Statistics
| Branch: | Revision:

root / fpu / softfloat-native.h @ 44e4c0ba

History | View | Annotate | Download (13.3 kB)

1 158142c2 bellard
/* Native implementation of soft float functions */
2 158142c2 bellard
#include <math.h>
3 38cfa06c bellard
4 a167ba50 Aurelien Jarno
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
5 a167ba50 Aurelien Jarno
    || defined(CONFIG_SOLARIS)
6 158142c2 bellard
#include <ieeefp.h>
7 38cfa06c bellard
#define fabsf(f) ((float)fabs(f))
8 158142c2 bellard
#else
9 158142c2 bellard
#include <fenv.h>
10 158142c2 bellard
#endif
11 38cfa06c bellard
12 d07cca02 blueswir1
#if defined(__OpenBSD__) || defined(__NetBSD__)
13 7c2a9d09 blueswir1
#include <sys/param.h>
14 7c2a9d09 blueswir1
#endif
15 7c2a9d09 blueswir1
16 38cfa06c bellard
/*
17 38cfa06c bellard
 * Define some C99-7.12.3 classification macros and
18 38cfa06c bellard
 *        some C99-.12.4 for Solaris systems OS less than 10,
19 38cfa06c bellard
 *        or Solaris 10 systems running GCC 3.x or less.
20 38cfa06c bellard
 *   Solaris 10 with GCC4 does not need these macros as they
21 38cfa06c bellard
 *   are defined in <iso/math_c99.h> with a compiler directive
22 38cfa06c bellard
 */
23 dfe5fff3 Juan Quintela
#if defined(CONFIG_SOLARIS) && \
24 dfe5fff3 Juan Quintela
           ((CONFIG_SOLARIS_VERSION <= 9 ) || \
25 be45f068 Andreas Färber
           ((CONFIG_SOLARIS_VERSION == 10) && (__GNUC__ < 4))) \
26 7c2a9d09 blueswir1
    || (defined(__OpenBSD__) && (OpenBSD < 200811))
27 38cfa06c bellard
/*
28 38cfa06c bellard
 * C99 7.12.3 classification macros
29 38cfa06c bellard
 * and
30 38cfa06c bellard
 * C99 7.12.14 comparison macros
31 38cfa06c bellard
 *
32 38cfa06c bellard
 * ... do not work on Solaris 10 using GNU CC 3.4.x.
33 38cfa06c bellard
 * Try to workaround the missing / broken C99 math macros.
34 38cfa06c bellard
 */
35 128ab2ff blueswir1
#if defined(__OpenBSD__)
36 128ab2ff blueswir1
#define unordered(x, y) (isnan(x) || isnan(y))
37 128ab2ff blueswir1
#endif
38 38cfa06c bellard
39 d07cca02 blueswir1
#ifdef __NetBSD__
40 d07cca02 blueswir1
#ifndef isgreater
41 d07cca02 blueswir1
#define isgreater(x, y)                __builtin_isgreater(x, y)
42 d07cca02 blueswir1
#endif
43 d07cca02 blueswir1
#ifndef isgreaterequal
44 d07cca02 blueswir1
#define isgreaterequal(x, y)        __builtin_isgreaterequal(x, y)
45 d07cca02 blueswir1
#endif
46 d07cca02 blueswir1
#ifndef isless
47 d07cca02 blueswir1
#define isless(x, y)                __builtin_isless(x, y)
48 d07cca02 blueswir1
#endif
49 d07cca02 blueswir1
#ifndef islessequal
50 d07cca02 blueswir1
#define islessequal(x, y)        __builtin_islessequal(x, y)
51 d07cca02 blueswir1
#endif
52 d07cca02 blueswir1
#ifndef isunordered
53 d07cca02 blueswir1
#define isunordered(x, y)        __builtin_isunordered(x, y)
54 d07cca02 blueswir1
#endif
55 d07cca02 blueswir1
#endif
56 d07cca02 blueswir1
57 d07cca02 blueswir1
58 38cfa06c bellard
#define isnormal(x)             (fpclass(x) >= FP_NZERO)
59 38cfa06c bellard
#define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
60 38cfa06c bellard
#define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
61 38cfa06c bellard
#define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
62 38cfa06c bellard
#define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
63 38cfa06c bellard
#define isunordered(x,y)        unordered(x, y)
64 ec530c81 bellard
#endif
65 158142c2 bellard
66 75b5a697 Juan Quintela
#if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
67 c94655b0 ths
68 c94655b0 ths
#ifndef isnan
69 c94655b0 ths
# define isnan(x) \
70 c94655b0 ths
    (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
71 c94655b0 ths
     : sizeof (x) == sizeof (double) ? isnan_d (x) \
72 c94655b0 ths
     : isnan_f (x))
73 c94655b0 ths
static inline int isnan_f  (float       x) { return x != x; }
74 c94655b0 ths
static inline int isnan_d  (double      x) { return x != x; }
75 c94655b0 ths
static inline int isnan_ld (long double x) { return x != x; }
76 c94655b0 ths
#endif
77 c94655b0 ths
78 c94655b0 ths
#ifndef isinf
79 c94655b0 ths
# define isinf(x) \
80 c94655b0 ths
    (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
81 c94655b0 ths
     : sizeof (x) == sizeof (double) ? isinf_d (x) \
82 c94655b0 ths
     : isinf_f (x))
83 c94655b0 ths
static inline int isinf_f  (float       x) { return isnan (x - x); }
84 c94655b0 ths
static inline int isinf_d  (double      x) { return isnan (x - x); }
85 c94655b0 ths
static inline int isinf_ld (long double x) { return isnan (x - x); }
86 c94655b0 ths
#endif
87 c94655b0 ths
#endif
88 c94655b0 ths
89 158142c2 bellard
typedef float float32;
90 158142c2 bellard
typedef double float64;
91 158142c2 bellard
#ifdef FLOATX80
92 158142c2 bellard
typedef long double floatx80;
93 158142c2 bellard
#endif
94 158142c2 bellard
95 158142c2 bellard
typedef union {
96 158142c2 bellard
    float32 f;
97 158142c2 bellard
    uint32_t i;
98 158142c2 bellard
} float32u;
99 158142c2 bellard
typedef union {
100 158142c2 bellard
    float64 f;
101 158142c2 bellard
    uint64_t i;
102 158142c2 bellard
} float64u;
103 158142c2 bellard
#ifdef FLOATX80
104 158142c2 bellard
typedef union {
105 158142c2 bellard
    floatx80 f;
106 158142c2 bellard
    struct {
107 158142c2 bellard
        uint64_t low;
108 158142c2 bellard
        uint16_t high;
109 158142c2 bellard
    } i;
110 158142c2 bellard
} floatx80u;
111 158142c2 bellard
#endif
112 158142c2 bellard
113 158142c2 bellard
/*----------------------------------------------------------------------------
114 158142c2 bellard
| Software IEC/IEEE floating-point rounding mode.
115 158142c2 bellard
*----------------------------------------------------------------------------*/
116 a167ba50 Aurelien Jarno
#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
117 a167ba50 Aurelien Jarno
    || defined(CONFIG_SOLARIS)
118 128ab2ff blueswir1
#if defined(__OpenBSD__)
119 128ab2ff blueswir1
#define FE_RM FP_RM
120 128ab2ff blueswir1
#define FE_RP FP_RP
121 128ab2ff blueswir1
#define FE_RZ FP_RZ
122 128ab2ff blueswir1
#endif
123 158142c2 bellard
enum {
124 158142c2 bellard
    float_round_nearest_even = FP_RN,
125 7918bf47 pbrook
    float_round_down         = FP_RM,
126 7918bf47 pbrook
    float_round_up           = FP_RP,
127 7918bf47 pbrook
    float_round_to_zero      = FP_RZ
128 158142c2 bellard
};
129 158142c2 bellard
#elif defined(__arm__)
130 158142c2 bellard
enum {
131 158142c2 bellard
    float_round_nearest_even = 0,
132 158142c2 bellard
    float_round_down         = 1,
133 158142c2 bellard
    float_round_up           = 2,
134 158142c2 bellard
    float_round_to_zero      = 3
135 158142c2 bellard
};
136 158142c2 bellard
#else
137 158142c2 bellard
enum {
138 158142c2 bellard
    float_round_nearest_even = FE_TONEAREST,
139 158142c2 bellard
    float_round_down         = FE_DOWNWARD,
140 158142c2 bellard
    float_round_up           = FE_UPWARD,
141 158142c2 bellard
    float_round_to_zero      = FE_TOWARDZERO
142 158142c2 bellard
};
143 158142c2 bellard
#endif
144 158142c2 bellard
145 158142c2 bellard
typedef struct float_status {
146 e872aa81 aurel32
    int float_rounding_mode;
147 158142c2 bellard
#ifdef FLOATX80
148 e872aa81 aurel32
    int floatx80_rounding_precision;
149 158142c2 bellard
#endif
150 158142c2 bellard
} float_status;
151 158142c2 bellard
152 158142c2 bellard
void set_float_rounding_mode(int val STATUS_PARAM);
153 158142c2 bellard
#ifdef FLOATX80
154 158142c2 bellard
void set_floatx80_rounding_precision(int val STATUS_PARAM);
155 158142c2 bellard
#endif
156 158142c2 bellard
157 158142c2 bellard
/*----------------------------------------------------------------------------
158 158142c2 bellard
| Software IEC/IEEE integer-to-floating-point conversion routines.
159 158142c2 bellard
*----------------------------------------------------------------------------*/
160 158142c2 bellard
float32 int32_to_float32( int STATUS_PARAM);
161 75d62a58 j_mayer
float32 uint32_to_float32( unsigned int STATUS_PARAM);
162 158142c2 bellard
float64 int32_to_float64( int STATUS_PARAM);
163 75d62a58 j_mayer
float64 uint32_to_float64( unsigned int STATUS_PARAM);
164 158142c2 bellard
#ifdef FLOATX80
165 158142c2 bellard
floatx80 int32_to_floatx80( int STATUS_PARAM);
166 158142c2 bellard
#endif
167 158142c2 bellard
#ifdef FLOAT128
168 158142c2 bellard
float128 int32_to_float128( int STATUS_PARAM);
169 158142c2 bellard
#endif
170 158142c2 bellard
float32 int64_to_float32( int64_t STATUS_PARAM);
171 75d62a58 j_mayer
float32 uint64_to_float32( uint64_t STATUS_PARAM);
172 158142c2 bellard
float64 int64_to_float64( int64_t STATUS_PARAM);
173 75d62a58 j_mayer
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
174 158142c2 bellard
#ifdef FLOATX80
175 158142c2 bellard
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
176 158142c2 bellard
#endif
177 158142c2 bellard
#ifdef FLOAT128
178 158142c2 bellard
float128 int64_to_float128( int64_t STATUS_PARAM);
179 158142c2 bellard
#endif
180 158142c2 bellard
181 158142c2 bellard
/*----------------------------------------------------------------------------
182 158142c2 bellard
| Software IEC/IEEE single-precision conversion routines.
183 158142c2 bellard
*----------------------------------------------------------------------------*/
184 158142c2 bellard
int float32_to_int32( float32  STATUS_PARAM);
185 158142c2 bellard
int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
186 75d62a58 j_mayer
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
187 75d62a58 j_mayer
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
188 158142c2 bellard
int64_t float32_to_int64( float32  STATUS_PARAM);
189 158142c2 bellard
int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
190 158142c2 bellard
float64 float32_to_float64( float32  STATUS_PARAM);
191 158142c2 bellard
#ifdef FLOATX80
192 158142c2 bellard
floatx80 float32_to_floatx80( float32  STATUS_PARAM);
193 158142c2 bellard
#endif
194 158142c2 bellard
#ifdef FLOAT128
195 158142c2 bellard
float128 float32_to_float128( float32  STATUS_PARAM);
196 158142c2 bellard
#endif
197 158142c2 bellard
198 158142c2 bellard
/*----------------------------------------------------------------------------
199 158142c2 bellard
| Software IEC/IEEE single-precision operations.
200 158142c2 bellard
*----------------------------------------------------------------------------*/
201 158142c2 bellard
float32 float32_round_to_int( float32  STATUS_PARAM);
202 158142c2 bellard
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
203 158142c2 bellard
{
204 158142c2 bellard
    return a + b;
205 158142c2 bellard
}
206 158142c2 bellard
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
207 158142c2 bellard
{
208 158142c2 bellard
    return a - b;
209 158142c2 bellard
}
210 158142c2 bellard
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
211 158142c2 bellard
{
212 158142c2 bellard
    return a * b;
213 158142c2 bellard
}
214 158142c2 bellard
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
215 158142c2 bellard
{
216 158142c2 bellard
    return a / b;
217 158142c2 bellard
}
218 158142c2 bellard
float32 float32_rem( float32, float32  STATUS_PARAM);
219 158142c2 bellard
float32 float32_sqrt( float32  STATUS_PARAM);
220 750afe93 bellard
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
221 158142c2 bellard
{
222 158142c2 bellard
    return a == b;
223 158142c2 bellard
}
224 750afe93 bellard
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
225 158142c2 bellard
{
226 158142c2 bellard
    return a <= b;
227 158142c2 bellard
}
228 750afe93 bellard
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
229 158142c2 bellard
{
230 158142c2 bellard
    return a < b;
231 158142c2 bellard
}
232 750afe93 bellard
INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
233 158142c2 bellard
{
234 b109f9f8 bellard
    return a <= b && a >= b;
235 158142c2 bellard
}
236 750afe93 bellard
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
237 158142c2 bellard
{
238 158142c2 bellard
    return islessequal(a, b);
239 158142c2 bellard
}
240 750afe93 bellard
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
241 158142c2 bellard
{
242 158142c2 bellard
    return isless(a, b);
243 158142c2 bellard
}
244 750afe93 bellard
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
245 b109f9f8 bellard
{
246 b109f9f8 bellard
    return isunordered(a, b);
247 b109f9f8 bellard
248 b109f9f8 bellard
}
249 750afe93 bellard
int float32_compare( float32, float32 STATUS_PARAM );
250 750afe93 bellard
int float32_compare_quiet( float32, float32 STATUS_PARAM );
251 750afe93 bellard
int float32_is_signaling_nan( float32 );
252 629bd74a aurel32
int float32_is_nan( float32 );
253 158142c2 bellard
254 158142c2 bellard
INLINE float32 float32_abs(float32 a)
255 158142c2 bellard
{
256 158142c2 bellard
    return fabsf(a);
257 158142c2 bellard
}
258 158142c2 bellard
259 158142c2 bellard
INLINE float32 float32_chs(float32 a)
260 158142c2 bellard
{
261 158142c2 bellard
    return -a;
262 158142c2 bellard
}
263 158142c2 bellard
264 c52ab6f5 aurel32
INLINE float32 float32_is_infinity(float32 a)
265 c52ab6f5 aurel32
{
266 c52ab6f5 aurel32
    return fpclassify(a) == FP_INFINITE;
267 c52ab6f5 aurel32
}
268 c52ab6f5 aurel32
269 c52ab6f5 aurel32
INLINE float32 float32_is_neg(float32 a)
270 c52ab6f5 aurel32
{
271 8d6c92b6 aurel32
    float32u u;
272 8d6c92b6 aurel32
    u.f = a;
273 8d6c92b6 aurel32
    return u.i >> 31;
274 c52ab6f5 aurel32
}
275 c52ab6f5 aurel32
276 c52ab6f5 aurel32
INLINE float32 float32_is_zero(float32 a)
277 c52ab6f5 aurel32
{
278 c52ab6f5 aurel32
    return fpclassify(a) == FP_ZERO;
279 c52ab6f5 aurel32
}
280 c52ab6f5 aurel32
281 9ee6e8bb pbrook
INLINE float32 float32_scalbn(float32 a, int n)
282 9ee6e8bb pbrook
{
283 9ee6e8bb pbrook
    return scalbnf(a, n);
284 9ee6e8bb pbrook
}
285 9ee6e8bb pbrook
286 158142c2 bellard
/*----------------------------------------------------------------------------
287 158142c2 bellard
| Software IEC/IEEE double-precision conversion routines.
288 158142c2 bellard
*----------------------------------------------------------------------------*/
289 158142c2 bellard
int float64_to_int32( float64 STATUS_PARAM );
290 158142c2 bellard
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
291 75d62a58 j_mayer
unsigned int float64_to_uint32( float64 STATUS_PARAM );
292 75d62a58 j_mayer
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
293 158142c2 bellard
int64_t float64_to_int64( float64 STATUS_PARAM );
294 158142c2 bellard
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
295 75d62a58 j_mayer
uint64_t float64_to_uint64( float64 STATUS_PARAM );
296 75d62a58 j_mayer
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
297 158142c2 bellard
float32 float64_to_float32( float64 STATUS_PARAM );
298 158142c2 bellard
#ifdef FLOATX80
299 158142c2 bellard
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
300 158142c2 bellard
#endif
301 158142c2 bellard
#ifdef FLOAT128
302 158142c2 bellard
float128 float64_to_float128( float64 STATUS_PARAM );
303 158142c2 bellard
#endif
304 158142c2 bellard
305 158142c2 bellard
/*----------------------------------------------------------------------------
306 158142c2 bellard
| Software IEC/IEEE double-precision operations.
307 158142c2 bellard
*----------------------------------------------------------------------------*/
308 158142c2 bellard
float64 float64_round_to_int( float64 STATUS_PARAM );
309 e6e5906b pbrook
float64 float64_trunc_to_int( float64 STATUS_PARAM );
310 158142c2 bellard
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
311 158142c2 bellard
{
312 158142c2 bellard
    return a + b;
313 158142c2 bellard
}
314 158142c2 bellard
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
315 158142c2 bellard
{
316 158142c2 bellard
    return a - b;
317 158142c2 bellard
}
318 158142c2 bellard
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
319 158142c2 bellard
{
320 158142c2 bellard
    return a * b;
321 158142c2 bellard
}
322 158142c2 bellard
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
323 158142c2 bellard
{
324 158142c2 bellard
    return a / b;
325 158142c2 bellard
}
326 158142c2 bellard
float64 float64_rem( float64, float64 STATUS_PARAM );
327 158142c2 bellard
float64 float64_sqrt( float64 STATUS_PARAM );
328 750afe93 bellard
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
329 158142c2 bellard
{
330 158142c2 bellard
    return a == b;
331 158142c2 bellard
}
332 750afe93 bellard
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
333 158142c2 bellard
{
334 158142c2 bellard
    return a <= b;
335 158142c2 bellard
}
336 750afe93 bellard
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
337 158142c2 bellard
{
338 158142c2 bellard
    return a < b;
339 158142c2 bellard
}
340 750afe93 bellard
INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
341 158142c2 bellard
{
342 b109f9f8 bellard
    return a <= b && a >= b;
343 158142c2 bellard
}
344 750afe93 bellard
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
345 158142c2 bellard
{
346 158142c2 bellard
    return islessequal(a, b);
347 158142c2 bellard
}
348 750afe93 bellard
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
349 158142c2 bellard
{
350 158142c2 bellard
    return isless(a, b);
351 158142c2 bellard
352 158142c2 bellard
}
353 750afe93 bellard
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
354 b109f9f8 bellard
{
355 b109f9f8 bellard
    return isunordered(a, b);
356 b109f9f8 bellard
357 b109f9f8 bellard
}
358 750afe93 bellard
int float64_compare( float64, float64 STATUS_PARAM );
359 750afe93 bellard
int float64_compare_quiet( float64, float64 STATUS_PARAM );
360 750afe93 bellard
int float64_is_signaling_nan( float64 );
361 750afe93 bellard
int float64_is_nan( float64 );
362 158142c2 bellard
363 158142c2 bellard
INLINE float64 float64_abs(float64 a)
364 158142c2 bellard
{
365 158142c2 bellard
    return fabs(a);
366 158142c2 bellard
}
367 158142c2 bellard
368 158142c2 bellard
INLINE float64 float64_chs(float64 a)
369 158142c2 bellard
{
370 158142c2 bellard
    return -a;
371 158142c2 bellard
}
372 158142c2 bellard
373 c52ab6f5 aurel32
INLINE float64 float64_is_infinity(float64 a)
374 c52ab6f5 aurel32
{
375 c52ab6f5 aurel32
    return fpclassify(a) == FP_INFINITE;
376 c52ab6f5 aurel32
}
377 c52ab6f5 aurel32
378 c52ab6f5 aurel32
INLINE float64 float64_is_neg(float64 a)
379 c52ab6f5 aurel32
{
380 8d6c92b6 aurel32
    float64u u;
381 8d6c92b6 aurel32
    u.f = a;
382 8d6c92b6 aurel32
    return u.i >> 63;
383 c52ab6f5 aurel32
}
384 c52ab6f5 aurel32
385 c52ab6f5 aurel32
INLINE float64 float64_is_zero(float64 a)
386 c52ab6f5 aurel32
{
387 c52ab6f5 aurel32
    return fpclassify(a) == FP_ZERO;
388 c52ab6f5 aurel32
}
389 c52ab6f5 aurel32
390 9ee6e8bb pbrook
INLINE float64 float64_scalbn(float64 a, int n)
391 9ee6e8bb pbrook
{
392 9ee6e8bb pbrook
    return scalbn(a, n);
393 9ee6e8bb pbrook
}
394 9ee6e8bb pbrook
395 158142c2 bellard
#ifdef FLOATX80
396 158142c2 bellard
397 158142c2 bellard
/*----------------------------------------------------------------------------
398 158142c2 bellard
| Software IEC/IEEE extended double-precision conversion routines.
399 158142c2 bellard
*----------------------------------------------------------------------------*/
400 158142c2 bellard
int floatx80_to_int32( floatx80 STATUS_PARAM );
401 158142c2 bellard
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
402 158142c2 bellard
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
403 158142c2 bellard
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
404 158142c2 bellard
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
405 158142c2 bellard
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
406 158142c2 bellard
#ifdef FLOAT128
407 158142c2 bellard
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
408 158142c2 bellard
#endif
409 158142c2 bellard
410 158142c2 bellard
/*----------------------------------------------------------------------------
411 158142c2 bellard
| Software IEC/IEEE extended double-precision operations.
412 158142c2 bellard
*----------------------------------------------------------------------------*/
413 158142c2 bellard
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
414 158142c2 bellard
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
415 158142c2 bellard
{
416 158142c2 bellard
    return a + b;
417 158142c2 bellard
}
418 158142c2 bellard
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
419 158142c2 bellard
{
420 158142c2 bellard
    return a - b;
421 158142c2 bellard
}
422 158142c2 bellard
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
423 158142c2 bellard
{
424 158142c2 bellard
    return a * b;
425 158142c2 bellard
}
426 158142c2 bellard
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
427 158142c2 bellard
{
428 158142c2 bellard
    return a / b;
429 158142c2 bellard
}
430 158142c2 bellard
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
431 158142c2 bellard
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
432 750afe93 bellard
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
433 158142c2 bellard
{
434 158142c2 bellard
    return a == b;
435 158142c2 bellard
}
436 750afe93 bellard
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
437 158142c2 bellard
{
438 158142c2 bellard
    return a <= b;
439 158142c2 bellard
}
440 750afe93 bellard
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
441 158142c2 bellard
{
442 158142c2 bellard
    return a < b;
443 158142c2 bellard
}
444 750afe93 bellard
INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
445 158142c2 bellard
{
446 b109f9f8 bellard
    return a <= b && a >= b;
447 158142c2 bellard
}
448 750afe93 bellard
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
449 158142c2 bellard
{
450 158142c2 bellard
    return islessequal(a, b);
451 158142c2 bellard
}
452 750afe93 bellard
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
453 158142c2 bellard
{
454 158142c2 bellard
    return isless(a, b);
455 158142c2 bellard
456 158142c2 bellard
}
457 750afe93 bellard
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
458 b109f9f8 bellard
{
459 b109f9f8 bellard
    return isunordered(a, b);
460 b109f9f8 bellard
461 b109f9f8 bellard
}
462 750afe93 bellard
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
463 750afe93 bellard
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
464 750afe93 bellard
int floatx80_is_signaling_nan( floatx80 );
465 1b2ad2ec aurel32
int floatx80_is_nan( floatx80 );
466 158142c2 bellard
467 158142c2 bellard
INLINE floatx80 floatx80_abs(floatx80 a)
468 158142c2 bellard
{
469 158142c2 bellard
    return fabsl(a);
470 158142c2 bellard
}
471 158142c2 bellard
472 158142c2 bellard
INLINE floatx80 floatx80_chs(floatx80 a)
473 158142c2 bellard
{
474 158142c2 bellard
    return -a;
475 158142c2 bellard
}
476 9ee6e8bb pbrook
477 c52ab6f5 aurel32
INLINE floatx80 floatx80_is_infinity(floatx80 a)
478 c52ab6f5 aurel32
{
479 c52ab6f5 aurel32
    return fpclassify(a) == FP_INFINITE;
480 c52ab6f5 aurel32
}
481 c52ab6f5 aurel32
482 c52ab6f5 aurel32
INLINE floatx80 floatx80_is_neg(floatx80 a)
483 c52ab6f5 aurel32
{
484 8d6c92b6 aurel32
    floatx80u u;
485 8d6c92b6 aurel32
    u.f = a;
486 8d6c92b6 aurel32
    return u.i.high >> 15;
487 c52ab6f5 aurel32
}
488 c52ab6f5 aurel32
489 c52ab6f5 aurel32
INLINE floatx80 floatx80_is_zero(floatx80 a)
490 c52ab6f5 aurel32
{
491 c52ab6f5 aurel32
    return fpclassify(a) == FP_ZERO;
492 c52ab6f5 aurel32
}
493 c52ab6f5 aurel32
494 9ee6e8bb pbrook
INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
495 9ee6e8bb pbrook
{
496 9ee6e8bb pbrook
    return scalbnl(a, n);
497 9ee6e8bb pbrook
}
498 9ee6e8bb pbrook
499 158142c2 bellard
#endif