Statistics
| Branch: | Revision:

root / cpu-exec.c @ 47103572

History | View | Annotate | Download (48.1 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181
#else
182
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
183
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184
        | env->psrs;
185
#endif
186
    cs_base = env->npc;
187
    pc = env->pc;
188
#elif defined(TARGET_PPC)
189
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
191
    cs_base = 0;
192
    pc = env->nip;
193
#elif defined(TARGET_MIPS)
194
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195
    cs_base = 0;
196
    pc = env->PC;
197
#elif defined(TARGET_M68K)
198
    flags = env->fpcr & M68K_FPCR_PREC;
199
    cs_base = 0;
200
    pc = env->pc;
201
#elif defined(TARGET_SH4)
202
    flags = env->sr & (SR_MD | SR_RB);
203
    cs_base = 0;         /* XXXXX */
204
    pc = env->pc;
205
#else
206
#error unsupported CPU
207
#endif
208
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210
                         tb->flags != flags, 0)) {
211
        tb = tb_find_slow(pc, cs_base, flags);
212
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
213
           doing it in tb_find_slow */
214
        if (tb_invalidated_flag) {
215
            /* as some TB could have been invalidated because
216
               of memory exceptions while generating the code, we
217
               must recompute the hash index here */
218
            T0 = 0;
219
        }
220
    }
221
    return tb;
222
}
223

    
224

    
225
/* main execution loop */
226

    
227
int cpu_exec(CPUState *env1)
228
{
229
#define DECLARE_HOST_REGS 1
230
#include "hostregs_helper.h"
231
#if defined(TARGET_SPARC)
232
#if defined(reg_REGWPTR)
233
    uint32_t *saved_regwptr;
234
#endif
235
#endif
236
#if defined(__sparc__) && !defined(HOST_SOLARIS)
237
    int saved_i7;
238
    target_ulong tmp_T0;
239
#endif
240
    int ret, interrupt_request;
241
    void (*gen_func)(void);
242
    TranslationBlock *tb;
243
    uint8_t *tc_ptr;
244

    
245
#if defined(TARGET_I386)
246
    /* handle exit of HALTED state */
247
    if (env1->hflags & HF_HALTED_MASK) {
248
        /* disable halt condition */
249
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250
            (env1->eflags & IF_MASK)) {
251
            env1->hflags &= ~HF_HALTED_MASK;
252
        } else {
253
            return EXCP_HALTED;
254
        }
255
    }
256
#elif defined(TARGET_PPC)
257
    if (env1->halted) {
258
        if (env1->msr[MSR_EE] && 
259
            (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
260
            env1->halted = 0;
261
        } else {
262
            return EXCP_HALTED;
263
        }
264
    }
265
#elif defined(TARGET_SPARC)
266
    if (env1->halted) {
267
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
268
            (env1->psret != 0)) {
269
            env1->halted = 0;
270
        } else {
271
            return EXCP_HALTED;
272
        }
273
    }
274
#elif defined(TARGET_ARM)
275
    if (env1->halted) {
276
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
277
           set.  */
278
        if (env1->interrupt_request
279
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
280
            env1->halted = 0;
281
        } else {
282
            return EXCP_HALTED;
283
        }
284
    }
285
#elif defined(TARGET_MIPS)
286
    if (env1->halted) {
287
        if (env1->interrupt_request &
288
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
289
            env1->halted = 0;
290
        } else {
291
            return EXCP_HALTED;
292
        }
293
    }
294
#endif
295

    
296
    cpu_single_env = env1; 
297

    
298
    /* first we save global registers */
299
#define SAVE_HOST_REGS 1
300
#include "hostregs_helper.h"
301
    env = env1;
302
#if defined(__sparc__) && !defined(HOST_SOLARIS)
303
    /* we also save i7 because longjmp may not restore it */
304
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
305
#endif
306

    
307
#if defined(TARGET_I386)
308
    env_to_regs();
309
    /* put eflags in CPU temporary format */
310
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
311
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
312
    CC_OP = CC_OP_EFLAGS;
313
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
314
#elif defined(TARGET_ARM)
315
#elif defined(TARGET_SPARC)
316
#if defined(reg_REGWPTR)
317
    saved_regwptr = REGWPTR;
318
#endif
319
#elif defined(TARGET_PPC)
320
#elif defined(TARGET_M68K)
321
    env->cc_op = CC_OP_FLAGS;
322
    env->cc_dest = env->sr & 0xf;
323
    env->cc_x = (env->sr >> 4) & 1;
324
#elif defined(TARGET_MIPS)
325
#elif defined(TARGET_SH4)
326
    /* XXXXX */
327
#else
328
#error unsupported target CPU
329
#endif
330
    env->exception_index = -1;
331

    
332
    /* prepare setjmp context for exception handling */
333
    for(;;) {
334
        if (setjmp(env->jmp_env) == 0) {
335
            env->current_tb = NULL;
336
            /* if an exception is pending, we execute it here */
337
            if (env->exception_index >= 0) {
338
                if (env->exception_index >= EXCP_INTERRUPT) {
339
                    /* exit request from the cpu execution loop */
340
                    ret = env->exception_index;
341
                    break;
342
                } else if (env->user_mode_only) {
343
                    /* if user mode only, we simulate a fake exception
344
                       which will be handled outside the cpu execution
345
                       loop */
346
#if defined(TARGET_I386)
347
                    do_interrupt_user(env->exception_index, 
348
                                      env->exception_is_int, 
349
                                      env->error_code, 
350
                                      env->exception_next_eip);
351
#endif
352
                    ret = env->exception_index;
353
                    break;
354
                } else {
355
#if defined(TARGET_I386)
356
                    /* simulate a real cpu exception. On i386, it can
357
                       trigger new exceptions, but we do not handle
358
                       double or triple faults yet. */
359
                    do_interrupt(env->exception_index, 
360
                                 env->exception_is_int, 
361
                                 env->error_code, 
362
                                 env->exception_next_eip, 0);
363
#elif defined(TARGET_PPC)
364
                    do_interrupt(env);
365
#elif defined(TARGET_MIPS)
366
                    do_interrupt(env);
367
#elif defined(TARGET_SPARC)
368
                    do_interrupt(env->exception_index);
369
#elif defined(TARGET_ARM)
370
                    do_interrupt(env);
371
#elif defined(TARGET_SH4)
372
                    do_interrupt(env);
373
#endif
374
                }
375
                env->exception_index = -1;
376
            } 
377
#ifdef USE_KQEMU
378
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
379
                int ret;
380
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
381
                ret = kqemu_cpu_exec(env);
382
                /* put eflags in CPU temporary format */
383
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
384
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
385
                CC_OP = CC_OP_EFLAGS;
386
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
387
                if (ret == 1) {
388
                    /* exception */
389
                    longjmp(env->jmp_env, 1);
390
                } else if (ret == 2) {
391
                    /* softmmu execution needed */
392
                } else {
393
                    if (env->interrupt_request != 0) {
394
                        /* hardware interrupt will be executed just after */
395
                    } else {
396
                        /* otherwise, we restart */
397
                        longjmp(env->jmp_env, 1);
398
                    }
399
                }
400
            }
401
#endif
402

    
403
            T0 = 0; /* force lookup of first TB */
404
            for(;;) {
405
#if defined(__sparc__) && !defined(HOST_SOLARIS)
406
                /* g1 can be modified by some libc? functions */ 
407
                tmp_T0 = T0;
408
#endif            
409
                interrupt_request = env->interrupt_request;
410
                if (__builtin_expect(interrupt_request, 0)) {
411
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
412
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
413
                        env->exception_index = EXCP_DEBUG;
414
                        cpu_loop_exit();
415
                    }
416
#if defined(TARGET_I386)
417
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
418
                        !(env->hflags & HF_SMM_MASK)) {
419
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
420
                        do_smm_enter();
421
#if defined(__sparc__) && !defined(HOST_SOLARIS)
422
                        tmp_T0 = 0;
423
#else
424
                        T0 = 0;
425
#endif
426
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
427
                        (env->eflags & IF_MASK) && 
428
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
429
                        int intno;
430
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
431
                        intno = cpu_get_pic_interrupt(env);
432
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
433
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
434
                        }
435
                        do_interrupt(intno, 0, 0, 0, 1);
436
                        /* ensure that no TB jump will be modified as
437
                           the program flow was changed */
438
#if defined(__sparc__) && !defined(HOST_SOLARIS)
439
                        tmp_T0 = 0;
440
#else
441
                        T0 = 0;
442
#endif
443
                    }
444
#elif defined(TARGET_PPC)
445
#if 0
446
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
447
                        cpu_ppc_reset(env);
448
                    }
449
#endif
450
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
451
                        if (ppc_hw_interrupt(env) == 1) {
452
                            /* Some exception was raised */
453
                            if (env->pending_interrupts == 0)
454
                                env->interrupt_request &= ~CPU_INTERRUPT_HARD;
455
#if defined(__sparc__) && !defined(HOST_SOLARIS)
456
                            tmp_T0 = 0;
457
#else
458
                            T0 = 0;
459
#endif
460
                        }
461
                    }
462
#elif defined(TARGET_MIPS)
463
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
464
                        (env->CP0_Status & (1 << CP0St_IE)) &&
465
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
466
                        !(env->hflags & MIPS_HFLAG_EXL) &&
467
                        !(env->hflags & MIPS_HFLAG_ERL) &&
468
                        !(env->hflags & MIPS_HFLAG_DM)) {
469
                        /* Raise it */
470
                        env->exception_index = EXCP_EXT_INTERRUPT;
471
                        env->error_code = 0;
472
                        do_interrupt(env);
473
#if defined(__sparc__) && !defined(HOST_SOLARIS)
474
                        tmp_T0 = 0;
475
#else
476
                        T0 = 0;
477
#endif
478
                    }
479
#elif defined(TARGET_SPARC)
480
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
481
                        (env->psret != 0)) {
482
                        int pil = env->interrupt_index & 15;
483
                        int type = env->interrupt_index & 0xf0;
484

    
485
                        if (((type == TT_EXTINT) &&
486
                             (pil == 15 || pil > env->psrpil)) ||
487
                            type != TT_EXTINT) {
488
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
489
                            do_interrupt(env->interrupt_index);
490
                            env->interrupt_index = 0;
491
#if defined(__sparc__) && !defined(HOST_SOLARIS)
492
                            tmp_T0 = 0;
493
#else
494
                            T0 = 0;
495
#endif
496
                        }
497
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
498
                        //do_interrupt(0, 0, 0, 0, 0);
499
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
500
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
501
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
502
                        env->halted = 1;
503
                        env->exception_index = EXCP_HLT;
504
                        cpu_loop_exit();
505
                    }
506
#elif defined(TARGET_ARM)
507
                    if (interrupt_request & CPU_INTERRUPT_FIQ
508
                        && !(env->uncached_cpsr & CPSR_F)) {
509
                        env->exception_index = EXCP_FIQ;
510
                        do_interrupt(env);
511
                    }
512
                    if (interrupt_request & CPU_INTERRUPT_HARD
513
                        && !(env->uncached_cpsr & CPSR_I)) {
514
                        env->exception_index = EXCP_IRQ;
515
                        do_interrupt(env);
516
                    }
517
#elif defined(TARGET_SH4)
518
                    /* XXXXX */
519
#endif
520
                   /* Don't use the cached interupt_request value,
521
                      do_interrupt may have updated the EXITTB flag. */
522
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
523
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
524
                        /* ensure that no TB jump will be modified as
525
                           the program flow was changed */
526
#if defined(__sparc__) && !defined(HOST_SOLARIS)
527
                        tmp_T0 = 0;
528
#else
529
                        T0 = 0;
530
#endif
531
                    }
532
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
533
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
534
                        env->exception_index = EXCP_INTERRUPT;
535
                        cpu_loop_exit();
536
                    }
537
                }
538
#ifdef DEBUG_EXEC
539
                if ((loglevel & CPU_LOG_TB_CPU)) {
540
#if defined(TARGET_I386)
541
                    /* restore flags in standard format */
542
#ifdef reg_EAX
543
                    env->regs[R_EAX] = EAX;
544
#endif
545
#ifdef reg_EBX
546
                    env->regs[R_EBX] = EBX;
547
#endif
548
#ifdef reg_ECX
549
                    env->regs[R_ECX] = ECX;
550
#endif
551
#ifdef reg_EDX
552
                    env->regs[R_EDX] = EDX;
553
#endif
554
#ifdef reg_ESI
555
                    env->regs[R_ESI] = ESI;
556
#endif
557
#ifdef reg_EDI
558
                    env->regs[R_EDI] = EDI;
559
#endif
560
#ifdef reg_EBP
561
                    env->regs[R_EBP] = EBP;
562
#endif
563
#ifdef reg_ESP
564
                    env->regs[R_ESP] = ESP;
565
#endif
566
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
567
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
568
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
569
#elif defined(TARGET_ARM)
570
                    cpu_dump_state(env, logfile, fprintf, 0);
571
#elif defined(TARGET_SPARC)
572
                    REGWPTR = env->regbase + (env->cwp * 16);
573
                    env->regwptr = REGWPTR;
574
                    cpu_dump_state(env, logfile, fprintf, 0);
575
#elif defined(TARGET_PPC)
576
                    cpu_dump_state(env, logfile, fprintf, 0);
577
#elif defined(TARGET_M68K)
578
                    cpu_m68k_flush_flags(env, env->cc_op);
579
                    env->cc_op = CC_OP_FLAGS;
580
                    env->sr = (env->sr & 0xffe0)
581
                              | env->cc_dest | (env->cc_x << 4);
582
                    cpu_dump_state(env, logfile, fprintf, 0);
583
#elif defined(TARGET_MIPS)
584
                    cpu_dump_state(env, logfile, fprintf, 0);
585
#elif defined(TARGET_SH4)
586
                    cpu_dump_state(env, logfile, fprintf, 0);
587
#else
588
#error unsupported target CPU 
589
#endif
590
                }
591
#endif
592
                tb = tb_find_fast();
593
#ifdef DEBUG_EXEC
594
                if ((loglevel & CPU_LOG_EXEC)) {
595
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
596
                            (long)tb->tc_ptr, tb->pc,
597
                            lookup_symbol(tb->pc));
598
                }
599
#endif
600
#if defined(__sparc__) && !defined(HOST_SOLARIS)
601
                T0 = tmp_T0;
602
#endif            
603
                /* see if we can patch the calling TB. When the TB
604
                   spans two pages, we cannot safely do a direct
605
                   jump. */
606
                {
607
                    if (T0 != 0 &&
608
#if USE_KQEMU
609
                        (env->kqemu_enabled != 2) &&
610
#endif
611
                        tb->page_addr[1] == -1
612
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
613
                    && (tb->cflags & CF_CODE_COPY) == 
614
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
615
#endif
616
                    ) {
617
                    spin_lock(&tb_lock);
618
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
619
#if defined(USE_CODE_COPY)
620
                    /* propagates the FP use info */
621
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
622
                        (tb->cflags & CF_FP_USED);
623
#endif
624
                    spin_unlock(&tb_lock);
625
                }
626
                }
627
                tc_ptr = tb->tc_ptr;
628
                env->current_tb = tb;
629
                /* execute the generated code */
630
                gen_func = (void *)tc_ptr;
631
#if defined(__sparc__)
632
                __asm__ __volatile__("call        %0\n\t"
633
                                     "mov        %%o7,%%i0"
634
                                     : /* no outputs */
635
                                     : "r" (gen_func) 
636
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
637
                                       "o0", "o1", "o2", "o3", "o4", "o5",
638
                                       "l0", "l1", "l2", "l3", "l4", "l5",
639
                                       "l6", "l7");
640
#elif defined(__arm__)
641
                asm volatile ("mov pc, %0\n\t"
642
                              ".global exec_loop\n\t"
643
                              "exec_loop:\n\t"
644
                              : /* no outputs */
645
                              : "r" (gen_func)
646
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
647
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
648
{
649
    if (!(tb->cflags & CF_CODE_COPY)) {
650
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
651
            save_native_fp_state(env);
652
        }
653
        gen_func();
654
    } else {
655
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
656
            restore_native_fp_state(env);
657
        }
658
        /* we work with native eflags */
659
        CC_SRC = cc_table[CC_OP].compute_all();
660
        CC_OP = CC_OP_EFLAGS;
661
        asm(".globl exec_loop\n"
662
            "\n"
663
            "debug1:\n"
664
            "    pushl %%ebp\n"
665
            "    fs movl %10, %9\n"
666
            "    fs movl %11, %%eax\n"
667
            "    andl $0x400, %%eax\n"
668
            "    fs orl %8, %%eax\n"
669
            "    pushl %%eax\n"
670
            "    popf\n"
671
            "    fs movl %%esp, %12\n"
672
            "    fs movl %0, %%eax\n"
673
            "    fs movl %1, %%ecx\n"
674
            "    fs movl %2, %%edx\n"
675
            "    fs movl %3, %%ebx\n"
676
            "    fs movl %4, %%esp\n"
677
            "    fs movl %5, %%ebp\n"
678
            "    fs movl %6, %%esi\n"
679
            "    fs movl %7, %%edi\n"
680
            "    fs jmp *%9\n"
681
            "exec_loop:\n"
682
            "    fs movl %%esp, %4\n"
683
            "    fs movl %12, %%esp\n"
684
            "    fs movl %%eax, %0\n"
685
            "    fs movl %%ecx, %1\n"
686
            "    fs movl %%edx, %2\n"
687
            "    fs movl %%ebx, %3\n"
688
            "    fs movl %%ebp, %5\n"
689
            "    fs movl %%esi, %6\n"
690
            "    fs movl %%edi, %7\n"
691
            "    pushf\n"
692
            "    popl %%eax\n"
693
            "    movl %%eax, %%ecx\n"
694
            "    andl $0x400, %%ecx\n"
695
            "    shrl $9, %%ecx\n"
696
            "    andl $0x8d5, %%eax\n"
697
            "    fs movl %%eax, %8\n"
698
            "    movl $1, %%eax\n"
699
            "    subl %%ecx, %%eax\n"
700
            "    fs movl %%eax, %11\n"
701
            "    fs movl %9, %%ebx\n" /* get T0 value */
702
            "    popl %%ebp\n"
703
            :
704
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
705
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
706
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
707
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
708
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
709
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
710
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
711
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
712
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
713
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
714
            "a" (gen_func),
715
            "m" (*(uint8_t *)offsetof(CPUState, df)),
716
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
717
            : "%ecx", "%edx"
718
            );
719
    }
720
}
721
#elif defined(__ia64)
722
                struct fptr {
723
                        void *ip;
724
                        void *gp;
725
                } fp;
726

    
727
                fp.ip = tc_ptr;
728
                fp.gp = code_gen_buffer + 2 * (1 << 20);
729
                (*(void (*)(void)) &fp)();
730
#else
731
                gen_func();
732
#endif
733
                env->current_tb = NULL;
734
                /* reset soft MMU for next block (it can currently
735
                   only be set by a memory fault) */
736
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
737
                if (env->hflags & HF_SOFTMMU_MASK) {
738
                    env->hflags &= ~HF_SOFTMMU_MASK;
739
                    /* do not allow linking to another block */
740
                    T0 = 0;
741
                }
742
#endif
743
#if defined(USE_KQEMU)
744
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
745
                if (kqemu_is_ok(env) &&
746
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
747
                    cpu_loop_exit();
748
                }
749
#endif
750
            }
751
        } else {
752
            env_to_regs();
753
        }
754
    } /* for(;;) */
755

    
756

    
757
#if defined(TARGET_I386)
758
#if defined(USE_CODE_COPY)
759
    if (env->native_fp_regs) {
760
        save_native_fp_state(env);
761
    }
762
#endif
763
    /* restore flags in standard format */
764
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
765
#elif defined(TARGET_ARM)
766
    /* XXX: Save/restore host fpu exception state?.  */
767
#elif defined(TARGET_SPARC)
768
#if defined(reg_REGWPTR)
769
    REGWPTR = saved_regwptr;
770
#endif
771
#elif defined(TARGET_PPC)
772
#elif defined(TARGET_M68K)
773
    cpu_m68k_flush_flags(env, env->cc_op);
774
    env->cc_op = CC_OP_FLAGS;
775
    env->sr = (env->sr & 0xffe0)
776
              | env->cc_dest | (env->cc_x << 4);
777
#elif defined(TARGET_MIPS)
778
#elif defined(TARGET_SH4)
779
    /* XXXXX */
780
#else
781
#error unsupported target CPU
782
#endif
783

    
784
    /* restore global registers */
785
#if defined(__sparc__) && !defined(HOST_SOLARIS)
786
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
787
#endif
788
#include "hostregs_helper.h"
789

    
790
    /* fail safe : never use cpu_single_env outside cpu_exec() */
791
    cpu_single_env = NULL; 
792
    return ret;
793
}
794

    
795
/* must only be called from the generated code as an exception can be
796
   generated */
797
void tb_invalidate_page_range(target_ulong start, target_ulong end)
798
{
799
    /* XXX: cannot enable it yet because it yields to MMU exception
800
       where NIP != read address on PowerPC */
801
#if 0
802
    target_ulong phys_addr;
803
    phys_addr = get_phys_addr_code(env, start);
804
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
805
#endif
806
}
807

    
808
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
809

    
810
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
811
{
812
    CPUX86State *saved_env;
813

    
814
    saved_env = env;
815
    env = s;
816
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
817
        selector &= 0xffff;
818
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
819
                               (selector << 4), 0xffff, 0);
820
    } else {
821
        load_seg(seg_reg, selector);
822
    }
823
    env = saved_env;
824
}
825

    
826
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
827
{
828
    CPUX86State *saved_env;
829

    
830
    saved_env = env;
831
    env = s;
832
    
833
    helper_fsave((target_ulong)ptr, data32);
834

    
835
    env = saved_env;
836
}
837

    
838
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
839
{
840
    CPUX86State *saved_env;
841

    
842
    saved_env = env;
843
    env = s;
844
    
845
    helper_frstor((target_ulong)ptr, data32);
846

    
847
    env = saved_env;
848
}
849

    
850
#endif /* TARGET_I386 */
851

    
852
#if !defined(CONFIG_SOFTMMU)
853

    
854
#if defined(TARGET_I386)
855

    
856
/* 'pc' is the host PC at which the exception was raised. 'address' is
857
   the effective address of the memory exception. 'is_write' is 1 if a
858
   write caused the exception and otherwise 0'. 'old_set' is the
859
   signal set which should be restored */
860
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
861
                                    int is_write, sigset_t *old_set, 
862
                                    void *puc)
863
{
864
    TranslationBlock *tb;
865
    int ret;
866

    
867
    if (cpu_single_env)
868
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
869
#if defined(DEBUG_SIGNAL)
870
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
871
                pc, address, is_write, *(unsigned long *)old_set);
872
#endif
873
    /* XXX: locking issue */
874
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
875
        return 1;
876
    }
877

    
878
    /* see if it is an MMU fault */
879
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
880
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
881
    if (ret < 0)
882
        return 0; /* not an MMU fault */
883
    if (ret == 0)
884
        return 1; /* the MMU fault was handled without causing real CPU fault */
885
    /* now we have a real cpu fault */
886
    tb = tb_find_pc(pc);
887
    if (tb) {
888
        /* the PC is inside the translated code. It means that we have
889
           a virtual CPU fault */
890
        cpu_restore_state(tb, env, pc, puc);
891
    }
892
    if (ret == 1) {
893
#if 0
894
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
895
               env->eip, env->cr[2], env->error_code);
896
#endif
897
        /* we restore the process signal mask as the sigreturn should
898
           do it (XXX: use sigsetjmp) */
899
        sigprocmask(SIG_SETMASK, old_set, NULL);
900
        raise_exception_err(env->exception_index, env->error_code);
901
    } else {
902
        /* activate soft MMU for this block */
903
        env->hflags |= HF_SOFTMMU_MASK;
904
        cpu_resume_from_signal(env, puc);
905
    }
906
    /* never comes here */
907
    return 1;
908
}
909

    
910
#elif defined(TARGET_ARM)
911
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
912
                                    int is_write, sigset_t *old_set,
913
                                    void *puc)
914
{
915
    TranslationBlock *tb;
916
    int ret;
917

    
918
    if (cpu_single_env)
919
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
920
#if defined(DEBUG_SIGNAL)
921
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
922
           pc, address, is_write, *(unsigned long *)old_set);
923
#endif
924
    /* XXX: locking issue */
925
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
926
        return 1;
927
    }
928
    /* see if it is an MMU fault */
929
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
930
    if (ret < 0)
931
        return 0; /* not an MMU fault */
932
    if (ret == 0)
933
        return 1; /* the MMU fault was handled without causing real CPU fault */
934
    /* now we have a real cpu fault */
935
    tb = tb_find_pc(pc);
936
    if (tb) {
937
        /* the PC is inside the translated code. It means that we have
938
           a virtual CPU fault */
939
        cpu_restore_state(tb, env, pc, puc);
940
    }
941
    /* we restore the process signal mask as the sigreturn should
942
       do it (XXX: use sigsetjmp) */
943
    sigprocmask(SIG_SETMASK, old_set, NULL);
944
    cpu_loop_exit();
945
}
946
#elif defined(TARGET_SPARC)
947
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
948
                                    int is_write, sigset_t *old_set,
949
                                    void *puc)
950
{
951
    TranslationBlock *tb;
952
    int ret;
953

    
954
    if (cpu_single_env)
955
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
956
#if defined(DEBUG_SIGNAL)
957
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
958
           pc, address, is_write, *(unsigned long *)old_set);
959
#endif
960
    /* XXX: locking issue */
961
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
962
        return 1;
963
    }
964
    /* see if it is an MMU fault */
965
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
966
    if (ret < 0)
967
        return 0; /* not an MMU fault */
968
    if (ret == 0)
969
        return 1; /* the MMU fault was handled without causing real CPU fault */
970
    /* now we have a real cpu fault */
971
    tb = tb_find_pc(pc);
972
    if (tb) {
973
        /* the PC is inside the translated code. It means that we have
974
           a virtual CPU fault */
975
        cpu_restore_state(tb, env, pc, puc);
976
    }
977
    /* we restore the process signal mask as the sigreturn should
978
       do it (XXX: use sigsetjmp) */
979
    sigprocmask(SIG_SETMASK, old_set, NULL);
980
    cpu_loop_exit();
981
}
982
#elif defined (TARGET_PPC)
983
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
984
                                    int is_write, sigset_t *old_set,
985
                                    void *puc)
986
{
987
    TranslationBlock *tb;
988
    int ret;
989
    
990
    if (cpu_single_env)
991
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
992
#if defined(DEBUG_SIGNAL)
993
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
994
           pc, address, is_write, *(unsigned long *)old_set);
995
#endif
996
    /* XXX: locking issue */
997
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
998
        return 1;
999
    }
1000

    
1001
    /* see if it is an MMU fault */
1002
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1003
    if (ret < 0)
1004
        return 0; /* not an MMU fault */
1005
    if (ret == 0)
1006
        return 1; /* the MMU fault was handled without causing real CPU fault */
1007

    
1008
    /* now we have a real cpu fault */
1009
    tb = tb_find_pc(pc);
1010
    if (tb) {
1011
        /* the PC is inside the translated code. It means that we have
1012
           a virtual CPU fault */
1013
        cpu_restore_state(tb, env, pc, puc);
1014
    }
1015
    if (ret == 1) {
1016
#if 0
1017
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1018
               env->nip, env->error_code, tb);
1019
#endif
1020
    /* we restore the process signal mask as the sigreturn should
1021
       do it (XXX: use sigsetjmp) */
1022
        sigprocmask(SIG_SETMASK, old_set, NULL);
1023
        do_raise_exception_err(env->exception_index, env->error_code);
1024
    } else {
1025
        /* activate soft MMU for this block */
1026
        cpu_resume_from_signal(env, puc);
1027
    }
1028
    /* never comes here */
1029
    return 1;
1030
}
1031

    
1032
#elif defined(TARGET_M68K)
1033
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1034
                                    int is_write, sigset_t *old_set,
1035
                                    void *puc)
1036
{
1037
    TranslationBlock *tb;
1038
    int ret;
1039

    
1040
    if (cpu_single_env)
1041
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1042
#if defined(DEBUG_SIGNAL)
1043
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1044
           pc, address, is_write, *(unsigned long *)old_set);
1045
#endif
1046
    /* XXX: locking issue */
1047
    if (is_write && page_unprotect(address, pc, puc)) {
1048
        return 1;
1049
    }
1050
    /* see if it is an MMU fault */
1051
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1052
    if (ret < 0)
1053
        return 0; /* not an MMU fault */
1054
    if (ret == 0)
1055
        return 1; /* the MMU fault was handled without causing real CPU fault */
1056
    /* now we have a real cpu fault */
1057
    tb = tb_find_pc(pc);
1058
    if (tb) {
1059
        /* the PC is inside the translated code. It means that we have
1060
           a virtual CPU fault */
1061
        cpu_restore_state(tb, env, pc, puc);
1062
    }
1063
    /* we restore the process signal mask as the sigreturn should
1064
       do it (XXX: use sigsetjmp) */
1065
    sigprocmask(SIG_SETMASK, old_set, NULL);
1066
    cpu_loop_exit();
1067
    /* never comes here */
1068
    return 1;
1069
}
1070

    
1071
#elif defined (TARGET_MIPS)
1072
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1073
                                    int is_write, sigset_t *old_set,
1074
                                    void *puc)
1075
{
1076
    TranslationBlock *tb;
1077
    int ret;
1078
    
1079
    if (cpu_single_env)
1080
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1081
#if defined(DEBUG_SIGNAL)
1082
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1083
           pc, address, is_write, *(unsigned long *)old_set);
1084
#endif
1085
    /* XXX: locking issue */
1086
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1087
        return 1;
1088
    }
1089

    
1090
    /* see if it is an MMU fault */
1091
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1092
    if (ret < 0)
1093
        return 0; /* not an MMU fault */
1094
    if (ret == 0)
1095
        return 1; /* the MMU fault was handled without causing real CPU fault */
1096

    
1097
    /* now we have a real cpu fault */
1098
    tb = tb_find_pc(pc);
1099
    if (tb) {
1100
        /* the PC is inside the translated code. It means that we have
1101
           a virtual CPU fault */
1102
        cpu_restore_state(tb, env, pc, puc);
1103
    }
1104
    if (ret == 1) {
1105
#if 0
1106
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1107
               env->nip, env->error_code, tb);
1108
#endif
1109
    /* we restore the process signal mask as the sigreturn should
1110
       do it (XXX: use sigsetjmp) */
1111
        sigprocmask(SIG_SETMASK, old_set, NULL);
1112
        do_raise_exception_err(env->exception_index, env->error_code);
1113
    } else {
1114
        /* activate soft MMU for this block */
1115
        cpu_resume_from_signal(env, puc);
1116
    }
1117
    /* never comes here */
1118
    return 1;
1119
}
1120

    
1121
#elif defined (TARGET_SH4)
1122
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1123
                                    int is_write, sigset_t *old_set,
1124
                                    void *puc)
1125
{
1126
    TranslationBlock *tb;
1127
    int ret;
1128
    
1129
    if (cpu_single_env)
1130
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1131
#if defined(DEBUG_SIGNAL)
1132
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1133
           pc, address, is_write, *(unsigned long *)old_set);
1134
#endif
1135
    /* XXX: locking issue */
1136
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1137
        return 1;
1138
    }
1139

    
1140
    /* see if it is an MMU fault */
1141
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1142
    if (ret < 0)
1143
        return 0; /* not an MMU fault */
1144
    if (ret == 0)
1145
        return 1; /* the MMU fault was handled without causing real CPU fault */
1146

    
1147
    /* now we have a real cpu fault */
1148
    tb = tb_find_pc(pc);
1149
    if (tb) {
1150
        /* the PC is inside the translated code. It means that we have
1151
           a virtual CPU fault */
1152
        cpu_restore_state(tb, env, pc, puc);
1153
    }
1154
#if 0
1155
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1156
               env->nip, env->error_code, tb);
1157
#endif
1158
    /* we restore the process signal mask as the sigreturn should
1159
       do it (XXX: use sigsetjmp) */
1160
    sigprocmask(SIG_SETMASK, old_set, NULL);
1161
    cpu_loop_exit();
1162
    /* never comes here */
1163
    return 1;
1164
}
1165
#else
1166
#error unsupported target CPU
1167
#endif
1168

    
1169
#if defined(__i386__)
1170

    
1171
#if defined(__APPLE__)
1172
# include <sys/ucontext.h>
1173

    
1174
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1175
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1176
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1177
#else
1178
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1179
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1180
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1181
#endif
1182

    
1183
#if defined(USE_CODE_COPY)
1184
static void cpu_send_trap(unsigned long pc, int trap, 
1185
                          struct ucontext *uc)
1186
{
1187
    TranslationBlock *tb;
1188

    
1189
    if (cpu_single_env)
1190
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1191
    /* now we have a real cpu fault */
1192
    tb = tb_find_pc(pc);
1193
    if (tb) {
1194
        /* the PC is inside the translated code. It means that we have
1195
           a virtual CPU fault */
1196
        cpu_restore_state(tb, env, pc, uc);
1197
    }
1198
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1199
    raise_exception_err(trap, env->error_code);
1200
}
1201
#endif
1202

    
1203
int cpu_signal_handler(int host_signum, void *pinfo, 
1204
                       void *puc)
1205
{
1206
    siginfo_t *info = pinfo;
1207
    struct ucontext *uc = puc;
1208
    unsigned long pc;
1209
    int trapno;
1210

    
1211
#ifndef REG_EIP
1212
/* for glibc 2.1 */
1213
#define REG_EIP    EIP
1214
#define REG_ERR    ERR
1215
#define REG_TRAPNO TRAPNO
1216
#endif
1217
    pc = EIP_sig(uc);
1218
    trapno = TRAP_sig(uc);
1219
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1220
    if (trapno == 0x00 || trapno == 0x05) {
1221
        /* send division by zero or bound exception */
1222
        cpu_send_trap(pc, trapno, uc);
1223
        return 1;
1224
    } else
1225
#endif
1226
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1227
                                 trapno == 0xe ? 
1228
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1229
                                 &uc->uc_sigmask, puc);
1230
}
1231

    
1232
#elif defined(__x86_64__)
1233

    
1234
int cpu_signal_handler(int host_signum, void *pinfo,
1235
                       void *puc)
1236
{
1237
    siginfo_t *info = pinfo;
1238
    struct ucontext *uc = puc;
1239
    unsigned long pc;
1240

    
1241
    pc = uc->uc_mcontext.gregs[REG_RIP];
1242
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1243
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1244
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1245
                             &uc->uc_sigmask, puc);
1246
}
1247

    
1248
#elif defined(__powerpc__)
1249

    
1250
/***********************************************************************
1251
 * signal context platform-specific definitions
1252
 * From Wine
1253
 */
1254
#ifdef linux
1255
/* All Registers access - only for local access */
1256
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1257
/* Gpr Registers access  */
1258
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1259
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1260
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1261
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1262
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1263
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1264
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1265
/* Float Registers access  */
1266
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1267
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1268
/* Exception Registers access */
1269
# define DAR_sig(context)                        REG_sig(dar, context)
1270
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1271
# define TRAP_sig(context)                        REG_sig(trap, context)
1272
#endif /* linux */
1273

    
1274
#ifdef __APPLE__
1275
# include <sys/ucontext.h>
1276
typedef struct ucontext SIGCONTEXT;
1277
/* All Registers access - only for local access */
1278
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1279
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1280
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1281
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1282
/* Gpr Registers access */
1283
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1284
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1285
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1286
# define CTR_sig(context)                        REG_sig(ctr, context)
1287
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1288
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1289
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1290
/* Float Registers access */
1291
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1292
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1293
/* Exception Registers access */
1294
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1295
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1296
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1297
#endif /* __APPLE__ */
1298

    
1299
int cpu_signal_handler(int host_signum, void *pinfo, 
1300
                       void *puc)
1301
{
1302
    siginfo_t *info = pinfo;
1303
    struct ucontext *uc = puc;
1304
    unsigned long pc;
1305
    int is_write;
1306

    
1307
    pc = IAR_sig(uc);
1308
    is_write = 0;
1309
#if 0
1310
    /* ppc 4xx case */
1311
    if (DSISR_sig(uc) & 0x00800000)
1312
        is_write = 1;
1313
#else
1314
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1315
        is_write = 1;
1316
#endif
1317
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1318
                             is_write, &uc->uc_sigmask, puc);
1319
}
1320

    
1321
#elif defined(__alpha__)
1322

    
1323
int cpu_signal_handler(int host_signum, void *pinfo, 
1324
                           void *puc)
1325
{
1326
    siginfo_t *info = pinfo;
1327
    struct ucontext *uc = puc;
1328
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1329
    uint32_t insn = *pc;
1330
    int is_write = 0;
1331

    
1332
    /* XXX: need kernel patch to get write flag faster */
1333
    switch (insn >> 26) {
1334
    case 0x0d: // stw
1335
    case 0x0e: // stb
1336
    case 0x0f: // stq_u
1337
    case 0x24: // stf
1338
    case 0x25: // stg
1339
    case 0x26: // sts
1340
    case 0x27: // stt
1341
    case 0x2c: // stl
1342
    case 0x2d: // stq
1343
    case 0x2e: // stl_c
1344
    case 0x2f: // stq_c
1345
        is_write = 1;
1346
    }
1347

    
1348
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1349
                             is_write, &uc->uc_sigmask, puc);
1350
}
1351
#elif defined(__sparc__)
1352

    
1353
int cpu_signal_handler(int host_signum, void *pinfo, 
1354
                       void *puc)
1355
{
1356
    siginfo_t *info = pinfo;
1357
    uint32_t *regs = (uint32_t *)(info + 1);
1358
    void *sigmask = (regs + 20);
1359
    unsigned long pc;
1360
    int is_write;
1361
    uint32_t insn;
1362
    
1363
    /* XXX: is there a standard glibc define ? */
1364
    pc = regs[1];
1365
    /* XXX: need kernel patch to get write flag faster */
1366
    is_write = 0;
1367
    insn = *(uint32_t *)pc;
1368
    if ((insn >> 30) == 3) {
1369
      switch((insn >> 19) & 0x3f) {
1370
      case 0x05: // stb
1371
      case 0x06: // sth
1372
      case 0x04: // st
1373
      case 0x07: // std
1374
      case 0x24: // stf
1375
      case 0x27: // stdf
1376
      case 0x25: // stfsr
1377
        is_write = 1;
1378
        break;
1379
      }
1380
    }
1381
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1382
                             is_write, sigmask, NULL);
1383
}
1384

    
1385
#elif defined(__arm__)
1386

    
1387
int cpu_signal_handler(int host_signum, void *pinfo, 
1388
                       void *puc)
1389
{
1390
    siginfo_t *info = pinfo;
1391
    struct ucontext *uc = puc;
1392
    unsigned long pc;
1393
    int is_write;
1394
    
1395
    pc = uc->uc_mcontext.gregs[R15];
1396
    /* XXX: compute is_write */
1397
    is_write = 0;
1398
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1399
                             is_write,
1400
                             &uc->uc_sigmask, puc);
1401
}
1402

    
1403
#elif defined(__mc68000)
1404

    
1405
int cpu_signal_handler(int host_signum, void *pinfo, 
1406
                       void *puc)
1407
{
1408
    siginfo_t *info = pinfo;
1409
    struct ucontext *uc = puc;
1410
    unsigned long pc;
1411
    int is_write;
1412
    
1413
    pc = uc->uc_mcontext.gregs[16];
1414
    /* XXX: compute is_write */
1415
    is_write = 0;
1416
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1417
                             is_write,
1418
                             &uc->uc_sigmask, puc);
1419
}
1420

    
1421
#elif defined(__ia64)
1422

    
1423
#ifndef __ISR_VALID
1424
  /* This ought to be in <bits/siginfo.h>... */
1425
# define __ISR_VALID        1
1426
#endif
1427

    
1428
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1429
{
1430
    siginfo_t *info = pinfo;
1431
    struct ucontext *uc = puc;
1432
    unsigned long ip;
1433
    int is_write = 0;
1434

    
1435
    ip = uc->uc_mcontext.sc_ip;
1436
    switch (host_signum) {
1437
      case SIGILL:
1438
      case SIGFPE:
1439
      case SIGSEGV:
1440
      case SIGBUS:
1441
      case SIGTRAP:
1442
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1443
              /* ISR.W (write-access) is bit 33:  */
1444
              is_write = (info->si_isr >> 33) & 1;
1445
          break;
1446

    
1447
      default:
1448
          break;
1449
    }
1450
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1451
                             is_write,
1452
                             &uc->uc_sigmask, puc);
1453
}
1454

    
1455
#elif defined(__s390__)
1456

    
1457
int cpu_signal_handler(int host_signum, void *pinfo, 
1458
                       void *puc)
1459
{
1460
    siginfo_t *info = pinfo;
1461
    struct ucontext *uc = puc;
1462
    unsigned long pc;
1463
    int is_write;
1464
    
1465
    pc = uc->uc_mcontext.psw.addr;
1466
    /* XXX: compute is_write */
1467
    is_write = 0;
1468
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1469
                             is_write,
1470
                             &uc->uc_sigmask, puc);
1471
}
1472

    
1473
#else
1474

    
1475
#error host CPU specific signal handler needed
1476

    
1477
#endif
1478

    
1479
#endif /* !defined(CONFIG_SOFTMMU) */