Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ 4706ab6c

History | View | Annotate | Download (64 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserverd or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c5
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
#define ITD_BUFPTR_MULT_SH       0
202
} EHCIitd;
203

    
204
/*  EHCI spec version 1.0 Section 3.4
205
 */
206
typedef struct EHCIsitd {
207
    uint32_t next;                  // Standard next link pointer
208
    uint32_t epchar;
209
#define SITD_EPCHAR_IO              (1 << 31)
210
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
211
#define SITD_EPCHAR_PORTNUM_SH      24
212
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
213
#define SITD_EPCHAR_HUBADDR_SH      16
214
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
215
#define SITD_EPCHAR_EPNUM_SH        8
216
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
217

    
218
    uint32_t uframe;
219
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
220
#define SITD_UFRAME_CMASK_SH        8
221
#define SITD_UFRAME_SMASK_MASK      0x000000ff
222

    
223
    uint32_t results;
224
#define SITD_RESULTS_IOC              (1 << 31)
225
#define SITD_RESULTS_PGSEL            (1 << 30)
226
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
227
#define SITD_RESULTS_TYBYTES_SH       16
228
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
229
#define SITD_RESULTS_CPROGMASK_SH     8
230
#define SITD_RESULTS_ACTIVE           (1 << 7)
231
#define SITD_RESULTS_ERR              (1 << 6)
232
#define SITD_RESULTS_DBERR            (1 << 5)
233
#define SITD_RESULTS_BABBLE           (1 << 4)
234
#define SITD_RESULTS_XACTERR          (1 << 3)
235
#define SITD_RESULTS_MISSEDUF         (1 << 2)
236
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
237

    
238
    uint32_t bufptr[2];
239
#define SITD_BUFPTR_MASK              0xfffff000
240
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
241
#define SITD_BUFPTR_TPOS_MASK         0x00000018
242
#define SITD_BUFPTR_TPOS_SH           3
243
#define SITD_BUFPTR_TCNT_MASK         0x00000007
244

    
245
    uint32_t backptr;                 // Standard next link pointer
246
} EHCIsitd;
247

    
248
/*  EHCI spec version 1.0 Section 3.5
249
 */
250
typedef struct EHCIqtd {
251
    uint32_t next;                    // Standard next link pointer
252
    uint32_t altnext;                 // Standard next link pointer
253
    uint32_t token;
254
#define QTD_TOKEN_DTOGGLE             (1 << 31)
255
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
256
#define QTD_TOKEN_TBYTES_SH           16
257
#define QTD_TOKEN_IOC                 (1 << 15)
258
#define QTD_TOKEN_CPAGE_MASK          0x00007000
259
#define QTD_TOKEN_CPAGE_SH            12
260
#define QTD_TOKEN_CERR_MASK           0x00000c00
261
#define QTD_TOKEN_CERR_SH             10
262
#define QTD_TOKEN_PID_MASK            0x00000300
263
#define QTD_TOKEN_PID_SH              8
264
#define QTD_TOKEN_ACTIVE              (1 << 7)
265
#define QTD_TOKEN_HALT                (1 << 6)
266
#define QTD_TOKEN_DBERR               (1 << 5)
267
#define QTD_TOKEN_BABBLE              (1 << 4)
268
#define QTD_TOKEN_XACTERR             (1 << 3)
269
#define QTD_TOKEN_MISSEDUF            (1 << 2)
270
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
271
#define QTD_TOKEN_PING                (1 << 0)
272

    
273
    uint32_t bufptr[5];               // Standard buffer pointer
274
#define QTD_BUFPTR_MASK               0xfffff000
275
} EHCIqtd;
276

    
277
/*  EHCI spec version 1.0 Section 3.6
278
 */
279
typedef struct EHCIqh {
280
    uint32_t next;                    // Standard next link pointer
281

    
282
    /* endpoint characteristics */
283
    uint32_t epchar;
284
#define QH_EPCHAR_RL_MASK             0xf0000000
285
#define QH_EPCHAR_RL_SH               28
286
#define QH_EPCHAR_C                   (1 << 27)
287
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
288
#define QH_EPCHAR_MPLEN_SH            16
289
#define QH_EPCHAR_H                   (1 << 15)
290
#define QH_EPCHAR_DTC                 (1 << 14)
291
#define QH_EPCHAR_EPS_MASK            0x00003000
292
#define QH_EPCHAR_EPS_SH              12
293
#define EHCI_QH_EPS_FULL              0
294
#define EHCI_QH_EPS_LOW               1
295
#define EHCI_QH_EPS_HIGH              2
296
#define EHCI_QH_EPS_RESERVED          3
297

    
298
#define QH_EPCHAR_EP_MASK             0x00000f00
299
#define QH_EPCHAR_EP_SH               8
300
#define QH_EPCHAR_I                   (1 << 7)
301
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
302
#define QH_EPCHAR_DEVADDR_SH          0
303

    
304
    /* endpoint capabilities */
305
    uint32_t epcap;
306
#define QH_EPCAP_MULT_MASK            0xc0000000
307
#define QH_EPCAP_MULT_SH              30
308
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
309
#define QH_EPCAP_PORTNUM_SH           23
310
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
311
#define QH_EPCAP_HUBADDR_SH           16
312
#define QH_EPCAP_CMASK_MASK           0x0000ff00
313
#define QH_EPCAP_CMASK_SH             8
314
#define QH_EPCAP_SMASK_MASK           0x000000ff
315
#define QH_EPCAP_SMASK_SH             0
316

    
317
    uint32_t current_qtd;             // Standard next link pointer
318
    uint32_t next_qtd;                // Standard next link pointer
319
    uint32_t altnext_qtd;
320
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
321
#define QH_ALTNEXT_NAKCNT_SH          1
322

    
323
    uint32_t token;                   // Same as QTD token
324
    uint32_t bufptr[5];               // Standard buffer pointer
325
#define BUFPTR_CPROGMASK_MASK         0x000000ff
326
#define BUFPTR_FRAMETAG_MASK          0x0000001f
327
#define BUFPTR_SBYTES_MASK            0x00000fe0
328
#define BUFPTR_SBYTES_SH              5
329
} EHCIqh;
330

    
331
/*  EHCI spec version 1.0 Section 3.7
332
 */
333
typedef struct EHCIfstn {
334
    uint32_t next;                    // Standard next link pointer
335
    uint32_t backptr;                 // Standard next link pointer
336
} EHCIfstn;
337

    
338
typedef struct EHCIQueue EHCIQueue;
339
typedef struct EHCIState EHCIState;
340

    
341
enum async_state {
342
    EHCI_ASYNC_NONE = 0,
343
    EHCI_ASYNC_INFLIGHT,
344
    EHCI_ASYNC_FINISHED,
345
};
346

    
347
struct EHCIQueue {
348
    EHCIState *ehci;
349
    QTAILQ_ENTRY(EHCIQueue) next;
350
    bool async_schedule;
351
    uint32_t seen;
352
    uint64_t ts;
353

    
354
    /* cached data from guest - needs to be flushed
355
     * when guest removes an entry (doorbell, handshake sequence)
356
     */
357
    EHCIqh qh;             // copy of current QH (being worked on)
358
    uint32_t qhaddr;       // address QH read from
359
    EHCIqtd qtd;           // copy of current QTD (being worked on)
360
    uint32_t qtdaddr;      // address QTD read from
361

    
362
    USBPacket packet;
363
    uint8_t buffer[BUFF_SIZE];
364
    int pid;
365
    uint32_t tbytes;
366
    enum async_state async;
367
    int usb_status;
368
};
369

    
370
struct EHCIState {
371
    PCIDevice dev;
372
    USBBus bus;
373
    qemu_irq irq;
374
    target_phys_addr_t mem_base;
375
    int mem;
376
    int num_ports;
377

    
378
    /* properties */
379
    uint32_t freq;
380
    uint32_t maxframes;
381

    
382
    /*
383
     *  EHCI spec version 1.0 Section 2.3
384
     *  Host Controller Operational Registers
385
     */
386
    union {
387
        uint8_t mmio[MMIO_SIZE];
388
        struct {
389
            uint8_t cap[OPREGBASE];
390
            uint32_t usbcmd;
391
            uint32_t usbsts;
392
            uint32_t usbintr;
393
            uint32_t frindex;
394
            uint32_t ctrldssegment;
395
            uint32_t periodiclistbase;
396
            uint32_t asynclistaddr;
397
            uint32_t notused[9];
398
            uint32_t configflag;
399
            uint32_t portsc[NB_PORTS];
400
        };
401
    };
402

    
403
    /*
404
     *  Internal states, shadow registers, etc
405
     */
406
    uint32_t sofv;
407
    QEMUTimer *frame_timer;
408
    int attach_poll_counter;
409
    int astate;                        // Current state in asynchronous schedule
410
    int pstate;                        // Current state in periodic schedule
411
    USBPort ports[NB_PORTS];
412
    uint32_t usbsts_pending;
413
    QTAILQ_HEAD(, EHCIQueue) queues;
414

    
415
    uint32_t a_fetch_addr;   // which address to look at next
416
    uint32_t p_fetch_addr;   // which address to look at next
417

    
418
    USBPacket ipacket;
419
    uint8_t ibuffer[BUFF_SIZE];
420
    int isoch_pause;
421

    
422
    uint64_t last_run_ns;
423
};
424

    
425
#define SET_LAST_RUN_CLOCK(s) \
426
    (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
427

    
428
/* nifty macros from Arnon's EHCI version  */
429
#define get_field(data, field) \
430
    (((data) & field##_MASK) >> field##_SH)
431

    
432
#define set_field(data, newval, field) do { \
433
    uint32_t val = *data; \
434
    val &= ~ field##_MASK; \
435
    val |= ((newval) << field##_SH) & field##_MASK; \
436
    *data = val; \
437
    } while(0)
438

    
439
static const char *ehci_state_names[] = {
440
    [ EST_INACTIVE ]     = "INACTIVE",
441
    [ EST_ACTIVE ]       = "ACTIVE",
442
    [ EST_EXECUTING ]    = "EXECUTING",
443
    [ EST_SLEEPING ]     = "SLEEPING",
444
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
445
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
446
    [ EST_FETCHQH ]      = "FETCH QH",
447
    [ EST_FETCHITD ]     = "FETCH ITD",
448
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
449
    [ EST_FETCHQTD ]     = "FETCH QTD",
450
    [ EST_EXECUTE ]      = "EXECUTE",
451
    [ EST_WRITEBACK ]    = "WRITEBACK",
452
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
453
};
454

    
455
static const char *ehci_mmio_names[] = {
456
    [ CAPLENGTH ]        = "CAPLENGTH",
457
    [ HCIVERSION ]       = "HCIVERSION",
458
    [ HCSPARAMS ]        = "HCSPARAMS",
459
    [ HCCPARAMS ]        = "HCCPARAMS",
460
    [ USBCMD ]           = "USBCMD",
461
    [ USBSTS ]           = "USBSTS",
462
    [ USBINTR ]          = "USBINTR",
463
    [ FRINDEX ]          = "FRINDEX",
464
    [ PERIODICLISTBASE ] = "P-LIST BASE",
465
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
466
    [ PORTSC_BEGIN ]     = "PORTSC #0",
467
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
468
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
469
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
470
    [ CONFIGFLAG ]       = "CONFIGFLAG",
471
};
472

    
473
static const char *nr2str(const char **n, size_t len, uint32_t nr)
474
{
475
    if (nr < len && n[nr] != NULL) {
476
        return n[nr];
477
    } else {
478
        return "unknown";
479
    }
480
}
481

    
482
static const char *state2str(uint32_t state)
483
{
484
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
485
}
486

    
487
static const char *addr2str(target_phys_addr_t addr)
488
{
489
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
490
}
491

    
492
static void ehci_trace_usbsts(uint32_t mask, int state)
493
{
494
    /* interrupts */
495
    if (mask & USBSTS_INT) {
496
        trace_usb_ehci_usbsts("INT", state);
497
    }
498
    if (mask & USBSTS_ERRINT) {
499
        trace_usb_ehci_usbsts("ERRINT", state);
500
    }
501
    if (mask & USBSTS_PCD) {
502
        trace_usb_ehci_usbsts("PCD", state);
503
    }
504
    if (mask & USBSTS_FLR) {
505
        trace_usb_ehci_usbsts("FLR", state);
506
    }
507
    if (mask & USBSTS_HSE) {
508
        trace_usb_ehci_usbsts("HSE", state);
509
    }
510
    if (mask & USBSTS_IAA) {
511
        trace_usb_ehci_usbsts("IAA", state);
512
    }
513

    
514
    /* status */
515
    if (mask & USBSTS_HALT) {
516
        trace_usb_ehci_usbsts("HALT", state);
517
    }
518
    if (mask & USBSTS_REC) {
519
        trace_usb_ehci_usbsts("REC", state);
520
    }
521
    if (mask & USBSTS_PSS) {
522
        trace_usb_ehci_usbsts("PSS", state);
523
    }
524
    if (mask & USBSTS_ASS) {
525
        trace_usb_ehci_usbsts("ASS", state);
526
    }
527
}
528

    
529
static inline void ehci_set_usbsts(EHCIState *s, int mask)
530
{
531
    if ((s->usbsts & mask) == mask) {
532
        return;
533
    }
534
    ehci_trace_usbsts(mask, 1);
535
    s->usbsts |= mask;
536
}
537

    
538
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
539
{
540
    if ((s->usbsts & mask) == 0) {
541
        return;
542
    }
543
    ehci_trace_usbsts(mask, 0);
544
    s->usbsts &= ~mask;
545
}
546

    
547
static inline void ehci_set_interrupt(EHCIState *s, int intr)
548
{
549
    int level = 0;
550

    
551
    // TODO honour interrupt threshold requests
552

    
553
    ehci_set_usbsts(s, intr);
554

    
555
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
556
        level = 1;
557
    }
558

    
559
    qemu_set_irq(s->irq, level);
560
}
561

    
562
static inline void ehci_record_interrupt(EHCIState *s, int intr)
563
{
564
    s->usbsts_pending |= intr;
565
}
566

    
567
static inline void ehci_commit_interrupt(EHCIState *s)
568
{
569
    if (!s->usbsts_pending) {
570
        return;
571
    }
572
    ehci_set_interrupt(s, s->usbsts_pending);
573
    s->usbsts_pending = 0;
574
}
575

    
576
static void ehci_set_state(EHCIState *s, int async, int state)
577
{
578
    if (async) {
579
        trace_usb_ehci_state("async", state2str(state));
580
        s->astate = state;
581
    } else {
582
        trace_usb_ehci_state("periodic", state2str(state));
583
        s->pstate = state;
584
    }
585
}
586

    
587
static int ehci_get_state(EHCIState *s, int async)
588
{
589
    return async ? s->astate : s->pstate;
590
}
591

    
592
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
593
{
594
    if (async) {
595
        s->a_fetch_addr = addr;
596
    } else {
597
        s->p_fetch_addr = addr;
598
    }
599
}
600

    
601
static int ehci_get_fetch_addr(EHCIState *s, int async)
602
{
603
    return async ? s->a_fetch_addr : s->p_fetch_addr;
604
}
605

    
606
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
607
{
608
    /* need three here due to argument count limits */
609
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
610
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
611
    trace_usb_ehci_qh_fields(addr,
612
                             get_field(qh->epchar, QH_EPCHAR_RL),
613
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
614
                             get_field(qh->epchar, QH_EPCHAR_EPS),
615
                             get_field(qh->epchar, QH_EPCHAR_EP),
616
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
617
    trace_usb_ehci_qh_bits(addr,
618
                           (bool)(qh->epchar & QH_EPCHAR_C),
619
                           (bool)(qh->epchar & QH_EPCHAR_H),
620
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
621
                           (bool)(qh->epchar & QH_EPCHAR_I));
622
}
623

    
624
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
625
{
626
    /* need three here due to argument count limits */
627
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
628
    trace_usb_ehci_qtd_fields(addr,
629
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
630
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
631
                              get_field(qtd->token, QTD_TOKEN_CERR),
632
                              get_field(qtd->token, QTD_TOKEN_PID));
633
    trace_usb_ehci_qtd_bits(addr,
634
                            (bool)(qtd->token & QTD_TOKEN_IOC),
635
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
636
                            (bool)(qtd->token & QTD_TOKEN_HALT),
637
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
638
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
639
}
640

    
641
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
642
{
643
    trace_usb_ehci_itd(addr, itd->next,
644
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
645
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
646
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
647
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
648
}
649

    
650
/* queue management */
651

    
652
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
653
{
654
    EHCIQueue *q;
655

    
656
    q = qemu_mallocz(sizeof(*q));
657
    q->ehci = ehci;
658
    q->async_schedule = async;
659
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
660
    trace_usb_ehci_queue_action(q, "alloc");
661
    return q;
662
}
663

    
664
static void ehci_free_queue(EHCIQueue *q)
665
{
666
    trace_usb_ehci_queue_action(q, "free");
667
    if (q->async == EHCI_ASYNC_INFLIGHT) {
668
        usb_cancel_packet(&q->packet);
669
    }
670
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
671
    qemu_free(q);
672
}
673

    
674
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
675
{
676
    EHCIQueue *q;
677

    
678
    QTAILQ_FOREACH(q, &ehci->queues, next) {
679
        if (addr == q->qhaddr) {
680
            return q;
681
        }
682
    }
683
    return NULL;
684
}
685

    
686
static void ehci_queues_rip_unused(EHCIState *ehci)
687
{
688
    EHCIQueue *q, *tmp;
689

    
690
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
691
        if (q->seen) {
692
            q->seen = 0;
693
            q->ts = ehci->last_run_ns;
694
            continue;
695
        }
696
        if (ehci->last_run_ns < q->ts + 250000000) {
697
            /* allow 0.25 sec idle */
698
            continue;
699
        }
700
        ehci_free_queue(q);
701
    }
702
}
703

    
704
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
705
{
706
    EHCIQueue *q, *tmp;
707

    
708
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
709
        if (q->packet.owner != dev) {
710
            continue;
711
        }
712
        ehci_free_queue(q);
713
    }
714
}
715

    
716
static void ehci_queues_rip_all(EHCIState *ehci)
717
{
718
    EHCIQueue *q, *tmp;
719

    
720
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
721
        ehci_free_queue(q);
722
    }
723
}
724

    
725
/* Attach or detach a device on root hub */
726

    
727
static void ehci_attach(USBPort *port)
728
{
729
    EHCIState *s = port->opaque;
730
    uint32_t *portsc = &s->portsc[port->index];
731

    
732
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
733

    
734
    *portsc |= PORTSC_CONNECT;
735
    *portsc |= PORTSC_CSC;
736

    
737
    /*
738
     *  If a high speed device is attached then we own this port(indicated
739
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
740
     *  and set an interrupt if enabled.
741
     */
742
    if ( !(*portsc & PORTSC_POWNER)) {
743
        ehci_set_interrupt(s, USBSTS_PCD);
744
    }
745
}
746

    
747
static void ehci_detach(USBPort *port)
748
{
749
    EHCIState *s = port->opaque;
750
    uint32_t *portsc = &s->portsc[port->index];
751

    
752
    trace_usb_ehci_port_detach(port->index);
753

    
754
    ehci_queues_rip_device(s, port->dev);
755

    
756
    *portsc &= ~PORTSC_CONNECT;
757
    *portsc |= PORTSC_CSC;
758

    
759
    /*
760
     *  If a high speed device is attached then we own this port(indicated
761
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
762
     *  and set an interrupt if enabled.
763
     */
764
    if ( !(*portsc & PORTSC_POWNER)) {
765
        ehci_set_interrupt(s, USBSTS_PCD);
766
    }
767
}
768

    
769
static void ehci_child_detach(USBPort *port, USBDevice *child)
770
{
771
    EHCIState *s = port->opaque;
772

    
773
    ehci_queues_rip_device(s, child);
774
}
775

    
776
/* 4.1 host controller initialization */
777
static void ehci_reset(void *opaque)
778
{
779
    EHCIState *s = opaque;
780
    int i;
781

    
782
    trace_usb_ehci_reset();
783

    
784
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
785

    
786
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
787
    s->usbsts = USBSTS_HALT;
788

    
789
    s->astate = EST_INACTIVE;
790
    s->pstate = EST_INACTIVE;
791
    s->isoch_pause = -1;
792
    s->attach_poll_counter = 0;
793

    
794
    for(i = 0; i < NB_PORTS; i++) {
795
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
796

    
797
        if (s->ports[i].dev) {
798
            usb_attach(&s->ports[i], s->ports[i].dev);
799
        }
800
    }
801
    ehci_queues_rip_all(s);
802
}
803

    
804
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
805
{
806
    EHCIState *s = ptr;
807
    uint32_t val;
808

    
809
    val = s->mmio[addr];
810

    
811
    return val;
812
}
813

    
814
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
815
{
816
    EHCIState *s = ptr;
817
    uint32_t val;
818

    
819
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
820

    
821
    return val;
822
}
823

    
824
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
825
{
826
    EHCIState *s = ptr;
827
    uint32_t val;
828

    
829
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
830
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
831

    
832
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
833
    return val;
834
}
835

    
836
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
837
{
838
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
839
    exit(1);
840
}
841

    
842
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
843
{
844
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
845
    exit(1);
846
}
847

    
848
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
849
{
850
    uint32_t *portsc = &s->portsc[port];
851
    int rwc;
852
    USBDevice *dev = s->ports[port].dev;
853

    
854
    rwc = val & PORTSC_RWC_MASK;
855
    val &= PORTSC_RO_MASK;
856

    
857
    // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
858

    
859
    *portsc &= ~rwc;
860

    
861
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
862
        trace_usb_ehci_port_reset(port, 1);
863
    }
864

    
865
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
866
        trace_usb_ehci_port_reset(port, 0);
867
        usb_attach(&s->ports[port], dev);
868

    
869
        // TODO how to handle reset of ports with no device
870
        if (dev) {
871
            usb_send_msg(dev, USB_MSG_RESET);
872
        }
873

    
874
        if (s->ports[port].dev) {
875
            *portsc &= ~PORTSC_CSC;
876
        }
877

    
878
        /*  Table 2.16 Set the enable bit(and enable bit change) to indicate
879
         *  to SW that this port has a high speed device attached
880
         *
881
         *  TODO - when to disable?
882
         */
883
        val |= PORTSC_PED;
884
        val |= PORTSC_PEDC;
885
    }
886

    
887
    *portsc &= ~PORTSC_RO_MASK;
888
    *portsc |= val;
889
}
890

    
891
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
892
{
893
    EHCIState *s = ptr;
894
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
895
    uint32_t old = *mmio;
896
    int i;
897

    
898
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
899

    
900
    /* Only aligned reads are allowed on OHCI */
901
    if (addr & 3) {
902
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
903
                TARGET_FMT_plx "\n", addr);
904
        return;
905
    }
906

    
907
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
908
        handle_port_status_write(s, (addr-PORTSC)/4, val);
909
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
910
        return;
911
    }
912

    
913
    if (addr < OPREGBASE) {
914
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
915
                TARGET_FMT_plx "\n", addr);
916
        return;
917
    }
918

    
919

    
920
    /* Do any register specific pre-write processing here.  */
921
    switch(addr) {
922
    case USBCMD:
923
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
924
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
925
            SET_LAST_RUN_CLOCK(s);
926
            ehci_clear_usbsts(s, USBSTS_HALT);
927
        }
928

    
929
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
930
            qemu_del_timer(s->frame_timer);
931
            // TODO - should finish out some stuff before setting halt
932
            ehci_set_usbsts(s, USBSTS_HALT);
933
        }
934

    
935
        if (val & USBCMD_HCRESET) {
936
            ehci_reset(s);
937
            val &= ~USBCMD_HCRESET;
938
        }
939

    
940
        /* not supporting dynamic frame list size at the moment */
941
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
942
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
943
                    val & USBCMD_FLS);
944
            val &= ~USBCMD_FLS;
945
        }
946
        break;
947

    
948
    case USBSTS:
949
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
950
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
951
        val = s->usbsts;
952
        ehci_set_interrupt(s, 0);
953
        break;
954

    
955
    case USBINTR:
956
        val &= USBINTR_MASK;
957
        break;
958

    
959
    case FRINDEX:
960
        s->sofv = val >> 3;
961
        break;
962

    
963
    case CONFIGFLAG:
964
        val &= 0x1;
965
        if (val) {
966
            for(i = 0; i < NB_PORTS; i++)
967
                s->portsc[i] &= ~PORTSC_POWNER;
968
        }
969
        break;
970

    
971
    case PERIODICLISTBASE:
972
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
973
            fprintf(stderr,
974
              "ehci: PERIODIC list base register set while periodic schedule\n"
975
              "      is enabled and HC is enabled\n");
976
        }
977
        break;
978

    
979
    case ASYNCLISTADDR:
980
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
981
            fprintf(stderr,
982
              "ehci: ASYNC list address register set while async schedule\n"
983
              "      is enabled and HC is enabled\n");
984
        }
985
        break;
986
    }
987

    
988
    *mmio = val;
989
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
990
}
991

    
992

    
993
// TODO : Put in common header file, duplication from usb-ohci.c
994

    
995
/* Get an array of dwords from main memory */
996
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
997
{
998
    int i;
999

    
1000
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1001
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
1002
        *buf = le32_to_cpu(*buf);
1003
    }
1004

    
1005
    return 1;
1006
}
1007

    
1008
/* Put an array of dwords in to main memory */
1009
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1010
{
1011
    int i;
1012

    
1013
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1014
        uint32_t tmp = cpu_to_le32(*buf);
1015
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1016
    }
1017

    
1018
    return 1;
1019
}
1020

    
1021
// 4.10.2
1022

    
1023
static int ehci_qh_do_overlay(EHCIQueue *q)
1024
{
1025
    int i;
1026
    int dtoggle;
1027
    int ping;
1028
    int eps;
1029
    int reload;
1030

    
1031
    // remember values in fields to preserve in qh after overlay
1032

    
1033
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1034
    ping    = q->qh.token & QTD_TOKEN_PING;
1035

    
1036
    q->qh.current_qtd = q->qtdaddr;
1037
    q->qh.next_qtd    = q->qtd.next;
1038
    q->qh.altnext_qtd = q->qtd.altnext;
1039
    q->qh.token       = q->qtd.token;
1040

    
1041

    
1042
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1043
    if (eps == EHCI_QH_EPS_HIGH) {
1044
        q->qh.token &= ~QTD_TOKEN_PING;
1045
        q->qh.token |= ping;
1046
    }
1047

    
1048
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1049
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1050

    
1051
    for (i = 0; i < 5; i++) {
1052
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1053
    }
1054

    
1055
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1056
        // preserve QH DT bit
1057
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1058
        q->qh.token |= dtoggle;
1059
    }
1060

    
1061
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1062
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1063

    
1064
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1065

    
1066
    return 0;
1067
}
1068

    
1069
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1070
{
1071
    int bufpos = 0;
1072
    int cpage, offset;
1073
    uint32_t head;
1074
    uint32_t tail;
1075

    
1076

    
1077
    if (!bytes) {
1078
        return 0;
1079
    }
1080

    
1081
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1082
    if (cpage > 4) {
1083
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1084
        return USB_RET_PROCERR;
1085
    }
1086

    
1087
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1088

    
1089
    do {
1090
        /* start and end of this page */
1091
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1092
        tail = head + ~QTD_BUFPTR_MASK + 1;
1093
        /* add offset into page */
1094
        head |= offset;
1095

    
1096
        if (bytes <= (tail - head)) {
1097
            tail = head + bytes;
1098
        }
1099

    
1100
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1101
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1102

    
1103
        bufpos += (tail - head);
1104
        offset += (tail - head);
1105
        bytes -= (tail - head);
1106

    
1107
        if (bytes > 0) {
1108
            cpage++;
1109
            offset = 0;
1110
        }
1111
    } while (bytes > 0);
1112

    
1113
    /* save cpage */
1114
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1115

    
1116
    /* save offset into cpage */
1117
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1118
    q->qh.bufptr[0] |= offset;
1119

    
1120
    return 0;
1121
}
1122

    
1123
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1124
{
1125
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1126

    
1127
    trace_usb_ehci_queue_action(q, "wakeup");
1128
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1129
    q->async = EHCI_ASYNC_FINISHED;
1130
    q->usb_status = packet->len;
1131
}
1132

    
1133
static void ehci_execute_complete(EHCIQueue *q)
1134
{
1135
    int c_err, reload;
1136

    
1137
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1138
    q->async = EHCI_ASYNC_NONE;
1139

    
1140
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1141
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1142

    
1143
    if (q->usb_status < 0) {
1144
err:
1145
        /* TO-DO: put this is in a function that can be invoked below as well */
1146
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1147
        c_err--;
1148
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1149

    
1150
        switch(q->usb_status) {
1151
        case USB_RET_NODEV:
1152
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1153
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1154
            break;
1155
        case USB_RET_STALL:
1156
            q->qh.token |= QTD_TOKEN_HALT;
1157
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1158
            break;
1159
        case USB_RET_NAK:
1160
            /* 4.10.3 */
1161
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1162
            if ((q->pid == USB_TOKEN_IN) && reload) {
1163
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1164
                nakcnt--;
1165
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1166
            } else if (!reload) {
1167
                return;
1168
            }
1169
            break;
1170
        case USB_RET_BABBLE:
1171
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1172
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1173
            break;
1174
        default:
1175
            /* should not be triggerable */
1176
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1177
            assert(0);
1178
            break;
1179
        }
1180
    } else {
1181
        // DPRINTF("Short packet condition\n");
1182
        // TODO check 4.12 for splits
1183

    
1184
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1185
            q->usb_status = USB_RET_BABBLE;
1186
            goto err;
1187
        }
1188

    
1189
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1190
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1191
                q->usb_status = USB_RET_PROCERR;
1192
                return;
1193
            }
1194
            q->tbytes -= q->usb_status;
1195
        } else {
1196
            q->tbytes = 0;
1197
        }
1198

    
1199
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1200
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1201
    }
1202

    
1203
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1204
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1205

    
1206
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1207
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1208
    }
1209
}
1210

    
1211
// 4.10.3
1212

    
1213
static int ehci_execute(EHCIQueue *q)
1214
{
1215
    USBPort *port;
1216
    USBDevice *dev;
1217
    int ret;
1218
    int i;
1219
    int endp;
1220
    int devadr;
1221

    
1222
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1223
        fprintf(stderr, "Attempting to execute inactive QH\n");
1224
        return USB_RET_PROCERR;
1225
    }
1226

    
1227
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1228
    if (q->tbytes > BUFF_SIZE) {
1229
        fprintf(stderr, "Request for more bytes than allowed\n");
1230
        return USB_RET_PROCERR;
1231
    }
1232

    
1233
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1234
    switch(q->pid) {
1235
        case 0: q->pid = USB_TOKEN_OUT; break;
1236
        case 1: q->pid = USB_TOKEN_IN; break;
1237
        case 2: q->pid = USB_TOKEN_SETUP; break;
1238
        default: fprintf(stderr, "bad token\n"); break;
1239
    }
1240

    
1241
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1242
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1243
        return USB_RET_PROCERR;
1244
    }
1245

    
1246
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1247
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1248

    
1249
    ret = USB_RET_NODEV;
1250

    
1251
    // TO-DO: associating device with ehci port
1252
    for(i = 0; i < NB_PORTS; i++) {
1253
        port = &q->ehci->ports[i];
1254
        dev = port->dev;
1255

    
1256
        // TODO sometime we will also need to check if we are the port owner
1257

    
1258
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1259
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1260
                    i, q->ehci->portsc[i]);
1261
            continue;
1262
        }
1263

    
1264
        q->packet.pid = q->pid;
1265
        q->packet.devaddr = devadr;
1266
        q->packet.devep = endp;
1267
        q->packet.data = q->buffer;
1268
        q->packet.len = q->tbytes;
1269

    
1270
        ret = usb_handle_packet(dev, &q->packet);
1271

    
1272
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1273
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1274
                q->packet.len, q->tbytes, endp, ret);
1275

    
1276
        if (ret != USB_RET_NODEV) {
1277
            break;
1278
        }
1279
    }
1280

    
1281
    if (ret > BUFF_SIZE) {
1282
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1283
        return USB_RET_PROCERR;
1284
    }
1285

    
1286
    return ret;
1287
}
1288

    
1289
/*  4.7.2
1290
 */
1291

    
1292
static int ehci_process_itd(EHCIState *ehci,
1293
                            EHCIitd *itd)
1294
{
1295
    USBPort *port;
1296
    USBDevice *dev;
1297
    int ret;
1298
    uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1299
    uint32_t pg, off, ptr1, ptr2, max, mult;
1300

    
1301
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1302
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1303
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1304
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1305
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1306

    
1307
    for(i = 0; i < 8; i++) {
1308
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1309
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1310
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1311
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1312
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1313
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1314

    
1315
            if (len > max * mult) {
1316
                len = max * mult;
1317
            }
1318

    
1319
            if (len > BUFF_SIZE) {
1320
                return USB_RET_PROCERR;
1321
            }
1322

    
1323
            if (off + len > 4096) {
1324
                /* transfer crosses page border */
1325
                len2 = off + len - 4096;
1326
                len1 = len - len2;
1327
            } else {
1328
                len1 = len;
1329
                len2 = 0;
1330
            }
1331

    
1332
            if (!dir) {
1333
                pid = USB_TOKEN_OUT;
1334
                trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1335
                cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1336
                if (len2) {
1337
                    trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1338
                    cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1339
                }
1340
            } else {
1341
                pid = USB_TOKEN_IN;
1342
            }
1343

    
1344
            ret = USB_RET_NODEV;
1345

    
1346
            for (j = 0; j < NB_PORTS; j++) {
1347
                port = &ehci->ports[j];
1348
                dev = port->dev;
1349

    
1350
                // TODO sometime we will also need to check if we are the port owner
1351

    
1352
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1353
                    continue;
1354
                }
1355

    
1356
                ehci->ipacket.pid = pid;
1357
                ehci->ipacket.devaddr = devaddr;
1358
                ehci->ipacket.devep = endp;
1359
                ehci->ipacket.data = ehci->ibuffer;
1360
                ehci->ipacket.len = len;
1361

    
1362
                ret = usb_handle_packet(dev, &ehci->ipacket);
1363

    
1364
                if (ret != USB_RET_NODEV) {
1365
                    break;
1366
                }
1367
            }
1368

    
1369
#if 0
1370
            /*  In isoch, there is no facility to indicate a NAK so let's
1371
             *  instead just complete a zero-byte transaction.  Setting
1372
             *  DBERR seems too draconian.
1373
             */
1374

1375
            if (ret == USB_RET_NAK) {
1376
                if (ehci->isoch_pause > 0) {
1377
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1378
                    ehci->isoch_pause--;
1379
                    return 0;
1380
                } else if (ehci->isoch_pause == -1) {
1381
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1382
                    // Pause frindex for up to 50 msec waiting for data from
1383
                    // remote
1384
                    ehci->isoch_pause = 50;
1385
                    return 0;
1386
                } else {
1387
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1388
                    ret = 0;
1389
                }
1390
            } else {
1391
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1392
                ehci->isoch_pause = -1;
1393
            }
1394
#else
1395
            if (ret == USB_RET_NAK) {
1396
                ret = 0;
1397
            }
1398
#endif
1399

    
1400
            if (ret >= 0) {
1401
                if (!dir) {
1402
                    /* OUT */
1403
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1404
                } else {
1405
                    /* IN */
1406
                    if (len1 > ret) {
1407
                        len1 = ret;
1408
                    }
1409
                    if (len2 > ret - len1) {
1410
                        len2 = ret - len1;
1411
                    }
1412
                    if (len1) {
1413
                        trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1414
                        cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1415
                    }
1416
                    if (len2) {
1417
                        trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1418
                        cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1419
                    }
1420
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1421
                }
1422

    
1423
                if (itd->transact[i] & ITD_XACT_IOC) {
1424
                    ehci_record_interrupt(ehci, USBSTS_INT);
1425
                }
1426
            }
1427
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1428
        }
1429
    }
1430
    return 0;
1431
}
1432

    
1433
/*  This state is the entry point for asynchronous schedule
1434
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1435
 */
1436
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1437
{
1438
    EHCIqh qh;
1439
    int i = 0;
1440
    int again = 0;
1441
    uint32_t entry = ehci->asynclistaddr;
1442

    
1443
    /* set reclamation flag at start event (4.8.6) */
1444
    if (async) {
1445
        ehci_set_usbsts(ehci, USBSTS_REC);
1446
    }
1447

    
1448
    ehci_queues_rip_unused(ehci);
1449

    
1450
    /*  Find the head of the list (4.9.1.1) */
1451
    for(i = 0; i < MAX_QH; i++) {
1452
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1453
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1454

    
1455
        if (qh.epchar & QH_EPCHAR_H) {
1456
            if (async) {
1457
                entry |= (NLPTR_TYPE_QH << 1);
1458
            }
1459

    
1460
            ehci_set_fetch_addr(ehci, async, entry);
1461
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1462
            again = 1;
1463
            goto out;
1464
        }
1465

    
1466
        entry = qh.next;
1467
        if (entry == ehci->asynclistaddr) {
1468
            break;
1469
        }
1470
    }
1471

    
1472
    /* no head found for list. */
1473

    
1474
    ehci_set_state(ehci, async, EST_ACTIVE);
1475

    
1476
out:
1477
    return again;
1478
}
1479

    
1480

    
1481
/*  This state is the entry point for periodic schedule processing as
1482
 *  well as being a continuation state for async processing.
1483
 */
1484
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1485
{
1486
    int again = 0;
1487
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1488

    
1489
    if (entry < 0x1000) {
1490
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1491
        ehci_set_state(ehci, async, EST_ACTIVE);
1492
        goto out;
1493
    }
1494

    
1495
    /* section 4.8, only QH in async schedule */
1496
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1497
        fprintf(stderr, "non queue head request in async schedule\n");
1498
        return -1;
1499
    }
1500

    
1501
    switch (NLPTR_TYPE_GET(entry)) {
1502
    case NLPTR_TYPE_QH:
1503
        ehci_set_state(ehci, async, EST_FETCHQH);
1504
        again = 1;
1505
        break;
1506

    
1507
    case NLPTR_TYPE_ITD:
1508
        ehci_set_state(ehci, async, EST_FETCHITD);
1509
        again = 1;
1510
        break;
1511

    
1512
    default:
1513
        // TODO: handle siTD and FSTN types
1514
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1515
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1516
        return -1;
1517
    }
1518

    
1519
out:
1520
    return again;
1521
}
1522

    
1523
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1524
{
1525
    uint32_t entry;
1526
    EHCIQueue *q;
1527
    int reload;
1528

    
1529
    entry = ehci_get_fetch_addr(ehci, async);
1530
    q = ehci_find_queue_by_qh(ehci, entry);
1531
    if (NULL == q) {
1532
        q = ehci_alloc_queue(ehci, async);
1533
    }
1534
    q->qhaddr = entry;
1535
    q->seen++;
1536

    
1537
    if (q->seen > 1) {
1538
        /* we are going in circles -- stop processing */
1539
        ehci_set_state(ehci, async, EST_ACTIVE);
1540
        q = NULL;
1541
        goto out;
1542
    }
1543

    
1544
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1545
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1546

    
1547
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1548
        /* I/O still in progress -- skip queue */
1549
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1550
        goto out;
1551
    }
1552
    if (q->async == EHCI_ASYNC_FINISHED) {
1553
        /* I/O finished -- continue processing queue */
1554
        trace_usb_ehci_queue_action(q, "resume");
1555
        ehci_set_state(ehci, async, EST_EXECUTING);
1556
        goto out;
1557
    }
1558

    
1559
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1560

    
1561
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1562
        if (ehci->usbsts & USBSTS_REC) {
1563
            ehci_clear_usbsts(ehci, USBSTS_REC);
1564
        } else {
1565
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1566
                       " - done processing\n", q->qhaddr);
1567
            ehci_set_state(ehci, async, EST_ACTIVE);
1568
            q = NULL;
1569
            goto out;
1570
        }
1571
    }
1572

    
1573
#if EHCI_DEBUG
1574
    if (q->qhaddr != q->qh.next) {
1575
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1576
               q->qhaddr,
1577
               q->qh.epchar & QH_EPCHAR_H,
1578
               q->qh.token & QTD_TOKEN_HALT,
1579
               q->qh.token & QTD_TOKEN_ACTIVE,
1580
               q->qh.next);
1581
    }
1582
#endif
1583

    
1584
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1585
    if (reload) {
1586
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1587
    }
1588

    
1589
    if (q->qh.token & QTD_TOKEN_HALT) {
1590
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1591

    
1592
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1593
        q->qtdaddr = q->qh.current_qtd;
1594
        ehci_set_state(ehci, async, EST_FETCHQTD);
1595

    
1596
    } else {
1597
        /*  EHCI spec version 1.0 Section 4.10.2 */
1598
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1599
    }
1600

    
1601
out:
1602
    return q;
1603
}
1604

    
1605
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1606
{
1607
    uint32_t entry;
1608
    EHCIitd itd;
1609

    
1610
    assert(!async);
1611
    entry = ehci_get_fetch_addr(ehci, async);
1612

    
1613
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1614
               sizeof(EHCIitd) >> 2);
1615
    ehci_trace_itd(ehci, entry, &itd);
1616

    
1617
    if (ehci_process_itd(ehci, &itd) != 0) {
1618
        return -1;
1619
    }
1620

    
1621
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1622
                sizeof(EHCIitd) >> 2);
1623
    ehci_set_fetch_addr(ehci, async, itd.next);
1624
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1625

    
1626
    return 1;
1627
}
1628

    
1629
/* Section 4.10.2 - paragraph 3 */
1630
static int ehci_state_advqueue(EHCIQueue *q, int async)
1631
{
1632
#if 0
1633
    /* TO-DO: 4.10.2 - paragraph 2
1634
     * if I-bit is set to 1 and QH is not active
1635
     * go to horizontal QH
1636
     */
1637
    if (I-bit set) {
1638
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1639
        goto out;
1640
    }
1641
#endif
1642

    
1643
    /*
1644
     * want data and alt-next qTD is valid
1645
     */
1646
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1647
        (q->qh.altnext_qtd > 0x1000) &&
1648
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1649
        q->qtdaddr = q->qh.altnext_qtd;
1650
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1651

    
1652
    /*
1653
     *  next qTD is valid
1654
     */
1655
    } else if ((q->qh.next_qtd > 0x1000) &&
1656
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1657
        q->qtdaddr = q->qh.next_qtd;
1658
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1659

    
1660
    /*
1661
     *  no valid qTD, try next QH
1662
     */
1663
    } else {
1664
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1665
    }
1666

    
1667
    return 1;
1668
}
1669

    
1670
/* Section 4.10.2 - paragraph 4 */
1671
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1672
{
1673
    int again = 0;
1674

    
1675
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1676
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1677

    
1678
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1679
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1680
        again = 1;
1681
    } else {
1682
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1683
        again = 1;
1684
    }
1685

    
1686
    return again;
1687
}
1688

    
1689
static int ehci_state_horizqh(EHCIQueue *q, int async)
1690
{
1691
    int again = 0;
1692

    
1693
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1694
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1695
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1696
        again = 1;
1697
    } else {
1698
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1699
    }
1700

    
1701
    return again;
1702
}
1703

    
1704
/*
1705
 *  Write the qh back to guest physical memory.  This step isn't
1706
 *  in the EHCI spec but we need to do it since we don't share
1707
 *  physical memory with our guest VM.
1708
 *
1709
 *  The first three dwords are read-only for the EHCI, so skip them
1710
 *  when writing back the qh.
1711
 */
1712
static void ehci_flush_qh(EHCIQueue *q)
1713
{
1714
    uint32_t *qh = (uint32_t *) &q->qh;
1715
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1716
    uint32_t addr = NLPTR_GET(q->qhaddr);
1717

    
1718
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1719
}
1720

    
1721
static int ehci_state_execute(EHCIQueue *q, int async)
1722
{
1723
    int again = 0;
1724
    int reload, nakcnt;
1725
    int smask;
1726

    
1727
    if (ehci_qh_do_overlay(q) != 0) {
1728
        return -1;
1729
    }
1730

    
1731
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1732

    
1733
    if (!smask) {
1734
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1735
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1736
        if (reload && !nakcnt) {
1737
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1738
            again = 1;
1739
            goto out;
1740
        }
1741
    }
1742

    
1743
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1744
    // TODO write back ptr to async list when done or out of time
1745
    // TODO Windows does not seem to ever set the MULT field
1746

    
1747
    if (!async) {
1748
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1749
        if (!transactCtr) {
1750
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1751
            again = 1;
1752
            goto out;
1753
        }
1754
    }
1755

    
1756
    if (async) {
1757
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1758
    }
1759

    
1760
    q->usb_status = ehci_execute(q);
1761
    if (q->usb_status == USB_RET_PROCERR) {
1762
        again = -1;
1763
        goto out;
1764
    }
1765
    if (q->usb_status == USB_RET_ASYNC) {
1766
        ehci_flush_qh(q);
1767
        trace_usb_ehci_queue_action(q, "suspend");
1768
        q->async = EHCI_ASYNC_INFLIGHT;
1769
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1770
        again = 1;
1771
        goto out;
1772
    }
1773

    
1774
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1775
    again = 1;
1776

    
1777
out:
1778
    return again;
1779
}
1780

    
1781
static int ehci_state_executing(EHCIQueue *q, int async)
1782
{
1783
    int again = 0;
1784
    int reload, nakcnt;
1785

    
1786
    ehci_execute_complete(q);
1787
    if (q->usb_status == USB_RET_ASYNC) {
1788
        goto out;
1789
    }
1790
    if (q->usb_status == USB_RET_PROCERR) {
1791
        again = -1;
1792
        goto out;
1793
    }
1794

    
1795
    // 4.10.3
1796
    if (!async) {
1797
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1798
        transactCtr--;
1799
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1800
        // 4.10.3, bottom of page 82, should exit this state when transaction
1801
        // counter decrements to 0
1802
    }
1803

    
1804
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1805
    if (reload) {
1806
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1807
        if (q->usb_status == USB_RET_NAK) {
1808
            if (nakcnt) {
1809
                nakcnt--;
1810
            }
1811
        } else {
1812
            nakcnt = reload;
1813
        }
1814
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1815
    }
1816

    
1817
    /* 4.10.5 */
1818
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1819
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1820
    } else {
1821
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1822
    }
1823

    
1824
    again = 1;
1825

    
1826
out:
1827
    ehci_flush_qh(q);
1828
    return again;
1829
}
1830

    
1831

    
1832
static int ehci_state_writeback(EHCIQueue *q, int async)
1833
{
1834
    int again = 0;
1835

    
1836
    /*  Write back the QTD from the QH area */
1837
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1838
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1839
                sizeof(EHCIqtd) >> 2);
1840

    
1841
    /*
1842
     * EHCI specs say go horizontal here.
1843
     *
1844
     * We can also advance the queue here for performance reasons.  We
1845
     * need to take care to only take that shortcut in case we've
1846
     * processed the qtd just written back without errors, i.e. halt
1847
     * bit is clear.
1848
     */
1849
    if (q->qh.token & QTD_TOKEN_HALT) {
1850
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1851
        again = 1;
1852
    } else {
1853
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1854
        again = 1;
1855
    }
1856
    return again;
1857
}
1858

    
1859
/*
1860
 * This is the state machine that is common to both async and periodic
1861
 */
1862

    
1863
static void ehci_advance_state(EHCIState *ehci,
1864
                               int async)
1865
{
1866
    EHCIQueue *q = NULL;
1867
    int again;
1868
    int iter = 0;
1869

    
1870
    do {
1871
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1872
            iter++;
1873
            /* if we are roaming a lot of QH without executing a qTD
1874
             * something is wrong with the linked list. TO-DO: why is
1875
             * this hack needed?
1876
             */
1877
            assert(iter < MAX_ITERATIONS);
1878
#if 0
1879
            if (iter > MAX_ITERATIONS) {
1880
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1881
                ehci_set_state(ehci, async, EST_ACTIVE);
1882
                break;
1883
            }
1884
#endif
1885
        }
1886
        switch(ehci_get_state(ehci, async)) {
1887
        case EST_WAITLISTHEAD:
1888
            again = ehci_state_waitlisthead(ehci, async);
1889
            break;
1890

    
1891
        case EST_FETCHENTRY:
1892
            again = ehci_state_fetchentry(ehci, async);
1893
            break;
1894

    
1895
        case EST_FETCHQH:
1896
            q = ehci_state_fetchqh(ehci, async);
1897
            again = q ? 1 : 0;
1898
            break;
1899

    
1900
        case EST_FETCHITD:
1901
            again = ehci_state_fetchitd(ehci, async);
1902
            break;
1903

    
1904
        case EST_ADVANCEQUEUE:
1905
            again = ehci_state_advqueue(q, async);
1906
            break;
1907

    
1908
        case EST_FETCHQTD:
1909
            again = ehci_state_fetchqtd(q, async);
1910
            break;
1911

    
1912
        case EST_HORIZONTALQH:
1913
            again = ehci_state_horizqh(q, async);
1914
            break;
1915

    
1916
        case EST_EXECUTE:
1917
            iter = 0;
1918
            again = ehci_state_execute(q, async);
1919
            break;
1920

    
1921
        case EST_EXECUTING:
1922
            assert(q != NULL);
1923
            again = ehci_state_executing(q, async);
1924
            break;
1925

    
1926
        case EST_WRITEBACK:
1927
            again = ehci_state_writeback(q, async);
1928
            break;
1929

    
1930
        default:
1931
            fprintf(stderr, "Bad state!\n");
1932
            again = -1;
1933
            assert(0);
1934
            break;
1935
        }
1936

    
1937
        if (again < 0) {
1938
            fprintf(stderr, "processing error - resetting ehci HC\n");
1939
            ehci_reset(ehci);
1940
            again = 0;
1941
            assert(0);
1942
        }
1943
    }
1944
    while (again);
1945

    
1946
    ehci_commit_interrupt(ehci);
1947
}
1948

    
1949
static void ehci_advance_async_state(EHCIState *ehci)
1950
{
1951
    int async = 1;
1952

    
1953
    switch(ehci_get_state(ehci, async)) {
1954
    case EST_INACTIVE:
1955
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1956
            break;
1957
        }
1958
        ehci_set_usbsts(ehci, USBSTS_ASS);
1959
        ehci_set_state(ehci, async, EST_ACTIVE);
1960
        // No break, fall through to ACTIVE
1961

    
1962
    case EST_ACTIVE:
1963
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1964
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1965
            ehci_set_state(ehci, async, EST_INACTIVE);
1966
            break;
1967
        }
1968

    
1969
        /* If the doorbell is set, the guest wants to make a change to the
1970
         * schedule. The host controller needs to release cached data.
1971
         * (section 4.8.2)
1972
         */
1973
        if (ehci->usbcmd & USBCMD_IAAD) {
1974
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1975
            ehci->usbcmd &= ~USBCMD_IAAD;
1976
            ehci_set_interrupt(ehci, USBSTS_IAA);
1977
            break;
1978
        }
1979

    
1980
        /* make sure guest has acknowledged */
1981
        /* TO-DO: is this really needed? */
1982
        if (ehci->usbsts & USBSTS_IAA) {
1983
            DPRINTF("IAA status bit still set.\n");
1984
            break;
1985
        }
1986

    
1987
        /* check that address register has been set */
1988
        if (ehci->asynclistaddr == 0) {
1989
            break;
1990
        }
1991

    
1992
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1993
        ehci_advance_state(ehci, async);
1994
        break;
1995

    
1996
    default:
1997
        /* this should only be due to a developer mistake */
1998
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1999
                "Resetting to active\n", ehci->astate);
2000
        assert(0);
2001
    }
2002
}
2003

    
2004
static void ehci_advance_periodic_state(EHCIState *ehci)
2005
{
2006
    uint32_t entry;
2007
    uint32_t list;
2008
    int async = 0;
2009

    
2010
    // 4.6
2011

    
2012
    switch(ehci_get_state(ehci, async)) {
2013
    case EST_INACTIVE:
2014
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2015
            ehci_set_usbsts(ehci, USBSTS_PSS);
2016
            ehci_set_state(ehci, async, EST_ACTIVE);
2017
            // No break, fall through to ACTIVE
2018
        } else
2019
            break;
2020

    
2021
    case EST_ACTIVE:
2022
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2023
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2024
            ehci_set_state(ehci, async, EST_INACTIVE);
2025
            break;
2026
        }
2027

    
2028
        list = ehci->periodiclistbase & 0xfffff000;
2029
        /* check that register has been set */
2030
        if (list == 0) {
2031
            break;
2032
        }
2033
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2034

    
2035
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2036
        entry = le32_to_cpu(entry);
2037

    
2038
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2039
                ehci->frindex / 8, list, entry);
2040
        ehci_set_fetch_addr(ehci, async,entry);
2041
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2042
        ehci_advance_state(ehci, async);
2043
        break;
2044

    
2045
    default:
2046
        /* this should only be due to a developer mistake */
2047
        fprintf(stderr, "ehci: Bad periodic state %d. "
2048
                "Resetting to active\n", ehci->pstate);
2049
        assert(0);
2050
    }
2051
}
2052

    
2053
static void ehci_frame_timer(void *opaque)
2054
{
2055
    EHCIState *ehci = opaque;
2056
    int64_t expire_time, t_now;
2057
    uint64_t ns_elapsed;
2058
    int frames;
2059
    int i;
2060
    int skipped_frames = 0;
2061

    
2062
    t_now = qemu_get_clock_ns(vm_clock);
2063
    expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2064

    
2065
    ns_elapsed = t_now - ehci->last_run_ns;
2066
    frames = ns_elapsed / FRAME_TIMER_NS;
2067

    
2068
    for (i = 0; i < frames; i++) {
2069
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2070
            if (ehci->isoch_pause <= 0) {
2071
                ehci->frindex += 8;
2072
            }
2073

    
2074
            if (ehci->frindex > 0x00001fff) {
2075
                ehci->frindex = 0;
2076
                ehci_set_interrupt(ehci, USBSTS_FLR);
2077
            }
2078

    
2079
            ehci->sofv = (ehci->frindex - 1) >> 3;
2080
            ehci->sofv &= 0x000003ff;
2081
        }
2082

    
2083
        if (frames - i > ehci->maxframes) {
2084
            skipped_frames++;
2085
        } else {
2086
            ehci_advance_periodic_state(ehci);
2087
        }
2088

    
2089
        ehci->last_run_ns += FRAME_TIMER_NS;
2090
    }
2091

    
2092
#if 0
2093
    if (skipped_frames) {
2094
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2095
    }
2096
#endif
2097

    
2098
    /*  Async is not inside loop since it executes everything it can once
2099
     *  called
2100
     */
2101
    ehci_advance_async_state(ehci);
2102

    
2103
    qemu_mod_timer(ehci->frame_timer, expire_time);
2104
}
2105

    
2106
static CPUReadMemoryFunc *ehci_readfn[3]={
2107
    ehci_mem_readb,
2108
    ehci_mem_readw,
2109
    ehci_mem_readl
2110
};
2111

    
2112
static CPUWriteMemoryFunc *ehci_writefn[3]={
2113
    ehci_mem_writeb,
2114
    ehci_mem_writew,
2115
    ehci_mem_writel
2116
};
2117

    
2118
static void ehci_map(PCIDevice *pci_dev, int region_num,
2119
                     pcibus_t addr, pcibus_t size, int type)
2120
{
2121
    EHCIState *s =(EHCIState *)pci_dev;
2122

    
2123
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2124
            region_num, addr, size, s->mem);
2125
    s->mem_base = addr;
2126
    cpu_register_physical_memory(addr, size, s->mem);
2127
}
2128

    
2129
static int usb_ehci_initfn(PCIDevice *dev);
2130

    
2131
static USBPortOps ehci_port_ops = {
2132
    .attach = ehci_attach,
2133
    .detach = ehci_detach,
2134
    .child_detach = ehci_child_detach,
2135
    .complete = ehci_async_complete_packet,
2136
};
2137

    
2138
static USBBusOps ehci_bus_ops = {
2139
};
2140

    
2141
static PCIDeviceInfo ehci_info = {
2142
    .qdev.name    = "usb-ehci",
2143
    .qdev.size    = sizeof(EHCIState),
2144
    .init         = usb_ehci_initfn,
2145
    .vendor_id    = PCI_VENDOR_ID_INTEL,
2146
    .device_id    = PCI_DEVICE_ID_INTEL_82801D,
2147
    .revision     = 0x10,
2148
    .class_id     = PCI_CLASS_SERIAL_USB,
2149
    .qdev.props   = (Property[]) {
2150
        DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2151
        DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2152
        DEFINE_PROP_END_OF_LIST(),
2153
    },
2154
};
2155

    
2156
static int usb_ehci_initfn(PCIDevice *dev)
2157
{
2158
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2159
    uint8_t *pci_conf = s->dev.config;
2160
    int i;
2161

    
2162
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2163

    
2164
    /* capabilities pointer */
2165
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2166
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2167

    
2168
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2169
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2170
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2171

    
2172
    // pci_conf[0x50] = 0x01; // power management caps
2173

    
2174
    pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2175
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2176
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2177

    
2178
    pci_conf[0x64] = 0x00;
2179
    pci_conf[0x65] = 0x00;
2180
    pci_conf[0x66] = 0x00;
2181
    pci_conf[0x67] = 0x00;
2182
    pci_conf[0x68] = 0x01;
2183
    pci_conf[0x69] = 0x00;
2184
    pci_conf[0x6a] = 0x00;
2185
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2186
    pci_conf[0x6c] = 0x00;
2187
    pci_conf[0x6d] = 0x00;
2188
    pci_conf[0x6e] = 0x00;
2189
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2190

    
2191
    // 2.2 host controller interface version
2192
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2193
    s->mmio[0x01] = 0x00;
2194
    s->mmio[0x02] = 0x00;
2195
    s->mmio[0x03] = 0x01;        // HC version
2196
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2197
    s->mmio[0x05] = 0x00;        // No companion ports at present
2198
    s->mmio[0x06] = 0x00;
2199
    s->mmio[0x07] = 0x00;
2200
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2201
    s->mmio[0x09] = 0x68;        // EECP
2202
    s->mmio[0x0a] = 0x00;
2203
    s->mmio[0x0b] = 0x00;
2204

    
2205
    s->irq = s->dev.irq[3];
2206

    
2207
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2208
    for(i = 0; i < NB_PORTS; i++) {
2209
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2210
                          USB_SPEED_MASK_HIGH);
2211
        s->ports[i].dev = 0;
2212
    }
2213

    
2214
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2215
    QTAILQ_INIT(&s->queues);
2216

    
2217
    qemu_register_reset(ehci_reset, s);
2218

    
2219
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2220
                                    DEVICE_LITTLE_ENDIAN);
2221

    
2222
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2223
                                                            ehci_map);
2224

    
2225
    fprintf(stderr, "*** EHCI support is under development ***\n");
2226

    
2227
    return 0;
2228
}
2229

    
2230
static void ehci_register(void)
2231
{
2232
    pci_qdev_register(&ehci_info);
2233
}
2234
device_init(ehci_register);
2235

    
2236
/*
2237
 * vim: expandtab ts=4
2238
 */