Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 423d65f4

History | View | Annotate | Download (82.5 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item ARM Integrator/CP (ARM)
81
@item ARM Versatile baseboard (ARM)
82
@item ARM RealView Emulation baseboard (ARM)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86
@item Freescale MCF5208EVB (ColdFire V2).
87
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
88
@item Palm Tungsten|E PDA (OMAP310 processor)
89
@end itemize
90

    
91
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92

    
93
@node Installation
94
@chapter Installation
95

    
96
If you want to compile QEMU yourself, see @ref{compilation}.
97

    
98
@menu
99
* install_linux::   Linux
100
* install_windows:: Windows
101
* install_mac::     Macintosh
102
@end menu
103

    
104
@node install_linux
105
@section Linux
106

    
107
If a precompiled package is available for your distribution - you just
108
have to install it. Otherwise, see @ref{compilation}.
109

    
110
@node install_windows
111
@section Windows
112

    
113
Download the experimental binary installer at
114
@url{http://www.free.oszoo.org/@/download.html}.
115

    
116
@node install_mac
117
@section Mac OS X
118

    
119
Download the experimental binary installer at
120
@url{http://www.free.oszoo.org/@/download.html}.
121

    
122
@node QEMU PC System emulator
123
@chapter QEMU PC System emulator
124

    
125
@menu
126
* pcsys_introduction:: Introduction
127
* pcsys_quickstart::   Quick Start
128
* sec_invocation::     Invocation
129
* pcsys_keys::         Keys
130
* pcsys_monitor::      QEMU Monitor
131
* disk_images::        Disk Images
132
* pcsys_network::      Network emulation
133
* direct_linux_boot::  Direct Linux Boot
134
* pcsys_usb::          USB emulation
135
* vnc_security::       VNC security
136
* gdb_usage::          GDB usage
137
* pcsys_os_specific::  Target OS specific information
138
@end menu
139

    
140
@node pcsys_introduction
141
@section Introduction
142

    
143
@c man begin DESCRIPTION
144

    
145
The QEMU PC System emulator simulates the
146
following peripherals:
147

    
148
@itemize @minus
149
@item
150
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151
@item
152
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153
extensions (hardware level, including all non standard modes).
154
@item
155
PS/2 mouse and keyboard
156
@item
157
2 PCI IDE interfaces with hard disk and CD-ROM support
158
@item
159
Floppy disk
160
@item
161
PCI/ISA PCI network adapters
162
@item
163
Serial ports
164
@item
165
Creative SoundBlaster 16 sound card
166
@item
167
ENSONIQ AudioPCI ES1370 sound card
168
@item
169
Intel 82801AA AC97 Audio compatible sound card
170
@item
171
Adlib(OPL2) - Yamaha YM3812 compatible chip
172
@item
173
PCI UHCI USB controller and a virtual USB hub.
174
@end itemize
175

    
176
SMP is supported with up to 255 CPUs.
177

    
178
Note that adlib, ac97 and gus are only available when QEMU was configured
179
with --enable-adlib, --enable-ac97 or --enable-gus respectively.
180

    
181
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
182
VGA BIOS.
183

    
184
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
185

    
186
QEMU uses GUS emulation(GUSEMU32) by Tibor "TS" Schütz.
187

    
188
@c man end
189

    
190
@node pcsys_quickstart
191
@section Quick Start
192

    
193
Download and uncompress the linux image (@file{linux.img}) and type:
194

    
195
@example
196
qemu linux.img
197
@end example
198

    
199
Linux should boot and give you a prompt.
200

    
201
@node sec_invocation
202
@section Invocation
203

    
204
@example
205
@c man begin SYNOPSIS
206
usage: qemu [options] [@var{disk_image}]
207
@c man end
208
@end example
209

    
210
@c man begin OPTIONS
211
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
212

    
213
General options:
214
@table @option
215
@item -M @var{machine}
216
Select the emulated @var{machine} (@code{-M ?} for list)
217

    
218
@item -fda @var{file}
219
@item -fdb @var{file}
220
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
221
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
222

    
223
@item -hda @var{file}
224
@item -hdb @var{file}
225
@item -hdc @var{file}
226
@item -hdd @var{file}
227
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
228

    
229
@item -cdrom @var{file}
230
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
231
@option{-cdrom} at the same time). You can use the host CD-ROM by
232
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
233

    
234
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
235

    
236
Define a new drive. Valid options are:
237

    
238
@table @code
239
@item file=@var{file}
240
This option defines which disk image (@pxref{disk_images}) to use with
241
this drive. If the filename contains comma, you must double it
242
(for instance, "file=my,,file" to use file "my,file").
243
@item if=@var{interface}
244
This option defines on which type on interface the drive is connected.
245
Available types are: ide, scsi, sd, mtd, floppy, pflash.
246
@item bus=@var{bus},unit=@var{unit}
247
These options define where is connected the drive by defining the bus number and
248
the unit id.
249
@item index=@var{index}
250
This option defines where is connected the drive by using an index in the list
251
of available connectors of a given interface type.
252
@item media=@var{media}
253
This option defines the type of the media: disk or cdrom.
254
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
255
These options have the same definition as they have in @option{-hdachs}.
256
@item snapshot=@var{snapshot}
257
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
258
@item cache=@var{cache}
259
@var{cache} is "on" or "off" and allows to disable host cache to access data.
260
@end table
261

    
262
Instead of @option{-cdrom} you can use:
263
@example
264
qemu -drive file=file,index=2,media=cdrom
265
@end example
266

    
267
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
268
use:
269
@example
270
qemu -drive file=file,index=0,media=disk
271
qemu -drive file=file,index=1,media=disk
272
qemu -drive file=file,index=2,media=disk
273
qemu -drive file=file,index=3,media=disk
274
@end example
275

    
276
You can connect a CDROM to the slave of ide0:
277
@example
278
qemu -drive file=file,if=ide,index=1,media=cdrom
279
@end example
280

    
281
If you don't specify the "file=" argument, you define an empty drive:
282
@example
283
qemu -drive if=ide,index=1,media=cdrom
284
@end example
285

    
286
You can connect a SCSI disk with unit ID 6 on the bus #0:
287
@example
288
qemu -drive file=file,if=scsi,bus=0,unit=6
289
@end example
290

    
291
Instead of @option{-fda}, @option{-fdb}, you can use:
292
@example
293
qemu -drive file=file,index=0,if=floppy
294
qemu -drive file=file,index=1,if=floppy
295
@end example
296

    
297
By default, @var{interface} is "ide" and @var{index} is automatically
298
incremented:
299
@example
300
qemu -drive file=a -drive file=b"
301
@end example
302
is interpreted like:
303
@example
304
qemu -hda a -hdb b
305
@end example
306

    
307
@item -boot [a|c|d|n]
308
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
309
is the default.
310

    
311
@item -snapshot
312
Write to temporary files instead of disk image files. In this case,
313
the raw disk image you use is not written back. You can however force
314
the write back by pressing @key{C-a s} (@pxref{disk_images}).
315

    
316
@item -no-fd-bootchk
317
Disable boot signature checking for floppy disks in Bochs BIOS. It may
318
be needed to boot from old floppy disks.
319

    
320
@item -m @var{megs}
321
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
322

    
323
@item -smp @var{n}
324
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
325
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
326
to 4.
327

    
328
@item -audio-help
329

    
330
Will show the audio subsystem help: list of drivers, tunable
331
parameters.
332

    
333
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
334

    
335
Enable audio and selected sound hardware. Use ? to print all
336
available sound hardware.
337

    
338
@example
339
qemu -soundhw sb16,adlib hda
340
qemu -soundhw es1370 hda
341
qemu -soundhw ac97 hda
342
qemu -soundhw all hda
343
qemu -soundhw ?
344
@end example
345

    
346
Note that Linux's i810_audio OSS kernel (for AC97) module might
347
require manually specifying clocking.
348

    
349
@example
350
modprobe i810_audio clocking=48000
351
@end example
352

    
353
@item -localtime
354
Set the real time clock to local time (the default is to UTC
355
time). This option is needed to have correct date in MS-DOS or
356
Windows.
357

    
358
@item -startdate @var{date}
359
Set the initial date of the real time clock. Valid format for
360
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
361
@code{2006-06-17}. The default value is @code{now}.
362

    
363
@item -pidfile @var{file}
364
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
365
from a script.
366

    
367
@item -daemonize
368
Daemonize the QEMU process after initialization.  QEMU will not detach from
369
standard IO until it is ready to receive connections on any of its devices.
370
This option is a useful way for external programs to launch QEMU without having
371
to cope with initialization race conditions.
372

    
373
@item -win2k-hack
374
Use it when installing Windows 2000 to avoid a disk full bug. After
375
Windows 2000 is installed, you no longer need this option (this option
376
slows down the IDE transfers).
377

    
378
@item -option-rom @var{file}
379
Load the contents of @var{file} as an option ROM.
380
This option is useful to load things like EtherBoot.
381

    
382
@item -name @var{name}
383
Sets the @var{name} of the guest.
384
This name will be display in the SDL window caption.
385
The @var{name} will also be used for the VNC server.
386

    
387
@end table
388

    
389
Display options:
390
@table @option
391

    
392
@item -nographic
393

    
394
Normally, QEMU uses SDL to display the VGA output. With this option,
395
you can totally disable graphical output so that QEMU is a simple
396
command line application. The emulated serial port is redirected on
397
the console. Therefore, you can still use QEMU to debug a Linux kernel
398
with a serial console.
399

    
400
@item -no-frame
401

    
402
Do not use decorations for SDL windows and start them using the whole
403
available screen space. This makes the using QEMU in a dedicated desktop
404
workspace more convenient.
405

    
406
@item -full-screen
407
Start in full screen.
408

    
409
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
410

    
411
Normally, QEMU uses SDL to display the VGA output.  With this option,
412
you can have QEMU listen on VNC display @var{display} and redirect the VGA
413
display over the VNC session.  It is very useful to enable the usb
414
tablet device when using this option (option @option{-usbdevice
415
tablet}). When using the VNC display, you must use the @option{-k}
416
parameter to set the keyboard layout if you are not using en-us. Valid
417
syntax for the @var{display} is
418

    
419
@table @code
420

    
421
@item @var{interface}:@var{d}
422

    
423
TCP connections will only be allowed from @var{interface} on display @var{d}.
424
By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
425
be omitted in which case the server will bind to all interfaces.
426

    
427
@item @var{unix}:@var{path}
428

    
429
Connections will be allowed over UNIX domain sockets where @var{path} is the
430
location of a unix socket to listen for connections on.
431

    
432
@item none
433

    
434
VNC is initialized by not started. The monitor @code{change} command can be used
435
to later start the VNC server.
436

    
437
@end table
438

    
439
Following the @var{display} value there may be one or more @var{option} flags
440
separated by commas. Valid options are
441

    
442
@table @code
443

    
444
@item password
445

    
446
Require that password based authentication is used for client connections.
447
The password must be set separately using the @code{change} command in the
448
@ref{pcsys_monitor}
449

    
450
@item tls
451

    
452
Require that client use TLS when communicating with the VNC server. This
453
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
454
attack. It is recommended that this option be combined with either the
455
@var{x509} or @var{x509verify} options.
456

    
457
@item x509=@var{/path/to/certificate/dir}
458

    
459
Valid if @option{tls} is specified. Require that x509 credentials are used
460
for negotiating the TLS session. The server will send its x509 certificate
461
to the client. It is recommended that a password be set on the VNC server
462
to provide authentication of the client when this is used. The path following
463
this option specifies where the x509 certificates are to be loaded from.
464
See the @ref{vnc_security} section for details on generating certificates.
465

    
466
@item x509verify=@var{/path/to/certificate/dir}
467

    
468
Valid if @option{tls} is specified. Require that x509 credentials are used
469
for negotiating the TLS session. The server will send its x509 certificate
470
to the client, and request that the client send its own x509 certificate.
471
The server will validate the client's certificate against the CA certificate,
472
and reject clients when validation fails. If the certificate authority is
473
trusted, this is a sufficient authentication mechanism. You may still wish
474
to set a password on the VNC server as a second authentication layer. The
475
path following this option specifies where the x509 certificates are to
476
be loaded from. See the @ref{vnc_security} section for details on generating
477
certificates.
478

    
479
@end table
480

    
481
@item -k @var{language}
482

    
483
Use keyboard layout @var{language} (for example @code{fr} for
484
French). This option is only needed where it is not easy to get raw PC
485
keycodes (e.g. on Macs, with some X11 servers or with a VNC
486
display). You don't normally need to use it on PC/Linux or PC/Windows
487
hosts.
488

    
489
The available layouts are:
490
@example
491
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
492
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
493
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
494
@end example
495

    
496
The default is @code{en-us}.
497

    
498
@end table
499

    
500
USB options:
501
@table @option
502

    
503
@item -usb
504
Enable the USB driver (will be the default soon)
505

    
506
@item -usbdevice @var{devname}
507
Add the USB device @var{devname}. @xref{usb_devices}.
508

    
509
@table @code
510

    
511
@item mouse
512
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
513

    
514
@item tablet
515
Pointer device that uses absolute coordinates (like a touchscreen). This
516
means qemu is able to report the mouse position without having to grab the
517
mouse. Also overrides the PS/2 mouse emulation when activated.
518

    
519
@item disk:file
520
Mass storage device based on file
521

    
522
@item host:bus.addr
523
Pass through the host device identified by bus.addr (Linux only).
524

    
525
@item host:vendor_id:product_id
526
Pass through the host device identified by vendor_id:product_id (Linux only).
527

    
528
@end table
529

    
530
@end table
531

    
532
Network options:
533

    
534
@table @option
535

    
536
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
537
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
538
= 0 is the default). The NIC is an ne2k_pci by default on the PC
539
target. Optionally, the MAC address can be changed. If no
540
@option{-net} option is specified, a single NIC is created.
541
Qemu can emulate several different models of network card.
542
Valid values for @var{type} are
543
@code{i82551}, @code{i82557b}, @code{i82559er},
544
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
545
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
546
Not all devices are supported on all targets.  Use -net nic,model=?
547
for a list of available devices for your target.
548

    
549
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
550
Use the user mode network stack which requires no administrator
551
privilege to run.  @option{hostname=name} can be used to specify the client
552
hostname reported by the builtin DHCP server.
553

    
554
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
555
Connect the host TAP network interface @var{name} to VLAN @var{n} and
556
use the network script @var{file} to configure it. The default
557
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
558
disable script execution. If @var{name} is not
559
provided, the OS automatically provides one. @option{fd}=@var{h} can be
560
used to specify the handle of an already opened host TAP interface. Example:
561

    
562
@example
563
qemu linux.img -net nic -net tap
564
@end example
565

    
566
More complicated example (two NICs, each one connected to a TAP device)
567
@example
568
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
569
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
570
@end example
571

    
572

    
573
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
574

    
575
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
576
machine using a TCP socket connection. If @option{listen} is
577
specified, QEMU waits for incoming connections on @var{port}
578
(@var{host} is optional). @option{connect} is used to connect to
579
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
580
specifies an already opened TCP socket.
581

    
582
Example:
583
@example
584
# launch a first QEMU instance
585
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
586
               -net socket,listen=:1234
587
# connect the VLAN 0 of this instance to the VLAN 0
588
# of the first instance
589
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
590
               -net socket,connect=127.0.0.1:1234
591
@end example
592

    
593
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
594

    
595
Create a VLAN @var{n} shared with another QEMU virtual
596
machines using a UDP multicast socket, effectively making a bus for
597
every QEMU with same multicast address @var{maddr} and @var{port}.
598
NOTES:
599
@enumerate
600
@item
601
Several QEMU can be running on different hosts and share same bus (assuming
602
correct multicast setup for these hosts).
603
@item
604
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
605
@url{http://user-mode-linux.sf.net}.
606
@item
607
Use @option{fd=h} to specify an already opened UDP multicast socket.
608
@end enumerate
609

    
610
Example:
611
@example
612
# launch one QEMU instance
613
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
614
               -net socket,mcast=230.0.0.1:1234
615
# launch another QEMU instance on same "bus"
616
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
617
               -net socket,mcast=230.0.0.1:1234
618
# launch yet another QEMU instance on same "bus"
619
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
620
               -net socket,mcast=230.0.0.1:1234
621
@end example
622

    
623
Example (User Mode Linux compat.):
624
@example
625
# launch QEMU instance (note mcast address selected
626
# is UML's default)
627
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
628
               -net socket,mcast=239.192.168.1:1102
629
# launch UML
630
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
631
@end example
632

    
633
@item -net none
634
Indicate that no network devices should be configured. It is used to
635
override the default configuration (@option{-net nic -net user}) which
636
is activated if no @option{-net} options are provided.
637

    
638
@item -tftp @var{dir}
639
When using the user mode network stack, activate a built-in TFTP
640
server. The files in @var{dir} will be exposed as the root of a TFTP server.
641
The TFTP client on the guest must be configured in binary mode (use the command
642
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
643
usual 10.0.2.2.
644

    
645
@item -bootp @var{file}
646
When using the user mode network stack, broadcast @var{file} as the BOOTP
647
filename.  In conjunction with @option{-tftp}, this can be used to network boot
648
a guest from a local directory.
649

    
650
Example (using pxelinux):
651
@example
652
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
653
@end example
654

    
655
@item -smb @var{dir}
656
When using the user mode network stack, activate a built-in SMB
657
server so that Windows OSes can access to the host files in @file{@var{dir}}
658
transparently.
659

    
660
In the guest Windows OS, the line:
661
@example
662
10.0.2.4 smbserver
663
@end example
664
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
665
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
666

    
667
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
668

    
669
Note that a SAMBA server must be installed on the host OS in
670
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
671
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
672

    
673
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
674

    
675
When using the user mode network stack, redirect incoming TCP or UDP
676
connections to the host port @var{host-port} to the guest
677
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
678
is not specified, its value is 10.0.2.15 (default address given by the
679
built-in DHCP server).
680

    
681
For example, to redirect host X11 connection from screen 1 to guest
682
screen 0, use the following:
683

    
684
@example
685
# on the host
686
qemu -redir tcp:6001::6000 [...]
687
# this host xterm should open in the guest X11 server
688
xterm -display :1
689
@end example
690

    
691
To redirect telnet connections from host port 5555 to telnet port on
692
the guest, use the following:
693

    
694
@example
695
# on the host
696
qemu -redir tcp:5555::23 [...]
697
telnet localhost 5555
698
@end example
699

    
700
Then when you use on the host @code{telnet localhost 5555}, you
701
connect to the guest telnet server.
702

    
703
@end table
704

    
705
Linux boot specific: When using these options, you can use a given
706
Linux kernel without installing it in the disk image. It can be useful
707
for easier testing of various kernels.
708

    
709
@table @option
710

    
711
@item -kernel @var{bzImage}
712
Use @var{bzImage} as kernel image.
713

    
714
@item -append @var{cmdline}
715
Use @var{cmdline} as kernel command line
716

    
717
@item -initrd @var{file}
718
Use @var{file} as initial ram disk.
719

    
720
@end table
721

    
722
Debug/Expert options:
723
@table @option
724

    
725
@item -serial @var{dev}
726
Redirect the virtual serial port to host character device
727
@var{dev}. The default device is @code{vc} in graphical mode and
728
@code{stdio} in non graphical mode.
729

    
730
This option can be used several times to simulate up to 4 serials
731
ports.
732

    
733
Use @code{-serial none} to disable all serial ports.
734

    
735
Available character devices are:
736
@table @code
737
@item vc[:WxH]
738
Virtual console. Optionally, a width and height can be given in pixel with
739
@example
740
vc:800x600
741
@end example
742
It is also possible to specify width or height in characters:
743
@example
744
vc:80Cx24C
745
@end example
746
@item pty
747
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
748
@item none
749
No device is allocated.
750
@item null
751
void device
752
@item /dev/XXX
753
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
754
parameters are set according to the emulated ones.
755
@item /dev/parport@var{N}
756
[Linux only, parallel port only] Use host parallel port
757
@var{N}. Currently SPP and EPP parallel port features can be used.
758
@item file:@var{filename}
759
Write output to @var{filename}. No character can be read.
760
@item stdio
761
[Unix only] standard input/output
762
@item pipe:@var{filename}
763
name pipe @var{filename}
764
@item COM@var{n}
765
[Windows only] Use host serial port @var{n}
766
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
767
This implements UDP Net Console.
768
When @var{remote_host} or @var{src_ip} are not specified
769
they default to @code{0.0.0.0}.
770
When not using a specified @var{src_port} a random port is automatically chosen.
771

    
772
If you just want a simple readonly console you can use @code{netcat} or
773
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
774
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
775
will appear in the netconsole session.
776

    
777
If you plan to send characters back via netconsole or you want to stop
778
and start qemu a lot of times, you should have qemu use the same
779
source port each time by using something like @code{-serial
780
udp::4555@@:4556} to qemu. Another approach is to use a patched
781
version of netcat which can listen to a TCP port and send and receive
782
characters via udp.  If you have a patched version of netcat which
783
activates telnet remote echo and single char transfer, then you can
784
use the following options to step up a netcat redirector to allow
785
telnet on port 5555 to access the qemu port.
786
@table @code
787
@item Qemu Options:
788
-serial udp::4555@@:4556
789
@item netcat options:
790
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
791
@item telnet options:
792
localhost 5555
793
@end table
794

    
795

    
796
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
797
The TCP Net Console has two modes of operation.  It can send the serial
798
I/O to a location or wait for a connection from a location.  By default
799
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
800
the @var{server} option QEMU will wait for a client socket application
801
to connect to the port before continuing, unless the @code{nowait}
802
option was specified.  The @code{nodelay} option disables the Nagle buffering
803
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
804
one TCP connection at a time is accepted. You can use @code{telnet} to
805
connect to the corresponding character device.
806
@table @code
807
@item Example to send tcp console to 192.168.0.2 port 4444
808
-serial tcp:192.168.0.2:4444
809
@item Example to listen and wait on port 4444 for connection
810
-serial tcp::4444,server
811
@item Example to not wait and listen on ip 192.168.0.100 port 4444
812
-serial tcp:192.168.0.100:4444,server,nowait
813
@end table
814

    
815
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
816
The telnet protocol is used instead of raw tcp sockets.  The options
817
work the same as if you had specified @code{-serial tcp}.  The
818
difference is that the port acts like a telnet server or client using
819
telnet option negotiation.  This will also allow you to send the
820
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
821
sequence.  Typically in unix telnet you do it with Control-] and then
822
type "send break" followed by pressing the enter key.
823

    
824
@item unix:@var{path}[,server][,nowait]
825
A unix domain socket is used instead of a tcp socket.  The option works the
826
same as if you had specified @code{-serial tcp} except the unix domain socket
827
@var{path} is used for connections.
828

    
829
@item mon:@var{dev_string}
830
This is a special option to allow the monitor to be multiplexed onto
831
another serial port.  The monitor is accessed with key sequence of
832
@key{Control-a} and then pressing @key{c}. See monitor access
833
@ref{pcsys_keys} in the -nographic section for more keys.
834
@var{dev_string} should be any one of the serial devices specified
835
above.  An example to multiplex the monitor onto a telnet server
836
listening on port 4444 would be:
837
@table @code
838
@item -serial mon:telnet::4444,server,nowait
839
@end table
840

    
841
@end table
842

    
843
@item -parallel @var{dev}
844
Redirect the virtual parallel port to host device @var{dev} (same
845
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
846
be used to use hardware devices connected on the corresponding host
847
parallel port.
848

    
849
This option can be used several times to simulate up to 3 parallel
850
ports.
851

    
852
Use @code{-parallel none} to disable all parallel ports.
853

    
854
@item -monitor @var{dev}
855
Redirect the monitor to host device @var{dev} (same devices as the
856
serial port).
857
The default device is @code{vc} in graphical mode and @code{stdio} in
858
non graphical mode.
859

    
860
@item -echr numeric_ascii_value
861
Change the escape character used for switching to the monitor when using
862
monitor and serial sharing.  The default is @code{0x01} when using the
863
@code{-nographic} option.  @code{0x01} is equal to pressing
864
@code{Control-a}.  You can select a different character from the ascii
865
control keys where 1 through 26 map to Control-a through Control-z.  For
866
instance you could use the either of the following to change the escape
867
character to Control-t.
868
@table @code
869
@item -echr 0x14
870
@item -echr 20
871
@end table
872

    
873
@item -s
874
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
875
@item -p @var{port}
876
Change gdb connection port.  @var{port} can be either a decimal number
877
to specify a TCP port, or a host device (same devices as the serial port).
878
@item -S
879
Do not start CPU at startup (you must type 'c' in the monitor).
880
@item -d
881
Output log in /tmp/qemu.log
882
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
883
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
884
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
885
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
886
all those parameters. This option is useful for old MS-DOS disk
887
images.
888

    
889
@item -L path
890
Set the directory for the BIOS, VGA BIOS and keymaps.
891

    
892
@item -std-vga
893
Simulate a standard VGA card with Bochs VBE extensions (default is
894
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
895
VBE extensions (e.g. Windows XP) and if you want to use high
896
resolution modes (>= 1280x1024x16) then you should use this option.
897

    
898
@item -no-acpi
899
Disable ACPI (Advanced Configuration and Power Interface) support. Use
900
it if your guest OS complains about ACPI problems (PC target machine
901
only).
902

    
903
@item -no-reboot
904
Exit instead of rebooting.
905

    
906
@item -loadvm file
907
Start right away with a saved state (@code{loadvm} in monitor)
908

    
909
@item -semihosting
910
Enable semihosting syscall emulation (ARM and M68K target machines only).
911

    
912
On ARM this implements the "Angel" interface.
913
On M68K this implements the "ColdFire GDB" interface used by libgloss.
914

    
915
Note that this allows guest direct access to the host filesystem,
916
so should only be used with trusted guest OS.
917
@end table
918

    
919
@c man end
920

    
921
@node pcsys_keys
922
@section Keys
923

    
924
@c man begin OPTIONS
925

    
926
During the graphical emulation, you can use the following keys:
927
@table @key
928
@item Ctrl-Alt-f
929
Toggle full screen
930

    
931
@item Ctrl-Alt-n
932
Switch to virtual console 'n'. Standard console mappings are:
933
@table @emph
934
@item 1
935
Target system display
936
@item 2
937
Monitor
938
@item 3
939
Serial port
940
@end table
941

    
942
@item Ctrl-Alt
943
Toggle mouse and keyboard grab.
944
@end table
945

    
946
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
947
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
948

    
949
During emulation, if you are using the @option{-nographic} option, use
950
@key{Ctrl-a h} to get terminal commands:
951

    
952
@table @key
953
@item Ctrl-a h
954
Print this help
955
@item Ctrl-a x
956
Exit emulator
957
@item Ctrl-a s
958
Save disk data back to file (if -snapshot)
959
@item Ctrl-a t
960
toggle console timestamps
961
@item Ctrl-a b
962
Send break (magic sysrq in Linux)
963
@item Ctrl-a c
964
Switch between console and monitor
965
@item Ctrl-a Ctrl-a
966
Send Ctrl-a
967
@end table
968
@c man end
969

    
970
@ignore
971

    
972
@c man begin SEEALSO
973
The HTML documentation of QEMU for more precise information and Linux
974
user mode emulator invocation.
975
@c man end
976

    
977
@c man begin AUTHOR
978
Fabrice Bellard
979
@c man end
980

    
981
@end ignore
982

    
983
@node pcsys_monitor
984
@section QEMU Monitor
985

    
986
The QEMU monitor is used to give complex commands to the QEMU
987
emulator. You can use it to:
988

    
989
@itemize @minus
990

    
991
@item
992
Remove or insert removable media images
993
(such as CD-ROM or floppies).
994

    
995
@item
996
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
997
from a disk file.
998

    
999
@item Inspect the VM state without an external debugger.
1000

    
1001
@end itemize
1002

    
1003
@subsection Commands
1004

    
1005
The following commands are available:
1006

    
1007
@table @option
1008

    
1009
@item help or ? [@var{cmd}]
1010
Show the help for all commands or just for command @var{cmd}.
1011

    
1012
@item commit
1013
Commit changes to the disk images (if -snapshot is used).
1014

    
1015
@item info @var{subcommand}
1016
Show various information about the system state.
1017

    
1018
@table @option
1019
@item info network
1020
show the various VLANs and the associated devices
1021
@item info block
1022
show the block devices
1023
@item info registers
1024
show the cpu registers
1025
@item info history
1026
show the command line history
1027
@item info pci
1028
show emulated PCI device
1029
@item info usb
1030
show USB devices plugged on the virtual USB hub
1031
@item info usbhost
1032
show all USB host devices
1033
@item info capture
1034
show information about active capturing
1035
@item info snapshots
1036
show list of VM snapshots
1037
@item info mice
1038
show which guest mouse is receiving events
1039
@end table
1040

    
1041
@item q or quit
1042
Quit the emulator.
1043

    
1044
@item eject [-f] @var{device}
1045
Eject a removable medium (use -f to force it).
1046

    
1047
@item change @var{device} @var{setting}
1048

    
1049
Change the configuration of a device.
1050

    
1051
@table @option
1052
@item change @var{diskdevice} @var{filename}
1053
Change the medium for a removable disk device to point to @var{filename}. eg
1054

    
1055
@example
1056
(qemu) change cdrom /path/to/some.iso
1057
@end example
1058

    
1059
@item change vnc @var{display},@var{options}
1060
Change the configuration of the VNC server. The valid syntax for @var{display}
1061
and @var{options} are described at @ref{sec_invocation}. eg
1062

    
1063
@example
1064
(qemu) change vnc localhost:1
1065
@end example
1066

    
1067
@item change vnc password
1068

    
1069
Change the password associated with the VNC server. The monitor will prompt for
1070
the new password to be entered. VNC passwords are only significant upto 8 letters.
1071
eg.
1072

    
1073
@example
1074
(qemu) change vnc password
1075
Password: ********
1076
@end example
1077

    
1078
@end table
1079

    
1080
@item screendump @var{filename}
1081
Save screen into PPM image @var{filename}.
1082

    
1083
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1084
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1085
with optional scroll axis @var{dz}.
1086

    
1087
@item mouse_button @var{val}
1088
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1089

    
1090
@item mouse_set @var{index}
1091
Set which mouse device receives events at given @var{index}, index
1092
can be obtained with
1093
@example
1094
info mice
1095
@end example
1096

    
1097
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1098
Capture audio into @var{filename}. Using sample rate @var{frequency}
1099
bits per sample @var{bits} and number of channels @var{channels}.
1100

    
1101
Defaults:
1102
@itemize @minus
1103
@item Sample rate = 44100 Hz - CD quality
1104
@item Bits = 16
1105
@item Number of channels = 2 - Stereo
1106
@end itemize
1107

    
1108
@item stopcapture @var{index}
1109
Stop capture with a given @var{index}, index can be obtained with
1110
@example
1111
info capture
1112
@end example
1113

    
1114
@item log @var{item1}[,...]
1115
Activate logging of the specified items to @file{/tmp/qemu.log}.
1116

    
1117
@item savevm [@var{tag}|@var{id}]
1118
Create a snapshot of the whole virtual machine. If @var{tag} is
1119
provided, it is used as human readable identifier. If there is already
1120
a snapshot with the same tag or ID, it is replaced. More info at
1121
@ref{vm_snapshots}.
1122

    
1123
@item loadvm @var{tag}|@var{id}
1124
Set the whole virtual machine to the snapshot identified by the tag
1125
@var{tag} or the unique snapshot ID @var{id}.
1126

    
1127
@item delvm @var{tag}|@var{id}
1128
Delete the snapshot identified by @var{tag} or @var{id}.
1129

    
1130
@item stop
1131
Stop emulation.
1132

    
1133
@item c or cont
1134
Resume emulation.
1135

    
1136
@item gdbserver [@var{port}]
1137
Start gdbserver session (default @var{port}=1234)
1138

    
1139
@item x/fmt @var{addr}
1140
Virtual memory dump starting at @var{addr}.
1141

    
1142
@item xp /@var{fmt} @var{addr}
1143
Physical memory dump starting at @var{addr}.
1144

    
1145
@var{fmt} is a format which tells the command how to format the
1146
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1147

    
1148
@table @var
1149
@item count
1150
is the number of items to be dumped.
1151

    
1152
@item format
1153
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1154
c (char) or i (asm instruction).
1155

    
1156
@item size
1157
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1158
@code{h} or @code{w} can be specified with the @code{i} format to
1159
respectively select 16 or 32 bit code instruction size.
1160

    
1161
@end table
1162

    
1163
Examples:
1164
@itemize
1165
@item
1166
Dump 10 instructions at the current instruction pointer:
1167
@example
1168
(qemu) x/10i $eip
1169
0x90107063:  ret
1170
0x90107064:  sti
1171
0x90107065:  lea    0x0(%esi,1),%esi
1172
0x90107069:  lea    0x0(%edi,1),%edi
1173
0x90107070:  ret
1174
0x90107071:  jmp    0x90107080
1175
0x90107073:  nop
1176
0x90107074:  nop
1177
0x90107075:  nop
1178
0x90107076:  nop
1179
@end example
1180

    
1181
@item
1182
Dump 80 16 bit values at the start of the video memory.
1183
@smallexample
1184
(qemu) xp/80hx 0xb8000
1185
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1186
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1187
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1188
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1189
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1190
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1191
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1192
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1193
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1194
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1195
@end smallexample
1196
@end itemize
1197

    
1198
@item p or print/@var{fmt} @var{expr}
1199

    
1200
Print expression value. Only the @var{format} part of @var{fmt} is
1201
used.
1202

    
1203
@item sendkey @var{keys}
1204

    
1205
Send @var{keys} to the emulator. Use @code{-} to press several keys
1206
simultaneously. Example:
1207
@example
1208
sendkey ctrl-alt-f1
1209
@end example
1210

    
1211
This command is useful to send keys that your graphical user interface
1212
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1213

    
1214
@item system_reset
1215

    
1216
Reset the system.
1217

    
1218
@item usb_add @var{devname}
1219

    
1220
Add the USB device @var{devname}.  For details of available devices see
1221
@ref{usb_devices}
1222

    
1223
@item usb_del @var{devname}
1224

    
1225
Remove the USB device @var{devname} from the QEMU virtual USB
1226
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1227
command @code{info usb} to see the devices you can remove.
1228

    
1229
@end table
1230

    
1231
@subsection Integer expressions
1232

    
1233
The monitor understands integers expressions for every integer
1234
argument. You can use register names to get the value of specifics
1235
CPU registers by prefixing them with @emph{$}.
1236

    
1237
@node disk_images
1238
@section Disk Images
1239

    
1240
Since version 0.6.1, QEMU supports many disk image formats, including
1241
growable disk images (their size increase as non empty sectors are
1242
written), compressed and encrypted disk images. Version 0.8.3 added
1243
the new qcow2 disk image format which is essential to support VM
1244
snapshots.
1245

    
1246
@menu
1247
* disk_images_quickstart::    Quick start for disk image creation
1248
* disk_images_snapshot_mode:: Snapshot mode
1249
* vm_snapshots::              VM snapshots
1250
* qemu_img_invocation::       qemu-img Invocation
1251
* host_drives::               Using host drives
1252
* disk_images_fat_images::    Virtual FAT disk images
1253
@end menu
1254

    
1255
@node disk_images_quickstart
1256
@subsection Quick start for disk image creation
1257

    
1258
You can create a disk image with the command:
1259
@example
1260
qemu-img create myimage.img mysize
1261
@end example
1262
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1263
size in kilobytes. You can add an @code{M} suffix to give the size in
1264
megabytes and a @code{G} suffix for gigabytes.
1265

    
1266
See @ref{qemu_img_invocation} for more information.
1267

    
1268
@node disk_images_snapshot_mode
1269
@subsection Snapshot mode
1270

    
1271
If you use the option @option{-snapshot}, all disk images are
1272
considered as read only. When sectors in written, they are written in
1273
a temporary file created in @file{/tmp}. You can however force the
1274
write back to the raw disk images by using the @code{commit} monitor
1275
command (or @key{C-a s} in the serial console).
1276

    
1277
@node vm_snapshots
1278
@subsection VM snapshots
1279

    
1280
VM snapshots are snapshots of the complete virtual machine including
1281
CPU state, RAM, device state and the content of all the writable
1282
disks. In order to use VM snapshots, you must have at least one non
1283
removable and writable block device using the @code{qcow2} disk image
1284
format. Normally this device is the first virtual hard drive.
1285

    
1286
Use the monitor command @code{savevm} to create a new VM snapshot or
1287
replace an existing one. A human readable name can be assigned to each
1288
snapshot in addition to its numerical ID.
1289

    
1290
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1291
a VM snapshot. @code{info snapshots} lists the available snapshots
1292
with their associated information:
1293

    
1294
@example
1295
(qemu) info snapshots
1296
Snapshot devices: hda
1297
Snapshot list (from hda):
1298
ID        TAG                 VM SIZE                DATE       VM CLOCK
1299
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1300
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1301
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1302
@end example
1303

    
1304
A VM snapshot is made of a VM state info (its size is shown in
1305
@code{info snapshots}) and a snapshot of every writable disk image.
1306
The VM state info is stored in the first @code{qcow2} non removable
1307
and writable block device. The disk image snapshots are stored in
1308
every disk image. The size of a snapshot in a disk image is difficult
1309
to evaluate and is not shown by @code{info snapshots} because the
1310
associated disk sectors are shared among all the snapshots to save
1311
disk space (otherwise each snapshot would need a full copy of all the
1312
disk images).
1313

    
1314
When using the (unrelated) @code{-snapshot} option
1315
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1316
but they are deleted as soon as you exit QEMU.
1317

    
1318
VM snapshots currently have the following known limitations:
1319
@itemize
1320
@item
1321
They cannot cope with removable devices if they are removed or
1322
inserted after a snapshot is done.
1323
@item
1324
A few device drivers still have incomplete snapshot support so their
1325
state is not saved or restored properly (in particular USB).
1326
@end itemize
1327

    
1328
@node qemu_img_invocation
1329
@subsection @code{qemu-img} Invocation
1330

    
1331
@include qemu-img.texi
1332

    
1333
@node host_drives
1334
@subsection Using host drives
1335

    
1336
In addition to disk image files, QEMU can directly access host
1337
devices. We describe here the usage for QEMU version >= 0.8.3.
1338

    
1339
@subsubsection Linux
1340

    
1341
On Linux, you can directly use the host device filename instead of a
1342
disk image filename provided you have enough privileges to access
1343
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1344
@file{/dev/fd0} for the floppy.
1345

    
1346
@table @code
1347
@item CD
1348
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1349
specific code to detect CDROM insertion or removal. CDROM ejection by
1350
the guest OS is supported. Currently only data CDs are supported.
1351
@item Floppy
1352
You can specify a floppy device even if no floppy is loaded. Floppy
1353
removal is currently not detected accurately (if you change floppy
1354
without doing floppy access while the floppy is not loaded, the guest
1355
OS will think that the same floppy is loaded).
1356
@item Hard disks
1357
Hard disks can be used. Normally you must specify the whole disk
1358
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1359
see it as a partitioned disk. WARNING: unless you know what you do, it
1360
is better to only make READ-ONLY accesses to the hard disk otherwise
1361
you may corrupt your host data (use the @option{-snapshot} command
1362
line option or modify the device permissions accordingly).
1363
@end table
1364

    
1365
@subsubsection Windows
1366

    
1367
@table @code
1368
@item CD
1369
The preferred syntax is the drive letter (e.g. @file{d:}). The
1370
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1371
supported as an alias to the first CDROM drive.
1372

    
1373
Currently there is no specific code to handle removable media, so it
1374
is better to use the @code{change} or @code{eject} monitor commands to
1375
change or eject media.
1376
@item Hard disks
1377
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1378
where @var{N} is the drive number (0 is the first hard disk).
1379

    
1380
WARNING: unless you know what you do, it is better to only make
1381
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1382
host data (use the @option{-snapshot} command line so that the
1383
modifications are written in a temporary file).
1384
@end table
1385

    
1386

    
1387
@subsubsection Mac OS X
1388

    
1389
@file{/dev/cdrom} is an alias to the first CDROM.
1390

    
1391
Currently there is no specific code to handle removable media, so it
1392
is better to use the @code{change} or @code{eject} monitor commands to
1393
change or eject media.
1394

    
1395
@node disk_images_fat_images
1396
@subsection Virtual FAT disk images
1397

    
1398
QEMU can automatically create a virtual FAT disk image from a
1399
directory tree. In order to use it, just type:
1400

    
1401
@example
1402
qemu linux.img -hdb fat:/my_directory
1403
@end example
1404

    
1405
Then you access access to all the files in the @file{/my_directory}
1406
directory without having to copy them in a disk image or to export
1407
them via SAMBA or NFS. The default access is @emph{read-only}.
1408

    
1409
Floppies can be emulated with the @code{:floppy:} option:
1410

    
1411
@example
1412
qemu linux.img -fda fat:floppy:/my_directory
1413
@end example
1414

    
1415
A read/write support is available for testing (beta stage) with the
1416
@code{:rw:} option:
1417

    
1418
@example
1419
qemu linux.img -fda fat:floppy:rw:/my_directory
1420
@end example
1421

    
1422
What you should @emph{never} do:
1423
@itemize
1424
@item use non-ASCII filenames ;
1425
@item use "-snapshot" together with ":rw:" ;
1426
@item expect it to work when loadvm'ing ;
1427
@item write to the FAT directory on the host system while accessing it with the guest system.
1428
@end itemize
1429

    
1430
@node pcsys_network
1431
@section Network emulation
1432

    
1433
QEMU can simulate several network cards (PCI or ISA cards on the PC
1434
target) and can connect them to an arbitrary number of Virtual Local
1435
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1436
VLAN. VLAN can be connected between separate instances of QEMU to
1437
simulate large networks. For simpler usage, a non privileged user mode
1438
network stack can replace the TAP device to have a basic network
1439
connection.
1440

    
1441
@subsection VLANs
1442

    
1443
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1444
connection between several network devices. These devices can be for
1445
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1446
(TAP devices).
1447

    
1448
@subsection Using TAP network interfaces
1449

    
1450
This is the standard way to connect QEMU to a real network. QEMU adds
1451
a virtual network device on your host (called @code{tapN}), and you
1452
can then configure it as if it was a real ethernet card.
1453

    
1454
@subsubsection Linux host
1455

    
1456
As an example, you can download the @file{linux-test-xxx.tar.gz}
1457
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1458
configure properly @code{sudo} so that the command @code{ifconfig}
1459
contained in @file{qemu-ifup} can be executed as root. You must verify
1460
that your host kernel supports the TAP network interfaces: the
1461
device @file{/dev/net/tun} must be present.
1462

    
1463
See @ref{sec_invocation} to have examples of command lines using the
1464
TAP network interfaces.
1465

    
1466
@subsubsection Windows host
1467

    
1468
There is a virtual ethernet driver for Windows 2000/XP systems, called
1469
TAP-Win32. But it is not included in standard QEMU for Windows,
1470
so you will need to get it separately. It is part of OpenVPN package,
1471
so download OpenVPN from : @url{http://openvpn.net/}.
1472

    
1473
@subsection Using the user mode network stack
1474

    
1475
By using the option @option{-net user} (default configuration if no
1476
@option{-net} option is specified), QEMU uses a completely user mode
1477
network stack (you don't need root privilege to use the virtual
1478
network). The virtual network configuration is the following:
1479

    
1480
@example
1481

    
1482
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1483
                           |          (10.0.2.2)
1484
                           |
1485
                           ---->  DNS server (10.0.2.3)
1486
                           |
1487
                           ---->  SMB server (10.0.2.4)
1488
@end example
1489

    
1490
The QEMU VM behaves as if it was behind a firewall which blocks all
1491
incoming connections. You can use a DHCP client to automatically
1492
configure the network in the QEMU VM. The DHCP server assign addresses
1493
to the hosts starting from 10.0.2.15.
1494

    
1495
In order to check that the user mode network is working, you can ping
1496
the address 10.0.2.2 and verify that you got an address in the range
1497
10.0.2.x from the QEMU virtual DHCP server.
1498

    
1499
Note that @code{ping} is not supported reliably to the internet as it
1500
would require root privileges. It means you can only ping the local
1501
router (10.0.2.2).
1502

    
1503
When using the built-in TFTP server, the router is also the TFTP
1504
server.
1505

    
1506
When using the @option{-redir} option, TCP or UDP connections can be
1507
redirected from the host to the guest. It allows for example to
1508
redirect X11, telnet or SSH connections.
1509

    
1510
@subsection Connecting VLANs between QEMU instances
1511

    
1512
Using the @option{-net socket} option, it is possible to make VLANs
1513
that span several QEMU instances. See @ref{sec_invocation} to have a
1514
basic example.
1515

    
1516
@node direct_linux_boot
1517
@section Direct Linux Boot
1518

    
1519
This section explains how to launch a Linux kernel inside QEMU without
1520
having to make a full bootable image. It is very useful for fast Linux
1521
kernel testing.
1522

    
1523
The syntax is:
1524
@example
1525
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1526
@end example
1527

    
1528
Use @option{-kernel} to provide the Linux kernel image and
1529
@option{-append} to give the kernel command line arguments. The
1530
@option{-initrd} option can be used to provide an INITRD image.
1531

    
1532
When using the direct Linux boot, a disk image for the first hard disk
1533
@file{hda} is required because its boot sector is used to launch the
1534
Linux kernel.
1535

    
1536
If you do not need graphical output, you can disable it and redirect
1537
the virtual serial port and the QEMU monitor to the console with the
1538
@option{-nographic} option. The typical command line is:
1539
@example
1540
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1541
     -append "root=/dev/hda console=ttyS0" -nographic
1542
@end example
1543

    
1544
Use @key{Ctrl-a c} to switch between the serial console and the
1545
monitor (@pxref{pcsys_keys}).
1546

    
1547
@node pcsys_usb
1548
@section USB emulation
1549

    
1550
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1551
virtual USB devices or real host USB devices (experimental, works only
1552
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1553
as necessary to connect multiple USB devices.
1554

    
1555
@menu
1556
* usb_devices::
1557
* host_usb_devices::
1558
@end menu
1559
@node usb_devices
1560
@subsection Connecting USB devices
1561

    
1562
USB devices can be connected with the @option{-usbdevice} commandline option
1563
or the @code{usb_add} monitor command.  Available devices are:
1564

    
1565
@table @var
1566
@item @code{mouse}
1567
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1568
@item @code{tablet}
1569
Pointer device that uses absolute coordinates (like a touchscreen).
1570
This means qemu is able to report the mouse position without having
1571
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1572
@item @code{disk:@var{file}}
1573
Mass storage device based on @var{file} (@pxref{disk_images})
1574
@item @code{host:@var{bus.addr}}
1575
Pass through the host device identified by @var{bus.addr}
1576
(Linux only)
1577
@item @code{host:@var{vendor_id:product_id}}
1578
Pass through the host device identified by @var{vendor_id:product_id}
1579
(Linux only)
1580
@item @code{wacom-tablet}
1581
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1582
above but it can be used with the tslib library because in addition to touch
1583
coordinates it reports touch pressure.
1584
@item @code{keyboard}
1585
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1586
@end table
1587

    
1588
@node host_usb_devices
1589
@subsection Using host USB devices on a Linux host
1590

    
1591
WARNING: this is an experimental feature. QEMU will slow down when
1592
using it. USB devices requiring real time streaming (i.e. USB Video
1593
Cameras) are not supported yet.
1594

    
1595
@enumerate
1596
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1597
is actually using the USB device. A simple way to do that is simply to
1598
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1599
to @file{mydriver.o.disabled}.
1600

    
1601
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1602
@example
1603
ls /proc/bus/usb
1604
001  devices  drivers
1605
@end example
1606

    
1607
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1608
@example
1609
chown -R myuid /proc/bus/usb
1610
@end example
1611

    
1612
@item Launch QEMU and do in the monitor:
1613
@example
1614
info usbhost
1615
  Device 1.2, speed 480 Mb/s
1616
    Class 00: USB device 1234:5678, USB DISK
1617
@end example
1618
You should see the list of the devices you can use (Never try to use
1619
hubs, it won't work).
1620

    
1621
@item Add the device in QEMU by using:
1622
@example
1623
usb_add host:1234:5678
1624
@end example
1625

    
1626
Normally the guest OS should report that a new USB device is
1627
plugged. You can use the option @option{-usbdevice} to do the same.
1628

    
1629
@item Now you can try to use the host USB device in QEMU.
1630

    
1631
@end enumerate
1632

    
1633
When relaunching QEMU, you may have to unplug and plug again the USB
1634
device to make it work again (this is a bug).
1635

    
1636
@node vnc_security
1637
@section VNC security
1638

    
1639
The VNC server capability provides access to the graphical console
1640
of the guest VM across the network. This has a number of security
1641
considerations depending on the deployment scenarios.
1642

    
1643
@menu
1644
* vnc_sec_none::
1645
* vnc_sec_password::
1646
* vnc_sec_certificate::
1647
* vnc_sec_certificate_verify::
1648
* vnc_sec_certificate_pw::
1649
* vnc_generate_cert::
1650
@end menu
1651
@node vnc_sec_none
1652
@subsection Without passwords
1653

    
1654
The simplest VNC server setup does not include any form of authentication.
1655
For this setup it is recommended to restrict it to listen on a UNIX domain
1656
socket only. For example
1657

    
1658
@example
1659
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1660
@end example
1661

    
1662
This ensures that only users on local box with read/write access to that
1663
path can access the VNC server. To securely access the VNC server from a
1664
remote machine, a combination of netcat+ssh can be used to provide a secure
1665
tunnel.
1666

    
1667
@node vnc_sec_password
1668
@subsection With passwords
1669

    
1670
The VNC protocol has limited support for password based authentication. Since
1671
the protocol limits passwords to 8 characters it should not be considered
1672
to provide high security. The password can be fairly easily brute-forced by
1673
a client making repeat connections. For this reason, a VNC server using password
1674
authentication should be restricted to only listen on the loopback interface
1675
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1676
option, and then once QEMU is running the password is set with the monitor. Until
1677
the monitor is used to set the password all clients will be rejected.
1678

    
1679
@example
1680
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1681
(qemu) change vnc password
1682
Password: ********
1683
(qemu)
1684
@end example
1685

    
1686
@node vnc_sec_certificate
1687
@subsection With x509 certificates
1688

    
1689
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1690
TLS for encryption of the session, and x509 certificates for authentication.
1691
The use of x509 certificates is strongly recommended, because TLS on its
1692
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1693
support provides a secure session, but no authentication. This allows any
1694
client to connect, and provides an encrypted session.
1695

    
1696
@example
1697
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1698
@end example
1699

    
1700
In the above example @code{/etc/pki/qemu} should contain at least three files,
1701
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1702
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1703
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1704
only be readable by the user owning it.
1705

    
1706
@node vnc_sec_certificate_verify
1707
@subsection With x509 certificates and client verification
1708

    
1709
Certificates can also provide a means to authenticate the client connecting.
1710
The server will request that the client provide a certificate, which it will
1711
then validate against the CA certificate. This is a good choice if deploying
1712
in an environment with a private internal certificate authority.
1713

    
1714
@example
1715
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1716
@end example
1717

    
1718

    
1719
@node vnc_sec_certificate_pw
1720
@subsection With x509 certificates, client verification and passwords
1721

    
1722
Finally, the previous method can be combined with VNC password authentication
1723
to provide two layers of authentication for clients.
1724

    
1725
@example
1726
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1727
(qemu) change vnc password
1728
Password: ********
1729
(qemu)
1730
@end example
1731

    
1732
@node vnc_generate_cert
1733
@subsection Generating certificates for VNC
1734

    
1735
The GNU TLS packages provides a command called @code{certtool} which can
1736
be used to generate certificates and keys in PEM format. At a minimum it
1737
is neccessary to setup a certificate authority, and issue certificates to
1738
each server. If using certificates for authentication, then each client
1739
will also need to be issued a certificate. The recommendation is for the
1740
server to keep its certificates in either @code{/etc/pki/qemu} or for
1741
unprivileged users in @code{$HOME/.pki/qemu}.
1742

    
1743
@menu
1744
* vnc_generate_ca::
1745
* vnc_generate_server::
1746
* vnc_generate_client::
1747
@end menu
1748
@node vnc_generate_ca
1749
@subsubsection Setup the Certificate Authority
1750

    
1751
This step only needs to be performed once per organization / organizational
1752
unit. First the CA needs a private key. This key must be kept VERY secret
1753
and secure. If this key is compromised the entire trust chain of the certificates
1754
issued with it is lost.
1755

    
1756
@example
1757
# certtool --generate-privkey > ca-key.pem
1758
@end example
1759

    
1760
A CA needs to have a public certificate. For simplicity it can be a self-signed
1761
certificate, or one issue by a commercial certificate issuing authority. To
1762
generate a self-signed certificate requires one core piece of information, the
1763
name of the organization.
1764

    
1765
@example
1766
# cat > ca.info <<EOF
1767
cn = Name of your organization
1768
ca
1769
cert_signing_key
1770
EOF
1771
# certtool --generate-self-signed \
1772
           --load-privkey ca-key.pem
1773
           --template ca.info \
1774
           --outfile ca-cert.pem
1775
@end example
1776

    
1777
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1778
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1779

    
1780
@node vnc_generate_server
1781
@subsubsection Issuing server certificates
1782

    
1783
Each server (or host) needs to be issued with a key and certificate. When connecting
1784
the certificate is sent to the client which validates it against the CA certificate.
1785
The core piece of information for a server certificate is the hostname. This should
1786
be the fully qualified hostname that the client will connect with, since the client
1787
will typically also verify the hostname in the certificate. On the host holding the
1788
secure CA private key:
1789

    
1790
@example
1791
# cat > server.info <<EOF
1792
organization = Name  of your organization
1793
cn = server.foo.example.com
1794
tls_www_server
1795
encryption_key
1796
signing_key
1797
EOF
1798
# certtool --generate-privkey > server-key.pem
1799
# certtool --generate-certificate \
1800
           --load-ca-certificate ca-cert.pem \
1801
           --load-ca-privkey ca-key.pem \
1802
           --load-privkey server server-key.pem \
1803
           --template server.info \
1804
           --outfile server-cert.pem
1805
@end example
1806

    
1807
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1808
to the server for which they were generated. The @code{server-key.pem} is security
1809
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1810

    
1811
@node vnc_generate_client
1812
@subsubsection Issuing client certificates
1813

    
1814
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1815
certificates as its authentication mechanism, each client also needs to be issued
1816
a certificate. The client certificate contains enough metadata to uniquely identify
1817
the client, typically organization, state, city, building, etc. On the host holding
1818
the secure CA private key:
1819

    
1820
@example
1821
# cat > client.info <<EOF
1822
country = GB
1823
state = London
1824
locality = London
1825
organiazation = Name of your organization
1826
cn = client.foo.example.com
1827
tls_www_client
1828
encryption_key
1829
signing_key
1830
EOF
1831
# certtool --generate-privkey > client-key.pem
1832
# certtool --generate-certificate \
1833
           --load-ca-certificate ca-cert.pem \
1834
           --load-ca-privkey ca-key.pem \
1835
           --load-privkey client-key.pem \
1836
           --template client.info \
1837
           --outfile client-cert.pem
1838
@end example
1839

    
1840
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1841
copied to the client for which they were generated.
1842

    
1843
@node gdb_usage
1844
@section GDB usage
1845

    
1846
QEMU has a primitive support to work with gdb, so that you can do
1847
'Ctrl-C' while the virtual machine is running and inspect its state.
1848

    
1849
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1850
gdb connection:
1851
@example
1852
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1853
       -append "root=/dev/hda"
1854
Connected to host network interface: tun0
1855
Waiting gdb connection on port 1234
1856
@end example
1857

    
1858
Then launch gdb on the 'vmlinux' executable:
1859
@example
1860
> gdb vmlinux
1861
@end example
1862

    
1863
In gdb, connect to QEMU:
1864
@example
1865
(gdb) target remote localhost:1234
1866
@end example
1867

    
1868
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1869
@example
1870
(gdb) c
1871
@end example
1872

    
1873
Here are some useful tips in order to use gdb on system code:
1874

    
1875
@enumerate
1876
@item
1877
Use @code{info reg} to display all the CPU registers.
1878
@item
1879
Use @code{x/10i $eip} to display the code at the PC position.
1880
@item
1881
Use @code{set architecture i8086} to dump 16 bit code. Then use
1882
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1883
@end enumerate
1884

    
1885
@node pcsys_os_specific
1886
@section Target OS specific information
1887

    
1888
@subsection Linux
1889

    
1890
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1891
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1892
color depth in the guest and the host OS.
1893

    
1894
When using a 2.6 guest Linux kernel, you should add the option
1895
@code{clock=pit} on the kernel command line because the 2.6 Linux
1896
kernels make very strict real time clock checks by default that QEMU
1897
cannot simulate exactly.
1898

    
1899
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1900
not activated because QEMU is slower with this patch. The QEMU
1901
Accelerator Module is also much slower in this case. Earlier Fedora
1902
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1903
patch by default. Newer kernels don't have it.
1904

    
1905
@subsection Windows
1906

    
1907
If you have a slow host, using Windows 95 is better as it gives the
1908
best speed. Windows 2000 is also a good choice.
1909

    
1910
@subsubsection SVGA graphic modes support
1911

    
1912
QEMU emulates a Cirrus Logic GD5446 Video
1913
card. All Windows versions starting from Windows 95 should recognize
1914
and use this graphic card. For optimal performances, use 16 bit color
1915
depth in the guest and the host OS.
1916

    
1917
If you are using Windows XP as guest OS and if you want to use high
1918
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1919
1280x1024x16), then you should use the VESA VBE virtual graphic card
1920
(option @option{-std-vga}).
1921

    
1922
@subsubsection CPU usage reduction
1923

    
1924
Windows 9x does not correctly use the CPU HLT
1925
instruction. The result is that it takes host CPU cycles even when
1926
idle. You can install the utility from
1927
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1928
problem. Note that no such tool is needed for NT, 2000 or XP.
1929

    
1930
@subsubsection Windows 2000 disk full problem
1931

    
1932
Windows 2000 has a bug which gives a disk full problem during its
1933
installation. When installing it, use the @option{-win2k-hack} QEMU
1934
option to enable a specific workaround. After Windows 2000 is
1935
installed, you no longer need this option (this option slows down the
1936
IDE transfers).
1937

    
1938
@subsubsection Windows 2000 shutdown
1939

    
1940
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1941
can. It comes from the fact that Windows 2000 does not automatically
1942
use the APM driver provided by the BIOS.
1943

    
1944
In order to correct that, do the following (thanks to Struan
1945
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1946
Add/Troubleshoot a device => Add a new device & Next => No, select the
1947
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1948
(again) a few times. Now the driver is installed and Windows 2000 now
1949
correctly instructs QEMU to shutdown at the appropriate moment.
1950

    
1951
@subsubsection Share a directory between Unix and Windows
1952

    
1953
See @ref{sec_invocation} about the help of the option @option{-smb}.
1954

    
1955
@subsubsection Windows XP security problem
1956

    
1957
Some releases of Windows XP install correctly but give a security
1958
error when booting:
1959
@example
1960
A problem is preventing Windows from accurately checking the
1961
license for this computer. Error code: 0x800703e6.
1962
@end example
1963

    
1964
The workaround is to install a service pack for XP after a boot in safe
1965
mode. Then reboot, and the problem should go away. Since there is no
1966
network while in safe mode, its recommended to download the full
1967
installation of SP1 or SP2 and transfer that via an ISO or using the
1968
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1969

    
1970
@subsection MS-DOS and FreeDOS
1971

    
1972
@subsubsection CPU usage reduction
1973

    
1974
DOS does not correctly use the CPU HLT instruction. The result is that
1975
it takes host CPU cycles even when idle. You can install the utility
1976
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1977
problem.
1978

    
1979
@node QEMU System emulator for non PC targets
1980
@chapter QEMU System emulator for non PC targets
1981

    
1982
QEMU is a generic emulator and it emulates many non PC
1983
machines. Most of the options are similar to the PC emulator. The
1984
differences are mentioned in the following sections.
1985

    
1986
@menu
1987
* QEMU PowerPC System emulator::
1988
* Sparc32 System emulator::
1989
* Sparc64 System emulator::
1990
* MIPS System emulator::
1991
* ARM System emulator::
1992
* ColdFire System emulator::
1993
@end menu
1994

    
1995
@node QEMU PowerPC System emulator
1996
@section QEMU PowerPC System emulator
1997

    
1998
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1999
or PowerMac PowerPC system.
2000

    
2001
QEMU emulates the following PowerMac peripherals:
2002

    
2003
@itemize @minus
2004
@item
2005
UniNorth PCI Bridge
2006
@item
2007
PCI VGA compatible card with VESA Bochs Extensions
2008
@item
2009
2 PMAC IDE interfaces with hard disk and CD-ROM support
2010
@item
2011
NE2000 PCI adapters
2012
@item
2013
Non Volatile RAM
2014
@item
2015
VIA-CUDA with ADB keyboard and mouse.
2016
@end itemize
2017

    
2018
QEMU emulates the following PREP peripherals:
2019

    
2020
@itemize @minus
2021
@item
2022
PCI Bridge
2023
@item
2024
PCI VGA compatible card with VESA Bochs Extensions
2025
@item
2026
2 IDE interfaces with hard disk and CD-ROM support
2027
@item
2028
Floppy disk
2029
@item
2030
NE2000 network adapters
2031
@item
2032
Serial port
2033
@item
2034
PREP Non Volatile RAM
2035
@item
2036
PC compatible keyboard and mouse.
2037
@end itemize
2038

    
2039
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2040
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2041

    
2042
@c man begin OPTIONS
2043

    
2044
The following options are specific to the PowerPC emulation:
2045

    
2046
@table @option
2047

    
2048
@item -g WxH[xDEPTH]
2049

    
2050
Set the initial VGA graphic mode. The default is 800x600x15.
2051

    
2052
@end table
2053

    
2054
@c man end
2055

    
2056

    
2057
More information is available at
2058
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2059

    
2060
@node Sparc32 System emulator
2061
@section Sparc32 System emulator
2062

    
2063
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2064
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2065
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2066
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2067
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2068
of usable CPUs to 4.
2069

    
2070
QEMU emulates the following sun4m/sun4d peripherals:
2071

    
2072
@itemize @minus
2073
@item
2074
IOMMU or IO-UNITs
2075
@item
2076
TCX Frame buffer
2077
@item
2078
Lance (Am7990) Ethernet
2079
@item
2080
Non Volatile RAM M48T08
2081
@item
2082
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2083
and power/reset logic
2084
@item
2085
ESP SCSI controller with hard disk and CD-ROM support
2086
@item
2087
Floppy drive (not on SS-600MP)
2088
@item
2089
CS4231 sound device (only on SS-5, not working yet)
2090
@end itemize
2091

    
2092
The number of peripherals is fixed in the architecture.  Maximum
2093
memory size depends on the machine type, for SS-5 it is 256MB and for
2094
others 2047MB.
2095

    
2096
Since version 0.8.2, QEMU uses OpenBIOS
2097
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2098
firmware implementation. The goal is to implement a 100% IEEE
2099
1275-1994 (referred to as Open Firmware) compliant firmware.
2100

    
2101
A sample Linux 2.6 series kernel and ram disk image are available on
2102
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2103
Solaris kernels don't work.
2104

    
2105
@c man begin OPTIONS
2106

    
2107
The following options are specific to the Sparc32 emulation:
2108

    
2109
@table @option
2110

    
2111
@item -g WxHx[xDEPTH]
2112

    
2113
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2114
the only other possible mode is 1024x768x24.
2115

    
2116
@item -prom-env string
2117

    
2118
Set OpenBIOS variables in NVRAM, for example:
2119

    
2120
@example
2121
qemu-system-sparc -prom-env 'auto-boot?=false' \
2122
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2123
@end example
2124

    
2125
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2126

    
2127
Set the emulated machine type. Default is SS-5.
2128

    
2129
@end table
2130

    
2131
@c man end
2132

    
2133
@node Sparc64 System emulator
2134
@section Sparc64 System emulator
2135

    
2136
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2137
The emulator is not usable for anything yet.
2138

    
2139
QEMU emulates the following sun4u peripherals:
2140

    
2141
@itemize @minus
2142
@item
2143
UltraSparc IIi APB PCI Bridge
2144
@item
2145
PCI VGA compatible card with VESA Bochs Extensions
2146
@item
2147
Non Volatile RAM M48T59
2148
@item
2149
PC-compatible serial ports
2150
@end itemize
2151

    
2152
@node MIPS System emulator
2153
@section MIPS System emulator
2154

    
2155
Four executables cover simulation of 32 and 64-bit MIPS systems in
2156
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2157
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2158
Four different machine types are emulated:
2159

    
2160
@itemize @minus
2161
@item
2162
A generic ISA PC-like machine "mips"
2163
@item
2164
The MIPS Malta prototype board "malta"
2165
@item
2166
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2167
@item
2168
MIPS emulator pseudo board "mipssim"
2169
@end itemize
2170

    
2171
The generic emulation is supported by Debian 'Etch' and is able to
2172
install Debian into a virtual disk image. The following devices are
2173
emulated:
2174

    
2175
@itemize @minus
2176
@item
2177
A range of MIPS CPUs, default is the 24Kf
2178
@item
2179
PC style serial port
2180
@item
2181
PC style IDE disk
2182
@item
2183
NE2000 network card
2184
@end itemize
2185

    
2186
The Malta emulation supports the following devices:
2187

    
2188
@itemize @minus
2189
@item
2190
Core board with MIPS 24Kf CPU and Galileo system controller
2191
@item
2192
PIIX4 PCI/USB/SMbus controller
2193
@item
2194
The Multi-I/O chip's serial device
2195
@item
2196
PCnet32 PCI network card
2197
@item
2198
Malta FPGA serial device
2199
@item
2200
Cirrus VGA graphics card
2201
@end itemize
2202

    
2203
The ACER Pica emulation supports:
2204

    
2205
@itemize @minus
2206
@item
2207
MIPS R4000 CPU
2208
@item
2209
PC-style IRQ and DMA controllers
2210
@item
2211
PC Keyboard
2212
@item
2213
IDE controller
2214
@end itemize
2215

    
2216
The mipssim pseudo board emulation provides an environment similiar
2217
to what the proprietary MIPS emulator uses for running Linux.
2218
It supports:
2219

    
2220
@itemize @minus
2221
@item
2222
A range of MIPS CPUs, default is the 24Kf
2223
@item
2224
PC style serial port
2225
@item
2226
MIPSnet network emulation
2227
@end itemize
2228

    
2229
@node ARM System emulator
2230
@section ARM System emulator
2231

    
2232
Use the executable @file{qemu-system-arm} to simulate a ARM
2233
machine. The ARM Integrator/CP board is emulated with the following
2234
devices:
2235

    
2236
@itemize @minus
2237
@item
2238
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2239
@item
2240
Two PL011 UARTs
2241
@item
2242
SMC 91c111 Ethernet adapter
2243
@item
2244
PL110 LCD controller
2245
@item
2246
PL050 KMI with PS/2 keyboard and mouse.
2247
@item
2248
PL181 MultiMedia Card Interface with SD card.
2249
@end itemize
2250

    
2251
The ARM Versatile baseboard is emulated with the following devices:
2252

    
2253
@itemize @minus
2254
@item
2255
ARM926E, ARM1136 or Cortex-A8 CPU
2256
@item
2257
PL190 Vectored Interrupt Controller
2258
@item
2259
Four PL011 UARTs
2260
@item
2261
SMC 91c111 Ethernet adapter
2262
@item
2263
PL110 LCD controller
2264
@item
2265
PL050 KMI with PS/2 keyboard and mouse.
2266
@item
2267
PCI host bridge.  Note the emulated PCI bridge only provides access to
2268
PCI memory space.  It does not provide access to PCI IO space.
2269
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2270
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2271
mapped control registers.
2272
@item
2273
PCI OHCI USB controller.
2274
@item
2275
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2276
@item
2277
PL181 MultiMedia Card Interface with SD card.
2278
@end itemize
2279

    
2280
The ARM RealView Emulation baseboard is emulated with the following devices:
2281

    
2282
@itemize @minus
2283
@item
2284
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2285
@item
2286
ARM AMBA Generic/Distributed Interrupt Controller
2287
@item
2288
Four PL011 UARTs
2289
@item
2290
SMC 91c111 Ethernet adapter
2291
@item
2292
PL110 LCD controller
2293
@item
2294
PL050 KMI with PS/2 keyboard and mouse
2295
@item
2296
PCI host bridge
2297
@item
2298
PCI OHCI USB controller
2299
@item
2300
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2301
@item
2302
PL181 MultiMedia Card Interface with SD card.
2303
@end itemize
2304

    
2305
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2306
and "Terrier") emulation includes the following peripherals:
2307

    
2308
@itemize @minus
2309
@item
2310
Intel PXA270 System-on-chip (ARM V5TE core)
2311
@item
2312
NAND Flash memory
2313
@item
2314
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2315
@item
2316
On-chip OHCI USB controller
2317
@item
2318
On-chip LCD controller
2319
@item
2320
On-chip Real Time Clock
2321
@item
2322
TI ADS7846 touchscreen controller on SSP bus
2323
@item
2324
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2325
@item
2326
GPIO-connected keyboard controller and LEDs
2327
@item
2328
Secure Digital card connected to PXA MMC/SD host
2329
@item
2330
Three on-chip UARTs
2331
@item
2332
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2333
@end itemize
2334

    
2335
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2336
following elements:
2337

    
2338
@itemize @minus
2339
@item
2340
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2341
@item
2342
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2343
@item
2344
On-chip LCD controller
2345
@item
2346
On-chip Real Time Clock
2347
@item
2348
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2349
CODEC, connected through MicroWire and I@math{^2}S busses
2350
@item
2351
GPIO-connected matrix keypad
2352
@item
2353
Secure Digital card connected to OMAP MMC/SD host
2354
@item
2355
Three on-chip UARTs
2356
@end itemize
2357

    
2358
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2359
devices:
2360

    
2361
@itemize @minus
2362
@item
2363
Cortex-M3 CPU core.
2364
@item
2365
64k Flash and 8k SRAM.
2366
@item
2367
Timers, UARTs, ADC and I@math{^2}C interface.
2368
@item
2369
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2370
@end itemize
2371

    
2372
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2373
devices:
2374

    
2375
@itemize @minus
2376
@item
2377
Cortex-M3 CPU core.
2378
@item
2379
256k Flash and 64k SRAM.
2380
@item
2381
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2382
@item
2383
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2384
@end itemize
2385

    
2386
A Linux 2.6 test image is available on the QEMU web site. More
2387
information is available in the QEMU mailing-list archive.
2388

    
2389
@node ColdFire System emulator
2390
@section ColdFire System emulator
2391

    
2392
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2393
The emulator is able to boot a uClinux kernel.
2394

    
2395
The M5208EVB emulation includes the following devices:
2396

    
2397
@itemize @minus
2398
@item
2399
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2400
@item
2401
Three Two on-chip UARTs.
2402
@item
2403
Fast Ethernet Controller (FEC)
2404
@end itemize
2405

    
2406
The AN5206 emulation includes the following devices:
2407

    
2408
@itemize @minus
2409
@item
2410
MCF5206 ColdFire V2 Microprocessor.
2411
@item
2412
Two on-chip UARTs.
2413
@end itemize
2414

    
2415
@node QEMU User space emulator
2416
@chapter QEMU User space emulator
2417

    
2418
@menu
2419
* Supported Operating Systems ::
2420
* Linux User space emulator::
2421
* Mac OS X/Darwin User space emulator ::
2422
@end menu
2423

    
2424
@node Supported Operating Systems
2425
@section Supported Operating Systems
2426

    
2427
The following OS are supported in user space emulation:
2428

    
2429
@itemize @minus
2430
@item
2431
Linux (referred as qemu-linux-user)
2432
@item
2433
Mac OS X/Darwin (referred as qemu-darwin-user)
2434
@end itemize
2435

    
2436
@node Linux User space emulator
2437
@section Linux User space emulator
2438

    
2439
@menu
2440
* Quick Start::
2441
* Wine launch::
2442
* Command line options::
2443
* Other binaries::
2444
@end menu
2445

    
2446
@node Quick Start
2447
@subsection Quick Start
2448

    
2449
In order to launch a Linux process, QEMU needs the process executable
2450
itself and all the target (x86) dynamic libraries used by it.
2451

    
2452
@itemize
2453

    
2454
@item On x86, you can just try to launch any process by using the native
2455
libraries:
2456

    
2457
@example
2458
qemu-i386 -L / /bin/ls
2459
@end example
2460

    
2461
@code{-L /} tells that the x86 dynamic linker must be searched with a
2462
@file{/} prefix.
2463

    
2464
@item Since QEMU is also a linux process, you can launch qemu with
2465
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2466

    
2467
@example
2468
qemu-i386 -L / qemu-i386 -L / /bin/ls
2469
@end example
2470

    
2471
@item On non x86 CPUs, you need first to download at least an x86 glibc
2472
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2473
@code{LD_LIBRARY_PATH} is not set:
2474

    
2475
@example
2476
unset LD_LIBRARY_PATH
2477
@end example
2478

    
2479
Then you can launch the precompiled @file{ls} x86 executable:
2480

    
2481
@example
2482
qemu-i386 tests/i386/ls
2483
@end example
2484
You can look at @file{qemu-binfmt-conf.sh} so that
2485
QEMU is automatically launched by the Linux kernel when you try to
2486
launch x86 executables. It requires the @code{binfmt_misc} module in the
2487
Linux kernel.
2488

    
2489
@item The x86 version of QEMU is also included. You can try weird things such as:
2490
@example
2491
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2492
          /usr/local/qemu-i386/bin/ls-i386
2493
@end example
2494

    
2495
@end itemize
2496

    
2497
@node Wine launch
2498
@subsection Wine launch
2499

    
2500
@itemize
2501

    
2502
@item Ensure that you have a working QEMU with the x86 glibc
2503
distribution (see previous section). In order to verify it, you must be
2504
able to do:
2505

    
2506
@example
2507
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2508
@end example
2509

    
2510
@item Download the binary x86 Wine install
2511
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2512

    
2513
@item Configure Wine on your account. Look at the provided script
2514
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2515
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2516

    
2517
@item Then you can try the example @file{putty.exe}:
2518

    
2519
@example
2520
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2521
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2522
@end example
2523

    
2524
@end itemize
2525

    
2526
@node Command line options
2527
@subsection Command line options
2528

    
2529
@example
2530
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2531
@end example
2532

    
2533
@table @option
2534
@item -h
2535
Print the help
2536
@item -L path
2537
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2538
@item -s size
2539
Set the x86 stack size in bytes (default=524288)
2540
@end table
2541

    
2542
Debug options:
2543

    
2544
@table @option
2545
@item -d
2546
Activate log (logfile=/tmp/qemu.log)
2547
@item -p pagesize
2548
Act as if the host page size was 'pagesize' bytes
2549
@end table
2550

    
2551
Environment variables:
2552

    
2553
@table @env
2554
@item QEMU_STRACE
2555
Print system calls and arguments similar to the 'strace' program
2556
(NOTE: the actual 'strace' program will not work because the user
2557
space emulator hasn't implemented ptrace).  At the moment this is
2558
incomplete.  All system calls that don't have a specific argument
2559
format are printed with information for six arguments.  Many
2560
flag-style arguments don't have decoders and will show up as numbers.
2561
@end table
2562

    
2563
@node Other binaries
2564
@subsection Other binaries
2565

    
2566
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2567
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2568
configurations), and arm-uclinux bFLT format binaries.
2569

    
2570
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2571
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2572
coldfire uClinux bFLT format binaries.
2573

    
2574
The binary format is detected automatically.
2575

    
2576
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2577
(Sparc64 CPU, 32 bit ABI).
2578

    
2579
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2580
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2581

    
2582
@node Mac OS X/Darwin User space emulator
2583
@section Mac OS X/Darwin User space emulator
2584

    
2585
@menu
2586
* Mac OS X/Darwin Status::
2587
* Mac OS X/Darwin Quick Start::
2588
* Mac OS X/Darwin Command line options::
2589
@end menu
2590

    
2591
@node Mac OS X/Darwin Status
2592
@subsection Mac OS X/Darwin Status
2593

    
2594
@itemize @minus
2595
@item
2596
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2597
@item
2598
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2599
@item
2600
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2601
@item
2602
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2603
@end itemize
2604

    
2605
[1] If you're host commpage can be executed by qemu.
2606

    
2607
@node Mac OS X/Darwin Quick Start
2608
@subsection Quick Start
2609

    
2610
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2611
itself and all the target dynamic libraries used by it. If you don't have the FAT
2612
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2613
CD or compile them by hand.
2614

    
2615
@itemize
2616

    
2617
@item On x86, you can just try to launch any process by using the native
2618
libraries:
2619

    
2620
@example
2621
qemu-i386 /bin/ls
2622
@end example
2623

    
2624
or to run the ppc version of the executable:
2625

    
2626
@example
2627
qemu-ppc /bin/ls
2628
@end example
2629

    
2630
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2631
are installed:
2632

    
2633
@example
2634
qemu-i386 -L /opt/x86_root/ /bin/ls
2635
@end example
2636

    
2637
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2638
@file{/opt/x86_root/usr/bin/dyld}.
2639

    
2640
@end itemize
2641

    
2642
@node Mac OS X/Darwin Command line options
2643
@subsection Command line options
2644

    
2645
@example
2646
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2647
@end example
2648

    
2649
@table @option
2650
@item -h
2651
Print the help
2652
@item -L path
2653
Set the library root path (default=/)
2654
@item -s size
2655
Set the stack size in bytes (default=524288)
2656
@end table
2657

    
2658
Debug options:
2659

    
2660
@table @option
2661
@item -d
2662
Activate log (logfile=/tmp/qemu.log)
2663
@item -p pagesize
2664
Act as if the host page size was 'pagesize' bytes
2665
@end table
2666

    
2667
@node compilation
2668
@chapter Compilation from the sources
2669

    
2670
@menu
2671
* Linux/Unix::
2672
* Windows::
2673
* Cross compilation for Windows with Linux::
2674
* Mac OS X::
2675
@end menu
2676

    
2677
@node Linux/Unix
2678
@section Linux/Unix
2679

    
2680
@subsection Compilation
2681

    
2682
First you must decompress the sources:
2683
@example
2684
cd /tmp
2685
tar zxvf qemu-x.y.z.tar.gz
2686
cd qemu-x.y.z
2687
@end example
2688

    
2689
Then you configure QEMU and build it (usually no options are needed):
2690
@example
2691
./configure
2692
make
2693
@end example
2694

    
2695
Then type as root user:
2696
@example
2697
make install
2698
@end example
2699
to install QEMU in @file{/usr/local}.
2700

    
2701
@subsection GCC version
2702

    
2703
In order to compile QEMU successfully, it is very important that you
2704
have the right tools. The most important one is gcc. On most hosts and
2705
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2706
Linux distribution includes a gcc 4.x compiler, you can usually
2707
install an older version (it is invoked by @code{gcc32} or
2708
@code{gcc34}). The QEMU configure script automatically probes for
2709
these older versions so that usually you don't have to do anything.
2710

    
2711
@node Windows
2712
@section Windows
2713

    
2714
@itemize
2715
@item Install the current versions of MSYS and MinGW from
2716
@url{http://www.mingw.org/}. You can find detailed installation
2717
instructions in the download section and the FAQ.
2718

    
2719
@item Download
2720
the MinGW development library of SDL 1.2.x
2721
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2722
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2723
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2724
directory. Edit the @file{sdl-config} script so that it gives the
2725
correct SDL directory when invoked.
2726

    
2727
@item Extract the current version of QEMU.
2728

    
2729
@item Start the MSYS shell (file @file{msys.bat}).
2730

    
2731
@item Change to the QEMU directory. Launch @file{./configure} and
2732
@file{make}.  If you have problems using SDL, verify that
2733
@file{sdl-config} can be launched from the MSYS command line.
2734

    
2735
@item You can install QEMU in @file{Program Files/Qemu} by typing
2736
@file{make install}. Don't forget to copy @file{SDL.dll} in
2737
@file{Program Files/Qemu}.
2738

    
2739
@end itemize
2740

    
2741
@node Cross compilation for Windows with Linux
2742
@section Cross compilation for Windows with Linux
2743

    
2744
@itemize
2745
@item
2746
Install the MinGW cross compilation tools available at
2747
@url{http://www.mingw.org/}.
2748

    
2749
@item
2750
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2751
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2752
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2753
the QEMU configuration script.
2754

    
2755
@item
2756
Configure QEMU for Windows cross compilation:
2757
@example
2758
./configure --enable-mingw32
2759
@end example
2760
If necessary, you can change the cross-prefix according to the prefix
2761
chosen for the MinGW tools with --cross-prefix. You can also use
2762
--prefix to set the Win32 install path.
2763

    
2764
@item You can install QEMU in the installation directory by typing
2765
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2766
installation directory.
2767

    
2768
@end itemize
2769

    
2770
Note: Currently, Wine does not seem able to launch
2771
QEMU for Win32.
2772

    
2773
@node Mac OS X
2774
@section Mac OS X
2775

    
2776
The Mac OS X patches are not fully merged in QEMU, so you should look
2777
at the QEMU mailing list archive to have all the necessary
2778
information.
2779

    
2780
@node Index
2781
@chapter Index
2782
@printindex cp
2783

    
2784
@bye