Statistics
| Branch: | Revision:

root / cpu-all.h @ 430116a1

History | View | Annotate | Download (18.3 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#ifndef CPU_ALL_H
21
#define CPU_ALL_H
22

    
23
#if defined(__arm__) || defined(__sparc__)
24
#define WORDS_ALIGNED
25
#endif
26

    
27
/* some important defines: 
28
 * 
29
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30
 * memory accesses.
31
 * 
32
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33
 * otherwise little endian.
34
 * 
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 * 
37
 * TARGET_WORDS_BIGENDIAN : same for target cpu
38
 */
39

    
40
#include "bswap.h"
41

    
42
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43
#define BSWAP_NEEDED
44
#endif
45

    
46
#ifdef BSWAP_NEEDED
47

    
48
static inline uint16_t tswap16(uint16_t s)
49
{
50
    return bswap16(s);
51
}
52

    
53
static inline uint32_t tswap32(uint32_t s)
54
{
55
    return bswap32(s);
56
}
57

    
58
static inline uint64_t tswap64(uint64_t s)
59
{
60
    return bswap64(s);
61
}
62

    
63
static inline void tswap16s(uint16_t *s)
64
{
65
    *s = bswap16(*s);
66
}
67

    
68
static inline void tswap32s(uint32_t *s)
69
{
70
    *s = bswap32(*s);
71
}
72

    
73
static inline void tswap64s(uint64_t *s)
74
{
75
    *s = bswap64(*s);
76
}
77

    
78
#else
79

    
80
static inline uint16_t tswap16(uint16_t s)
81
{
82
    return s;
83
}
84

    
85
static inline uint32_t tswap32(uint32_t s)
86
{
87
    return s;
88
}
89

    
90
static inline uint64_t tswap64(uint64_t s)
91
{
92
    return s;
93
}
94

    
95
static inline void tswap16s(uint16_t *s)
96
{
97
}
98

    
99
static inline void tswap32s(uint32_t *s)
100
{
101
}
102

    
103
static inline void tswap64s(uint64_t *s)
104
{
105
}
106

    
107
#endif
108

    
109
#if TARGET_LONG_SIZE == 4
110
#define tswapl(s) tswap32(s)
111
#define tswapls(s) tswap32s((uint32_t *)(s))
112
#define bswaptls(s) bswap32s(s)
113
#else
114
#define tswapl(s) tswap64(s)
115
#define tswapls(s) tswap64s((uint64_t *)(s))
116
#define bswaptls(s) bswap64s(s)
117
#endif
118

    
119
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120
   endian ! */
121
typedef union {
122
    float64 d;
123
#if defined(WORDS_BIGENDIAN) \
124
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
125
    struct {
126
        uint32_t upper;
127
        uint32_t lower;
128
    } l;
129
#else
130
    struct {
131
        uint32_t lower;
132
        uint32_t upper;
133
    } l;
134
#endif
135
    uint64_t ll;
136
} CPU_DoubleU;
137

    
138
/* CPU memory access without any memory or io remapping */
139

    
140
/*
141
 * the generic syntax for the memory accesses is:
142
 *
143
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
144
 *
145
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
146
 *
147
 * type is:
148
 * (empty): integer access
149
 *   f    : float access
150
 * 
151
 * sign is:
152
 * (empty): for floats or 32 bit size
153
 *   u    : unsigned
154
 *   s    : signed
155
 *
156
 * size is:
157
 *   b: 8 bits
158
 *   w: 16 bits
159
 *   l: 32 bits
160
 *   q: 64 bits
161
 * 
162
 * endian is:
163
 * (empty): target cpu endianness or 8 bit access
164
 *   r    : reversed target cpu endianness (not implemented yet)
165
 *   be   : big endian (not implemented yet)
166
 *   le   : little endian (not implemented yet)
167
 *
168
 * access_type is:
169
 *   raw    : host memory access
170
 *   user   : user mode access using soft MMU
171
 *   kernel : kernel mode access using soft MMU
172
 */
173
static inline int ldub_p(void *ptr)
174
{
175
    return *(uint8_t *)ptr;
176
}
177

    
178
static inline int ldsb_p(void *ptr)
179
{
180
    return *(int8_t *)ptr;
181
}
182

    
183
static inline void stb_p(void *ptr, int v)
184
{
185
    *(uint8_t *)ptr = v;
186
}
187

    
188
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
189
   kernel handles unaligned load/stores may give better results, but
190
   it is a system wide setting : bad */
191
#if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
192

    
193
/* conservative code for little endian unaligned accesses */
194
static inline int lduw_p(void *ptr)
195
{
196
#ifdef __powerpc__
197
    int val;
198
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
199
    return val;
200
#else
201
    uint8_t *p = ptr;
202
    return p[0] | (p[1] << 8);
203
#endif
204
}
205

    
206
static inline int ldsw_p(void *ptr)
207
{
208
#ifdef __powerpc__
209
    int val;
210
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
211
    return (int16_t)val;
212
#else
213
    uint8_t *p = ptr;
214
    return (int16_t)(p[0] | (p[1] << 8));
215
#endif
216
}
217

    
218
static inline int ldl_p(void *ptr)
219
{
220
#ifdef __powerpc__
221
    int val;
222
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
223
    return val;
224
#else
225
    uint8_t *p = ptr;
226
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
227
#endif
228
}
229

    
230
static inline uint64_t ldq_p(void *ptr)
231
{
232
    uint8_t *p = ptr;
233
    uint32_t v1, v2;
234
    v1 = ldl_p(p);
235
    v2 = ldl_p(p + 4);
236
    return v1 | ((uint64_t)v2 << 32);
237
}
238

    
239
static inline void stw_p(void *ptr, int v)
240
{
241
#ifdef __powerpc__
242
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
243
#else
244
    uint8_t *p = ptr;
245
    p[0] = v;
246
    p[1] = v >> 8;
247
#endif
248
}
249

    
250
static inline void stl_p(void *ptr, int v)
251
{
252
#ifdef __powerpc__
253
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
254
#else
255
    uint8_t *p = ptr;
256
    p[0] = v;
257
    p[1] = v >> 8;
258
    p[2] = v >> 16;
259
    p[3] = v >> 24;
260
#endif
261
}
262

    
263
static inline void stq_p(void *ptr, uint64_t v)
264
{
265
    uint8_t *p = ptr;
266
    stl_p(p, (uint32_t)v);
267
    stl_p(p + 4, v >> 32);
268
}
269

    
270
/* float access */
271

    
272
static inline float32 ldfl_p(void *ptr)
273
{
274
    union {
275
        float32 f;
276
        uint32_t i;
277
    } u;
278
    u.i = ldl_p(ptr);
279
    return u.f;
280
}
281

    
282
static inline void stfl_p(void *ptr, float32 v)
283
{
284
    union {
285
        float32 f;
286
        uint32_t i;
287
    } u;
288
    u.f = v;
289
    stl_p(ptr, u.i);
290
}
291

    
292
static inline float64 ldfq_p(void *ptr)
293
{
294
    CPU_DoubleU u;
295
    u.l.lower = ldl_p(ptr);
296
    u.l.upper = ldl_p(ptr + 4);
297
    return u.d;
298
}
299

    
300
static inline void stfq_p(void *ptr, float64 v)
301
{
302
    CPU_DoubleU u;
303
    u.d = v;
304
    stl_p(ptr, u.l.lower);
305
    stl_p(ptr + 4, u.l.upper);
306
}
307

    
308
#elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
309

    
310
static inline int lduw_p(void *ptr)
311
{
312
#if defined(__i386__)
313
    int val;
314
    asm volatile ("movzwl %1, %0\n"
315
                  "xchgb %b0, %h0\n"
316
                  : "=q" (val)
317
                  : "m" (*(uint16_t *)ptr));
318
    return val;
319
#else
320
    uint8_t *b = (uint8_t *) ptr;
321
    return ((b[0] << 8) | b[1]);
322
#endif
323
}
324

    
325
static inline int ldsw_p(void *ptr)
326
{
327
#if defined(__i386__)
328
    int val;
329
    asm volatile ("movzwl %1, %0\n"
330
                  "xchgb %b0, %h0\n"
331
                  : "=q" (val)
332
                  : "m" (*(uint16_t *)ptr));
333
    return (int16_t)val;
334
#else
335
    uint8_t *b = (uint8_t *) ptr;
336
    return (int16_t)((b[0] << 8) | b[1]);
337
#endif
338
}
339

    
340
static inline int ldl_p(void *ptr)
341
{
342
#if defined(__i386__) || defined(__x86_64__)
343
    int val;
344
    asm volatile ("movl %1, %0\n"
345
                  "bswap %0\n"
346
                  : "=r" (val)
347
                  : "m" (*(uint32_t *)ptr));
348
    return val;
349
#else
350
    uint8_t *b = (uint8_t *) ptr;
351
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
352
#endif
353
}
354

    
355
static inline uint64_t ldq_p(void *ptr)
356
{
357
    uint32_t a,b;
358
    a = ldl_p(ptr);
359
    b = ldl_p(ptr+4);
360
    return (((uint64_t)a<<32)|b);
361
}
362

    
363
static inline void stw_p(void *ptr, int v)
364
{
365
#if defined(__i386__)
366
    asm volatile ("xchgb %b0, %h0\n"
367
                  "movw %w0, %1\n"
368
                  : "=q" (v)
369
                  : "m" (*(uint16_t *)ptr), "0" (v));
370
#else
371
    uint8_t *d = (uint8_t *) ptr;
372
    d[0] = v >> 8;
373
    d[1] = v;
374
#endif
375
}
376

    
377
static inline void stl_p(void *ptr, int v)
378
{
379
#if defined(__i386__) || defined(__x86_64__)
380
    asm volatile ("bswap %0\n"
381
                  "movl %0, %1\n"
382
                  : "=r" (v)
383
                  : "m" (*(uint32_t *)ptr), "0" (v));
384
#else
385
    uint8_t *d = (uint8_t *) ptr;
386
    d[0] = v >> 24;
387
    d[1] = v >> 16;
388
    d[2] = v >> 8;
389
    d[3] = v;
390
#endif
391
}
392

    
393
static inline void stq_p(void *ptr, uint64_t v)
394
{
395
    stl_p(ptr, v >> 32);
396
    stl_p(ptr + 4, v);
397
}
398

    
399
/* float access */
400

    
401
static inline float32 ldfl_p(void *ptr)
402
{
403
    union {
404
        float32 f;
405
        uint32_t i;
406
    } u;
407
    u.i = ldl_p(ptr);
408
    return u.f;
409
}
410

    
411
static inline void stfl_p(void *ptr, float32 v)
412
{
413
    union {
414
        float32 f;
415
        uint32_t i;
416
    } u;
417
    u.f = v;
418
    stl_p(ptr, u.i);
419
}
420

    
421
static inline float64 ldfq_p(void *ptr)
422
{
423
    CPU_DoubleU u;
424
    u.l.upper = ldl_p(ptr);
425
    u.l.lower = ldl_p(ptr + 4);
426
    return u.d;
427
}
428

    
429
static inline void stfq_p(void *ptr, float64 v)
430
{
431
    CPU_DoubleU u;
432
    u.d = v;
433
    stl_p(ptr, u.l.upper);
434
    stl_p(ptr + 4, u.l.lower);
435
}
436

    
437
#else
438

    
439
static inline int lduw_p(void *ptr)
440
{
441
    return *(uint16_t *)ptr;
442
}
443

    
444
static inline int ldsw_p(void *ptr)
445
{
446
    return *(int16_t *)ptr;
447
}
448

    
449
static inline int ldl_p(void *ptr)
450
{
451
    return *(uint32_t *)ptr;
452
}
453

    
454
static inline uint64_t ldq_p(void *ptr)
455
{
456
    return *(uint64_t *)ptr;
457
}
458

    
459
static inline void stw_p(void *ptr, int v)
460
{
461
    *(uint16_t *)ptr = v;
462
}
463

    
464
static inline void stl_p(void *ptr, int v)
465
{
466
    *(uint32_t *)ptr = v;
467
}
468

    
469
static inline void stq_p(void *ptr, uint64_t v)
470
{
471
    *(uint64_t *)ptr = v;
472
}
473

    
474
/* float access */
475

    
476
static inline float32 ldfl_p(void *ptr)
477
{
478
    return *(float32 *)ptr;
479
}
480

    
481
static inline float64 ldfq_p(void *ptr)
482
{
483
    return *(float64 *)ptr;
484
}
485

    
486
static inline void stfl_p(void *ptr, float32 v)
487
{
488
    *(float32 *)ptr = v;
489
}
490

    
491
static inline void stfq_p(void *ptr, float64 v)
492
{
493
    *(float64 *)ptr = v;
494
}
495
#endif
496

    
497
/* MMU memory access macros */
498

    
499
/* NOTE: we use double casts if pointers and target_ulong have
500
   different sizes */
501
#define ldub_raw(p) ldub_p((uint8_t *)(long)(p))
502
#define ldsb_raw(p) ldsb_p((uint8_t *)(long)(p))
503
#define lduw_raw(p) lduw_p((uint8_t *)(long)(p))
504
#define ldsw_raw(p) ldsw_p((uint8_t *)(long)(p))
505
#define ldl_raw(p) ldl_p((uint8_t *)(long)(p))
506
#define ldq_raw(p) ldq_p((uint8_t *)(long)(p))
507
#define ldfl_raw(p) ldfl_p((uint8_t *)(long)(p))
508
#define ldfq_raw(p) ldfq_p((uint8_t *)(long)(p))
509
#define stb_raw(p, v) stb_p((uint8_t *)(long)(p), v)
510
#define stw_raw(p, v) stw_p((uint8_t *)(long)(p), v)
511
#define stl_raw(p, v) stl_p((uint8_t *)(long)(p), v)
512
#define stq_raw(p, v) stq_p((uint8_t *)(long)(p), v)
513
#define stfl_raw(p, v) stfl_p((uint8_t *)(long)(p), v)
514
#define stfq_raw(p, v) stfq_p((uint8_t *)(long)(p), v)
515

    
516

    
517
#if defined(CONFIG_USER_ONLY) 
518

    
519
/* if user mode, no other memory access functions */
520
#define ldub(p) ldub_raw(p)
521
#define ldsb(p) ldsb_raw(p)
522
#define lduw(p) lduw_raw(p)
523
#define ldsw(p) ldsw_raw(p)
524
#define ldl(p) ldl_raw(p)
525
#define ldq(p) ldq_raw(p)
526
#define ldfl(p) ldfl_raw(p)
527
#define ldfq(p) ldfq_raw(p)
528
#define stb(p, v) stb_raw(p, v)
529
#define stw(p, v) stw_raw(p, v)
530
#define stl(p, v) stl_raw(p, v)
531
#define stq(p, v) stq_raw(p, v)
532
#define stfl(p, v) stfl_raw(p, v)
533
#define stfq(p, v) stfq_raw(p, v)
534

    
535
#define ldub_code(p) ldub_raw(p)
536
#define ldsb_code(p) ldsb_raw(p)
537
#define lduw_code(p) lduw_raw(p)
538
#define ldsw_code(p) ldsw_raw(p)
539
#define ldl_code(p) ldl_raw(p)
540

    
541
#define ldub_kernel(p) ldub_raw(p)
542
#define ldsb_kernel(p) ldsb_raw(p)
543
#define lduw_kernel(p) lduw_raw(p)
544
#define ldsw_kernel(p) ldsw_raw(p)
545
#define ldl_kernel(p) ldl_raw(p)
546
#define ldfl_kernel(p) ldfl_raw(p)
547
#define ldfq_kernel(p) ldfq_raw(p)
548
#define stb_kernel(p, v) stb_raw(p, v)
549
#define stw_kernel(p, v) stw_raw(p, v)
550
#define stl_kernel(p, v) stl_raw(p, v)
551
#define stq_kernel(p, v) stq_raw(p, v)
552
#define stfl_kernel(p, v) stfl_raw(p, v)
553
#define stfq_kernel(p, vt) stfq_raw(p, v)
554

    
555
#endif /* defined(CONFIG_USER_ONLY) */
556

    
557
/* page related stuff */
558

    
559
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
560
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
561
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
562

    
563
extern unsigned long qemu_real_host_page_size;
564
extern unsigned long qemu_host_page_bits;
565
extern unsigned long qemu_host_page_size;
566
extern unsigned long qemu_host_page_mask;
567

    
568
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
569

    
570
/* same as PROT_xxx */
571
#define PAGE_READ      0x0001
572
#define PAGE_WRITE     0x0002
573
#define PAGE_EXEC      0x0004
574
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
575
#define PAGE_VALID     0x0008
576
/* original state of the write flag (used when tracking self-modifying
577
   code */
578
#define PAGE_WRITE_ORG 0x0010 
579

    
580
void page_dump(FILE *f);
581
int page_get_flags(unsigned long address);
582
void page_set_flags(unsigned long start, unsigned long end, int flags);
583
void page_unprotect_range(uint8_t *data, unsigned long data_size);
584

    
585
#define SINGLE_CPU_DEFINES
586
#ifdef SINGLE_CPU_DEFINES
587

    
588
#if defined(TARGET_I386)
589

    
590
#define CPUState CPUX86State
591
#define cpu_init cpu_x86_init
592
#define cpu_exec cpu_x86_exec
593
#define cpu_gen_code cpu_x86_gen_code
594
#define cpu_signal_handler cpu_x86_signal_handler
595

    
596
#elif defined(TARGET_ARM)
597

    
598
#define CPUState CPUARMState
599
#define cpu_init cpu_arm_init
600
#define cpu_exec cpu_arm_exec
601
#define cpu_gen_code cpu_arm_gen_code
602
#define cpu_signal_handler cpu_arm_signal_handler
603

    
604
#elif defined(TARGET_SPARC)
605

    
606
#define CPUState CPUSPARCState
607
#define cpu_init cpu_sparc_init
608
#define cpu_exec cpu_sparc_exec
609
#define cpu_gen_code cpu_sparc_gen_code
610
#define cpu_signal_handler cpu_sparc_signal_handler
611

    
612
#elif defined(TARGET_PPC)
613

    
614
#define CPUState CPUPPCState
615
#define cpu_init cpu_ppc_init
616
#define cpu_exec cpu_ppc_exec
617
#define cpu_gen_code cpu_ppc_gen_code
618
#define cpu_signal_handler cpu_ppc_signal_handler
619

    
620
#else
621

    
622
#error unsupported target CPU
623

    
624
#endif
625

    
626
#endif /* SINGLE_CPU_DEFINES */
627

    
628
void cpu_dump_state(CPUState *env, FILE *f, 
629
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
630
                    int flags);
631

    
632
void cpu_abort(CPUState *env, const char *fmt, ...);
633
extern CPUState *cpu_single_env;
634
extern int code_copy_enabled;
635

    
636
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
637
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
638
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
639
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
640
void cpu_interrupt(CPUState *s, int mask);
641
void cpu_reset_interrupt(CPUState *env, int mask);
642

    
643
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
644
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
645
void cpu_single_step(CPUState *env, int enabled);
646
void cpu_reset(CPUState *s);
647

    
648
/* Return the physical page corresponding to a virtual one. Use it
649
   only for debugging because no protection checks are done. Return -1
650
   if no page found. */
651
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
652

    
653
#define CPU_LOG_TB_OUT_ASM (1 << 0) 
654
#define CPU_LOG_TB_IN_ASM  (1 << 1)
655
#define CPU_LOG_TB_OP      (1 << 2)
656
#define CPU_LOG_TB_OP_OPT  (1 << 3)
657
#define CPU_LOG_INT        (1 << 4)
658
#define CPU_LOG_EXEC       (1 << 5)
659
#define CPU_LOG_PCALL      (1 << 6)
660
#define CPU_LOG_IOPORT     (1 << 7)
661
#define CPU_LOG_TB_CPU     (1 << 8)
662

    
663
/* define log items */
664
typedef struct CPULogItem {
665
    int mask;
666
    const char *name;
667
    const char *help;
668
} CPULogItem;
669

    
670
extern CPULogItem cpu_log_items[];
671

    
672
void cpu_set_log(int log_flags);
673
void cpu_set_log_filename(const char *filename);
674
int cpu_str_to_log_mask(const char *str);
675

    
676
/* IO ports API */
677

    
678
/* NOTE: as these functions may be even used when there is an isa
679
   brige on non x86 targets, we always defined them */
680
#ifndef NO_CPU_IO_DEFS
681
void cpu_outb(CPUState *env, int addr, int val);
682
void cpu_outw(CPUState *env, int addr, int val);
683
void cpu_outl(CPUState *env, int addr, int val);
684
int cpu_inb(CPUState *env, int addr);
685
int cpu_inw(CPUState *env, int addr);
686
int cpu_inl(CPUState *env, int addr);
687
#endif
688

    
689
/* memory API */
690

    
691
extern int phys_ram_size;
692
extern int phys_ram_fd;
693
extern uint8_t *phys_ram_base;
694
extern uint8_t *phys_ram_dirty;
695

    
696
/* physical memory access */
697
#define IO_MEM_NB_ENTRIES  256
698
#define TLB_INVALID_MASK   (1 << 3)
699
#define IO_MEM_SHIFT       4
700

    
701
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
702
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
703
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
704
#define IO_MEM_CODE        (3 << IO_MEM_SHIFT) /* used internally, never use directly */
705
#define IO_MEM_NOTDIRTY    (4 << IO_MEM_SHIFT) /* used internally, never use directly */
706

    
707
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
708
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
709

    
710
void cpu_register_physical_memory(target_phys_addr_t start_addr, 
711
                                  unsigned long size,
712
                                  unsigned long phys_offset);
713
int cpu_register_io_memory(int io_index,
714
                           CPUReadMemoryFunc **mem_read,
715
                           CPUWriteMemoryFunc **mem_write,
716
                           void *opaque);
717
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
718
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
719

    
720
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
721
                            int len, int is_write);
722
static inline void cpu_physical_memory_read(target_phys_addr_t addr, 
723
                                            uint8_t *buf, int len)
724
{
725
    cpu_physical_memory_rw(addr, buf, len, 0);
726
}
727
static inline void cpu_physical_memory_write(target_phys_addr_t addr, 
728
                                             const uint8_t *buf, int len)
729
{
730
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
731
}
732
uint32_t ldl_phys(target_phys_addr_t addr);
733
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
734
void stl_phys(target_phys_addr_t addr, uint32_t val);
735

    
736
int cpu_memory_rw_debug(CPUState *env, target_ulong addr, 
737
                        uint8_t *buf, int len, int is_write);
738

    
739
#define VGA_DIRTY_FLAG 0x01
740

    
741
/* read dirty bit (return 0 or 1) */
742
static inline int cpu_physical_memory_is_dirty(target_ulong addr)
743
{
744
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
745
}
746

    
747
static inline int cpu_physical_memory_get_dirty(target_ulong addr, 
748
                                                int dirty_flags)
749
{
750
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
751
}
752

    
753
static inline void cpu_physical_memory_set_dirty(target_ulong addr)
754
{
755
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
756
}
757

    
758
void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end,
759
                                     int dirty_flags);
760

    
761
void dump_exec_info(FILE *f,
762
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
763

    
764
#endif /* CPU_ALL_H */