Statistics
| Branch: | Revision:

root / exec-all.h @ 43661a95

History | View | Annotate | Download (13.2 kB)

1
/*
2
 * internal execution defines for qemu
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22
#define DEBUG_DISAS
23

    
24
/* is_jmp field values */
25
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29

    
30
typedef struct TranslationBlock TranslationBlock;
31

    
32
/* XXX: make safe guess about sizes */
33
#define MAX_OP_PER_INSTR 64
34
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35
#define MAX_OPC_PARAM 10
36
#define OPC_BUF_SIZE 512
37
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38

    
39
/* Maximum size a TCG op can expand to.  This is complicated because a
40
   single op may require several host instructions and regirster reloads.
41
   For now take a wild guess at 128 bytes, which should allow at least
42
   a couple of fixup instructions per argument.  */
43
#define TCG_MAX_OP_SIZE 128
44

    
45
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46

    
47
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51
extern uint16_t gen_opc_icount[OPC_BUF_SIZE];
52
extern target_ulong gen_opc_jump_pc[2];
53
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
54

    
55
typedef void (GenOpFunc)(void);
56
typedef void (GenOpFunc1)(long);
57
typedef void (GenOpFunc2)(long, long);
58
typedef void (GenOpFunc3)(long, long, long);
59

    
60
extern FILE *logfile;
61
extern int loglevel;
62

    
63
void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
64
void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
65
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
66
                 unsigned long searched_pc, int pc_pos, void *puc);
67

    
68
unsigned long code_gen_max_block_size(void);
69
void cpu_gen_init(void);
70
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
71
                 int *gen_code_size_ptr);
72
int cpu_restore_state(struct TranslationBlock *tb,
73
                      CPUState *env, unsigned long searched_pc,
74
                      void *puc);
75
int cpu_restore_state_copy(struct TranslationBlock *tb,
76
                           CPUState *env, unsigned long searched_pc,
77
                           void *puc);
78
void cpu_resume_from_signal(CPUState *env1, void *puc);
79
void cpu_io_recompile(CPUState *env, void *retaddr);
80
TranslationBlock *tb_gen_code(CPUState *env, 
81
                              target_ulong pc, target_ulong cs_base, int flags,
82
                              int cflags);
83
void cpu_exec_init(CPUState *env);
84
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
85
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
86
                                   int is_cpu_write_access);
87
void tb_invalidate_page_range(target_ulong start, target_ulong end);
88
void tlb_flush_page(CPUState *env, target_ulong addr);
89
void tlb_flush(CPUState *env, int flush_global);
90
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
91
                      target_phys_addr_t paddr, int prot,
92
                      int mmu_idx, int is_softmmu);
93
static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
94
                               target_phys_addr_t paddr, int prot,
95
                               int mmu_idx, int is_softmmu)
96
{
97
    if (prot & PAGE_READ)
98
        prot |= PAGE_EXEC;
99
    return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
100
}
101

    
102
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
103

    
104
#define CODE_GEN_PHYS_HASH_BITS     15
105
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
106

    
107
#define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
108

    
109
/* estimated block size for TB allocation */
110
/* XXX: use a per code average code fragment size and modulate it
111
   according to the host CPU */
112
#if defined(CONFIG_SOFTMMU)
113
#define CODE_GEN_AVG_BLOCK_SIZE 128
114
#else
115
#define CODE_GEN_AVG_BLOCK_SIZE 64
116
#endif
117

    
118
#if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
119
#define USE_DIRECT_JUMP
120
#endif
121
#if defined(__i386__) && !defined(_WIN32)
122
#define USE_DIRECT_JUMP
123
#endif
124

    
125
struct TranslationBlock {
126
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
127
    target_ulong cs_base; /* CS base for this block */
128
    uint64_t flags; /* flags defining in which context the code was generated */
129
    uint16_t size;      /* size of target code for this block (1 <=
130
                           size <= TARGET_PAGE_SIZE) */
131
    uint16_t cflags;    /* compile flags */
132
#define CF_COUNT_MASK  0x7fff
133
#define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
134

    
135
    uint8_t *tc_ptr;    /* pointer to the translated code */
136
    /* next matching tb for physical address. */
137
    struct TranslationBlock *phys_hash_next;
138
    /* first and second physical page containing code. The lower bit
139
       of the pointer tells the index in page_next[] */
140
    struct TranslationBlock *page_next[2];
141
    target_ulong page_addr[2];
142

    
143
    /* the following data are used to directly call another TB from
144
       the code of this one. */
145
    uint16_t tb_next_offset[2]; /* offset of original jump target */
146
#ifdef USE_DIRECT_JUMP
147
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
148
#else
149
    unsigned long tb_next[2]; /* address of jump generated code */
150
#endif
151
    /* list of TBs jumping to this one. This is a circular list using
152
       the two least significant bits of the pointers to tell what is
153
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
154
       jmp_first */
155
    struct TranslationBlock *jmp_next[2];
156
    struct TranslationBlock *jmp_first;
157
    uint32_t icount;
158
};
159

    
160
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
161
{
162
    target_ulong tmp;
163
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
164
    return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
165
}
166

    
167
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
168
{
169
    target_ulong tmp;
170
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
171
    return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
172
            | (tmp & TB_JMP_ADDR_MASK));
173
}
174

    
175
static inline unsigned int tb_phys_hash_func(unsigned long pc)
176
{
177
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
178
}
179

    
180
TranslationBlock *tb_alloc(target_ulong pc);
181
void tb_free(TranslationBlock *tb);
182
void tb_flush(CPUState *env);
183
void tb_link_phys(TranslationBlock *tb,
184
                  target_ulong phys_pc, target_ulong phys_page2);
185
void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr);
186

    
187
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
188
extern uint8_t *code_gen_ptr;
189
extern int code_gen_max_blocks;
190

    
191
#if defined(USE_DIRECT_JUMP)
192

    
193
#if defined(__powerpc__)
194
extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
195
#define tb_set_jmp_target1 ppc_tb_set_jmp_target
196
#elif defined(__i386__) || defined(__x86_64__)
197
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
198
{
199
    /* patch the branch destination */
200
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
201
    /* no need to flush icache explicitly */
202
}
203
#elif defined(__arm__)
204
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
205
{
206
    register unsigned long _beg __asm ("a1");
207
    register unsigned long _end __asm ("a2");
208
    register unsigned long _flg __asm ("a3");
209

    
210
    /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
211
    *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
212

    
213
    /* flush icache */
214
    _beg = jmp_addr;
215
    _end = jmp_addr + 4;
216
    _flg = 0;
217
    __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
218
}
219
#endif
220

    
221
static inline void tb_set_jmp_target(TranslationBlock *tb,
222
                                     int n, unsigned long addr)
223
{
224
    unsigned long offset;
225

    
226
    offset = tb->tb_jmp_offset[n];
227
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
228
    offset = tb->tb_jmp_offset[n + 2];
229
    if (offset != 0xffff)
230
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
231
}
232

    
233
#else
234

    
235
/* set the jump target */
236
static inline void tb_set_jmp_target(TranslationBlock *tb,
237
                                     int n, unsigned long addr)
238
{
239
    tb->tb_next[n] = addr;
240
}
241

    
242
#endif
243

    
244
static inline void tb_add_jump(TranslationBlock *tb, int n,
245
                               TranslationBlock *tb_next)
246
{
247
    /* NOTE: this test is only needed for thread safety */
248
    if (!tb->jmp_next[n]) {
249
        /* patch the native jump address */
250
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
251

    
252
        /* add in TB jmp circular list */
253
        tb->jmp_next[n] = tb_next->jmp_first;
254
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
255
    }
256
}
257

    
258
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
259

    
260
#ifndef offsetof
261
#define offsetof(type, field) ((size_t) &((type *)0)->field)
262
#endif
263

    
264
#if defined(_WIN32)
265
#define ASM_DATA_SECTION ".section \".data\"\n"
266
#define ASM_PREVIOUS_SECTION ".section .text\n"
267
#elif defined(__APPLE__)
268
#define ASM_DATA_SECTION ".data\n"
269
#define ASM_PREVIOUS_SECTION ".text\n"
270
#else
271
#define ASM_DATA_SECTION ".section \".data\"\n"
272
#define ASM_PREVIOUS_SECTION ".previous\n"
273
#endif
274

    
275
#define ASM_OP_LABEL_NAME(n, opname) \
276
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
277

    
278
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
279
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
280
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
281

    
282
#include "qemu-lock.h"
283

    
284
extern spinlock_t tb_lock;
285

    
286
extern int tb_invalidated_flag;
287

    
288
#if !defined(CONFIG_USER_ONLY)
289

    
290
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
291
              void *retaddr);
292

    
293
#define ACCESS_TYPE (NB_MMU_MODES + 1)
294
#define MEMSUFFIX _code
295
#define env cpu_single_env
296

    
297
#define DATA_SIZE 1
298
#include "softmmu_header.h"
299

    
300
#define DATA_SIZE 2
301
#include "softmmu_header.h"
302

    
303
#define DATA_SIZE 4
304
#include "softmmu_header.h"
305

    
306
#define DATA_SIZE 8
307
#include "softmmu_header.h"
308

    
309
#undef ACCESS_TYPE
310
#undef MEMSUFFIX
311
#undef env
312

    
313
#endif
314

    
315
#if defined(CONFIG_USER_ONLY)
316
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
317
{
318
    return addr;
319
}
320
#else
321
/* NOTE: this function can trigger an exception */
322
/* NOTE2: the returned address is not exactly the physical address: it
323
   is the offset relative to phys_ram_base */
324
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
325
{
326
    int mmu_idx, page_index, pd;
327

    
328
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
329
    mmu_idx = cpu_mmu_index(env1);
330
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
331
                 (addr & TARGET_PAGE_MASK))) {
332
        ldub_code(addr);
333
    }
334
    pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
335
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
336
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
337
        do_unassigned_access(addr, 0, 1, 0);
338
#else
339
        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
340
#endif
341
    }
342
    return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
343
}
344

    
345
/* Deterministic execution requires that IO only be performed on the last
346
   instruction of a TB so that interrupts take effect immediately.  */
347
static inline int can_do_io(CPUState *env)
348
{
349
    if (!use_icount)
350
        return 1;
351

    
352
    /* If not executing code then assume we are ok.  */
353
    if (!env->current_tb)
354
        return 1;
355

    
356
    return env->can_do_io != 0;
357
}
358
#endif
359

    
360
#ifdef USE_KQEMU
361
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
362

    
363
#define MSR_QPI_COMMBASE 0xfabe0010
364

    
365
int kqemu_init(CPUState *env);
366
int kqemu_cpu_exec(CPUState *env);
367
void kqemu_flush_page(CPUState *env, target_ulong addr);
368
void kqemu_flush(CPUState *env, int global);
369
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
370
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
371
void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
372
                        ram_addr_t phys_offset);
373
void kqemu_cpu_interrupt(CPUState *env);
374
void kqemu_record_dump(void);
375

    
376
extern uint32_t kqemu_comm_base;
377

    
378
static inline int kqemu_is_ok(CPUState *env)
379
{
380
    return(env->kqemu_enabled &&
381
           (env->cr[0] & CR0_PE_MASK) &&
382
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
383
           (env->eflags & IF_MASK) &&
384
           !(env->eflags & VM_MASK) &&
385
           (env->kqemu_enabled == 2 ||
386
            ((env->hflags & HF_CPL_MASK) == 3 &&
387
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
388
}
389

    
390
#endif