Statistics
| Branch: | Revision:

root / kvm-all.c @ 452e4751

History | View | Annotate | Download (27.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
#include "kvm.h"
28

    
29
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30
#define PAGE_SIZE TARGET_PAGE_SIZE
31

    
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
typedef struct KVMSlot
43
{
44
    target_phys_addr_t start_addr;
45
    ram_addr_t memory_size;
46
    ram_addr_t phys_offset;
47
    int slot;
48
    int flags;
49
} KVMSlot;
50

    
51
typedef struct kvm_dirty_log KVMDirtyLog;
52

    
53
int kvm_allowed = 0;
54

    
55
struct KVMState
56
{
57
    KVMSlot slots[32];
58
    int fd;
59
    int vmfd;
60
    int coalesced_mmio;
61
    int broken_set_mem_region;
62
    int migration_log;
63
#ifdef KVM_CAP_SET_GUEST_DEBUG
64
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
65
#endif
66
};
67

    
68
static KVMState *kvm_state;
69

    
70
static KVMSlot *kvm_alloc_slot(KVMState *s)
71
{
72
    int i;
73

    
74
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
75
        /* KVM private memory slots */
76
        if (i >= 8 && i < 12)
77
            continue;
78
        if (s->slots[i].memory_size == 0)
79
            return &s->slots[i];
80
    }
81

    
82
    fprintf(stderr, "%s: no free slot available\n", __func__);
83
    abort();
84
}
85

    
86
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
87
                                         target_phys_addr_t start_addr,
88
                                         target_phys_addr_t end_addr)
89
{
90
    int i;
91

    
92
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
93
        KVMSlot *mem = &s->slots[i];
94

    
95
        if (start_addr == mem->start_addr &&
96
            end_addr == mem->start_addr + mem->memory_size) {
97
            return mem;
98
        }
99
    }
100

    
101
    return NULL;
102
}
103

    
104
/*
105
 * Find overlapping slot with lowest start address
106
 */
107
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
108
                                            target_phys_addr_t start_addr,
109
                                            target_phys_addr_t end_addr)
110
{
111
    KVMSlot *found = NULL;
112
    int i;
113

    
114
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115
        KVMSlot *mem = &s->slots[i];
116

    
117
        if (mem->memory_size == 0 ||
118
            (found && found->start_addr < mem->start_addr)) {
119
            continue;
120
        }
121

    
122
        if (end_addr > mem->start_addr &&
123
            start_addr < mem->start_addr + mem->memory_size) {
124
            found = mem;
125
        }
126
    }
127

    
128
    return found;
129
}
130

    
131
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
132
{
133
    struct kvm_userspace_memory_region mem;
134

    
135
    mem.slot = slot->slot;
136
    mem.guest_phys_addr = slot->start_addr;
137
    mem.memory_size = slot->memory_size;
138
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
139
    mem.flags = slot->flags;
140
    if (s->migration_log) {
141
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
142
    }
143
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
144
}
145

    
146
static void kvm_reset_vcpu(void *opaque)
147
{
148
    CPUState *env = opaque;
149

    
150
    if (kvm_arch_put_registers(env)) {
151
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
152
        abort();
153
    }
154
}
155

    
156
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
157
{
158
    if (env == cpu_single_env) {
159
        func(data);
160
        return;
161
    }
162
    abort();
163
}
164

    
165
int kvm_init_vcpu(CPUState *env)
166
{
167
    KVMState *s = kvm_state;
168
    long mmap_size;
169
    int ret;
170

    
171
    dprintf("kvm_init_vcpu\n");
172

    
173
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
174
    if (ret < 0) {
175
        dprintf("kvm_create_vcpu failed\n");
176
        goto err;
177
    }
178

    
179
    env->kvm_fd = ret;
180
    env->kvm_state = s;
181

    
182
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
183
    if (mmap_size < 0) {
184
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
185
        goto err;
186
    }
187

    
188
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
189
                        env->kvm_fd, 0);
190
    if (env->kvm_run == MAP_FAILED) {
191
        ret = -errno;
192
        dprintf("mmap'ing vcpu state failed\n");
193
        goto err;
194
    }
195

    
196
    ret = kvm_arch_init_vcpu(env);
197
    if (ret == 0) {
198
        qemu_register_reset(kvm_reset_vcpu, env);
199
        ret = kvm_arch_put_registers(env);
200
    }
201
err:
202
    return ret;
203
}
204

    
205
int kvm_put_mp_state(CPUState *env)
206
{
207
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
208

    
209
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
210
}
211

    
212
int kvm_get_mp_state(CPUState *env)
213
{
214
    struct kvm_mp_state mp_state;
215
    int ret;
216

    
217
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
218
    if (ret < 0) {
219
        return ret;
220
    }
221
    env->mp_state = mp_state.mp_state;
222
    return 0;
223
}
224

    
225
/*
226
 * dirty pages logging control
227
 */
228
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
229
                                      ram_addr_t size, int flags, int mask)
230
{
231
    KVMState *s = kvm_state;
232
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
233
    int old_flags;
234

    
235
    if (mem == NULL)  {
236
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
237
                    TARGET_FMT_plx "\n", __func__, phys_addr,
238
                    (target_phys_addr_t)(phys_addr + size - 1));
239
            return -EINVAL;
240
    }
241

    
242
    old_flags = mem->flags;
243

    
244
    flags = (mem->flags & ~mask) | flags;
245
    mem->flags = flags;
246

    
247
    /* If nothing changed effectively, no need to issue ioctl */
248
    if (s->migration_log) {
249
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
250
    }
251
    if (flags == old_flags) {
252
            return 0;
253
    }
254

    
255
    return kvm_set_user_memory_region(s, mem);
256
}
257

    
258
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
259
{
260
        return kvm_dirty_pages_log_change(phys_addr, size,
261
                                          KVM_MEM_LOG_DIRTY_PAGES,
262
                                          KVM_MEM_LOG_DIRTY_PAGES);
263
}
264

    
265
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
266
{
267
        return kvm_dirty_pages_log_change(phys_addr, size,
268
                                          0,
269
                                          KVM_MEM_LOG_DIRTY_PAGES);
270
}
271

    
272
int kvm_set_migration_log(int enable)
273
{
274
    KVMState *s = kvm_state;
275
    KVMSlot *mem;
276
    int i, err;
277

    
278
    s->migration_log = enable;
279

    
280
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
281
        mem = &s->slots[i];
282

    
283
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
284
            continue;
285
        }
286
        err = kvm_set_user_memory_region(s, mem);
287
        if (err) {
288
            return err;
289
        }
290
    }
291
    return 0;
292
}
293

    
294
/**
295
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
296
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
297
 * This means all bits are set to dirty.
298
 *
299
 * @start_add: start of logged region.
300
 * @end_addr: end of logged region.
301
 */
302
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
303
                                   target_phys_addr_t end_addr)
304
{
305
    KVMState *s = kvm_state;
306
    unsigned long size, allocated_size = 0;
307
    target_phys_addr_t phys_addr;
308
    ram_addr_t addr;
309
    KVMDirtyLog d;
310
    KVMSlot *mem;
311
    int ret = 0;
312
    int r;
313

    
314
    d.dirty_bitmap = NULL;
315
    while (start_addr < end_addr) {
316
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
317
        if (mem == NULL) {
318
            break;
319
        }
320

    
321
        /* We didn't activate dirty logging? Don't care then. */
322
        if(!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
323
            continue;
324
        }
325

    
326
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
327
        if (!d.dirty_bitmap) {
328
            d.dirty_bitmap = qemu_malloc(size);
329
        } else if (size > allocated_size) {
330
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
331
        }
332
        allocated_size = size;
333
        memset(d.dirty_bitmap, 0, allocated_size);
334

    
335
        d.slot = mem->slot;
336

    
337
        r = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
338
        if (r == -EINVAL) {
339
            dprintf("ioctl failed %d\n", errno);
340
            ret = -1;
341
            break;
342
        }
343

    
344
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
345
             phys_addr < mem->start_addr + mem->memory_size;
346
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
347
            unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
348
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
349
            unsigned word = nr / (sizeof(*bitmap) * 8);
350
            unsigned bit = nr % (sizeof(*bitmap) * 8);
351

    
352
            if ((bitmap[word] >> bit) & 1) {
353
                cpu_physical_memory_set_dirty(addr);
354
            } else if (r < 0) {
355
                /* When our KVM implementation doesn't know about dirty logging
356
                 * we can just assume it's always dirty and be fine. */
357
                cpu_physical_memory_set_dirty(addr);
358
            }
359
        }
360
        start_addr = phys_addr;
361
    }
362
    qemu_free(d.dirty_bitmap);
363

    
364
    return ret;
365
}
366

    
367
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
368
{
369
    int ret = -ENOSYS;
370
#ifdef KVM_CAP_COALESCED_MMIO
371
    KVMState *s = kvm_state;
372

    
373
    if (s->coalesced_mmio) {
374
        struct kvm_coalesced_mmio_zone zone;
375

    
376
        zone.addr = start;
377
        zone.size = size;
378

    
379
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
380
    }
381
#endif
382

    
383
    return ret;
384
}
385

    
386
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
387
{
388
    int ret = -ENOSYS;
389
#ifdef KVM_CAP_COALESCED_MMIO
390
    KVMState *s = kvm_state;
391

    
392
    if (s->coalesced_mmio) {
393
        struct kvm_coalesced_mmio_zone zone;
394

    
395
        zone.addr = start;
396
        zone.size = size;
397

    
398
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
399
    }
400
#endif
401

    
402
    return ret;
403
}
404

    
405
int kvm_check_extension(KVMState *s, unsigned int extension)
406
{
407
    int ret;
408

    
409
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
410
    if (ret < 0) {
411
        ret = 0;
412
    }
413

    
414
    return ret;
415
}
416

    
417
int kvm_init(int smp_cpus)
418
{
419
    static const char upgrade_note[] =
420
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
421
        "(see http://sourceforge.net/projects/kvm).\n";
422
    KVMState *s;
423
    int ret;
424
    int i;
425

    
426
    if (smp_cpus > 1) {
427
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
428
        return -EINVAL;
429
    }
430

    
431
    s = qemu_mallocz(sizeof(KVMState));
432

    
433
#ifdef KVM_CAP_SET_GUEST_DEBUG
434
    TAILQ_INIT(&s->kvm_sw_breakpoints);
435
#endif
436
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
437
        s->slots[i].slot = i;
438

    
439
    s->vmfd = -1;
440
    s->fd = open("/dev/kvm", O_RDWR);
441
    if (s->fd == -1) {
442
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
443
        ret = -errno;
444
        goto err;
445
    }
446

    
447
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
448
    if (ret < KVM_API_VERSION) {
449
        if (ret > 0)
450
            ret = -EINVAL;
451
        fprintf(stderr, "kvm version too old\n");
452
        goto err;
453
    }
454

    
455
    if (ret > KVM_API_VERSION) {
456
        ret = -EINVAL;
457
        fprintf(stderr, "kvm version not supported\n");
458
        goto err;
459
    }
460

    
461
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
462
    if (s->vmfd < 0)
463
        goto err;
464

    
465
    /* initially, KVM allocated its own memory and we had to jump through
466
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
467
     * just use a user allocated buffer so we can use regular pages
468
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
469
     */
470
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
471
        ret = -EINVAL;
472
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
473
                upgrade_note);
474
        goto err;
475
    }
476

    
477
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
478
     * destroyed properly.  Since we rely on this capability, refuse to work
479
     * with any kernel without this capability. */
480
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
481
        ret = -EINVAL;
482

    
483
        fprintf(stderr,
484
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
485
                upgrade_note);
486
        goto err;
487
    }
488

    
489
#ifdef KVM_CAP_COALESCED_MMIO
490
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
491
#else
492
    s->coalesced_mmio = 0;
493
#endif
494

    
495
    s->broken_set_mem_region = 1;
496
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
497
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
498
    if (ret > 0) {
499
        s->broken_set_mem_region = 0;
500
    }
501
#endif
502

    
503
    ret = kvm_arch_init(s, smp_cpus);
504
    if (ret < 0)
505
        goto err;
506

    
507
    kvm_state = s;
508

    
509
    return 0;
510

    
511
err:
512
    if (s) {
513
        if (s->vmfd != -1)
514
            close(s->vmfd);
515
        if (s->fd != -1)
516
            close(s->fd);
517
    }
518
    qemu_free(s);
519

    
520
    return ret;
521
}
522

    
523
static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
524
                         int direction, int size, uint32_t count)
525
{
526
    int i;
527
    uint8_t *ptr = data;
528

    
529
    for (i = 0; i < count; i++) {
530
        if (direction == KVM_EXIT_IO_IN) {
531
            switch (size) {
532
            case 1:
533
                stb_p(ptr, cpu_inb(env, port));
534
                break;
535
            case 2:
536
                stw_p(ptr, cpu_inw(env, port));
537
                break;
538
            case 4:
539
                stl_p(ptr, cpu_inl(env, port));
540
                break;
541
            }
542
        } else {
543
            switch (size) {
544
            case 1:
545
                cpu_outb(env, port, ldub_p(ptr));
546
                break;
547
            case 2:
548
                cpu_outw(env, port, lduw_p(ptr));
549
                break;
550
            case 4:
551
                cpu_outl(env, port, ldl_p(ptr));
552
                break;
553
            }
554
        }
555

    
556
        ptr += size;
557
    }
558

    
559
    return 1;
560
}
561

    
562
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
563
{
564
#ifdef KVM_CAP_COALESCED_MMIO
565
    KVMState *s = kvm_state;
566
    if (s->coalesced_mmio) {
567
        struct kvm_coalesced_mmio_ring *ring;
568

    
569
        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
570
        while (ring->first != ring->last) {
571
            struct kvm_coalesced_mmio *ent;
572

    
573
            ent = &ring->coalesced_mmio[ring->first];
574

    
575
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
576
            /* FIXME smp_wmb() */
577
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
578
        }
579
    }
580
#endif
581
}
582

    
583
int kvm_cpu_exec(CPUState *env)
584
{
585
    struct kvm_run *run = env->kvm_run;
586
    int ret;
587

    
588
    dprintf("kvm_cpu_exec()\n");
589

    
590
    do {
591
        if (env->exit_request) {
592
            dprintf("interrupt exit requested\n");
593
            ret = 0;
594
            break;
595
        }
596

    
597
        kvm_arch_pre_run(env, run);
598
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
599
        kvm_arch_post_run(env, run);
600

    
601
        if (ret == -EINTR || ret == -EAGAIN) {
602
            dprintf("io window exit\n");
603
            ret = 0;
604
            break;
605
        }
606

    
607
        if (ret < 0) {
608
            dprintf("kvm run failed %s\n", strerror(-ret));
609
            abort();
610
        }
611

    
612
        kvm_run_coalesced_mmio(env, run);
613

    
614
        ret = 0; /* exit loop */
615
        switch (run->exit_reason) {
616
        case KVM_EXIT_IO:
617
            dprintf("handle_io\n");
618
            ret = kvm_handle_io(env, run->io.port,
619
                                (uint8_t *)run + run->io.data_offset,
620
                                run->io.direction,
621
                                run->io.size,
622
                                run->io.count);
623
            break;
624
        case KVM_EXIT_MMIO:
625
            dprintf("handle_mmio\n");
626
            cpu_physical_memory_rw(run->mmio.phys_addr,
627
                                   run->mmio.data,
628
                                   run->mmio.len,
629
                                   run->mmio.is_write);
630
            ret = 1;
631
            break;
632
        case KVM_EXIT_IRQ_WINDOW_OPEN:
633
            dprintf("irq_window_open\n");
634
            break;
635
        case KVM_EXIT_SHUTDOWN:
636
            dprintf("shutdown\n");
637
            qemu_system_reset_request();
638
            ret = 1;
639
            break;
640
        case KVM_EXIT_UNKNOWN:
641
            dprintf("kvm_exit_unknown\n");
642
            break;
643
        case KVM_EXIT_FAIL_ENTRY:
644
            dprintf("kvm_exit_fail_entry\n");
645
            break;
646
        case KVM_EXIT_EXCEPTION:
647
            dprintf("kvm_exit_exception\n");
648
            break;
649
        case KVM_EXIT_DEBUG:
650
            dprintf("kvm_exit_debug\n");
651
#ifdef KVM_CAP_SET_GUEST_DEBUG
652
            if (kvm_arch_debug(&run->debug.arch)) {
653
                gdb_set_stop_cpu(env);
654
                vm_stop(EXCP_DEBUG);
655
                env->exception_index = EXCP_DEBUG;
656
                return 0;
657
            }
658
            /* re-enter, this exception was guest-internal */
659
            ret = 1;
660
#endif /* KVM_CAP_SET_GUEST_DEBUG */
661
            break;
662
        default:
663
            dprintf("kvm_arch_handle_exit\n");
664
            ret = kvm_arch_handle_exit(env, run);
665
            break;
666
        }
667
    } while (ret > 0);
668

    
669
    if (env->exit_request) {
670
        env->exit_request = 0;
671
        env->exception_index = EXCP_INTERRUPT;
672
    }
673

    
674
    return ret;
675
}
676

    
677
void kvm_set_phys_mem(target_phys_addr_t start_addr,
678
                      ram_addr_t size,
679
                      ram_addr_t phys_offset)
680
{
681
    KVMState *s = kvm_state;
682
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
683
    KVMSlot *mem, old;
684
    int err;
685

    
686
    if (start_addr & ~TARGET_PAGE_MASK) {
687
        if (flags >= IO_MEM_UNASSIGNED) {
688
            if (!kvm_lookup_overlapping_slot(s, start_addr,
689
                                             start_addr + size)) {
690
                return;
691
            }
692
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
693
        } else {
694
            fprintf(stderr, "Only page-aligned memory slots supported\n");
695
        }
696
        abort();
697
    }
698

    
699
    /* KVM does not support read-only slots */
700
    phys_offset &= ~IO_MEM_ROM;
701

    
702
    while (1) {
703
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
704
        if (!mem) {
705
            break;
706
        }
707

    
708
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
709
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
710
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
711
            /* The new slot fits into the existing one and comes with
712
             * identical parameters - nothing to be done. */
713
            return;
714
        }
715

    
716
        old = *mem;
717

    
718
        /* unregister the overlapping slot */
719
        mem->memory_size = 0;
720
        err = kvm_set_user_memory_region(s, mem);
721
        if (err) {
722
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
723
                    __func__, strerror(-err));
724
            abort();
725
        }
726

    
727
        /* Workaround for older KVM versions: we can't join slots, even not by
728
         * unregistering the previous ones and then registering the larger
729
         * slot. We have to maintain the existing fragmentation. Sigh.
730
         *
731
         * This workaround assumes that the new slot starts at the same
732
         * address as the first existing one. If not or if some overlapping
733
         * slot comes around later, we will fail (not seen in practice so far)
734
         * - and actually require a recent KVM version. */
735
        if (s->broken_set_mem_region &&
736
            old.start_addr == start_addr && old.memory_size < size &&
737
            flags < IO_MEM_UNASSIGNED) {
738
            mem = kvm_alloc_slot(s);
739
            mem->memory_size = old.memory_size;
740
            mem->start_addr = old.start_addr;
741
            mem->phys_offset = old.phys_offset;
742
            mem->flags = 0;
743

    
744
            err = kvm_set_user_memory_region(s, mem);
745
            if (err) {
746
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
747
                        strerror(-err));
748
                abort();
749
            }
750

    
751
            start_addr += old.memory_size;
752
            phys_offset += old.memory_size;
753
            size -= old.memory_size;
754
            continue;
755
        }
756

    
757
        /* register prefix slot */
758
        if (old.start_addr < start_addr) {
759
            mem = kvm_alloc_slot(s);
760
            mem->memory_size = start_addr - old.start_addr;
761
            mem->start_addr = old.start_addr;
762
            mem->phys_offset = old.phys_offset;
763
            mem->flags = 0;
764

    
765
            err = kvm_set_user_memory_region(s, mem);
766
            if (err) {
767
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
768
                        __func__, strerror(-err));
769
                abort();
770
            }
771
        }
772

    
773
        /* register suffix slot */
774
        if (old.start_addr + old.memory_size > start_addr + size) {
775
            ram_addr_t size_delta;
776

    
777
            mem = kvm_alloc_slot(s);
778
            mem->start_addr = start_addr + size;
779
            size_delta = mem->start_addr - old.start_addr;
780
            mem->memory_size = old.memory_size - size_delta;
781
            mem->phys_offset = old.phys_offset + size_delta;
782
            mem->flags = 0;
783

    
784
            err = kvm_set_user_memory_region(s, mem);
785
            if (err) {
786
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
787
                        __func__, strerror(-err));
788
                abort();
789
            }
790
        }
791
    }
792

    
793
    /* in case the KVM bug workaround already "consumed" the new slot */
794
    if (!size)
795
        return;
796

    
797
    /* KVM does not need to know about this memory */
798
    if (flags >= IO_MEM_UNASSIGNED)
799
        return;
800

    
801
    mem = kvm_alloc_slot(s);
802
    mem->memory_size = size;
803
    mem->start_addr = start_addr;
804
    mem->phys_offset = phys_offset;
805
    mem->flags = 0;
806

    
807
    err = kvm_set_user_memory_region(s, mem);
808
    if (err) {
809
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
810
                strerror(-err));
811
        abort();
812
    }
813
}
814

    
815
int kvm_ioctl(KVMState *s, int type, ...)
816
{
817
    int ret;
818
    void *arg;
819
    va_list ap;
820

    
821
    va_start(ap, type);
822
    arg = va_arg(ap, void *);
823
    va_end(ap);
824

    
825
    ret = ioctl(s->fd, type, arg);
826
    if (ret == -1)
827
        ret = -errno;
828

    
829
    return ret;
830
}
831

    
832
int kvm_vm_ioctl(KVMState *s, int type, ...)
833
{
834
    int ret;
835
    void *arg;
836
    va_list ap;
837

    
838
    va_start(ap, type);
839
    arg = va_arg(ap, void *);
840
    va_end(ap);
841

    
842
    ret = ioctl(s->vmfd, type, arg);
843
    if (ret == -1)
844
        ret = -errno;
845

    
846
    return ret;
847
}
848

    
849
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
850
{
851
    int ret;
852
    void *arg;
853
    va_list ap;
854

    
855
    va_start(ap, type);
856
    arg = va_arg(ap, void *);
857
    va_end(ap);
858

    
859
    ret = ioctl(env->kvm_fd, type, arg);
860
    if (ret == -1)
861
        ret = -errno;
862

    
863
    return ret;
864
}
865

    
866
int kvm_has_sync_mmu(void)
867
{
868
#ifdef KVM_CAP_SYNC_MMU
869
    KVMState *s = kvm_state;
870

    
871
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
872
#else
873
    return 0;
874
#endif
875
}
876

    
877
void kvm_setup_guest_memory(void *start, size_t size)
878
{
879
    if (!kvm_has_sync_mmu()) {
880
#ifdef MADV_DONTFORK
881
        int ret = madvise(start, size, MADV_DONTFORK);
882

    
883
        if (ret) {
884
            perror("madvice");
885
            exit(1);
886
        }
887
#else
888
        fprintf(stderr,
889
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
890
        exit(1);
891
#endif
892
    }
893
}
894

    
895
#ifdef KVM_CAP_SET_GUEST_DEBUG
896
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
897
                                                 target_ulong pc)
898
{
899
    struct kvm_sw_breakpoint *bp;
900

    
901
    TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
902
        if (bp->pc == pc)
903
            return bp;
904
    }
905
    return NULL;
906
}
907

    
908
int kvm_sw_breakpoints_active(CPUState *env)
909
{
910
    return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
911
}
912

    
913
struct kvm_set_guest_debug_data {
914
    struct kvm_guest_debug dbg;
915
    CPUState *env;
916
    int err;
917
};
918

    
919
static void kvm_invoke_set_guest_debug(void *data)
920
{
921
    struct kvm_set_guest_debug_data *dbg_data = data;
922
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
923
}
924

    
925
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
926
{
927
    struct kvm_set_guest_debug_data data;
928

    
929
    data.dbg.control = 0;
930
    if (env->singlestep_enabled)
931
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
932

    
933
    kvm_arch_update_guest_debug(env, &data.dbg);
934
    data.dbg.control |= reinject_trap;
935
    data.env = env;
936

    
937
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
938
    return data.err;
939
}
940

    
941
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
942
                          target_ulong len, int type)
943
{
944
    struct kvm_sw_breakpoint *bp;
945
    CPUState *env;
946
    int err;
947

    
948
    if (type == GDB_BREAKPOINT_SW) {
949
        bp = kvm_find_sw_breakpoint(current_env, addr);
950
        if (bp) {
951
            bp->use_count++;
952
            return 0;
953
        }
954

    
955
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
956
        if (!bp)
957
            return -ENOMEM;
958

    
959
        bp->pc = addr;
960
        bp->use_count = 1;
961
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
962
        if (err) {
963
            free(bp);
964
            return err;
965
        }
966

    
967
        TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
968
                          bp, entry);
969
    } else {
970
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
971
        if (err)
972
            return err;
973
    }
974

    
975
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
976
        err = kvm_update_guest_debug(env, 0);
977
        if (err)
978
            return err;
979
    }
980
    return 0;
981
}
982

    
983
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
984
                          target_ulong len, int type)
985
{
986
    struct kvm_sw_breakpoint *bp;
987
    CPUState *env;
988
    int err;
989

    
990
    if (type == GDB_BREAKPOINT_SW) {
991
        bp = kvm_find_sw_breakpoint(current_env, addr);
992
        if (!bp)
993
            return -ENOENT;
994

    
995
        if (bp->use_count > 1) {
996
            bp->use_count--;
997
            return 0;
998
        }
999

    
1000
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1001
        if (err)
1002
            return err;
1003

    
1004
        TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1005
        qemu_free(bp);
1006
    } else {
1007
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1008
        if (err)
1009
            return err;
1010
    }
1011

    
1012
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1013
        err = kvm_update_guest_debug(env, 0);
1014
        if (err)
1015
            return err;
1016
    }
1017
    return 0;
1018
}
1019

    
1020
void kvm_remove_all_breakpoints(CPUState *current_env)
1021
{
1022
    struct kvm_sw_breakpoint *bp, *next;
1023
    KVMState *s = current_env->kvm_state;
1024
    CPUState *env;
1025

    
1026
    TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1027
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1028
            /* Try harder to find a CPU that currently sees the breakpoint. */
1029
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1030
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1031
                    break;
1032
            }
1033
        }
1034
    }
1035
    kvm_arch_remove_all_hw_breakpoints();
1036

    
1037
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1038
        kvm_update_guest_debug(env, 0);
1039
}
1040

    
1041
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1042

    
1043
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1044
{
1045
    return -EINVAL;
1046
}
1047

    
1048
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1049
                          target_ulong len, int type)
1050
{
1051
    return -EINVAL;
1052
}
1053

    
1054
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1055
                          target_ulong len, int type)
1056
{
1057
    return -EINVAL;
1058
}
1059

    
1060
void kvm_remove_all_breakpoints(CPUState *current_env)
1061
{
1062
}
1063
#endif /* !KVM_CAP_SET_GUEST_DEBUG */