Statistics
| Branch: | Revision:

root / hw / fw_cfg.c @ 46aaebff

History | View | Annotate | Download (9.8 kB)

1
/*
2
 * QEMU Firmware configuration device emulation
3
 *
4
 * Copyright (c) 2008 Gleb Natapov
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sysemu.h"
26
#include "isa.h"
27
#include "fw_cfg.h"
28

    
29
/* debug firmware config */
30
//#define DEBUG_FW_CFG
31

    
32
#ifdef DEBUG_FW_CFG
33
#define FW_CFG_DPRINTF(fmt, ...)                        \
34
    do { printf("FW_CFG: " fmt , ## __VA_ARGS__); } while (0)
35
#else
36
#define FW_CFG_DPRINTF(fmt, ...)
37
#endif
38

    
39
#define FW_CFG_SIZE 2
40

    
41
typedef struct FWCfgEntry {
42
    uint32_t len;
43
    uint8_t *data;
44
    void *callback_opaque;
45
    FWCfgCallback callback;
46
} FWCfgEntry;
47

    
48
struct FWCfgState {
49
    FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
50
    FWCfgFiles *files;
51
    uint16_t cur_entry;
52
    uint32_t cur_offset;
53
};
54

    
55
static void fw_cfg_write(FWCfgState *s, uint8_t value)
56
{
57
    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
58
    FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
59

    
60
    FW_CFG_DPRINTF("write %d\n", value);
61

    
62
    if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) {
63
        e->data[s->cur_offset++] = value;
64
        if (s->cur_offset == e->len) {
65
            e->callback(e->callback_opaque, e->data);
66
            s->cur_offset = 0;
67
        }
68
    }
69
}
70

    
71
static int fw_cfg_select(FWCfgState *s, uint16_t key)
72
{
73
    int ret;
74

    
75
    s->cur_offset = 0;
76
    if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
77
        s->cur_entry = FW_CFG_INVALID;
78
        ret = 0;
79
    } else {
80
        s->cur_entry = key;
81
        ret = 1;
82
    }
83

    
84
    FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not ");
85

    
86
    return ret;
87
}
88

    
89
static uint8_t fw_cfg_read(FWCfgState *s)
90
{
91
    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
92
    FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
93
    uint8_t ret;
94

    
95
    if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len)
96
        ret = 0;
97
    else
98
        ret = e->data[s->cur_offset++];
99

    
100
    FW_CFG_DPRINTF("read %d\n", ret);
101

    
102
    return ret;
103
}
104

    
105
static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr)
106
{
107
    return fw_cfg_read(opaque);
108
}
109

    
110
static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value)
111
{
112
    fw_cfg_write(opaque, (uint8_t)value);
113
}
114

    
115
static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value)
116
{
117
    fw_cfg_select(opaque, (uint16_t)value);
118
}
119

    
120
static uint32_t fw_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
121
{
122
    return fw_cfg_read(opaque);
123
}
124

    
125
static void fw_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
126
                              uint32_t value)
127
{
128
    fw_cfg_write(opaque, (uint8_t)value);
129
}
130

    
131
static void fw_cfg_mem_writew(void *opaque, target_phys_addr_t addr,
132
                              uint32_t value)
133
{
134
    fw_cfg_select(opaque, (uint16_t)value);
135
}
136

    
137
static CPUReadMemoryFunc * const fw_cfg_ctl_mem_read[3] = {
138
    NULL,
139
    NULL,
140
    NULL,
141
};
142

    
143
static CPUWriteMemoryFunc * const fw_cfg_ctl_mem_write[3] = {
144
    NULL,
145
    fw_cfg_mem_writew,
146
    NULL,
147
};
148

    
149
static CPUReadMemoryFunc * const fw_cfg_data_mem_read[3] = {
150
    fw_cfg_mem_readb,
151
    NULL,
152
    NULL,
153
};
154

    
155
static CPUWriteMemoryFunc * const fw_cfg_data_mem_write[3] = {
156
    fw_cfg_mem_writeb,
157
    NULL,
158
    NULL,
159
};
160

    
161
static void fw_cfg_reset(void *opaque)
162
{
163
    FWCfgState *s = opaque;
164

    
165
    fw_cfg_select(s, 0);
166
}
167

    
168
/* Save restore 32 bit int as uint16_t
169
   This is a Big hack, but it is how the old state did it.
170
   Or we broke compatibility in the state, or we can't use struct tm
171
 */
172

    
173
static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size)
174
{
175
    uint32_t *v = pv;
176
    *v = qemu_get_be16(f);
177
    return 0;
178
}
179

    
180
static void put_unused(QEMUFile *f, void *pv, size_t size)
181
{
182
    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
183
    fprintf(stderr, "This functions shouldn't be called.\n");
184
}
185

    
186
static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
187
    .name = "int32_as_uint16",
188
    .get  = get_uint32_as_uint16,
189
    .put  = put_unused,
190
};
191

    
192
#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
193
    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
194

    
195

    
196
static bool is_version_1(void *opaque, int version_id)
197
{
198
    return version_id == 1;
199
}
200

    
201
static const VMStateDescription vmstate_fw_cfg = {
202
    .name = "fw_cfg",
203
    .version_id = 2,
204
    .minimum_version_id = 1,
205
    .minimum_version_id_old = 1,
206
    .fields      = (VMStateField []) {
207
        VMSTATE_UINT16(cur_entry, FWCfgState),
208
        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
209
        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
210
        VMSTATE_END_OF_LIST()
211
    }
212
};
213

    
214
int fw_cfg_add_bytes(FWCfgState *s, uint16_t key, uint8_t *data, uint32_t len)
215
{
216
    int arch = !!(key & FW_CFG_ARCH_LOCAL);
217

    
218
    key &= FW_CFG_ENTRY_MASK;
219

    
220
    if (key >= FW_CFG_MAX_ENTRY)
221
        return 0;
222

    
223
    s->entries[arch][key].data = data;
224
    s->entries[arch][key].len = len;
225

    
226
    return 1;
227
}
228

    
229
int fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
230
{
231
    uint16_t *copy;
232

    
233
    copy = qemu_malloc(sizeof(value));
234
    *copy = cpu_to_le16(value);
235
    return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
236
}
237

    
238
int fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
239
{
240
    uint32_t *copy;
241

    
242
    copy = qemu_malloc(sizeof(value));
243
    *copy = cpu_to_le32(value);
244
    return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
245
}
246

    
247
int fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
248
{
249
    uint64_t *copy;
250

    
251
    copy = qemu_malloc(sizeof(value));
252
    *copy = cpu_to_le64(value);
253
    return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
254
}
255

    
256
int fw_cfg_add_callback(FWCfgState *s, uint16_t key, FWCfgCallback callback,
257
                        void *callback_opaque, uint8_t *data, size_t len)
258
{
259
    int arch = !!(key & FW_CFG_ARCH_LOCAL);
260

    
261
    if (!(key & FW_CFG_WRITE_CHANNEL))
262
        return 0;
263

    
264
    key &= FW_CFG_ENTRY_MASK;
265

    
266
    if (key >= FW_CFG_MAX_ENTRY || len > 65535)
267
        return 0;
268

    
269
    s->entries[arch][key].data = data;
270
    s->entries[arch][key].len = len;
271
    s->entries[arch][key].callback_opaque = callback_opaque;
272
    s->entries[arch][key].callback = callback;
273

    
274
    return 1;
275
}
276

    
277
int fw_cfg_add_file(FWCfgState *s,  const char *dir, const char *filename,
278
                    uint8_t *data, uint32_t len)
279
{
280
    const char *basename;
281
    int i, index;
282

    
283
    if (!s->files) {
284
        int dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * FW_CFG_FILE_SLOTS;
285
        s->files = qemu_mallocz(dsize);
286
        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, (uint8_t*)s->files, dsize);
287
    }
288

    
289
    index = be32_to_cpu(s->files->count);
290
    if (index == FW_CFG_FILE_SLOTS) {
291
        fprintf(stderr, "fw_cfg: out of file slots\n");
292
        return 0;
293
    }
294

    
295
    fw_cfg_add_bytes(s, FW_CFG_FILE_FIRST + index, data, len);
296

    
297
    basename = strrchr(filename, '/');
298
    if (basename) {
299
        basename++;
300
    } else {
301
        basename = filename;
302
    }
303

    
304
    snprintf(s->files->f[index].name, sizeof(s->files->f[index].name),
305
             "%s/%s", dir, basename);
306
    for (i = 0; i < index; i++) {
307
        if (strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
308
            FW_CFG_DPRINTF("%s: skip duplicate: %s\n", __FUNCTION__,
309
                           s->files->f[index].name);
310
            return 1;
311
        }
312
    }
313

    
314
    s->files->f[index].size   = cpu_to_be32(len);
315
    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
316
    FW_CFG_DPRINTF("%s: #%d: %s (%d bytes)\n", __FUNCTION__,
317
                   index, s->files->f[index].name, len);
318

    
319
    s->files->count = cpu_to_be32(index+1);
320
    return 1;
321
}
322

    
323
FWCfgState *fw_cfg_init(uint32_t ctl_port, uint32_t data_port,
324
                        target_phys_addr_t ctl_addr, target_phys_addr_t data_addr)
325
{
326
    FWCfgState *s;
327
    int io_ctl_memory, io_data_memory;
328

    
329
    s = qemu_mallocz(sizeof(FWCfgState));
330

    
331
    if (ctl_port) {
332
        register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s);
333
    }
334
    if (data_port) {
335
        register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s);
336
        register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s);
337
    }
338
    if (ctl_addr) {
339
        io_ctl_memory = cpu_register_io_memory(fw_cfg_ctl_mem_read,
340
                                           fw_cfg_ctl_mem_write, s);
341
        cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory);
342
    }
343
    if (data_addr) {
344
        io_data_memory = cpu_register_io_memory(fw_cfg_data_mem_read,
345
                                           fw_cfg_data_mem_write, s);
346
        cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory);
347
    }
348
    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4);
349
    fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16);
350
    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)(display_type == DT_NOGRAPHIC));
351
    fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
352
    fw_cfg_add_i16(s, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
353
    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
354

    
355
    vmstate_register(-1, &vmstate_fw_cfg, s);
356
    qemu_register_reset(fw_cfg_reset, s);
357

    
358
    return s;
359
}