Statistics
| Branch: | Revision:

root / kvm-all.c @ 41cb62c2

History | View | Annotate | Download (51.3 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu/atomic.h"
25
#include "qemu/option.h"
26
#include "qemu/config-file.h"
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/pci/msi.h"
30
#include "exec/gdbstub.h"
31
#include "sysemu/kvm.h"
32
#include "qemu/bswap.h"
33
#include "exec/memory.h"
34
#include "exec/address-spaces.h"
35
#include "qemu/event_notifier.h"
36

    
37
/* This check must be after config-host.h is included */
38
#ifdef CONFIG_EVENTFD
39
#include <sys/eventfd.h>
40
#endif
41

    
42
#ifdef CONFIG_VALGRIND_H
43
#include <valgrind/memcheck.h>
44
#endif
45

    
46
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47
#define PAGE_SIZE TARGET_PAGE_SIZE
48

    
49
//#define DEBUG_KVM
50

    
51
#ifdef DEBUG_KVM
52
#define DPRINTF(fmt, ...) \
53
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54
#else
55
#define DPRINTF(fmt, ...) \
56
    do { } while (0)
57
#endif
58

    
59
#define KVM_MSI_HASHTAB_SIZE    256
60

    
61
typedef struct KVMSlot
62
{
63
    hwaddr start_addr;
64
    ram_addr_t memory_size;
65
    void *ram;
66
    int slot;
67
    int flags;
68
} KVMSlot;
69

    
70
typedef struct kvm_dirty_log KVMDirtyLog;
71

    
72
struct KVMState
73
{
74
    KVMSlot slots[32];
75
    int fd;
76
    int vmfd;
77
    int coalesced_mmio;
78
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79
    bool coalesced_flush_in_progress;
80
    int broken_set_mem_region;
81
    int migration_log;
82
    int vcpu_events;
83
    int robust_singlestep;
84
    int debugregs;
85
#ifdef KVM_CAP_SET_GUEST_DEBUG
86
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87
#endif
88
    int pit_state2;
89
    int xsave, xcrs;
90
    int many_ioeventfds;
91
    int intx_set_mask;
92
    /* The man page (and posix) say ioctl numbers are signed int, but
93
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
94
     * unsigned, and treating them as signed here can break things */
95
    unsigned irq_set_ioctl;
96
#ifdef KVM_CAP_IRQ_ROUTING
97
    struct kvm_irq_routing *irq_routes;
98
    int nr_allocated_irq_routes;
99
    uint32_t *used_gsi_bitmap;
100
    unsigned int gsi_count;
101
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102
    bool direct_msi;
103
#endif
104
};
105

    
106
KVMState *kvm_state;
107
bool kvm_kernel_irqchip;
108
bool kvm_async_interrupts_allowed;
109
bool kvm_irqfds_allowed;
110
bool kvm_msi_via_irqfd_allowed;
111
bool kvm_gsi_routing_allowed;
112

    
113
static const KVMCapabilityInfo kvm_required_capabilites[] = {
114
    KVM_CAP_INFO(USER_MEMORY),
115
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116
    KVM_CAP_LAST_INFO
117
};
118

    
119
static KVMSlot *kvm_alloc_slot(KVMState *s)
120
{
121
    int i;
122

    
123
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124
        if (s->slots[i].memory_size == 0) {
125
            return &s->slots[i];
126
        }
127
    }
128

    
129
    fprintf(stderr, "%s: no free slot available\n", __func__);
130
    abort();
131
}
132

    
133
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134
                                         hwaddr start_addr,
135
                                         hwaddr end_addr)
136
{
137
    int i;
138

    
139
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140
        KVMSlot *mem = &s->slots[i];
141

    
142
        if (start_addr == mem->start_addr &&
143
            end_addr == mem->start_addr + mem->memory_size) {
144
            return mem;
145
        }
146
    }
147

    
148
    return NULL;
149
}
150

    
151
/*
152
 * Find overlapping slot with lowest start address
153
 */
154
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155
                                            hwaddr start_addr,
156
                                            hwaddr end_addr)
157
{
158
    KVMSlot *found = NULL;
159
    int i;
160

    
161
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162
        KVMSlot *mem = &s->slots[i];
163

    
164
        if (mem->memory_size == 0 ||
165
            (found && found->start_addr < mem->start_addr)) {
166
            continue;
167
        }
168

    
169
        if (end_addr > mem->start_addr &&
170
            start_addr < mem->start_addr + mem->memory_size) {
171
            found = mem;
172
        }
173
    }
174

    
175
    return found;
176
}
177

    
178
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179
                                       hwaddr *phys_addr)
180
{
181
    int i;
182

    
183
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184
        KVMSlot *mem = &s->slots[i];
185

    
186
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187
            *phys_addr = mem->start_addr + (ram - mem->ram);
188
            return 1;
189
        }
190
    }
191

    
192
    return 0;
193
}
194

    
195
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196
{
197
    struct kvm_userspace_memory_region mem;
198

    
199
    mem.slot = slot->slot;
200
    mem.guest_phys_addr = slot->start_addr;
201
    mem.memory_size = slot->memory_size;
202
    mem.userspace_addr = (unsigned long)slot->ram;
203
    mem.flags = slot->flags;
204
    if (s->migration_log) {
205
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206
    }
207
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208
}
209

    
210
static void kvm_reset_vcpu(void *opaque)
211
{
212
    CPUState *cpu = opaque;
213

    
214
    kvm_arch_reset_vcpu(cpu);
215
}
216

    
217
int kvm_init_vcpu(CPUState *cpu)
218
{
219
    KVMState *s = kvm_state;
220
    long mmap_size;
221
    int ret;
222

    
223
    DPRINTF("kvm_init_vcpu\n");
224

    
225
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
226
    if (ret < 0) {
227
        DPRINTF("kvm_create_vcpu failed\n");
228
        goto err;
229
    }
230

    
231
    cpu->kvm_fd = ret;
232
    cpu->kvm_state = s;
233
    cpu->kvm_vcpu_dirty = true;
234

    
235
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
236
    if (mmap_size < 0) {
237
        ret = mmap_size;
238
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
239
        goto err;
240
    }
241

    
242
    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
243
                        cpu->kvm_fd, 0);
244
    if (cpu->kvm_run == MAP_FAILED) {
245
        ret = -errno;
246
        DPRINTF("mmap'ing vcpu state failed\n");
247
        goto err;
248
    }
249

    
250
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
251
        s->coalesced_mmio_ring =
252
            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
253
    }
254

    
255
    ret = kvm_arch_init_vcpu(cpu);
256
    if (ret == 0) {
257
        qemu_register_reset(kvm_reset_vcpu, cpu);
258
        kvm_arch_reset_vcpu(cpu);
259
    }
260
err:
261
    return ret;
262
}
263

    
264
/*
265
 * dirty pages logging control
266
 */
267

    
268
static int kvm_mem_flags(KVMState *s, bool log_dirty)
269
{
270
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
271
}
272

    
273
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
274
{
275
    KVMState *s = kvm_state;
276
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
277
    int old_flags;
278

    
279
    old_flags = mem->flags;
280

    
281
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
282
    mem->flags = flags;
283

    
284
    /* If nothing changed effectively, no need to issue ioctl */
285
    if (s->migration_log) {
286
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
287
    }
288

    
289
    if (flags == old_flags) {
290
        return 0;
291
    }
292

    
293
    return kvm_set_user_memory_region(s, mem);
294
}
295

    
296
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
297
                                      ram_addr_t size, bool log_dirty)
298
{
299
    KVMState *s = kvm_state;
300
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
301

    
302
    if (mem == NULL)  {
303
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
304
                TARGET_FMT_plx "\n", __func__, phys_addr,
305
                (hwaddr)(phys_addr + size - 1));
306
        return -EINVAL;
307
    }
308
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
309
}
310

    
311
static void kvm_log_start(MemoryListener *listener,
312
                          MemoryRegionSection *section)
313
{
314
    int r;
315

    
316
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
317
                                   section->size, true);
318
    if (r < 0) {
319
        abort();
320
    }
321
}
322

    
323
static void kvm_log_stop(MemoryListener *listener,
324
                          MemoryRegionSection *section)
325
{
326
    int r;
327

    
328
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329
                                   section->size, false);
330
    if (r < 0) {
331
        abort();
332
    }
333
}
334

    
335
static int kvm_set_migration_log(int enable)
336
{
337
    KVMState *s = kvm_state;
338
    KVMSlot *mem;
339
    int i, err;
340

    
341
    s->migration_log = enable;
342

    
343
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
344
        mem = &s->slots[i];
345

    
346
        if (!mem->memory_size) {
347
            continue;
348
        }
349
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
350
            continue;
351
        }
352
        err = kvm_set_user_memory_region(s, mem);
353
        if (err) {
354
            return err;
355
        }
356
    }
357
    return 0;
358
}
359

    
360
/* get kvm's dirty pages bitmap and update qemu's */
361
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
362
                                         unsigned long *bitmap)
363
{
364
    unsigned int i, j;
365
    unsigned long page_number, c;
366
    hwaddr addr, addr1;
367
    unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
368
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
369

    
370
    /*
371
     * bitmap-traveling is faster than memory-traveling (for addr...)
372
     * especially when most of the memory is not dirty.
373
     */
374
    for (i = 0; i < len; i++) {
375
        if (bitmap[i] != 0) {
376
            c = leul_to_cpu(bitmap[i]);
377
            do {
378
                j = ffsl(c) - 1;
379
                c &= ~(1ul << j);
380
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
381
                addr1 = page_number * TARGET_PAGE_SIZE;
382
                addr = section->offset_within_region + addr1;
383
                memory_region_set_dirty(section->mr, addr,
384
                                        TARGET_PAGE_SIZE * hpratio);
385
            } while (c != 0);
386
        }
387
    }
388
    return 0;
389
}
390

    
391
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
392

    
393
/**
394
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
395
 * This function updates qemu's dirty bitmap using
396
 * memory_region_set_dirty().  This means all bits are set
397
 * to dirty.
398
 *
399
 * @start_add: start of logged region.
400
 * @end_addr: end of logged region.
401
 */
402
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
403
{
404
    KVMState *s = kvm_state;
405
    unsigned long size, allocated_size = 0;
406
    KVMDirtyLog d;
407
    KVMSlot *mem;
408
    int ret = 0;
409
    hwaddr start_addr = section->offset_within_address_space;
410
    hwaddr end_addr = start_addr + section->size;
411

    
412
    d.dirty_bitmap = NULL;
413
    while (start_addr < end_addr) {
414
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
415
        if (mem == NULL) {
416
            break;
417
        }
418

    
419
        /* XXX bad kernel interface alert
420
         * For dirty bitmap, kernel allocates array of size aligned to
421
         * bits-per-long.  But for case when the kernel is 64bits and
422
         * the userspace is 32bits, userspace can't align to the same
423
         * bits-per-long, since sizeof(long) is different between kernel
424
         * and user space.  This way, userspace will provide buffer which
425
         * may be 4 bytes less than the kernel will use, resulting in
426
         * userspace memory corruption (which is not detectable by valgrind
427
         * too, in most cases).
428
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
429
         * a hope that sizeof(long) wont become >8 any time soon.
430
         */
431
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
432
                     /*HOST_LONG_BITS*/ 64) / 8;
433
        if (!d.dirty_bitmap) {
434
            d.dirty_bitmap = g_malloc(size);
435
        } else if (size > allocated_size) {
436
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
437
        }
438
        allocated_size = size;
439
        memset(d.dirty_bitmap, 0, allocated_size);
440

    
441
        d.slot = mem->slot;
442

    
443
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
444
            DPRINTF("ioctl failed %d\n", errno);
445
            ret = -1;
446
            break;
447
        }
448

    
449
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
450
        start_addr = mem->start_addr + mem->memory_size;
451
    }
452
    g_free(d.dirty_bitmap);
453

    
454
    return ret;
455
}
456

    
457
static void kvm_coalesce_mmio_region(MemoryListener *listener,
458
                                     MemoryRegionSection *secion,
459
                                     hwaddr start, hwaddr size)
460
{
461
    KVMState *s = kvm_state;
462

    
463
    if (s->coalesced_mmio) {
464
        struct kvm_coalesced_mmio_zone zone;
465

    
466
        zone.addr = start;
467
        zone.size = size;
468
        zone.pad = 0;
469

    
470
        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
471
    }
472
}
473

    
474
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
475
                                       MemoryRegionSection *secion,
476
                                       hwaddr start, hwaddr size)
477
{
478
    KVMState *s = kvm_state;
479

    
480
    if (s->coalesced_mmio) {
481
        struct kvm_coalesced_mmio_zone zone;
482

    
483
        zone.addr = start;
484
        zone.size = size;
485
        zone.pad = 0;
486

    
487
        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488
    }
489
}
490

    
491
int kvm_check_extension(KVMState *s, unsigned int extension)
492
{
493
    int ret;
494

    
495
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
496
    if (ret < 0) {
497
        ret = 0;
498
    }
499

    
500
    return ret;
501
}
502

    
503
static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
504
                                  bool assign, uint32_t size, bool datamatch)
505
{
506
    int ret;
507
    struct kvm_ioeventfd iofd;
508

    
509
    iofd.datamatch = datamatch ? val : 0;
510
    iofd.addr = addr;
511
    iofd.len = size;
512
    iofd.flags = 0;
513
    iofd.fd = fd;
514

    
515
    if (!kvm_enabled()) {
516
        return -ENOSYS;
517
    }
518

    
519
    if (datamatch) {
520
        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
521
    }
522
    if (!assign) {
523
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
524
    }
525

    
526
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
527

    
528
    if (ret < 0) {
529
        return -errno;
530
    }
531

    
532
    return 0;
533
}
534

    
535
static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
536
                                 bool assign, uint32_t size, bool datamatch)
537
{
538
    struct kvm_ioeventfd kick = {
539
        .datamatch = datamatch ? val : 0,
540
        .addr = addr,
541
        .flags = KVM_IOEVENTFD_FLAG_PIO,
542
        .len = size,
543
        .fd = fd,
544
    };
545
    int r;
546
    if (!kvm_enabled()) {
547
        return -ENOSYS;
548
    }
549
    if (datamatch) {
550
        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
551
    }
552
    if (!assign) {
553
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
554
    }
555
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
556
    if (r < 0) {
557
        return r;
558
    }
559
    return 0;
560
}
561

    
562

    
563
static int kvm_check_many_ioeventfds(void)
564
{
565
    /* Userspace can use ioeventfd for io notification.  This requires a host
566
     * that supports eventfd(2) and an I/O thread; since eventfd does not
567
     * support SIGIO it cannot interrupt the vcpu.
568
     *
569
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
570
     * can avoid creating too many ioeventfds.
571
     */
572
#if defined(CONFIG_EVENTFD)
573
    int ioeventfds[7];
574
    int i, ret = 0;
575
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
576
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
577
        if (ioeventfds[i] < 0) {
578
            break;
579
        }
580
        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
581
        if (ret < 0) {
582
            close(ioeventfds[i]);
583
            break;
584
        }
585
    }
586

    
587
    /* Decide whether many devices are supported or not */
588
    ret = i == ARRAY_SIZE(ioeventfds);
589

    
590
    while (i-- > 0) {
591
        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
592
        close(ioeventfds[i]);
593
    }
594
    return ret;
595
#else
596
    return 0;
597
#endif
598
}
599

    
600
static const KVMCapabilityInfo *
601
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
602
{
603
    while (list->name) {
604
        if (!kvm_check_extension(s, list->value)) {
605
            return list;
606
        }
607
        list++;
608
    }
609
    return NULL;
610
}
611

    
612
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
613
{
614
    KVMState *s = kvm_state;
615
    KVMSlot *mem, old;
616
    int err;
617
    MemoryRegion *mr = section->mr;
618
    bool log_dirty = memory_region_is_logging(mr);
619
    hwaddr start_addr = section->offset_within_address_space;
620
    ram_addr_t size = section->size;
621
    void *ram = NULL;
622
    unsigned delta;
623

    
624
    /* kvm works in page size chunks, but the function may be called
625
       with sub-page size and unaligned start address. */
626
    delta = TARGET_PAGE_ALIGN(size) - size;
627
    if (delta > size) {
628
        return;
629
    }
630
    start_addr += delta;
631
    size -= delta;
632
    size &= TARGET_PAGE_MASK;
633
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
634
        return;
635
    }
636

    
637
    if (!memory_region_is_ram(mr)) {
638
        return;
639
    }
640

    
641
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
642

    
643
    while (1) {
644
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
645
        if (!mem) {
646
            break;
647
        }
648

    
649
        if (add && start_addr >= mem->start_addr &&
650
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
651
            (ram - start_addr == mem->ram - mem->start_addr)) {
652
            /* The new slot fits into the existing one and comes with
653
             * identical parameters - update flags and done. */
654
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
655
            return;
656
        }
657

    
658
        old = *mem;
659

    
660
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
661
            kvm_physical_sync_dirty_bitmap(section);
662
        }
663

    
664
        /* unregister the overlapping slot */
665
        mem->memory_size = 0;
666
        err = kvm_set_user_memory_region(s, mem);
667
        if (err) {
668
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
669
                    __func__, strerror(-err));
670
            abort();
671
        }
672

    
673
        /* Workaround for older KVM versions: we can't join slots, even not by
674
         * unregistering the previous ones and then registering the larger
675
         * slot. We have to maintain the existing fragmentation. Sigh.
676
         *
677
         * This workaround assumes that the new slot starts at the same
678
         * address as the first existing one. If not or if some overlapping
679
         * slot comes around later, we will fail (not seen in practice so far)
680
         * - and actually require a recent KVM version. */
681
        if (s->broken_set_mem_region &&
682
            old.start_addr == start_addr && old.memory_size < size && add) {
683
            mem = kvm_alloc_slot(s);
684
            mem->memory_size = old.memory_size;
685
            mem->start_addr = old.start_addr;
686
            mem->ram = old.ram;
687
            mem->flags = kvm_mem_flags(s, log_dirty);
688

    
689
            err = kvm_set_user_memory_region(s, mem);
690
            if (err) {
691
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
692
                        strerror(-err));
693
                abort();
694
            }
695

    
696
            start_addr += old.memory_size;
697
            ram += old.memory_size;
698
            size -= old.memory_size;
699
            continue;
700
        }
701

    
702
        /* register prefix slot */
703
        if (old.start_addr < start_addr) {
704
            mem = kvm_alloc_slot(s);
705
            mem->memory_size = start_addr - old.start_addr;
706
            mem->start_addr = old.start_addr;
707
            mem->ram = old.ram;
708
            mem->flags =  kvm_mem_flags(s, log_dirty);
709

    
710
            err = kvm_set_user_memory_region(s, mem);
711
            if (err) {
712
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
713
                        __func__, strerror(-err));
714
#ifdef TARGET_PPC
715
                fprintf(stderr, "%s: This is probably because your kernel's " \
716
                                "PAGE_SIZE is too big. Please try to use 4k " \
717
                                "PAGE_SIZE!\n", __func__);
718
#endif
719
                abort();
720
            }
721
        }
722

    
723
        /* register suffix slot */
724
        if (old.start_addr + old.memory_size > start_addr + size) {
725
            ram_addr_t size_delta;
726

    
727
            mem = kvm_alloc_slot(s);
728
            mem->start_addr = start_addr + size;
729
            size_delta = mem->start_addr - old.start_addr;
730
            mem->memory_size = old.memory_size - size_delta;
731
            mem->ram = old.ram + size_delta;
732
            mem->flags = kvm_mem_flags(s, log_dirty);
733

    
734
            err = kvm_set_user_memory_region(s, mem);
735
            if (err) {
736
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
737
                        __func__, strerror(-err));
738
                abort();
739
            }
740
        }
741
    }
742

    
743
    /* in case the KVM bug workaround already "consumed" the new slot */
744
    if (!size) {
745
        return;
746
    }
747
    if (!add) {
748
        return;
749
    }
750
    mem = kvm_alloc_slot(s);
751
    mem->memory_size = size;
752
    mem->start_addr = start_addr;
753
    mem->ram = ram;
754
    mem->flags = kvm_mem_flags(s, log_dirty);
755

    
756
    err = kvm_set_user_memory_region(s, mem);
757
    if (err) {
758
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
759
                strerror(-err));
760
        abort();
761
    }
762
}
763

    
764
static void kvm_region_add(MemoryListener *listener,
765
                           MemoryRegionSection *section)
766
{
767
    kvm_set_phys_mem(section, true);
768
}
769

    
770
static void kvm_region_del(MemoryListener *listener,
771
                           MemoryRegionSection *section)
772
{
773
    kvm_set_phys_mem(section, false);
774
}
775

    
776
static void kvm_log_sync(MemoryListener *listener,
777
                         MemoryRegionSection *section)
778
{
779
    int r;
780

    
781
    r = kvm_physical_sync_dirty_bitmap(section);
782
    if (r < 0) {
783
        abort();
784
    }
785
}
786

    
787
static void kvm_log_global_start(struct MemoryListener *listener)
788
{
789
    int r;
790

    
791
    r = kvm_set_migration_log(1);
792
    assert(r >= 0);
793
}
794

    
795
static void kvm_log_global_stop(struct MemoryListener *listener)
796
{
797
    int r;
798

    
799
    r = kvm_set_migration_log(0);
800
    assert(r >= 0);
801
}
802

    
803
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
804
                                  MemoryRegionSection *section,
805
                                  bool match_data, uint64_t data,
806
                                  EventNotifier *e)
807
{
808
    int fd = event_notifier_get_fd(e);
809
    int r;
810

    
811
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
812
                               data, true, section->size, match_data);
813
    if (r < 0) {
814
        abort();
815
    }
816
}
817

    
818
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
819
                                  MemoryRegionSection *section,
820
                                  bool match_data, uint64_t data,
821
                                  EventNotifier *e)
822
{
823
    int fd = event_notifier_get_fd(e);
824
    int r;
825

    
826
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
827
                               data, false, section->size, match_data);
828
    if (r < 0) {
829
        abort();
830
    }
831
}
832

    
833
static void kvm_io_ioeventfd_add(MemoryListener *listener,
834
                                 MemoryRegionSection *section,
835
                                 bool match_data, uint64_t data,
836
                                 EventNotifier *e)
837
{
838
    int fd = event_notifier_get_fd(e);
839
    int r;
840

    
841
    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
842
                              data, true, section->size, match_data);
843
    if (r < 0) {
844
        abort();
845
    }
846
}
847

    
848
static void kvm_io_ioeventfd_del(MemoryListener *listener,
849
                                 MemoryRegionSection *section,
850
                                 bool match_data, uint64_t data,
851
                                 EventNotifier *e)
852

    
853
{
854
    int fd = event_notifier_get_fd(e);
855
    int r;
856

    
857
    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
858
                              data, false, section->size, match_data);
859
    if (r < 0) {
860
        abort();
861
    }
862
}
863

    
864
static MemoryListener kvm_memory_listener = {
865
    .region_add = kvm_region_add,
866
    .region_del = kvm_region_del,
867
    .log_start = kvm_log_start,
868
    .log_stop = kvm_log_stop,
869
    .log_sync = kvm_log_sync,
870
    .log_global_start = kvm_log_global_start,
871
    .log_global_stop = kvm_log_global_stop,
872
    .eventfd_add = kvm_mem_ioeventfd_add,
873
    .eventfd_del = kvm_mem_ioeventfd_del,
874
    .coalesced_mmio_add = kvm_coalesce_mmio_region,
875
    .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
876
    .priority = 10,
877
};
878

    
879
static MemoryListener kvm_io_listener = {
880
    .eventfd_add = kvm_io_ioeventfd_add,
881
    .eventfd_del = kvm_io_ioeventfd_del,
882
    .priority = 10,
883
};
884

    
885
static void kvm_handle_interrupt(CPUState *cpu, int mask)
886
{
887
    cpu->interrupt_request |= mask;
888

    
889
    if (!qemu_cpu_is_self(cpu)) {
890
        qemu_cpu_kick(cpu);
891
    }
892
}
893

    
894
int kvm_set_irq(KVMState *s, int irq, int level)
895
{
896
    struct kvm_irq_level event;
897
    int ret;
898

    
899
    assert(kvm_async_interrupts_enabled());
900

    
901
    event.level = level;
902
    event.irq = irq;
903
    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
904
    if (ret < 0) {
905
        perror("kvm_set_irq");
906
        abort();
907
    }
908

    
909
    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
910
}
911

    
912
#ifdef KVM_CAP_IRQ_ROUTING
913
typedef struct KVMMSIRoute {
914
    struct kvm_irq_routing_entry kroute;
915
    QTAILQ_ENTRY(KVMMSIRoute) entry;
916
} KVMMSIRoute;
917

    
918
static void set_gsi(KVMState *s, unsigned int gsi)
919
{
920
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
921
}
922

    
923
static void clear_gsi(KVMState *s, unsigned int gsi)
924
{
925
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
926
}
927

    
928
static void kvm_init_irq_routing(KVMState *s)
929
{
930
    int gsi_count, i;
931

    
932
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
933
    if (gsi_count > 0) {
934
        unsigned int gsi_bits, i;
935

    
936
        /* Round up so we can search ints using ffs */
937
        gsi_bits = ALIGN(gsi_count, 32);
938
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
939
        s->gsi_count = gsi_count;
940

    
941
        /* Mark any over-allocated bits as already in use */
942
        for (i = gsi_count; i < gsi_bits; i++) {
943
            set_gsi(s, i);
944
        }
945
    }
946

    
947
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
948
    s->nr_allocated_irq_routes = 0;
949

    
950
    if (!s->direct_msi) {
951
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
952
            QTAILQ_INIT(&s->msi_hashtab[i]);
953
        }
954
    }
955

    
956
    kvm_arch_init_irq_routing(s);
957
}
958

    
959
static void kvm_irqchip_commit_routes(KVMState *s)
960
{
961
    int ret;
962

    
963
    s->irq_routes->flags = 0;
964
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
965
    assert(ret == 0);
966
}
967

    
968
static void kvm_add_routing_entry(KVMState *s,
969
                                  struct kvm_irq_routing_entry *entry)
970
{
971
    struct kvm_irq_routing_entry *new;
972
    int n, size;
973

    
974
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
975
        n = s->nr_allocated_irq_routes * 2;
976
        if (n < 64) {
977
            n = 64;
978
        }
979
        size = sizeof(struct kvm_irq_routing);
980
        size += n * sizeof(*new);
981
        s->irq_routes = g_realloc(s->irq_routes, size);
982
        s->nr_allocated_irq_routes = n;
983
    }
984
    n = s->irq_routes->nr++;
985
    new = &s->irq_routes->entries[n];
986
    memset(new, 0, sizeof(*new));
987
    new->gsi = entry->gsi;
988
    new->type = entry->type;
989
    new->flags = entry->flags;
990
    new->u = entry->u;
991

    
992
    set_gsi(s, entry->gsi);
993

    
994
    kvm_irqchip_commit_routes(s);
995
}
996

    
997
static int kvm_update_routing_entry(KVMState *s,
998
                                    struct kvm_irq_routing_entry *new_entry)
999
{
1000
    struct kvm_irq_routing_entry *entry;
1001
    int n;
1002

    
1003
    for (n = 0; n < s->irq_routes->nr; n++) {
1004
        entry = &s->irq_routes->entries[n];
1005
        if (entry->gsi != new_entry->gsi) {
1006
            continue;
1007
        }
1008

    
1009
        entry->type = new_entry->type;
1010
        entry->flags = new_entry->flags;
1011
        entry->u = new_entry->u;
1012

    
1013
        kvm_irqchip_commit_routes(s);
1014

    
1015
        return 0;
1016
    }
1017

    
1018
    return -ESRCH;
1019
}
1020

    
1021
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1022
{
1023
    struct kvm_irq_routing_entry e;
1024

    
1025
    assert(pin < s->gsi_count);
1026

    
1027
    e.gsi = irq;
1028
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1029
    e.flags = 0;
1030
    e.u.irqchip.irqchip = irqchip;
1031
    e.u.irqchip.pin = pin;
1032
    kvm_add_routing_entry(s, &e);
1033
}
1034

    
1035
void kvm_irqchip_release_virq(KVMState *s, int virq)
1036
{
1037
    struct kvm_irq_routing_entry *e;
1038
    int i;
1039

    
1040
    for (i = 0; i < s->irq_routes->nr; i++) {
1041
        e = &s->irq_routes->entries[i];
1042
        if (e->gsi == virq) {
1043
            s->irq_routes->nr--;
1044
            *e = s->irq_routes->entries[s->irq_routes->nr];
1045
        }
1046
    }
1047
    clear_gsi(s, virq);
1048
}
1049

    
1050
static unsigned int kvm_hash_msi(uint32_t data)
1051
{
1052
    /* This is optimized for IA32 MSI layout. However, no other arch shall
1053
     * repeat the mistake of not providing a direct MSI injection API. */
1054
    return data & 0xff;
1055
}
1056

    
1057
static void kvm_flush_dynamic_msi_routes(KVMState *s)
1058
{
1059
    KVMMSIRoute *route, *next;
1060
    unsigned int hash;
1061

    
1062
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1063
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1064
            kvm_irqchip_release_virq(s, route->kroute.gsi);
1065
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1066
            g_free(route);
1067
        }
1068
    }
1069
}
1070

    
1071
static int kvm_irqchip_get_virq(KVMState *s)
1072
{
1073
    uint32_t *word = s->used_gsi_bitmap;
1074
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1075
    int i, bit;
1076
    bool retry = true;
1077

    
1078
again:
1079
    /* Return the lowest unused GSI in the bitmap */
1080
    for (i = 0; i < max_words; i++) {
1081
        bit = ffs(~word[i]);
1082
        if (!bit) {
1083
            continue;
1084
        }
1085

    
1086
        return bit - 1 + i * 32;
1087
    }
1088
    if (!s->direct_msi && retry) {
1089
        retry = false;
1090
        kvm_flush_dynamic_msi_routes(s);
1091
        goto again;
1092
    }
1093
    return -ENOSPC;
1094

    
1095
}
1096

    
1097
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1098
{
1099
    unsigned int hash = kvm_hash_msi(msg.data);
1100
    KVMMSIRoute *route;
1101

    
1102
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1103
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1104
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1105
            route->kroute.u.msi.data == msg.data) {
1106
            return route;
1107
        }
1108
    }
1109
    return NULL;
1110
}
1111

    
1112
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1113
{
1114
    struct kvm_msi msi;
1115
    KVMMSIRoute *route;
1116

    
1117
    if (s->direct_msi) {
1118
        msi.address_lo = (uint32_t)msg.address;
1119
        msi.address_hi = msg.address >> 32;
1120
        msi.data = msg.data;
1121
        msi.flags = 0;
1122
        memset(msi.pad, 0, sizeof(msi.pad));
1123

    
1124
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1125
    }
1126

    
1127
    route = kvm_lookup_msi_route(s, msg);
1128
    if (!route) {
1129
        int virq;
1130

    
1131
        virq = kvm_irqchip_get_virq(s);
1132
        if (virq < 0) {
1133
            return virq;
1134
        }
1135

    
1136
        route = g_malloc(sizeof(KVMMSIRoute));
1137
        route->kroute.gsi = virq;
1138
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1139
        route->kroute.flags = 0;
1140
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1141
        route->kroute.u.msi.address_hi = msg.address >> 32;
1142
        route->kroute.u.msi.data = msg.data;
1143

    
1144
        kvm_add_routing_entry(s, &route->kroute);
1145

    
1146
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1147
                           entry);
1148
    }
1149

    
1150
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1151

    
1152
    return kvm_set_irq(s, route->kroute.gsi, 1);
1153
}
1154

    
1155
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1156
{
1157
    struct kvm_irq_routing_entry kroute;
1158
    int virq;
1159

    
1160
    if (!kvm_gsi_routing_enabled()) {
1161
        return -ENOSYS;
1162
    }
1163

    
1164
    virq = kvm_irqchip_get_virq(s);
1165
    if (virq < 0) {
1166
        return virq;
1167
    }
1168

    
1169
    kroute.gsi = virq;
1170
    kroute.type = KVM_IRQ_ROUTING_MSI;
1171
    kroute.flags = 0;
1172
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1173
    kroute.u.msi.address_hi = msg.address >> 32;
1174
    kroute.u.msi.data = msg.data;
1175

    
1176
    kvm_add_routing_entry(s, &kroute);
1177

    
1178
    return virq;
1179
}
1180

    
1181
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1182
{
1183
    struct kvm_irq_routing_entry kroute;
1184

    
1185
    if (!kvm_irqchip_in_kernel()) {
1186
        return -ENOSYS;
1187
    }
1188

    
1189
    kroute.gsi = virq;
1190
    kroute.type = KVM_IRQ_ROUTING_MSI;
1191
    kroute.flags = 0;
1192
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1193
    kroute.u.msi.address_hi = msg.address >> 32;
1194
    kroute.u.msi.data = msg.data;
1195

    
1196
    return kvm_update_routing_entry(s, &kroute);
1197
}
1198

    
1199
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1200
{
1201
    struct kvm_irqfd irqfd = {
1202
        .fd = fd,
1203
        .gsi = virq,
1204
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1205
    };
1206

    
1207
    if (!kvm_irqfds_enabled()) {
1208
        return -ENOSYS;
1209
    }
1210

    
1211
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1212
}
1213

    
1214
#else /* !KVM_CAP_IRQ_ROUTING */
1215

    
1216
static void kvm_init_irq_routing(KVMState *s)
1217
{
1218
}
1219

    
1220
void kvm_irqchip_release_virq(KVMState *s, int virq)
1221
{
1222
}
1223

    
1224
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1225
{
1226
    abort();
1227
}
1228

    
1229
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1230
{
1231
    return -ENOSYS;
1232
}
1233

    
1234
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1235
{
1236
    abort();
1237
}
1238

    
1239
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1240
{
1241
    return -ENOSYS;
1242
}
1243
#endif /* !KVM_CAP_IRQ_ROUTING */
1244

    
1245
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1246
{
1247
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1248
}
1249

    
1250
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1251
{
1252
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1253
}
1254

    
1255
static int kvm_irqchip_create(KVMState *s)
1256
{
1257
    QemuOptsList *list = qemu_find_opts("machine");
1258
    int ret;
1259

    
1260
    if (QTAILQ_EMPTY(&list->head) ||
1261
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1262
                           "kernel_irqchip", true) ||
1263
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1264
        return 0;
1265
    }
1266

    
1267
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1268
    if (ret < 0) {
1269
        fprintf(stderr, "Create kernel irqchip failed\n");
1270
        return ret;
1271
    }
1272

    
1273
    kvm_kernel_irqchip = true;
1274
    /* If we have an in-kernel IRQ chip then we must have asynchronous
1275
     * interrupt delivery (though the reverse is not necessarily true)
1276
     */
1277
    kvm_async_interrupts_allowed = true;
1278

    
1279
    kvm_init_irq_routing(s);
1280

    
1281
    return 0;
1282
}
1283

    
1284
static int kvm_max_vcpus(KVMState *s)
1285
{
1286
    int ret;
1287

    
1288
    /* Find number of supported CPUs using the recommended
1289
     * procedure from the kernel API documentation to cope with
1290
     * older kernels that may be missing capabilities.
1291
     */
1292
    ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1293
    if (ret) {
1294
        return ret;
1295
    }
1296
    ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1297
    if (ret) {
1298
        return ret;
1299
    }
1300

    
1301
    return 4;
1302
}
1303

    
1304
int kvm_init(void)
1305
{
1306
    static const char upgrade_note[] =
1307
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1308
        "(see http://sourceforge.net/projects/kvm).\n";
1309
    KVMState *s;
1310
    const KVMCapabilityInfo *missing_cap;
1311
    int ret;
1312
    int i;
1313
    int max_vcpus;
1314

    
1315
    s = g_malloc0(sizeof(KVMState));
1316

    
1317
    /*
1318
     * On systems where the kernel can support different base page
1319
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1320
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1321
     * page size for the system though.
1322
     */
1323
    assert(TARGET_PAGE_SIZE <= getpagesize());
1324

    
1325
#ifdef KVM_CAP_SET_GUEST_DEBUG
1326
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1327
#endif
1328
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1329
        s->slots[i].slot = i;
1330
    }
1331
    s->vmfd = -1;
1332
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1333
    if (s->fd == -1) {
1334
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1335
        ret = -errno;
1336
        goto err;
1337
    }
1338

    
1339
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1340
    if (ret < KVM_API_VERSION) {
1341
        if (ret > 0) {
1342
            ret = -EINVAL;
1343
        }
1344
        fprintf(stderr, "kvm version too old\n");
1345
        goto err;
1346
    }
1347

    
1348
    if (ret > KVM_API_VERSION) {
1349
        ret = -EINVAL;
1350
        fprintf(stderr, "kvm version not supported\n");
1351
        goto err;
1352
    }
1353

    
1354
    max_vcpus = kvm_max_vcpus(s);
1355
    if (smp_cpus > max_vcpus) {
1356
        ret = -EINVAL;
1357
        fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1358
                "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1359
        goto err;
1360
    }
1361

    
1362
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1363
    if (s->vmfd < 0) {
1364
#ifdef TARGET_S390X
1365
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1366
                        "your host kernel command line\n");
1367
#endif
1368
        ret = s->vmfd;
1369
        goto err;
1370
    }
1371

    
1372
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1373
    if (!missing_cap) {
1374
        missing_cap =
1375
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1376
    }
1377
    if (missing_cap) {
1378
        ret = -EINVAL;
1379
        fprintf(stderr, "kvm does not support %s\n%s",
1380
                missing_cap->name, upgrade_note);
1381
        goto err;
1382
    }
1383

    
1384
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1385

    
1386
    s->broken_set_mem_region = 1;
1387
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1388
    if (ret > 0) {
1389
        s->broken_set_mem_region = 0;
1390
    }
1391

    
1392
#ifdef KVM_CAP_VCPU_EVENTS
1393
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1394
#endif
1395

    
1396
    s->robust_singlestep =
1397
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1398

    
1399
#ifdef KVM_CAP_DEBUGREGS
1400
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1401
#endif
1402

    
1403
#ifdef KVM_CAP_XSAVE
1404
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1405
#endif
1406

    
1407
#ifdef KVM_CAP_XCRS
1408
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1409
#endif
1410

    
1411
#ifdef KVM_CAP_PIT_STATE2
1412
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1413
#endif
1414

    
1415
#ifdef KVM_CAP_IRQ_ROUTING
1416
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1417
#endif
1418

    
1419
    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1420

    
1421
    s->irq_set_ioctl = KVM_IRQ_LINE;
1422
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1423
        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1424
    }
1425

    
1426
    ret = kvm_arch_init(s);
1427
    if (ret < 0) {
1428
        goto err;
1429
    }
1430

    
1431
    ret = kvm_irqchip_create(s);
1432
    if (ret < 0) {
1433
        goto err;
1434
    }
1435

    
1436
    kvm_state = s;
1437
    memory_listener_register(&kvm_memory_listener, &address_space_memory);
1438
    memory_listener_register(&kvm_io_listener, &address_space_io);
1439

    
1440
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1441

    
1442
    cpu_interrupt_handler = kvm_handle_interrupt;
1443

    
1444
    return 0;
1445

    
1446
err:
1447
    if (s->vmfd >= 0) {
1448
        close(s->vmfd);
1449
    }
1450
    if (s->fd != -1) {
1451
        close(s->fd);
1452
    }
1453
    g_free(s);
1454

    
1455
    return ret;
1456
}
1457

    
1458
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1459
                          uint32_t count)
1460
{
1461
    int i;
1462
    uint8_t *ptr = data;
1463

    
1464
    for (i = 0; i < count; i++) {
1465
        if (direction == KVM_EXIT_IO_IN) {
1466
            switch (size) {
1467
            case 1:
1468
                stb_p(ptr, cpu_inb(port));
1469
                break;
1470
            case 2:
1471
                stw_p(ptr, cpu_inw(port));
1472
                break;
1473
            case 4:
1474
                stl_p(ptr, cpu_inl(port));
1475
                break;
1476
            }
1477
        } else {
1478
            switch (size) {
1479
            case 1:
1480
                cpu_outb(port, ldub_p(ptr));
1481
                break;
1482
            case 2:
1483
                cpu_outw(port, lduw_p(ptr));
1484
                break;
1485
            case 4:
1486
                cpu_outl(port, ldl_p(ptr));
1487
                break;
1488
            }
1489
        }
1490

    
1491
        ptr += size;
1492
    }
1493
}
1494

    
1495
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1496
{
1497
    CPUState *cpu = ENV_GET_CPU(env);
1498

    
1499
    fprintf(stderr, "KVM internal error.");
1500
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1501
        int i;
1502

    
1503
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1504
        for (i = 0; i < run->internal.ndata; ++i) {
1505
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1506
                    i, (uint64_t)run->internal.data[i]);
1507
        }
1508
    } else {
1509
        fprintf(stderr, "\n");
1510
    }
1511
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1512
        fprintf(stderr, "emulation failure\n");
1513
        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1514
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1515
            return EXCP_INTERRUPT;
1516
        }
1517
    }
1518
    /* FIXME: Should trigger a qmp message to let management know
1519
     * something went wrong.
1520
     */
1521
    return -1;
1522
}
1523

    
1524
void kvm_flush_coalesced_mmio_buffer(void)
1525
{
1526
    KVMState *s = kvm_state;
1527

    
1528
    if (s->coalesced_flush_in_progress) {
1529
        return;
1530
    }
1531

    
1532
    s->coalesced_flush_in_progress = true;
1533

    
1534
    if (s->coalesced_mmio_ring) {
1535
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1536
        while (ring->first != ring->last) {
1537
            struct kvm_coalesced_mmio *ent;
1538

    
1539
            ent = &ring->coalesced_mmio[ring->first];
1540

    
1541
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1542
            smp_wmb();
1543
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1544
        }
1545
    }
1546

    
1547
    s->coalesced_flush_in_progress = false;
1548
}
1549

    
1550
static void do_kvm_cpu_synchronize_state(void *arg)
1551
{
1552
    CPUState *cpu = arg;
1553

    
1554
    if (!cpu->kvm_vcpu_dirty) {
1555
        kvm_arch_get_registers(cpu);
1556
        cpu->kvm_vcpu_dirty = true;
1557
    }
1558
}
1559

    
1560
void kvm_cpu_synchronize_state(CPUArchState *env)
1561
{
1562
    CPUState *cpu = ENV_GET_CPU(env);
1563

    
1564
    if (!cpu->kvm_vcpu_dirty) {
1565
        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1566
    }
1567
}
1568

    
1569
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1570
{
1571
    CPUState *cpu = ENV_GET_CPU(env);
1572

    
1573
    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1574
    cpu->kvm_vcpu_dirty = false;
1575
}
1576

    
1577
void kvm_cpu_synchronize_post_init(CPUArchState *env)
1578
{
1579
    CPUState *cpu = ENV_GET_CPU(env);
1580

    
1581
    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1582
    cpu->kvm_vcpu_dirty = false;
1583
}
1584

    
1585
int kvm_cpu_exec(CPUArchState *env)
1586
{
1587
    CPUState *cpu = ENV_GET_CPU(env);
1588
    struct kvm_run *run = cpu->kvm_run;
1589
    int ret, run_ret;
1590

    
1591
    DPRINTF("kvm_cpu_exec()\n");
1592

    
1593
    if (kvm_arch_process_async_events(cpu)) {
1594
        cpu->exit_request = 0;
1595
        return EXCP_HLT;
1596
    }
1597

    
1598
    do {
1599
        if (cpu->kvm_vcpu_dirty) {
1600
            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1601
            cpu->kvm_vcpu_dirty = false;
1602
        }
1603

    
1604
        kvm_arch_pre_run(cpu, run);
1605
        if (cpu->exit_request) {
1606
            DPRINTF("interrupt exit requested\n");
1607
            /*
1608
             * KVM requires us to reenter the kernel after IO exits to complete
1609
             * instruction emulation. This self-signal will ensure that we
1610
             * leave ASAP again.
1611
             */
1612
            qemu_cpu_kick_self();
1613
        }
1614
        qemu_mutex_unlock_iothread();
1615

    
1616
        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1617

    
1618
        qemu_mutex_lock_iothread();
1619
        kvm_arch_post_run(cpu, run);
1620

    
1621
        if (run_ret < 0) {
1622
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1623
                DPRINTF("io window exit\n");
1624
                ret = EXCP_INTERRUPT;
1625
                break;
1626
            }
1627
            fprintf(stderr, "error: kvm run failed %s\n",
1628
                    strerror(-run_ret));
1629
            abort();
1630
        }
1631

    
1632
        switch (run->exit_reason) {
1633
        case KVM_EXIT_IO:
1634
            DPRINTF("handle_io\n");
1635
            kvm_handle_io(run->io.port,
1636
                          (uint8_t *)run + run->io.data_offset,
1637
                          run->io.direction,
1638
                          run->io.size,
1639
                          run->io.count);
1640
            ret = 0;
1641
            break;
1642
        case KVM_EXIT_MMIO:
1643
            DPRINTF("handle_mmio\n");
1644
            cpu_physical_memory_rw(run->mmio.phys_addr,
1645
                                   run->mmio.data,
1646
                                   run->mmio.len,
1647
                                   run->mmio.is_write);
1648
            ret = 0;
1649
            break;
1650
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1651
            DPRINTF("irq_window_open\n");
1652
            ret = EXCP_INTERRUPT;
1653
            break;
1654
        case KVM_EXIT_SHUTDOWN:
1655
            DPRINTF("shutdown\n");
1656
            qemu_system_reset_request();
1657
            ret = EXCP_INTERRUPT;
1658
            break;
1659
        case KVM_EXIT_UNKNOWN:
1660
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1661
                    (uint64_t)run->hw.hardware_exit_reason);
1662
            ret = -1;
1663
            break;
1664
        case KVM_EXIT_INTERNAL_ERROR:
1665
            ret = kvm_handle_internal_error(env, run);
1666
            break;
1667
        default:
1668
            DPRINTF("kvm_arch_handle_exit\n");
1669
            ret = kvm_arch_handle_exit(cpu, run);
1670
            break;
1671
        }
1672
    } while (ret == 0);
1673

    
1674
    if (ret < 0) {
1675
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1676
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1677
    }
1678

    
1679
    cpu->exit_request = 0;
1680
    return ret;
1681
}
1682

    
1683
int kvm_ioctl(KVMState *s, int type, ...)
1684
{
1685
    int ret;
1686
    void *arg;
1687
    va_list ap;
1688

    
1689
    va_start(ap, type);
1690
    arg = va_arg(ap, void *);
1691
    va_end(ap);
1692

    
1693
    ret = ioctl(s->fd, type, arg);
1694
    if (ret == -1) {
1695
        ret = -errno;
1696
    }
1697
    return ret;
1698
}
1699

    
1700
int kvm_vm_ioctl(KVMState *s, int type, ...)
1701
{
1702
    int ret;
1703
    void *arg;
1704
    va_list ap;
1705

    
1706
    va_start(ap, type);
1707
    arg = va_arg(ap, void *);
1708
    va_end(ap);
1709

    
1710
    ret = ioctl(s->vmfd, type, arg);
1711
    if (ret == -1) {
1712
        ret = -errno;
1713
    }
1714
    return ret;
1715
}
1716

    
1717
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1718
{
1719
    int ret;
1720
    void *arg;
1721
    va_list ap;
1722

    
1723
    va_start(ap, type);
1724
    arg = va_arg(ap, void *);
1725
    va_end(ap);
1726

    
1727
    ret = ioctl(cpu->kvm_fd, type, arg);
1728
    if (ret == -1) {
1729
        ret = -errno;
1730
    }
1731
    return ret;
1732
}
1733

    
1734
int kvm_has_sync_mmu(void)
1735
{
1736
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1737
}
1738

    
1739
int kvm_has_vcpu_events(void)
1740
{
1741
    return kvm_state->vcpu_events;
1742
}
1743

    
1744
int kvm_has_robust_singlestep(void)
1745
{
1746
    return kvm_state->robust_singlestep;
1747
}
1748

    
1749
int kvm_has_debugregs(void)
1750
{
1751
    return kvm_state->debugregs;
1752
}
1753

    
1754
int kvm_has_xsave(void)
1755
{
1756
    return kvm_state->xsave;
1757
}
1758

    
1759
int kvm_has_xcrs(void)
1760
{
1761
    return kvm_state->xcrs;
1762
}
1763

    
1764
int kvm_has_pit_state2(void)
1765
{
1766
    return kvm_state->pit_state2;
1767
}
1768

    
1769
int kvm_has_many_ioeventfds(void)
1770
{
1771
    if (!kvm_enabled()) {
1772
        return 0;
1773
    }
1774
    return kvm_state->many_ioeventfds;
1775
}
1776

    
1777
int kvm_has_gsi_routing(void)
1778
{
1779
#ifdef KVM_CAP_IRQ_ROUTING
1780
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1781
#else
1782
    return false;
1783
#endif
1784
}
1785

    
1786
int kvm_has_intx_set_mask(void)
1787
{
1788
    return kvm_state->intx_set_mask;
1789
}
1790

    
1791
void *kvm_vmalloc(ram_addr_t size)
1792
{
1793
#ifdef TARGET_S390X
1794
    void *mem;
1795

    
1796
    mem = kvm_arch_vmalloc(size);
1797
    if (mem) {
1798
        return mem;
1799
    }
1800
#endif
1801
    return qemu_vmalloc(size);
1802
}
1803

    
1804
void kvm_setup_guest_memory(void *start, size_t size)
1805
{
1806
#ifdef CONFIG_VALGRIND_H
1807
    VALGRIND_MAKE_MEM_DEFINED(start, size);
1808
#endif
1809
    if (!kvm_has_sync_mmu()) {
1810
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1811

    
1812
        if (ret) {
1813
            perror("qemu_madvise");
1814
            fprintf(stderr,
1815
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1816
            exit(1);
1817
        }
1818
    }
1819
}
1820

    
1821
#ifdef KVM_CAP_SET_GUEST_DEBUG
1822
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1823
                                                 target_ulong pc)
1824
{
1825
    struct kvm_sw_breakpoint *bp;
1826

    
1827
    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1828
        if (bp->pc == pc) {
1829
            return bp;
1830
        }
1831
    }
1832
    return NULL;
1833
}
1834

    
1835
int kvm_sw_breakpoints_active(CPUState *cpu)
1836
{
1837
    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1838
}
1839

    
1840
struct kvm_set_guest_debug_data {
1841
    struct kvm_guest_debug dbg;
1842
    CPUState *cpu;
1843
    int err;
1844
};
1845

    
1846
static void kvm_invoke_set_guest_debug(void *data)
1847
{
1848
    struct kvm_set_guest_debug_data *dbg_data = data;
1849

    
1850
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1851
                                   &dbg_data->dbg);
1852
}
1853

    
1854
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1855
{
1856
    CPUState *cpu = ENV_GET_CPU(env);
1857
    struct kvm_set_guest_debug_data data;
1858

    
1859
    data.dbg.control = reinject_trap;
1860

    
1861
    if (env->singlestep_enabled) {
1862
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1863
    }
1864
    kvm_arch_update_guest_debug(cpu, &data.dbg);
1865
    data.cpu = cpu;
1866

    
1867
    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1868
    return data.err;
1869
}
1870

    
1871
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1872
                          target_ulong len, int type)
1873
{
1874
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1875
    struct kvm_sw_breakpoint *bp;
1876
    CPUArchState *env;
1877
    int err;
1878

    
1879
    if (type == GDB_BREAKPOINT_SW) {
1880
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1881
        if (bp) {
1882
            bp->use_count++;
1883
            return 0;
1884
        }
1885

    
1886
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1887
        if (!bp) {
1888
            return -ENOMEM;
1889
        }
1890

    
1891
        bp->pc = addr;
1892
        bp->use_count = 1;
1893
        err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1894
        if (err) {
1895
            g_free(bp);
1896
            return err;
1897
        }
1898

    
1899
        QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1900
                          bp, entry);
1901
    } else {
1902
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1903
        if (err) {
1904
            return err;
1905
        }
1906
    }
1907

    
1908
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1909
        err = kvm_update_guest_debug(env, 0);
1910
        if (err) {
1911
            return err;
1912
        }
1913
    }
1914
    return 0;
1915
}
1916

    
1917
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1918
                          target_ulong len, int type)
1919
{
1920
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1921
    struct kvm_sw_breakpoint *bp;
1922
    CPUArchState *env;
1923
    int err;
1924

    
1925
    if (type == GDB_BREAKPOINT_SW) {
1926
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1927
        if (!bp) {
1928
            return -ENOENT;
1929
        }
1930

    
1931
        if (bp->use_count > 1) {
1932
            bp->use_count--;
1933
            return 0;
1934
        }
1935

    
1936
        err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1937
        if (err) {
1938
            return err;
1939
        }
1940

    
1941
        QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1942
        g_free(bp);
1943
    } else {
1944
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1945
        if (err) {
1946
            return err;
1947
        }
1948
    }
1949

    
1950
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1951
        err = kvm_update_guest_debug(env, 0);
1952
        if (err) {
1953
            return err;
1954
        }
1955
    }
1956
    return 0;
1957
}
1958

    
1959
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1960
{
1961
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1962
    struct kvm_sw_breakpoint *bp, *next;
1963
    KVMState *s = current_cpu->kvm_state;
1964
    CPUArchState *env;
1965
    CPUState *cpu;
1966

    
1967
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1968
        if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1969
            /* Try harder to find a CPU that currently sees the breakpoint. */
1970
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1971
                cpu = ENV_GET_CPU(env);
1972
                if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1973
                    break;
1974
                }
1975
            }
1976
        }
1977
        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1978
        g_free(bp);
1979
    }
1980
    kvm_arch_remove_all_hw_breakpoints();
1981

    
1982
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1983
        kvm_update_guest_debug(env, 0);
1984
    }
1985
}
1986

    
1987
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1988

    
1989
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1990
{
1991
    return -EINVAL;
1992
}
1993

    
1994
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1995
                          target_ulong len, int type)
1996
{
1997
    return -EINVAL;
1998
}
1999

    
2000
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2001
                          target_ulong len, int type)
2002
{
2003
    return -EINVAL;
2004
}
2005

    
2006
void kvm_remove_all_breakpoints(CPUArchState *current_env)
2007
{
2008
}
2009
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2010

    
2011
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
2012
{
2013
    CPUState *cpu = ENV_GET_CPU(env);
2014
    struct kvm_signal_mask *sigmask;
2015
    int r;
2016

    
2017
    if (!sigset) {
2018
        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2019
    }
2020

    
2021
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2022

    
2023
    sigmask->len = 8;
2024
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2025
    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2026
    g_free(sigmask);
2027

    
2028
    return r;
2029
}
2030
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2031
{
2032
    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2033
}
2034

    
2035
int kvm_on_sigbus(int code, void *addr)
2036
{
2037
    return kvm_arch_on_sigbus(code, addr);
2038
}