542
Secure Digital card connected to PXA MMC/SD host
2543
@item
2544
Three on-chip UARTs
2545
@item
2546
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2547
@end itemize
2548

    
2549
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2550
following elements:
2551

    
2552
@itemize @minus
2553
@item
2554
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2555
@item
2556
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2557
@item
2558
On-chip LCD controller
2559
@item
2560
On-chip Real Time Clock
2561
@item
2562
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2563
CODEC, connected through MicroWire and I@math{^2}S busses
2564
@item
2565
GPIO-connected matrix keypad
2566
@item
2567
Secure Digital card connected to OMAP MMC/SD host
2568
@item
2569
Three on-chip UARTs
2570
@end itemize
2571

    
2572
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2573
emulation supports the following elements:
2574

    
2575
@itemize @minus
2576
@item
2577
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2578
@item
2579
RAM and non-volatile OneNAND Flash memories
2580
@item
2581
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2582
display controller and a LS041y3 MIPI DBI-C controller
2583
@item
2584
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2585
driven through SPI bus
2586
@item
2587
National Semiconductor LM8323-controlled qwerty keyboard driven
2588
through I@math{^2}C bus
2589
@item
2590
Secure Digital card connected to OMAP MMC/SD host
2591
@item
2592
Three OMAP on-chip UARTs and on-chip STI debugging console
2593
@item
2594
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2595
TUSB6010 chip - only USB host mode is supported
2596
@item
2597
TI TMP105 temperature sensor driven through I@math{^2}C bus
2598
@item
2599
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2600
@item
2601
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2602
through CBUS
2603
@end itemize
2604

    
2605
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2606
devices:
2607

    
2608
@itemize @minus
2609
@item
2610
Cortex-M3 CPU core.
2611
@item
2612
64k Flash and 8k SRAM.
2613
@item
2614
Timers, UARTs, ADC and I@math{^2}C interface.
2615
@item
2616
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2617
@end itemize
2618

    
2619
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2620
devices:
2621

    
2622
@itemize @minus
2623
@item
2624
Cortex-M3 CPU core.
2625
@item
2626
256k Flash and 64k SRAM.
2627
@item
2628
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2629
@item
2630
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2631
@end itemize
2632

    
2633
The Freecom MusicPal internet radio emulation includes the following
2634
elements:
2635

    
2636
@itemize @minus
2637
@item
2638
Marvell MV88W8618 ARM core.
2639
@item
2640
32 MB RAM, 256 KB SRAM, 8 MB flash.
2641
@item
2642
Up to 2 16550 UARTs
2643
@item
2644
MV88W8xx8 Ethernet controller
2645
@item
2646
MV88W8618 audio controller, WM8750 CODEC and mixer
2647
@item
2648
128?64 display with brightness control
2649
@item
2650
2 buttons, 2 navigation wheels with button function
2651
@end itemize
2652

    
2653
A Linux 2.6 test image is available on the QEMU web site. More
2654
information is available in the QEMU mailing-list archive.
2655

    
2656
@node ColdFire System emulator
2657
@section ColdFire System emulator
2658

    
2659
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2660
The emulator is able to boot a uClinux kernel.
2661

    
2662
The M5208EVB emulation includes the following devices:
2663

    
2664
@itemize @minus
2665
@item
2666
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2667
@item
2668
Three Two on-chip UARTs.
2669
@item
2670
Fast Ethernet Controller (FEC)
2671
@end itemize
2672

    
2673
The AN5206 emulation includes the following devices:
2674

    
2675
@itemize @minus
2676
@item
2677
MCF5206 ColdFire V2 Microprocessor.
2678
@item
2679
Two on-chip UARTs.
2680
@end itemize
2681

    
2682
@node QEMU User space emulator
2683
@chapter QEMU User space emulator
2684

    
2685
@menu
2686
* Supported Operating Systems ::
2687
* Linux User space emulator::
2688
* Mac OS X/Darwin User space emulator ::
2689
@end menu
2690

    
2691
@node Supported Operating Systems
2692
@section Supported Operating Systems
2693

    
2694
The following OS are supported in user space emulation:
2695

    
2696
@itemize @minus
2697
@item
2698
Linux (referred as qemu-linux-user)
2699
@item
2700
Mac OS X/Darwin (referred as qemu-darwin-user)
2701
@end itemize
2702

    
2703
@node Linux User space emulator
2704
@section Linux User space emulator
2705

    
2706
@menu
2707
* Quick Start::
2708
* Wine launch::
2709
* Command line options::
2710
* Other binaries::
2711
@end menu
2712

    
2713
@node Quick Start
2714
@subsection Quick Start
2715

    
2716
In order to launch a Linux process, QEMU needs the process executable
2717
itself and all the target (x86) dynamic libraries used by it.
2718

    
2719
@itemize
2720

    
2721
@item On x86, you can just try to launch any process by using the native
2722
libraries:
2723

    
2724
@example
2725
qemu-i386 -L / /bin/ls
2726
@end example
2727

    
2728
@code{-L /} tells that the x86 dynamic linker must be searched with a
2729
@file{/} prefix.
2730

    
2731
@item Since QEMU is also a linux process, you can launch qemu with
2732
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2733

    
2734
@example
2735
qemu-i386 -L / qemu-i386 -L / /bin/ls
2736
@end example
2737

    
2738
@item On non x86 CPUs, you need first to download at least an x86 glibc
2739
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2740
@code{LD_LIBRARY_PATH} is not set:
2741

    
2742
@example
2743
unset LD_LIBRARY_PATH
2744
@end example
2745

    
2746
Then you can launch the precompiled @file{ls} x86 executable:
2747

    
2748
@example
2749
qemu-i386 tests/i386/ls
2750
@end example
2751
You can look at @file{qemu-binfmt-conf.sh} so that
2752
QEMU is automatically launched by the Linux kernel when you try to
2753
launch x86 executables. It requires the @code{binfmt_misc} module in the
2754
Linux kernel.
2755

    
2756
@item The x86 version of QEMU is also included. You can try weird things such as:
2757
@example
2758
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2759
          /usr/local/qemu-i386/bin/ls-i386
2760
@end example
2761

    
2762
@end itemize
2763

    
2764
@node Wine launch
2765
@subsection Wine launch
2766

    
2767
@itemize
2768

    
2769
@item Ensure that you have a working QEMU with the x86 glibc
2770
distribution (see previous section). In order to verify it, you must be
2771
able to do:
2772

    
2773
@example
2774
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2775
@end example
2776

    
2777
@item Download the binary x86 Wine install
2778
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2779

    
2780
@item Configure Wine on your account. Look at the provided script
2781
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2782
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2783

    
2784
@item Then you can try the example @file{putty.exe}:
2785

    
2786
@example
2787
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2788
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2789
@end example
2790

    
2791
@end itemize
2792

    
2793
@node Command line options
2794
@subsection Command line options
2795

    
2796
@example
2797
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2798
@end example
2799

    
2800
@table @option
2801
@item -h
2802
Print the help
2803
@item -L path
2804
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2805
@item -s size
2806
Set the x86 stack size in bytes (default=524288)
2807
@end table
2808

    
2809
Debug options:
2810

    
2811
@table @option
2812
@item -d
2813
Activate log (logfile=/tmp/qemu.log)
2814
@item -p pagesize
2815
Act as if the host page size was 'pagesize' bytes
2816
@end table
2817

    
2818
Environment variables:
2819

    
2820
@table @env
2821
@item QEMU_STRACE
2822
Print system calls and arguments similar to the 'strace' program
2823
(NOTE: the actual 'strace' program will not work because the user
2824
space emulator hasn't implemented ptrace).  At the moment this is
2825
incomplete.  All system calls that don't have a specific argument
2826
format are printed with information for six arguments.  Many
2827
flag-style arguments don't have decoders and will show up as numbers.
2828
@end table
2829

    
2830
@node Other binaries
2831
@subsection Other binaries
2832

    
2833
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2834
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2835
configurations), and arm-uclinux bFLT format binaries.
2836

    
2837
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2838
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2839
coldfire uClinux bFLT format binaries.
2840

    
2841
The binary format is detected automatically.
2842

    
2843
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2844
(Sparc64 CPU, 32 bit ABI).
2845

    
2846
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2847
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2848

    
2849
@node Mac OS X/Darwin User space emulator
2850
@section Mac OS X/Darwin User space emulator
2851

    
2852
@menu
2853
* Mac OS X/Darwin Status::
2854
* Mac OS X/Darwin Quick Start::
2855
* Mac OS X/Darwin Command line options::
2856
@end menu
2857

    
2858
@node Mac OS X/Darwin Status
2859
@subsection Mac OS X/Darwin Status
2860

    
2861
@itemize @minus
2862
@item
2863
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2864
@item
2865
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2866
@item
2867
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2868
@item
2869
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2870
@end itemize
2871

    
2872
[1] If you're host commpage can be executed by qemu.
2873

    
2874
@node Mac OS X/Darwin Quick Start
2875
@subsection Quick Start
2876

    
2877
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2878
itself and all the target dynamic libraries used by it. If you don't have the FAT
2879
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2880
CD or compile them by hand.
2881

    
2882
@itemize
2883

    
2884
@item On x86, you can just try to launch any process by using the native
2885
libraries:
2886

    
2887
@example
2888
qemu-i386 /bin/ls
2889
@end example
2890

    
2891
or to run the ppc version of the executable:
2892

    
2893
@example
2894
qemu-ppc /bin/ls
2895
@end example
2896

    
2897
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2898
are installed:
2899

    
2900
@example
2901
qemu-i386 -L /opt/x86_root/ /bin/ls
2902
@end example
2903

    
2904
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2905
@file{/opt/x86_root/usr/bin/dyld}.
2906

    
2907
@end itemize
2908

    
2909
@node Mac OS X/Darwin Command line options
2910
@subsection Command line options
2911

    
2912
@example
2913
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2914
@end example
2915

    
2916
@table @option
2917
@item -h
2918
Print the help
2919
@item -L path
2920
Set the library root path (default=/)
2921
@item -s size
2922
Set the stack size in bytes (default=524288)
2923
@end table
2924

    
2925
Debug options:
2926

    
2927
@table @option
2928
@item -d
2929
Activate log (logfile=/tmp/qemu.log)
2930
@item -p pagesize
2931
Act as if the host page size was 'pagesize' bytes
2932
@end table
2933

    
2934
@node compilation
2935
@chapter Compilation from the sources
2936

    
2937
@menu
2938
* Linux/Unix::
2939
* Windows::
2940
* Cross compilation for Windows with Linux::
2941
* Mac OS X::
2942
@end menu
2943

    
2944
@node Linux/Unix
2945
@section Linux/Unix
2946

    
2947
@subsection Compilation
2948

    
2949
First you must decompress the sources:
2950
@example
2951
cd /tmp
2952
tar zxvf qemu-x.y.z.tar.gz
2953
cd qemu-x.y.z
2954
@end example
2955

    
2956
Then you configure QEMU and build it (usually no options are needed):
2957
@example
2958
./configure
2959
make
2960
@end example
2961

    
2962
Then type as root user:
2963
@example
2964
make install
2965
@end example
2966
to install QEMU in @file{/usr/local}.
2967

    
2968
@subsection GCC version
2969

    
2970
In order to compile QEMU successfully, it is very important that you
2971
have the right tools. The most important one is gcc. On most hosts and
2972
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2973
Linux distribution includes a gcc 4.x compiler, you can usually
2974
install an older version (it is invoked by @code{gcc32} or
2975
@code{gcc34}). The QEMU configure script automatically probes for
2976
these older versions so that usually you don't have to do anything.
2977

    
2978
@node Windows
2979
@section Windows
2980

    
2981
@itemize
2982
@item Install the current versions of MSYS and MinGW from
2983
@url{http://www.mingw.org/}. You can find detailed installation
2984
instructions in the download section and the FAQ.
2985

    
2986
@item Download
2987
the MinGW development library of SDL 1.2.x
2988
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2989
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2990
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2991
directory. Edit the @file{sdl-config} script so that it gives the
2992
correct SDL directory when invoked.
2993

    
2994
@item Extract the current version of QEMU.
2995

    
2996
@item Start the MSYS shell (file @file{msys.bat}).
2997

    
2998
@item Change to the QEMU directory. Launch @file{./configure} and
2999
@file{make}.  If you have problems using SDL, verify that
3000
@file{sdl-config} can be launched from the MSYS command line.
3001

    
3002
@item You can install QEMU in @file{Program Files/Qemu} by typing
3003
@file{make install}. Don't forget to copy @file{SDL.dll} in
3004
@file{Program Files/Qemu}.
3005

    
3006
@end itemize
3007

    
3008
@node Cross compilation for Windows with Linux
3009
@section Cross compilation for Windows with Linux
3010

    
3011
@itemize
3012
@item
3013
Install the MinGW cross compilation tools available at
3014
@url{http://www.mingw.org/}.
3015

    
3016
@item
3017
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3018
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3019
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3020
the QEMU configuration script.
3021

    
3022
@item
3023
Configure QEMU for Windows cross compilation:
3024
@example
3025
./configure --enable-mingw32
3026
@end example
3027
If necessary, you can change the cross-prefix according to the prefix
3028
chosen for the MinGW tools with --cross-prefix. You can also use
3029
--prefix to set the Win32 install path.
3030

    
3031
@item You can install QEMU in the installation directory by typing
3032
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3033
installation directory.
3034

    
3035
@end itemize
3036

    
3037
Note: Currently, Wine does not seem able to launch
3038
QEMU for Win32.
3039

    
3040
@node Mac OS X
3041
@section Mac OS X
3042

    
3043
The Mac OS X patches are not fully merged in QEMU, so you should look
3044
at the QEMU mailing list archive to have all the necessary
3045
information.
3046

    
3047
@node Index
3048
@chapter Index
3049
@printindex cp
3050

    
3051
@bye