Statistics
| Branch: | Revision:

root / memory.c @ 437de2ad

History | View | Annotate | Download (57.4 kB)

1
/*
2
 * Physical memory management
3
 *
4
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5
 *
6
 * Authors:
7
 *  Avi Kivity <avi@redhat.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2.  See
10
 * the COPYING file in the top-level directory.
11
 *
12
 * Contributions after 2012-01-13 are licensed under the terms of the
13
 * GNU GPL, version 2 or (at your option) any later version.
14
 */
15

    
16
#include "exec/memory.h"
17
#include "exec/address-spaces.h"
18
#include "exec/ioport.h"
19
#include "qemu/bitops.h"
20
#include "qom/object.h"
21
#include "trace.h"
22
#include <assert.h>
23

    
24
#include "exec/memory-internal.h"
25

    
26
//#define DEBUG_UNASSIGNED
27

    
28
static unsigned memory_region_transaction_depth;
29
static bool memory_region_update_pending;
30
static bool global_dirty_log = false;
31

    
32
/* flat_view_mutex is taken around reading as->current_map; the critical
33
 * section is extremely short, so I'm using a single mutex for every AS.
34
 * We could also RCU for the read-side.
35
 *
36
 * The BQL is taken around transaction commits, hence both locks are taken
37
 * while writing to as->current_map (with the BQL taken outside).
38
 */
39
static QemuMutex flat_view_mutex;
40

    
41
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
42
    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
43

    
44
static QTAILQ_HEAD(, AddressSpace) address_spaces
45
    = QTAILQ_HEAD_INITIALIZER(address_spaces);
46

    
47
static void memory_init(void)
48
{
49
    qemu_mutex_init(&flat_view_mutex);
50
}
51

    
52
typedef struct AddrRange AddrRange;
53

    
54
/*
55
 * Note using signed integers limits us to physical addresses at most
56
 * 63 bits wide.  They are needed for negative offsetting in aliases
57
 * (large MemoryRegion::alias_offset).
58
 */
59
struct AddrRange {
60
    Int128 start;
61
    Int128 size;
62
};
63

    
64
static AddrRange addrrange_make(Int128 start, Int128 size)
65
{
66
    return (AddrRange) { start, size };
67
}
68

    
69
static bool addrrange_equal(AddrRange r1, AddrRange r2)
70
{
71
    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72
}
73

    
74
static Int128 addrrange_end(AddrRange r)
75
{
76
    return int128_add(r.start, r.size);
77
}
78

    
79
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80
{
81
    int128_addto(&range.start, delta);
82
    return range;
83
}
84

    
85
static bool addrrange_contains(AddrRange range, Int128 addr)
86
{
87
    return int128_ge(addr, range.start)
88
        && int128_lt(addr, addrrange_end(range));
89
}
90

    
91
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92
{
93
    return addrrange_contains(r1, r2.start)
94
        || addrrange_contains(r2, r1.start);
95
}
96

    
97
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98
{
99
    Int128 start = int128_max(r1.start, r2.start);
100
    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101
    return addrrange_make(start, int128_sub(end, start));
102
}
103

    
104
enum ListenerDirection { Forward, Reverse };
105

    
106
static bool memory_listener_match(MemoryListener *listener,
107
                                  MemoryRegionSection *section)
108
{
109
    return !listener->address_space_filter
110
        || listener->address_space_filter == section->address_space;
111
}
112

    
113
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
114
    do {                                                                \
115
        MemoryListener *_listener;                                      \
116
                                                                        \
117
        switch (_direction) {                                           \
118
        case Forward:                                                   \
119
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
120
                if (_listener->_callback) {                             \
121
                    _listener->_callback(_listener, ##_args);           \
122
                }                                                       \
123
            }                                                           \
124
            break;                                                      \
125
        case Reverse:                                                   \
126
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
127
                                   memory_listeners, link) {            \
128
                if (_listener->_callback) {                             \
129
                    _listener->_callback(_listener, ##_args);           \
130
                }                                                       \
131
            }                                                           \
132
            break;                                                      \
133
        default:                                                        \
134
            abort();                                                    \
135
        }                                                               \
136
    } while (0)
137

    
138
#define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
139
    do {                                                                \
140
        MemoryListener *_listener;                                      \
141
                                                                        \
142
        switch (_direction) {                                           \
143
        case Forward:                                                   \
144
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
145
                if (_listener->_callback                                \
146
                    && memory_listener_match(_listener, _section)) {    \
147
                    _listener->_callback(_listener, _section, ##_args); \
148
                }                                                       \
149
            }                                                           \
150
            break;                                                      \
151
        case Reverse:                                                   \
152
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
153
                                   memory_listeners, link) {            \
154
                if (_listener->_callback                                \
155
                    && memory_listener_match(_listener, _section)) {    \
156
                    _listener->_callback(_listener, _section, ##_args); \
157
                }                                                       \
158
            }                                                           \
159
            break;                                                      \
160
        default:                                                        \
161
            abort();                                                    \
162
        }                                                               \
163
    } while (0)
164

    
165
/* No need to ref/unref .mr, the FlatRange keeps it alive.  */
166
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
167
    MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
168
        .mr = (fr)->mr,                                                 \
169
        .address_space = (as),                                          \
170
        .offset_within_region = (fr)->offset_in_region,                 \
171
        .size = (fr)->addr.size,                                        \
172
        .offset_within_address_space = int128_get64((fr)->addr.start),  \
173
        .readonly = (fr)->readonly,                                     \
174
              }))
175

    
176
struct CoalescedMemoryRange {
177
    AddrRange addr;
178
    QTAILQ_ENTRY(CoalescedMemoryRange) link;
179
};
180

    
181
struct MemoryRegionIoeventfd {
182
    AddrRange addr;
183
    bool match_data;
184
    uint64_t data;
185
    EventNotifier *e;
186
};
187

    
188
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
189
                                           MemoryRegionIoeventfd b)
190
{
191
    if (int128_lt(a.addr.start, b.addr.start)) {
192
        return true;
193
    } else if (int128_gt(a.addr.start, b.addr.start)) {
194
        return false;
195
    } else if (int128_lt(a.addr.size, b.addr.size)) {
196
        return true;
197
    } else if (int128_gt(a.addr.size, b.addr.size)) {
198
        return false;
199
    } else if (a.match_data < b.match_data) {
200
        return true;
201
    } else  if (a.match_data > b.match_data) {
202
        return false;
203
    } else if (a.match_data) {
204
        if (a.data < b.data) {
205
            return true;
206
        } else if (a.data > b.data) {
207
            return false;
208
        }
209
    }
210
    if (a.e < b.e) {
211
        return true;
212
    } else if (a.e > b.e) {
213
        return false;
214
    }
215
    return false;
216
}
217

    
218
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
219
                                          MemoryRegionIoeventfd b)
220
{
221
    return !memory_region_ioeventfd_before(a, b)
222
        && !memory_region_ioeventfd_before(b, a);
223
}
224

    
225
typedef struct FlatRange FlatRange;
226
typedef struct FlatView FlatView;
227

    
228
/* Range of memory in the global map.  Addresses are absolute. */
229
struct FlatRange {
230
    MemoryRegion *mr;
231
    hwaddr offset_in_region;
232
    AddrRange addr;
233
    uint8_t dirty_log_mask;
234
    bool romd_mode;
235
    bool readonly;
236
};
237

    
238
/* Flattened global view of current active memory hierarchy.  Kept in sorted
239
 * order.
240
 */
241
struct FlatView {
242
    unsigned ref;
243
    FlatRange *ranges;
244
    unsigned nr;
245
    unsigned nr_allocated;
246
};
247

    
248
typedef struct AddressSpaceOps AddressSpaceOps;
249

    
250
#define FOR_EACH_FLAT_RANGE(var, view)          \
251
    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
252

    
253
static bool flatrange_equal(FlatRange *a, FlatRange *b)
254
{
255
    return a->mr == b->mr
256
        && addrrange_equal(a->addr, b->addr)
257
        && a->offset_in_region == b->offset_in_region
258
        && a->romd_mode == b->romd_mode
259
        && a->readonly == b->readonly;
260
}
261

    
262
static void flatview_init(FlatView *view)
263
{
264
    view->ref = 1;
265
    view->ranges = NULL;
266
    view->nr = 0;
267
    view->nr_allocated = 0;
268
}
269

    
270
/* Insert a range into a given position.  Caller is responsible for maintaining
271
 * sorting order.
272
 */
273
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
274
{
275
    if (view->nr == view->nr_allocated) {
276
        view->nr_allocated = MAX(2 * view->nr, 10);
277
        view->ranges = g_realloc(view->ranges,
278
                                    view->nr_allocated * sizeof(*view->ranges));
279
    }
280
    memmove(view->ranges + pos + 1, view->ranges + pos,
281
            (view->nr - pos) * sizeof(FlatRange));
282
    view->ranges[pos] = *range;
283
    memory_region_ref(range->mr);
284
    ++view->nr;
285
}
286

    
287
static void flatview_destroy(FlatView *view)
288
{
289
    int i;
290

    
291
    for (i = 0; i < view->nr; i++) {
292
        memory_region_unref(view->ranges[i].mr);
293
    }
294
    g_free(view->ranges);
295
    g_free(view);
296
}
297

    
298
static void flatview_ref(FlatView *view)
299
{
300
    atomic_inc(&view->ref);
301
}
302

    
303
static void flatview_unref(FlatView *view)
304
{
305
    if (atomic_fetch_dec(&view->ref) == 1) {
306
        flatview_destroy(view);
307
    }
308
}
309

    
310
static bool can_merge(FlatRange *r1, FlatRange *r2)
311
{
312
    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
313
        && r1->mr == r2->mr
314
        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
315
                                r1->addr.size),
316
                     int128_make64(r2->offset_in_region))
317
        && r1->dirty_log_mask == r2->dirty_log_mask
318
        && r1->romd_mode == r2->romd_mode
319
        && r1->readonly == r2->readonly;
320
}
321

    
322
/* Attempt to simplify a view by merging adjacent ranges */
323
static void flatview_simplify(FlatView *view)
324
{
325
    unsigned i, j;
326

    
327
    i = 0;
328
    while (i < view->nr) {
329
        j = i + 1;
330
        while (j < view->nr
331
               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332
            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333
            ++j;
334
        }
335
        ++i;
336
        memmove(&view->ranges[i], &view->ranges[j],
337
                (view->nr - j) * sizeof(view->ranges[j]));
338
        view->nr -= j - i;
339
    }
340
}
341

    
342
static bool memory_region_big_endian(MemoryRegion *mr)
343
{
344
#ifdef TARGET_WORDS_BIGENDIAN
345
    return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
346
#else
347
    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
348
#endif
349
}
350

    
351
static bool memory_region_wrong_endianness(MemoryRegion *mr)
352
{
353
#ifdef TARGET_WORDS_BIGENDIAN
354
    return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
355
#else
356
    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
357
#endif
358
}
359

    
360
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
361
{
362
    if (memory_region_wrong_endianness(mr)) {
363
        switch (size) {
364
        case 1:
365
            break;
366
        case 2:
367
            *data = bswap16(*data);
368
            break;
369
        case 4:
370
            *data = bswap32(*data);
371
            break;
372
        case 8:
373
            *data = bswap64(*data);
374
            break;
375
        default:
376
            abort();
377
        }
378
    }
379
}
380

    
381
static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
382
                                                hwaddr addr,
383
                                                uint64_t *value,
384
                                                unsigned size,
385
                                                unsigned shift,
386
                                                uint64_t mask)
387
{
388
    uint64_t tmp;
389

    
390
    tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
391
    trace_memory_region_ops_read(mr, addr, tmp, size);
392
    *value |= (tmp & mask) << shift;
393
}
394

    
395
static void memory_region_read_accessor(MemoryRegion *mr,
396
                                        hwaddr addr,
397
                                        uint64_t *value,
398
                                        unsigned size,
399
                                        unsigned shift,
400
                                        uint64_t mask)
401
{
402
    uint64_t tmp;
403

    
404
    if (mr->flush_coalesced_mmio) {
405
        qemu_flush_coalesced_mmio_buffer();
406
    }
407
    tmp = mr->ops->read(mr->opaque, addr, size);
408
    trace_memory_region_ops_read(mr, addr, tmp, size);
409
    *value |= (tmp & mask) << shift;
410
}
411

    
412
static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
413
                                                 hwaddr addr,
414
                                                 uint64_t *value,
415
                                                 unsigned size,
416
                                                 unsigned shift,
417
                                                 uint64_t mask)
418
{
419
    uint64_t tmp;
420

    
421
    tmp = (*value >> shift) & mask;
422
    trace_memory_region_ops_write(mr, addr, tmp, size);
423
    mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
424
}
425

    
426
static void memory_region_write_accessor(MemoryRegion *mr,
427
                                         hwaddr addr,
428
                                         uint64_t *value,
429
                                         unsigned size,
430
                                         unsigned shift,
431
                                         uint64_t mask)
432
{
433
    uint64_t tmp;
434

    
435
    if (mr->flush_coalesced_mmio) {
436
        qemu_flush_coalesced_mmio_buffer();
437
    }
438
    tmp = (*value >> shift) & mask;
439
    trace_memory_region_ops_write(mr, addr, tmp, size);
440
    mr->ops->write(mr->opaque, addr, tmp, size);
441
}
442

    
443
static void access_with_adjusted_size(hwaddr addr,
444
                                      uint64_t *value,
445
                                      unsigned size,
446
                                      unsigned access_size_min,
447
                                      unsigned access_size_max,
448
                                      void (*access)(MemoryRegion *mr,
449
                                                     hwaddr addr,
450
                                                     uint64_t *value,
451
                                                     unsigned size,
452
                                                     unsigned shift,
453
                                                     uint64_t mask),
454
                                      MemoryRegion *mr)
455
{
456
    uint64_t access_mask;
457
    unsigned access_size;
458
    unsigned i;
459

    
460
    if (!access_size_min) {
461
        access_size_min = 1;
462
    }
463
    if (!access_size_max) {
464
        access_size_max = 4;
465
    }
466

    
467
    /* FIXME: support unaligned access? */
468
    access_size = MAX(MIN(size, access_size_max), access_size_min);
469
    access_mask = -1ULL >> (64 - access_size * 8);
470
    if (memory_region_big_endian(mr)) {
471
        for (i = 0; i < size; i += access_size) {
472
            access(mr, addr + i, value, access_size,
473
                   (size - access_size - i) * 8, access_mask);
474
        }
475
    } else {
476
        for (i = 0; i < size; i += access_size) {
477
            access(mr, addr + i, value, access_size, i * 8, access_mask);
478
        }
479
    }
480
}
481

    
482
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
483
{
484
    AddressSpace *as;
485

    
486
    while (mr->parent) {
487
        mr = mr->parent;
488
    }
489
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
490
        if (mr == as->root) {
491
            return as;
492
        }
493
    }
494
    abort();
495
}
496

    
497
/* Render a memory region into the global view.  Ranges in @view obscure
498
 * ranges in @mr.
499
 */
500
static void render_memory_region(FlatView *view,
501
                                 MemoryRegion *mr,
502
                                 Int128 base,
503
                                 AddrRange clip,
504
                                 bool readonly)
505
{
506
    MemoryRegion *subregion;
507
    unsigned i;
508
    hwaddr offset_in_region;
509
    Int128 remain;
510
    Int128 now;
511
    FlatRange fr;
512
    AddrRange tmp;
513

    
514
    if (!mr->enabled) {
515
        return;
516
    }
517

    
518
    int128_addto(&base, int128_make64(mr->addr));
519
    readonly |= mr->readonly;
520

    
521
    tmp = addrrange_make(base, mr->size);
522

    
523
    if (!addrrange_intersects(tmp, clip)) {
524
        return;
525
    }
526

    
527
    clip = addrrange_intersection(tmp, clip);
528

    
529
    if (mr->alias) {
530
        int128_subfrom(&base, int128_make64(mr->alias->addr));
531
        int128_subfrom(&base, int128_make64(mr->alias_offset));
532
        render_memory_region(view, mr->alias, base, clip, readonly);
533
        return;
534
    }
535

    
536
    /* Render subregions in priority order. */
537
    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
538
        render_memory_region(view, subregion, base, clip, readonly);
539
    }
540

    
541
    if (!mr->terminates) {
542
        return;
543
    }
544

    
545
    offset_in_region = int128_get64(int128_sub(clip.start, base));
546
    base = clip.start;
547
    remain = clip.size;
548

    
549
    fr.mr = mr;
550
    fr.dirty_log_mask = mr->dirty_log_mask;
551
    fr.romd_mode = mr->romd_mode;
552
    fr.readonly = readonly;
553

    
554
    /* Render the region itself into any gaps left by the current view. */
555
    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
556
        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
557
            continue;
558
        }
559
        if (int128_lt(base, view->ranges[i].addr.start)) {
560
            now = int128_min(remain,
561
                             int128_sub(view->ranges[i].addr.start, base));
562
            fr.offset_in_region = offset_in_region;
563
            fr.addr = addrrange_make(base, now);
564
            flatview_insert(view, i, &fr);
565
            ++i;
566
            int128_addto(&base, now);
567
            offset_in_region += int128_get64(now);
568
            int128_subfrom(&remain, now);
569
        }
570
        now = int128_sub(int128_min(int128_add(base, remain),
571
                                    addrrange_end(view->ranges[i].addr)),
572
                         base);
573
        int128_addto(&base, now);
574
        offset_in_region += int128_get64(now);
575
        int128_subfrom(&remain, now);
576
    }
577
    if (int128_nz(remain)) {
578
        fr.offset_in_region = offset_in_region;
579
        fr.addr = addrrange_make(base, remain);
580
        flatview_insert(view, i, &fr);
581
    }
582
}
583

    
584
/* Render a memory topology into a list of disjoint absolute ranges. */
585
static FlatView *generate_memory_topology(MemoryRegion *mr)
586
{
587
    FlatView *view;
588

    
589
    view = g_new(FlatView, 1);
590
    flatview_init(view);
591

    
592
    if (mr) {
593
        render_memory_region(view, mr, int128_zero(),
594
                             addrrange_make(int128_zero(), int128_2_64()), false);
595
    }
596
    flatview_simplify(view);
597

    
598
    return view;
599
}
600

    
601
static void address_space_add_del_ioeventfds(AddressSpace *as,
602
                                             MemoryRegionIoeventfd *fds_new,
603
                                             unsigned fds_new_nb,
604
                                             MemoryRegionIoeventfd *fds_old,
605
                                             unsigned fds_old_nb)
606
{
607
    unsigned iold, inew;
608
    MemoryRegionIoeventfd *fd;
609
    MemoryRegionSection section;
610

    
611
    /* Generate a symmetric difference of the old and new fd sets, adding
612
     * and deleting as necessary.
613
     */
614

    
615
    iold = inew = 0;
616
    while (iold < fds_old_nb || inew < fds_new_nb) {
617
        if (iold < fds_old_nb
618
            && (inew == fds_new_nb
619
                || memory_region_ioeventfd_before(fds_old[iold],
620
                                                  fds_new[inew]))) {
621
            fd = &fds_old[iold];
622
            section = (MemoryRegionSection) {
623
                .address_space = as,
624
                .offset_within_address_space = int128_get64(fd->addr.start),
625
                .size = fd->addr.size,
626
            };
627
            MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
628
                                 fd->match_data, fd->data, fd->e);
629
            ++iold;
630
        } else if (inew < fds_new_nb
631
                   && (iold == fds_old_nb
632
                       || memory_region_ioeventfd_before(fds_new[inew],
633
                                                         fds_old[iold]))) {
634
            fd = &fds_new[inew];
635
            section = (MemoryRegionSection) {
636
                .address_space = as,
637
                .offset_within_address_space = int128_get64(fd->addr.start),
638
                .size = fd->addr.size,
639
            };
640
            MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
641
                                 fd->match_data, fd->data, fd->e);
642
            ++inew;
643
        } else {
644
            ++iold;
645
            ++inew;
646
        }
647
    }
648
}
649

    
650
static FlatView *address_space_get_flatview(AddressSpace *as)
651
{
652
    FlatView *view;
653

    
654
    qemu_mutex_lock(&flat_view_mutex);
655
    view = as->current_map;
656
    flatview_ref(view);
657
    qemu_mutex_unlock(&flat_view_mutex);
658
    return view;
659
}
660

    
661
static void address_space_update_ioeventfds(AddressSpace *as)
662
{
663
    FlatView *view;
664
    FlatRange *fr;
665
    unsigned ioeventfd_nb = 0;
666
    MemoryRegionIoeventfd *ioeventfds = NULL;
667
    AddrRange tmp;
668
    unsigned i;
669

    
670
    view = address_space_get_flatview(as);
671
    FOR_EACH_FLAT_RANGE(fr, view) {
672
        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
673
            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
674
                                  int128_sub(fr->addr.start,
675
                                             int128_make64(fr->offset_in_region)));
676
            if (addrrange_intersects(fr->addr, tmp)) {
677
                ++ioeventfd_nb;
678
                ioeventfds = g_realloc(ioeventfds,
679
                                          ioeventfd_nb * sizeof(*ioeventfds));
680
                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
681
                ioeventfds[ioeventfd_nb-1].addr = tmp;
682
            }
683
        }
684
    }
685

    
686
    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
687
                                     as->ioeventfds, as->ioeventfd_nb);
688

    
689
    g_free(as->ioeventfds);
690
    as->ioeventfds = ioeventfds;
691
    as->ioeventfd_nb = ioeventfd_nb;
692
    flatview_unref(view);
693
}
694

    
695
static void address_space_update_topology_pass(AddressSpace *as,
696
                                               const FlatView *old_view,
697
                                               const FlatView *new_view,
698
                                               bool adding)
699
{
700
    unsigned iold, inew;
701
    FlatRange *frold, *frnew;
702

    
703
    /* Generate a symmetric difference of the old and new memory maps.
704
     * Kill ranges in the old map, and instantiate ranges in the new map.
705
     */
706
    iold = inew = 0;
707
    while (iold < old_view->nr || inew < new_view->nr) {
708
        if (iold < old_view->nr) {
709
            frold = &old_view->ranges[iold];
710
        } else {
711
            frold = NULL;
712
        }
713
        if (inew < new_view->nr) {
714
            frnew = &new_view->ranges[inew];
715
        } else {
716
            frnew = NULL;
717
        }
718

    
719
        if (frold
720
            && (!frnew
721
                || int128_lt(frold->addr.start, frnew->addr.start)
722
                || (int128_eq(frold->addr.start, frnew->addr.start)
723
                    && !flatrange_equal(frold, frnew)))) {
724
            /* In old but not in new, or in both but attributes changed. */
725

    
726
            if (!adding) {
727
                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
728
            }
729

    
730
            ++iold;
731
        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
732
            /* In both and unchanged (except logging may have changed) */
733

    
734
            if (adding) {
735
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
736
                if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
737
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
738
                } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
739
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
740
                }
741
            }
742

    
743
            ++iold;
744
            ++inew;
745
        } else {
746
            /* In new */
747

    
748
            if (adding) {
749
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
750
            }
751

    
752
            ++inew;
753
        }
754
    }
755
}
756

    
757

    
758
static void address_space_update_topology(AddressSpace *as)
759
{
760
    FlatView *old_view = address_space_get_flatview(as);
761
    FlatView *new_view = generate_memory_topology(as->root);
762

    
763
    address_space_update_topology_pass(as, old_view, new_view, false);
764
    address_space_update_topology_pass(as, old_view, new_view, true);
765

    
766
    qemu_mutex_lock(&flat_view_mutex);
767
    flatview_unref(as->current_map);
768
    as->current_map = new_view;
769
    qemu_mutex_unlock(&flat_view_mutex);
770

    
771
    /* Note that all the old MemoryRegions are still alive up to this
772
     * point.  This relieves most MemoryListeners from the need to
773
     * ref/unref the MemoryRegions they get---unless they use them
774
     * outside the iothread mutex, in which case precise reference
775
     * counting is necessary.
776
     */
777
    flatview_unref(old_view);
778

    
779
    address_space_update_ioeventfds(as);
780
}
781

    
782
void memory_region_transaction_begin(void)
783
{
784
    qemu_flush_coalesced_mmio_buffer();
785
    ++memory_region_transaction_depth;
786
}
787

    
788
void memory_region_transaction_commit(void)
789
{
790
    AddressSpace *as;
791

    
792
    assert(memory_region_transaction_depth);
793
    --memory_region_transaction_depth;
794
    if (!memory_region_transaction_depth && memory_region_update_pending) {
795
        memory_region_update_pending = false;
796
        MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
797

    
798
        QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
799
            address_space_update_topology(as);
800
        }
801

    
802
        MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
803
    }
804
}
805

    
806
static void memory_region_destructor_none(MemoryRegion *mr)
807
{
808
}
809

    
810
static void memory_region_destructor_ram(MemoryRegion *mr)
811
{
812
    qemu_ram_free(mr->ram_addr);
813
}
814

    
815
static void memory_region_destructor_alias(MemoryRegion *mr)
816
{
817
    memory_region_unref(mr->alias);
818
}
819

    
820
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
821
{
822
    qemu_ram_free_from_ptr(mr->ram_addr);
823
}
824

    
825
static void memory_region_destructor_rom_device(MemoryRegion *mr)
826
{
827
    qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
828
}
829

    
830
void memory_region_init(MemoryRegion *mr,
831
                        Object *owner,
832
                        const char *name,
833
                        uint64_t size)
834
{
835
    mr->ops = &unassigned_mem_ops;
836
    mr->opaque = NULL;
837
    mr->owner = owner;
838
    mr->iommu_ops = NULL;
839
    mr->parent = NULL;
840
    mr->size = int128_make64(size);
841
    if (size == UINT64_MAX) {
842
        mr->size = int128_2_64();
843
    }
844
    mr->addr = 0;
845
    mr->subpage = false;
846
    mr->enabled = true;
847
    mr->terminates = false;
848
    mr->ram = false;
849
    mr->romd_mode = true;
850
    mr->readonly = false;
851
    mr->rom_device = false;
852
    mr->destructor = memory_region_destructor_none;
853
    mr->priority = 0;
854
    mr->may_overlap = false;
855
    mr->alias = NULL;
856
    QTAILQ_INIT(&mr->subregions);
857
    memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
858
    QTAILQ_INIT(&mr->coalesced);
859
    mr->name = g_strdup(name);
860
    mr->dirty_log_mask = 0;
861
    mr->ioeventfd_nb = 0;
862
    mr->ioeventfds = NULL;
863
    mr->flush_coalesced_mmio = false;
864
}
865

    
866
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
867
                                    unsigned size)
868
{
869
#ifdef DEBUG_UNASSIGNED
870
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
871
#endif
872
    if (current_cpu != NULL) {
873
        cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
874
    }
875
    return -1ULL;
876
}
877

    
878
static void unassigned_mem_write(void *opaque, hwaddr addr,
879
                                 uint64_t val, unsigned size)
880
{
881
#ifdef DEBUG_UNASSIGNED
882
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
883
#endif
884
    if (current_cpu != NULL) {
885
        cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
886
    }
887
}
888

    
889
static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
890
                                   unsigned size, bool is_write)
891
{
892
    return false;
893
}
894

    
895
const MemoryRegionOps unassigned_mem_ops = {
896
    .valid.accepts = unassigned_mem_accepts,
897
    .endianness = DEVICE_NATIVE_ENDIAN,
898
};
899

    
900
bool memory_region_access_valid(MemoryRegion *mr,
901
                                hwaddr addr,
902
                                unsigned size,
903
                                bool is_write)
904
{
905
    int access_size_min, access_size_max;
906
    int access_size, i;
907

    
908
    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
909
        return false;
910
    }
911

    
912
    if (!mr->ops->valid.accepts) {
913
        return true;
914
    }
915

    
916
    access_size_min = mr->ops->valid.min_access_size;
917
    if (!mr->ops->valid.min_access_size) {
918
        access_size_min = 1;
919
    }
920

    
921
    access_size_max = mr->ops->valid.max_access_size;
922
    if (!mr->ops->valid.max_access_size) {
923
        access_size_max = 4;
924
    }
925

    
926
    access_size = MAX(MIN(size, access_size_max), access_size_min);
927
    for (i = 0; i < size; i += access_size) {
928
        if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
929
                                    is_write)) {
930
            return false;
931
        }
932
    }
933

    
934
    return true;
935
}
936

    
937
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
938
                                             hwaddr addr,
939
                                             unsigned size)
940
{
941
    uint64_t data = 0;
942

    
943
    if (mr->ops->read) {
944
        access_with_adjusted_size(addr, &data, size,
945
                                  mr->ops->impl.min_access_size,
946
                                  mr->ops->impl.max_access_size,
947
                                  memory_region_read_accessor, mr);
948
    } else {
949
        access_with_adjusted_size(addr, &data, size, 1, 4,
950
                                  memory_region_oldmmio_read_accessor, mr);
951
    }
952

    
953
    return data;
954
}
955

    
956
static bool memory_region_dispatch_read(MemoryRegion *mr,
957
                                        hwaddr addr,
958
                                        uint64_t *pval,
959
                                        unsigned size)
960
{
961
    if (!memory_region_access_valid(mr, addr, size, false)) {
962
        *pval = unassigned_mem_read(mr, addr, size);
963
        return true;
964
    }
965

    
966
    *pval = memory_region_dispatch_read1(mr, addr, size);
967
    adjust_endianness(mr, pval, size);
968
    return false;
969
}
970

    
971
static bool memory_region_dispatch_write(MemoryRegion *mr,
972
                                         hwaddr addr,
973
                                         uint64_t data,
974
                                         unsigned size)
975
{
976
    if (!memory_region_access_valid(mr, addr, size, true)) {
977
        unassigned_mem_write(mr, addr, data, size);
978
        return true;
979
    }
980

    
981
    adjust_endianness(mr, &data, size);
982

    
983
    if (mr->ops->write) {
984
        access_with_adjusted_size(addr, &data, size,
985
                                  mr->ops->impl.min_access_size,
986
                                  mr->ops->impl.max_access_size,
987
                                  memory_region_write_accessor, mr);
988
    } else {
989
        access_with_adjusted_size(addr, &data, size, 1, 4,
990
                                  memory_region_oldmmio_write_accessor, mr);
991
    }
992
    return false;
993
}
994

    
995
void memory_region_init_io(MemoryRegion *mr,
996
                           Object *owner,
997
                           const MemoryRegionOps *ops,
998
                           void *opaque,
999
                           const char *name,
1000
                           uint64_t size)
1001
{
1002
    memory_region_init(mr, owner, name, size);
1003
    mr->ops = ops;
1004
    mr->opaque = opaque;
1005
    mr->terminates = true;
1006
    mr->ram_addr = ~(ram_addr_t)0;
1007
}
1008

    
1009
void memory_region_init_ram(MemoryRegion *mr,
1010
                            Object *owner,
1011
                            const char *name,
1012
                            uint64_t size)
1013
{
1014
    memory_region_init(mr, owner, name, size);
1015
    mr->ram = true;
1016
    mr->terminates = true;
1017
    mr->destructor = memory_region_destructor_ram;
1018
    mr->ram_addr = qemu_ram_alloc(size, mr);
1019
}
1020

    
1021
void memory_region_init_ram_ptr(MemoryRegion *mr,
1022
                                Object *owner,
1023
                                const char *name,
1024
                                uint64_t size,
1025
                                void *ptr)
1026
{
1027
    memory_region_init(mr, owner, name, size);
1028
    mr->ram = true;
1029
    mr->terminates = true;
1030
    mr->destructor = memory_region_destructor_ram_from_ptr;
1031
    mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1032
}
1033

    
1034
void memory_region_init_alias(MemoryRegion *mr,
1035
                              Object *owner,
1036
                              const char *name,
1037
                              MemoryRegion *orig,
1038
                              hwaddr offset,
1039
                              uint64_t size)
1040
{
1041
    memory_region_init(mr, owner, name, size);
1042
    memory_region_ref(orig);
1043
    mr->destructor = memory_region_destructor_alias;
1044
    mr->alias = orig;
1045
    mr->alias_offset = offset;
1046
}
1047

    
1048
void memory_region_init_rom_device(MemoryRegion *mr,
1049
                                   Object *owner,
1050
                                   const MemoryRegionOps *ops,
1051
                                   void *opaque,
1052
                                   const char *name,
1053
                                   uint64_t size)
1054
{
1055
    memory_region_init(mr, owner, name, size);
1056
    mr->ops = ops;
1057
    mr->opaque = opaque;
1058
    mr->terminates = true;
1059
    mr->rom_device = true;
1060
    mr->destructor = memory_region_destructor_rom_device;
1061
    mr->ram_addr = qemu_ram_alloc(size, mr);
1062
}
1063

    
1064
void memory_region_init_iommu(MemoryRegion *mr,
1065
                              Object *owner,
1066
                              const MemoryRegionIOMMUOps *ops,
1067
                              const char *name,
1068
                              uint64_t size)
1069
{
1070
    memory_region_init(mr, owner, name, size);
1071
    mr->iommu_ops = ops,
1072
    mr->terminates = true;  /* then re-forwards */
1073
    notifier_list_init(&mr->iommu_notify);
1074
}
1075

    
1076
void memory_region_init_reservation(MemoryRegion *mr,
1077
                                    Object *owner,
1078
                                    const char *name,
1079
                                    uint64_t size)
1080
{
1081
    memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1082
}
1083

    
1084
void memory_region_destroy(MemoryRegion *mr)
1085
{
1086
    assert(QTAILQ_EMPTY(&mr->subregions));
1087
    assert(memory_region_transaction_depth == 0);
1088
    mr->destructor(mr);
1089
    memory_region_clear_coalescing(mr);
1090
    g_free((char *)mr->name);
1091
    g_free(mr->ioeventfds);
1092
}
1093

    
1094
Object *memory_region_owner(MemoryRegion *mr)
1095
{
1096
    return mr->owner;
1097
}
1098

    
1099
void memory_region_ref(MemoryRegion *mr)
1100
{
1101
    if (mr && mr->owner) {
1102
        object_ref(mr->owner);
1103
    }
1104
}
1105

    
1106
void memory_region_unref(MemoryRegion *mr)
1107
{
1108
    if (mr && mr->owner) {
1109
        object_unref(mr->owner);
1110
    }
1111
}
1112

    
1113
uint64_t memory_region_size(MemoryRegion *mr)
1114
{
1115
    if (int128_eq(mr->size, int128_2_64())) {
1116
        return UINT64_MAX;
1117
    }
1118
    return int128_get64(mr->size);
1119
}
1120

    
1121
const char *memory_region_name(MemoryRegion *mr)
1122
{
1123
    return mr->name;
1124
}
1125

    
1126
bool memory_region_is_ram(MemoryRegion *mr)
1127
{
1128
    return mr->ram;
1129
}
1130

    
1131
bool memory_region_is_logging(MemoryRegion *mr)
1132
{
1133
    return mr->dirty_log_mask;
1134
}
1135

    
1136
bool memory_region_is_rom(MemoryRegion *mr)
1137
{
1138
    return mr->ram && mr->readonly;
1139
}
1140

    
1141
bool memory_region_is_iommu(MemoryRegion *mr)
1142
{
1143
    return mr->iommu_ops;
1144
}
1145

    
1146
void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1147
{
1148
    notifier_list_add(&mr->iommu_notify, n);
1149
}
1150

    
1151
void memory_region_unregister_iommu_notifier(Notifier *n)
1152
{
1153
    notifier_remove(n);
1154
}
1155

    
1156
void memory_region_notify_iommu(MemoryRegion *mr,
1157
                                IOMMUTLBEntry entry)
1158
{
1159
    assert(memory_region_is_iommu(mr));
1160
    notifier_list_notify(&mr->iommu_notify, &entry);
1161
}
1162

    
1163
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1164
{
1165
    uint8_t mask = 1 << client;
1166

    
1167
    memory_region_transaction_begin();
1168
    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1169
    memory_region_update_pending |= mr->enabled;
1170
    memory_region_transaction_commit();
1171
}
1172

    
1173
bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1174
                             hwaddr size, unsigned client)
1175
{
1176
    assert(mr->terminates);
1177
    return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1178
                                         1 << client);
1179
}
1180

    
1181
void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1182
                             hwaddr size)
1183
{
1184
    assert(mr->terminates);
1185
    return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1186
}
1187

    
1188
bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1189
                                        hwaddr size, unsigned client)
1190
{
1191
    bool ret;
1192
    assert(mr->terminates);
1193
    ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1194
                                        1 << client);
1195
    if (ret) {
1196
        cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1197
                                        mr->ram_addr + addr + size,
1198
                                        1 << client);
1199
    }
1200
    return ret;
1201
}
1202

    
1203

    
1204
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1205
{
1206
    AddressSpace *as;
1207
    FlatRange *fr;
1208

    
1209
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1210
        FlatView *view = address_space_get_flatview(as);
1211
        FOR_EACH_FLAT_RANGE(fr, view) {
1212
            if (fr->mr == mr) {
1213
                MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1214
            }
1215
        }
1216
        flatview_unref(view);
1217
    }
1218
}
1219

    
1220
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1221
{
1222
    if (mr->readonly != readonly) {
1223
        memory_region_transaction_begin();
1224
        mr->readonly = readonly;
1225
        memory_region_update_pending |= mr->enabled;
1226
        memory_region_transaction_commit();
1227
    }
1228
}
1229

    
1230
void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1231
{
1232
    if (mr->romd_mode != romd_mode) {
1233
        memory_region_transaction_begin();
1234
        mr->romd_mode = romd_mode;
1235
        memory_region_update_pending |= mr->enabled;
1236
        memory_region_transaction_commit();
1237
    }
1238
}
1239

    
1240
void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1241
                               hwaddr size, unsigned client)
1242
{
1243
    assert(mr->terminates);
1244
    cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1245
                                    mr->ram_addr + addr + size,
1246
                                    1 << client);
1247
}
1248

    
1249
void *memory_region_get_ram_ptr(MemoryRegion *mr)
1250
{
1251
    if (mr->alias) {
1252
        return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1253
    }
1254

    
1255
    assert(mr->terminates);
1256

    
1257
    return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1258
}
1259

    
1260
static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1261
{
1262
    FlatView *view;
1263
    FlatRange *fr;
1264
    CoalescedMemoryRange *cmr;
1265
    AddrRange tmp;
1266
    MemoryRegionSection section;
1267

    
1268
    view = address_space_get_flatview(as);
1269
    FOR_EACH_FLAT_RANGE(fr, view) {
1270
        if (fr->mr == mr) {
1271
            section = (MemoryRegionSection) {
1272
                .address_space = as,
1273
                .offset_within_address_space = int128_get64(fr->addr.start),
1274
                .size = fr->addr.size,
1275
            };
1276

    
1277
            MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1278
                                 int128_get64(fr->addr.start),
1279
                                 int128_get64(fr->addr.size));
1280
            QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1281
                tmp = addrrange_shift(cmr->addr,
1282
                                      int128_sub(fr->addr.start,
1283
                                                 int128_make64(fr->offset_in_region)));
1284
                if (!addrrange_intersects(tmp, fr->addr)) {
1285
                    continue;
1286
                }
1287
                tmp = addrrange_intersection(tmp, fr->addr);
1288
                MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1289
                                     int128_get64(tmp.start),
1290
                                     int128_get64(tmp.size));
1291
            }
1292
        }
1293
    }
1294
    flatview_unref(view);
1295
}
1296

    
1297
static void memory_region_update_coalesced_range(MemoryRegion *mr)
1298
{
1299
    AddressSpace *as;
1300

    
1301
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1302
        memory_region_update_coalesced_range_as(mr, as);
1303
    }
1304
}
1305

    
1306
void memory_region_set_coalescing(MemoryRegion *mr)
1307
{
1308
    memory_region_clear_coalescing(mr);
1309
    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1310
}
1311

    
1312
void memory_region_add_coalescing(MemoryRegion *mr,
1313
                                  hwaddr offset,
1314
                                  uint64_t size)
1315
{
1316
    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1317

    
1318
    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1319
    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1320
    memory_region_update_coalesced_range(mr);
1321
    memory_region_set_flush_coalesced(mr);
1322
}
1323

    
1324
void memory_region_clear_coalescing(MemoryRegion *mr)
1325
{
1326
    CoalescedMemoryRange *cmr;
1327

    
1328
    qemu_flush_coalesced_mmio_buffer();
1329
    mr->flush_coalesced_mmio = false;
1330

    
1331
    while (!QTAILQ_EMPTY(&mr->coalesced)) {
1332
        cmr = QTAILQ_FIRST(&mr->coalesced);
1333
        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1334
        g_free(cmr);
1335
    }
1336
    memory_region_update_coalesced_range(mr);
1337
}
1338

    
1339
void memory_region_set_flush_coalesced(MemoryRegion *mr)
1340
{
1341
    mr->flush_coalesced_mmio = true;
1342
}
1343

    
1344
void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1345
{
1346
    qemu_flush_coalesced_mmio_buffer();
1347
    if (QTAILQ_EMPTY(&mr->coalesced)) {
1348
        mr->flush_coalesced_mmio = false;
1349
    }
1350
}
1351

    
1352
void memory_region_add_eventfd(MemoryRegion *mr,
1353
                               hwaddr addr,
1354
                               unsigned size,
1355
                               bool match_data,
1356
                               uint64_t data,
1357
                               EventNotifier *e)
1358
{
1359
    MemoryRegionIoeventfd mrfd = {
1360
        .addr.start = int128_make64(addr),
1361
        .addr.size = int128_make64(size),
1362
        .match_data = match_data,
1363
        .data = data,
1364
        .e = e,
1365
    };
1366
    unsigned i;
1367

    
1368
    adjust_endianness(mr, &mrfd.data, size);
1369
    memory_region_transaction_begin();
1370
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1371
        if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1372
            break;
1373
        }
1374
    }
1375
    ++mr->ioeventfd_nb;
1376
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1377
                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1378
    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1379
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1380
    mr->ioeventfds[i] = mrfd;
1381
    memory_region_update_pending |= mr->enabled;
1382
    memory_region_transaction_commit();
1383
}
1384

    
1385
void memory_region_del_eventfd(MemoryRegion *mr,
1386
                               hwaddr addr,
1387
                               unsigned size,
1388
                               bool match_data,
1389
                               uint64_t data,
1390
                               EventNotifier *e)
1391
{
1392
    MemoryRegionIoeventfd mrfd = {
1393
        .addr.start = int128_make64(addr),
1394
        .addr.size = int128_make64(size),
1395
        .match_data = match_data,
1396
        .data = data,
1397
        .e = e,
1398
    };
1399
    unsigned i;
1400

    
1401
    adjust_endianness(mr, &mrfd.data, size);
1402
    memory_region_transaction_begin();
1403
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1404
        if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1405
            break;
1406
        }
1407
    }
1408
    assert(i != mr->ioeventfd_nb);
1409
    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1410
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1411
    --mr->ioeventfd_nb;
1412
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1413
                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1414
    memory_region_update_pending |= mr->enabled;
1415
    memory_region_transaction_commit();
1416
}
1417

    
1418
static void memory_region_add_subregion_common(MemoryRegion *mr,
1419
                                               hwaddr offset,
1420
                                               MemoryRegion *subregion)
1421
{
1422
    MemoryRegion *other;
1423

    
1424
    memory_region_transaction_begin();
1425

    
1426
    assert(!subregion->parent);
1427
    memory_region_ref(subregion);
1428
    subregion->parent = mr;
1429
    subregion->addr = offset;
1430
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1431
        if (subregion->may_overlap || other->may_overlap) {
1432
            continue;
1433
        }
1434
        if (int128_ge(int128_make64(offset),
1435
                      int128_add(int128_make64(other->addr), other->size))
1436
            || int128_le(int128_add(int128_make64(offset), subregion->size),
1437
                         int128_make64(other->addr))) {
1438
            continue;
1439
        }
1440
#if 0
1441
        printf("warning: subregion collision %llx/%llx (%s) "
1442
               "vs %llx/%llx (%s)\n",
1443
               (unsigned long long)offset,
1444
               (unsigned long long)int128_get64(subregion->size),
1445
               subregion->name,
1446
               (unsigned long long)other->addr,
1447
               (unsigned long long)int128_get64(other->size),
1448
               other->name);
1449
#endif
1450
    }
1451
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1452
        if (subregion->priority >= other->priority) {
1453
            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1454
            goto done;
1455
        }
1456
    }
1457
    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1458
done:
1459
    memory_region_update_pending |= mr->enabled && subregion->enabled;
1460
    memory_region_transaction_commit();
1461
}
1462

    
1463

    
1464
void memory_region_add_subregion(MemoryRegion *mr,
1465
                                 hwaddr offset,
1466
                                 MemoryRegion *subregion)
1467
{
1468
    subregion->may_overlap = false;
1469
    subregion->priority = 0;
1470
    memory_region_add_subregion_common(mr, offset, subregion);
1471
}
1472

    
1473
void memory_region_add_subregion_overlap(MemoryRegion *mr,
1474
                                         hwaddr offset,
1475
                                         MemoryRegion *subregion,
1476
                                         unsigned priority)
1477
{
1478
    subregion->may_overlap = true;
1479
    subregion->priority = priority;
1480
    memory_region_add_subregion_common(mr, offset, subregion);
1481
}
1482

    
1483
void memory_region_del_subregion(MemoryRegion *mr,
1484
                                 MemoryRegion *subregion)
1485
{
1486
    memory_region_transaction_begin();
1487
    assert(subregion->parent == mr);
1488
    subregion->parent = NULL;
1489
    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1490
    memory_region_unref(subregion);
1491
    memory_region_update_pending |= mr->enabled && subregion->enabled;
1492
    memory_region_transaction_commit();
1493
}
1494

    
1495
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1496
{
1497
    if (enabled == mr->enabled) {
1498
        return;
1499
    }
1500
    memory_region_transaction_begin();
1501
    mr->enabled = enabled;
1502
    memory_region_update_pending = true;
1503
    memory_region_transaction_commit();
1504
}
1505

    
1506
void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1507
{
1508
    MemoryRegion *parent = mr->parent;
1509
    unsigned priority = mr->priority;
1510
    bool may_overlap = mr->may_overlap;
1511

    
1512
    if (addr == mr->addr || !parent) {
1513
        mr->addr = addr;
1514
        return;
1515
    }
1516

    
1517
    memory_region_transaction_begin();
1518
    memory_region_ref(mr);
1519
    memory_region_del_subregion(parent, mr);
1520
    if (may_overlap) {
1521
        memory_region_add_subregion_overlap(parent, addr, mr, priority);
1522
    } else {
1523
        memory_region_add_subregion(parent, addr, mr);
1524
    }
1525
    memory_region_unref(mr);
1526
    memory_region_transaction_commit();
1527
}
1528

    
1529
void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1530
{
1531
    assert(mr->alias);
1532

    
1533
    if (offset == mr->alias_offset) {
1534
        return;
1535
    }
1536

    
1537
    memory_region_transaction_begin();
1538
    mr->alias_offset = offset;
1539
    memory_region_update_pending |= mr->enabled;
1540
    memory_region_transaction_commit();
1541
}
1542

    
1543
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1544
{
1545
    return mr->ram_addr;
1546
}
1547

    
1548
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1549
{
1550
    const AddrRange *addr = addr_;
1551
    const FlatRange *fr = fr_;
1552

    
1553
    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1554
        return -1;
1555
    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1556
        return 1;
1557
    }
1558
    return 0;
1559
}
1560

    
1561
static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1562
{
1563
    return bsearch(&addr, view->ranges, view->nr,
1564
                   sizeof(FlatRange), cmp_flatrange_addr);
1565
}
1566

    
1567
bool memory_region_present(MemoryRegion *parent, hwaddr addr)
1568
{
1569
    MemoryRegion *mr = memory_region_find(parent, addr, 1).mr;
1570
    if (!mr) {
1571
        return false;
1572
    }
1573
    memory_region_unref(mr);
1574
    return true;
1575
}
1576

    
1577
MemoryRegionSection memory_region_find(MemoryRegion *mr,
1578
                                       hwaddr addr, uint64_t size)
1579
{
1580
    MemoryRegionSection ret = { .mr = NULL };
1581
    MemoryRegion *root;
1582
    AddressSpace *as;
1583
    AddrRange range;
1584
    FlatView *view;
1585
    FlatRange *fr;
1586

    
1587
    addr += mr->addr;
1588
    for (root = mr; root->parent; ) {
1589
        root = root->parent;
1590
        addr += root->addr;
1591
    }
1592

    
1593
    as = memory_region_to_address_space(root);
1594
    range = addrrange_make(int128_make64(addr), int128_make64(size));
1595

    
1596
    view = address_space_get_flatview(as);
1597
    fr = flatview_lookup(view, range);
1598
    if (!fr) {
1599
        return ret;
1600
    }
1601

    
1602
    while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1603
        --fr;
1604
    }
1605

    
1606
    ret.mr = fr->mr;
1607
    ret.address_space = as;
1608
    range = addrrange_intersection(range, fr->addr);
1609
    ret.offset_within_region = fr->offset_in_region;
1610
    ret.offset_within_region += int128_get64(int128_sub(range.start,
1611
                                                        fr->addr.start));
1612
    ret.size = range.size;
1613
    ret.offset_within_address_space = int128_get64(range.start);
1614
    ret.readonly = fr->readonly;
1615
    memory_region_ref(ret.mr);
1616

    
1617
    flatview_unref(view);
1618
    return ret;
1619
}
1620

    
1621
void address_space_sync_dirty_bitmap(AddressSpace *as)
1622
{
1623
    FlatView *view;
1624
    FlatRange *fr;
1625

    
1626
    view = address_space_get_flatview(as);
1627
    FOR_EACH_FLAT_RANGE(fr, view) {
1628
        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1629
    }
1630
    flatview_unref(view);
1631
}
1632

    
1633
void memory_global_dirty_log_start(void)
1634
{
1635
    global_dirty_log = true;
1636
    MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1637
}
1638

    
1639
void memory_global_dirty_log_stop(void)
1640
{
1641
    global_dirty_log = false;
1642
    MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1643
}
1644

    
1645
static void listener_add_address_space(MemoryListener *listener,
1646
                                       AddressSpace *as)
1647
{
1648
    FlatView *view;
1649
    FlatRange *fr;
1650

    
1651
    if (listener->address_space_filter
1652
        && listener->address_space_filter != as) {
1653
        return;
1654
    }
1655

    
1656
    if (global_dirty_log) {
1657
        if (listener->log_global_start) {
1658
            listener->log_global_start(listener);
1659
        }
1660
    }
1661

    
1662
    view = address_space_get_flatview(as);
1663
    FOR_EACH_FLAT_RANGE(fr, view) {
1664
        MemoryRegionSection section = {
1665
            .mr = fr->mr,
1666
            .address_space = as,
1667
            .offset_within_region = fr->offset_in_region,
1668
            .size = fr->addr.size,
1669
            .offset_within_address_space = int128_get64(fr->addr.start),
1670
            .readonly = fr->readonly,
1671
        };
1672
        if (listener->region_add) {
1673
            listener->region_add(listener, &section);
1674
        }
1675
    }
1676
    flatview_unref(view);
1677
}
1678

    
1679
void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1680
{
1681
    MemoryListener *other = NULL;
1682
    AddressSpace *as;
1683

    
1684
    listener->address_space_filter = filter;
1685
    if (QTAILQ_EMPTY(&memory_listeners)
1686
        || listener->priority >= QTAILQ_LAST(&memory_listeners,
1687
                                             memory_listeners)->priority) {
1688
        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1689
    } else {
1690
        QTAILQ_FOREACH(other, &memory_listeners, link) {
1691
            if (listener->priority < other->priority) {
1692
                break;
1693
            }
1694
        }
1695
        QTAILQ_INSERT_BEFORE(other, listener, link);
1696
    }
1697

    
1698
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1699
        listener_add_address_space(listener, as);
1700
    }
1701
}
1702

    
1703
void memory_listener_unregister(MemoryListener *listener)
1704
{
1705
    QTAILQ_REMOVE(&memory_listeners, listener, link);
1706
}
1707

    
1708
void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1709
{
1710
    if (QTAILQ_EMPTY(&address_spaces)) {
1711
        memory_init();
1712
    }
1713

    
1714
    memory_region_transaction_begin();
1715
    as->root = root;
1716
    as->current_map = g_new(FlatView, 1);
1717
    flatview_init(as->current_map);
1718
    as->ioeventfd_nb = 0;
1719
    as->ioeventfds = NULL;
1720
    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1721
    as->name = g_strdup(name ? name : "anonymous");
1722
    address_space_init_dispatch(as);
1723
    memory_region_update_pending |= root->enabled;
1724
    memory_region_transaction_commit();
1725
}
1726

    
1727
void address_space_destroy(AddressSpace *as)
1728
{
1729
    /* Flush out anything from MemoryListeners listening in on this */
1730
    memory_region_transaction_begin();
1731
    as->root = NULL;
1732
    memory_region_transaction_commit();
1733
    QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1734
    address_space_destroy_dispatch(as);
1735
    flatview_unref(as->current_map);
1736
    g_free(as->name);
1737
    g_free(as->ioeventfds);
1738
}
1739

    
1740
bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1741
{
1742
    return memory_region_dispatch_read(mr, addr, pval, size);
1743
}
1744

    
1745
bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1746
                  uint64_t val, unsigned size)
1747
{
1748
    return memory_region_dispatch_write(mr, addr, val, size);
1749
}
1750

    
1751
typedef struct MemoryRegionList MemoryRegionList;
1752

    
1753
struct MemoryRegionList {
1754
    const MemoryRegion *mr;
1755
    bool printed;
1756
    QTAILQ_ENTRY(MemoryRegionList) queue;
1757
};
1758

    
1759
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1760

    
1761
static void mtree_print_mr(fprintf_function mon_printf, void *f,
1762
                           const MemoryRegion *mr, unsigned int level,
1763
                           hwaddr base,
1764
                           MemoryRegionListHead *alias_print_queue)
1765
{
1766
    MemoryRegionList *new_ml, *ml, *next_ml;
1767
    MemoryRegionListHead submr_print_queue;
1768
    const MemoryRegion *submr;
1769
    unsigned int i;
1770

    
1771
    if (!mr || !mr->enabled) {
1772
        return;
1773
    }
1774

    
1775
    for (i = 0; i < level; i++) {
1776
        mon_printf(f, "  ");
1777
    }
1778

    
1779
    if (mr->alias) {
1780
        MemoryRegionList *ml;
1781
        bool found = false;
1782

    
1783
        /* check if the alias is already in the queue */
1784
        QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1785
            if (ml->mr == mr->alias && !ml->printed) {
1786
                found = true;
1787
            }
1788
        }
1789

    
1790
        if (!found) {
1791
            ml = g_new(MemoryRegionList, 1);
1792
            ml->mr = mr->alias;
1793
            ml->printed = false;
1794
            QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1795
        }
1796
        mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1797
                   " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1798
                   "-" TARGET_FMT_plx "\n",
1799
                   base + mr->addr,
1800
                   base + mr->addr
1801
                   + (int128_nz(mr->size) ?
1802
                      (hwaddr)int128_get64(int128_sub(mr->size,
1803
                                                      int128_one())) : 0),
1804
                   mr->priority,
1805
                   mr->romd_mode ? 'R' : '-',
1806
                   !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1807
                                                                       : '-',
1808
                   mr->name,
1809
                   mr->alias->name,
1810
                   mr->alias_offset,
1811
                   mr->alias_offset
1812
                   + (hwaddr)int128_get64(mr->size) - 1);
1813
    } else {
1814
        mon_printf(f,
1815
                   TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1816
                   base + mr->addr,
1817
                   base + mr->addr
1818
                   + (int128_nz(mr->size) ?
1819
                      (hwaddr)int128_get64(int128_sub(mr->size,
1820
                                                      int128_one())) : 0),
1821
                   mr->priority,
1822
                   mr->romd_mode ? 'R' : '-',
1823
                   !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1824
                                                                       : '-',
1825
                   mr->name);
1826
    }
1827

    
1828
    QTAILQ_INIT(&submr_print_queue);
1829

    
1830
    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1831
        new_ml = g_new(MemoryRegionList, 1);
1832
        new_ml->mr = submr;
1833
        QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1834
            if (new_ml->mr->addr < ml->mr->addr ||
1835
                (new_ml->mr->addr == ml->mr->addr &&
1836
                 new_ml->mr->priority > ml->mr->priority)) {
1837
                QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1838
                new_ml = NULL;
1839
                break;
1840
            }
1841
        }
1842
        if (new_ml) {
1843
            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1844
        }
1845
    }
1846

    
1847
    QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1848
        mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1849
                       alias_print_queue);
1850
    }
1851

    
1852
    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1853
        g_free(ml);
1854
    }
1855
}
1856

    
1857
void mtree_info(fprintf_function mon_printf, void *f)
1858
{
1859
    MemoryRegionListHead ml_head;
1860
    MemoryRegionList *ml, *ml2;
1861
    AddressSpace *as;
1862

    
1863
    QTAILQ_INIT(&ml_head);
1864

    
1865
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1866
        mon_printf(f, "%s\n", as->name);
1867
        mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1868
    }
1869

    
1870
    mon_printf(f, "aliases\n");
1871
    /* print aliased regions */
1872
    QTAILQ_FOREACH(ml, &ml_head, queue) {
1873
        if (!ml->printed) {
1874
            mon_printf(f, "%s\n", ml->mr->name);
1875
            mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1876
        }
1877
    }
1878

    
1879
    QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1880
        g_free(ml);
1881
    }
1882
}