Statistics
| Branch: | Revision:

root / alpha-dis.c @ 4796f5e9

History | View | Annotate | Download (80.5 kB)

1
/* alpha-dis.c -- Disassemble Alpha AXP instructions
2
   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Richard Henderson <rth@tamu.edu>,
4
   patterned after the PPC opcode handling written by Ian Lance Taylor.
5

6
This file is part of GDB, GAS, and the GNU binutils.
7

8
GDB, GAS, and the GNU binutils are free software; you can redistribute
9
them and/or modify them under the terms of the GNU General Public
10
License as published by the Free Software Foundation; either version
11
2, or (at your option) any later version.
12

13
GDB, GAS, and the GNU binutils are distributed in the hope that they
14
will be useful, but WITHOUT ANY WARRANTY; without even the implied
15
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16
the GNU General Public License for more details.
17

18
You should have received a copy of the GNU General Public License
19
along with this file; see the file COPYING.  If not, write to the Free
20
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21
02111-1307, USA.  */
22

    
23
#include <stdio.h>
24
#include "dis-asm.h"
25

    
26
#define ATTRIBUTE_UNUSED __attribute__((unused))
27
#define _(x) x
28

    
29
/* The opcode table is an array of struct alpha_opcode.  */
30

    
31
struct alpha_opcode
32
{
33
  /* The opcode name.  */
34
  const char *name;
35

    
36
  /* The opcode itself.  Those bits which will be filled in with
37
     operands are zeroes.  */
38
  unsigned opcode;
39

    
40
  /* The opcode mask.  This is used by the disassembler.  This is a
41
     mask containing ones indicating those bits which must match the
42
     opcode field, and zeroes indicating those bits which need not
43
     match (and are presumably filled in by operands).  */
44
  unsigned mask;
45

    
46
  /* One bit flags for the opcode.  These are primarily used to
47
     indicate specific processors and environments support the
48
     instructions.  The defined values are listed below. */
49
  unsigned flags;
50

    
51
  /* An array of operand codes.  Each code is an index into the
52
     operand table.  They appear in the order which the operands must
53
     appear in assembly code, and are terminated by a zero.  */
54
  unsigned char operands[4];
55
};
56

    
57
/* The table itself is sorted by major opcode number, and is otherwise
58
   in the order in which the disassembler should consider
59
   instructions.  */
60
extern const struct alpha_opcode alpha_opcodes[];
61
extern const unsigned alpha_num_opcodes;
62

    
63
/* Values defined for the flags field of a struct alpha_opcode.  */
64

    
65
/* CPU Availability */
66
#define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
67
#define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
68
#define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
69
#define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
70
#define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
71
#define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
72
#define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
73

    
74
#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
75

    
76
/* A macro to extract the major opcode from an instruction.  */
77
#define AXP_OP(i)        (((i) >> 26) & 0x3F)
78

    
79
/* The total number of major opcodes. */
80
#define AXP_NOPS        0x40
81

    
82
 
83
/* The operands table is an array of struct alpha_operand.  */
84

    
85
struct alpha_operand
86
{
87
  /* The number of bits in the operand.  */
88
  unsigned int bits : 5;
89

    
90
  /* How far the operand is left shifted in the instruction.  */
91
  unsigned int shift : 5;
92

    
93
  /* The default relocation type for this operand.  */
94
  signed int default_reloc : 16;
95

    
96
  /* One bit syntax flags.  */
97
  unsigned int flags : 16;
98

    
99
  /* Insertion function.  This is used by the assembler.  To insert an
100
     operand value into an instruction, check this field.
101

102
     If it is NULL, execute
103
         i |= (op & ((1 << o->bits) - 1)) << o->shift;
104
     (i is the instruction which we are filling in, o is a pointer to
105
     this structure, and op is the opcode value; this assumes twos
106
     complement arithmetic).
107

108
     If this field is not NULL, then simply call it with the
109
     instruction and the operand value.  It will return the new value
110
     of the instruction.  If the ERRMSG argument is not NULL, then if
111
     the operand value is illegal, *ERRMSG will be set to a warning
112
     string (the operand will be inserted in any case).  If the
113
     operand value is legal, *ERRMSG will be unchanged (most operands
114
     can accept any value).  */
115
  unsigned (*insert) PARAMS ((unsigned instruction, int op,
116
                              const char **errmsg));
117

    
118
  /* Extraction function.  This is used by the disassembler.  To
119
     extract this operand type from an instruction, check this field.
120

121
     If it is NULL, compute
122
         op = ((i) >> o->shift) & ((1 << o->bits) - 1);
123
         if ((o->flags & AXP_OPERAND_SIGNED) != 0
124
             && (op & (1 << (o->bits - 1))) != 0)
125
           op -= 1 << o->bits;
126
     (i is the instruction, o is a pointer to this structure, and op
127
     is the result; this assumes twos complement arithmetic).
128

129
     If this field is not NULL, then simply call it with the
130
     instruction value.  It will return the value of the operand.  If
131
     the INVALID argument is not NULL, *INVALID will be set to
132
     non-zero if this operand type can not actually be extracted from
133
     this operand (i.e., the instruction does not match).  If the
134
     operand is valid, *INVALID will not be changed.  */
135
  int (*extract) PARAMS ((unsigned instruction, int *invalid));
136
};
137

    
138
/* Elements in the table are retrieved by indexing with values from
139
   the operands field of the alpha_opcodes table.  */
140

    
141
extern const struct alpha_operand alpha_operands[];
142
extern const unsigned alpha_num_operands;
143

    
144
/* Values defined for the flags field of a struct alpha_operand.  */
145

    
146
/* Mask for selecting the type for typecheck purposes */
147
#define AXP_OPERAND_TYPECHECK_MASK                                        \
148
  (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |                \
149
   AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED |         \
150
   AXP_OPERAND_UNSIGNED)
151

    
152
/* This operand does not actually exist in the assembler input.  This
153
   is used to support extended mnemonics, for which two operands fields
154
   are identical.  The assembler should call the insert function with
155
   any op value.  The disassembler should call the extract function,
156
   ignore the return value, and check the value placed in the invalid
157
   argument.  */
158
#define AXP_OPERAND_FAKE        01
159

    
160
/* The operand should be wrapped in parentheses rather than separated
161
   from the previous by a comma.  This is used for the load and store
162
   instructions which want their operands to look like "Ra,disp(Rb)".  */
163
#define AXP_OPERAND_PARENS        02
164

    
165
/* Used in combination with PARENS, this supresses the supression of
166
   the comma.  This is used for "jmp Ra,(Rb),hint".  */
167
#define AXP_OPERAND_COMMA        04
168

    
169
/* This operand names an integer register.  */
170
#define AXP_OPERAND_IR                010
171

    
172
/* This operand names a floating point register.  */
173
#define AXP_OPERAND_FPR                020
174

    
175
/* This operand is a relative branch displacement.  The disassembler
176
   prints these symbolically if possible.  */
177
#define AXP_OPERAND_RELATIVE        040
178

    
179
/* This operand takes signed values.  */
180
#define AXP_OPERAND_SIGNED        0100
181

    
182
/* This operand takes unsigned values.  This exists primarily so that
183
   a flags value of 0 can be treated as end-of-arguments.  */
184
#define AXP_OPERAND_UNSIGNED        0200
185

    
186
/* Supress overflow detection on this field.  This is used for hints. */
187
#define AXP_OPERAND_NOOVERFLOW        0400
188

    
189
/* Mask for optional argument default value.  */
190
#define AXP_OPERAND_OPTIONAL_MASK 07000
191

    
192
/* This operand defaults to zero.  This is used for jump hints.  */
193
#define AXP_OPERAND_DEFAULT_ZERO 01000
194

    
195
/* This operand should default to the first (real) operand and is used
196
   in conjunction with AXP_OPERAND_OPTIONAL.  This allows
197
   "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
198
   it, but it's what DEC does.  */
199
#define AXP_OPERAND_DEFAULT_FIRST 02000
200

    
201
/* Similarly, this operand should default to the second (real) operand.
202
   This allows "negl $0" instead of "negl $0,$0".  */
203
#define AXP_OPERAND_DEFAULT_SECOND 04000
204

    
205
 
206
/* Register common names */
207

    
208
#define AXP_REG_V0        0
209
#define AXP_REG_T0        1
210
#define AXP_REG_T1        2
211
#define AXP_REG_T2        3
212
#define AXP_REG_T3        4
213
#define AXP_REG_T4        5
214
#define AXP_REG_T5        6
215
#define AXP_REG_T6        7
216
#define AXP_REG_T7        8
217
#define AXP_REG_S0        9
218
#define AXP_REG_S1        10
219
#define AXP_REG_S2        11
220
#define AXP_REG_S3        12
221
#define AXP_REG_S4        13
222
#define AXP_REG_S5        14
223
#define AXP_REG_FP        15
224
#define AXP_REG_A0        16
225
#define AXP_REG_A1        17
226
#define AXP_REG_A2        18
227
#define AXP_REG_A3        19
228
#define AXP_REG_A4        20
229
#define AXP_REG_A5        21
230
#define AXP_REG_T8        22
231
#define AXP_REG_T9        23
232
#define AXP_REG_T10        24
233
#define AXP_REG_T11        25
234
#define AXP_REG_RA        26
235
#define AXP_REG_PV        27
236
#define AXP_REG_T12        27
237
#define AXP_REG_AT        28
238
#define AXP_REG_GP        29
239
#define AXP_REG_SP        30
240
#define AXP_REG_ZERO        31
241

    
242
#define bfd_mach_alpha_ev4  0x10
243
#define bfd_mach_alpha_ev5  0x20
244
#define bfd_mach_alpha_ev6  0x30
245

    
246
enum bfd_reloc_code_real {
247
    BFD_RELOC_23_PCREL_S2,
248
    BFD_RELOC_ALPHA_HINT
249
};
250

    
251
/* This file holds the Alpha AXP opcode table.  The opcode table includes
252
   almost all of the extended instruction mnemonics.  This permits the
253
   disassembler to use them, and simplifies the assembler logic, at the
254
   cost of increasing the table size.  The table is strictly constant
255
   data, so the compiler should be able to put it in the text segment.
256

257
   This file also holds the operand table.  All knowledge about inserting
258
   and extracting operands from instructions is kept in this file.
259

260
   The information for the base instruction set was compiled from the
261
   _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
262
   version 2.
263

264
   The information for the post-ev5 architecture extensions BWX, CIX and
265
   MAX came from version 3 of this same document, which is also available
266
   on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
267
   /literature/alphahb2.pdf
268

269
   The information for the EV4 PALcode instructions was compiled from
270
   _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
271
   Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
272
   revision dated June 1994.
273

274
   The information for the EV5 PALcode instructions was compiled from
275
   _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
276
   Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
277
 
278
/* Local insertion and extraction functions */
279

    
280
static unsigned insert_rba PARAMS((unsigned, int, const char **));
281
static unsigned insert_rca PARAMS((unsigned, int, const char **));
282
static unsigned insert_za PARAMS((unsigned, int, const char **));
283
static unsigned insert_zb PARAMS((unsigned, int, const char **));
284
static unsigned insert_zc PARAMS((unsigned, int, const char **));
285
static unsigned insert_bdisp PARAMS((unsigned, int, const char **));
286
static unsigned insert_jhint PARAMS((unsigned, int, const char **));
287
static unsigned insert_ev6hwjhint PARAMS((unsigned, int, const char **));
288

    
289
static int extract_rba PARAMS((unsigned, int *));
290
static int extract_rca PARAMS((unsigned, int *));
291
static int extract_za PARAMS((unsigned, int *));
292
static int extract_zb PARAMS((unsigned, int *));
293
static int extract_zc PARAMS((unsigned, int *));
294
static int extract_bdisp PARAMS((unsigned, int *));
295
static int extract_jhint PARAMS((unsigned, int *));
296
static int extract_ev6hwjhint PARAMS((unsigned, int *));
297

    
298
 
299
/* The operands table  */
300

    
301
const struct alpha_operand alpha_operands[] =
302
{
303
  /* The fields are bits, shift, insert, extract, flags */
304
  /* The zero index is used to indicate end-of-list */
305
#define UNUSED                0
306
  { 0, 0, 0, 0, 0, 0 },
307

    
308
  /* The plain integer register fields */
309
#define RA                (UNUSED + 1)
310
  { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
311
#define RB                (RA + 1)
312
  { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
313
#define RC                (RB + 1)
314
  { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
315

    
316
  /* The plain fp register fields */
317
#define FA                (RC + 1)
318
  { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
319
#define FB                (FA + 1)
320
  { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
321
#define FC                (FB + 1)
322
  { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
323

    
324
  /* The integer registers when they are ZERO */
325
#define ZA                (FC + 1)
326
  { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
327
#define ZB                (ZA + 1)
328
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
329
#define ZC                (ZB + 1)
330
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
331

    
332
  /* The RB field when it needs parentheses */
333
#define PRB                (ZC + 1)
334
  { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
335

    
336
  /* The RB field when it needs parentheses _and_ a preceding comma */
337
#define CPRB                (PRB + 1)
338
  { 5, 16, 0,
339
    AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
340

    
341
  /* The RB field when it must be the same as the RA field */
342
#define RBA                (CPRB + 1)
343
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
344

    
345
  /* The RC field when it must be the same as the RB field */
346
#define RCA                (RBA + 1)
347
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
348

    
349
  /* The RC field when it can *default* to RA */
350
#define DRC1                (RCA + 1)
351
  { 5, 0, 0,
352
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
353

    
354
  /* The RC field when it can *default* to RB */
355
#define DRC2                (DRC1 + 1)
356
  { 5, 0, 0,
357
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
358

    
359
  /* The FC field when it can *default* to RA */
360
#define DFC1                (DRC2 + 1)
361
  { 5, 0, 0,
362
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
363

    
364
  /* The FC field when it can *default* to RB */
365
#define DFC2                (DFC1 + 1)
366
  { 5, 0, 0,
367
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
368

    
369
  /* The unsigned 8-bit literal of Operate format insns */
370
#define LIT                (DFC2 + 1)
371
  { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
372

    
373
  /* The signed 16-bit displacement of Memory format insns.  From here
374
     we can't tell what relocation should be used, so don't use a default. */
375
#define MDISP                (LIT + 1)
376
  { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
377

    
378
  /* The signed "23-bit" aligned displacement of Branch format insns */
379
#define BDISP                (MDISP + 1)
380
  { 21, 0, BFD_RELOC_23_PCREL_S2, 
381
    AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
382

    
383
  /* The 26-bit PALcode function */
384
#define PALFN                (BDISP + 1)
385
  { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
386

    
387
  /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
388
#define JMPHINT                (PALFN + 1)
389
  { 14, 0, BFD_RELOC_ALPHA_HINT,
390
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
391
    insert_jhint, extract_jhint },
392

    
393
  /* The optional hint to RET/JSR_COROUTINE */
394
#define RETHINT                (JMPHINT + 1)
395
  { 14, 0, -RETHINT,
396
    AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
397

    
398
  /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
399
#define EV4HWDISP        (RETHINT + 1)
400
#define EV6HWDISP        (EV4HWDISP)
401
  { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
402

    
403
  /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
404
#define EV4HWINDEX        (EV4HWDISP + 1)
405
  { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
406

    
407
  /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
408
     that occur in DEC PALcode.  */
409
#define EV4EXTHWINDEX        (EV4HWINDEX + 1)
410
  { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
411

    
412
  /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
413
#define EV5HWDISP        (EV4EXTHWINDEX + 1)
414
  { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
415

    
416
  /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
417
#define EV5HWINDEX        (EV5HWDISP + 1)
418
  { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
419

    
420
  /* The 16-bit combined index/scoreboard mask for the ev6
421
     hw_m[ft]pr (pal19/pal1d) insns */
422
#define EV6HWINDEX        (EV5HWINDEX + 1)
423
  { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
424

    
425
  /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
426
#define EV6HWJMPHINT        (EV6HWINDEX+ 1)
427
  { 8, 0, -EV6HWJMPHINT,
428
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
429
    insert_ev6hwjhint, extract_ev6hwjhint }
430
};
431

    
432
const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
433

    
434
/* The RB field when it is the same as the RA field in the same insn.
435
   This operand is marked fake.  The insertion function just copies
436
   the RA field into the RB field, and the extraction function just
437
   checks that the fields are the same. */
438

    
439
/*ARGSUSED*/
440
static unsigned
441
insert_rba(insn, value, errmsg)
442
     unsigned insn;
443
     int value ATTRIBUTE_UNUSED;
444
     const char **errmsg ATTRIBUTE_UNUSED;
445
{
446
  return insn | (((insn >> 21) & 0x1f) << 16);
447
}
448

    
449
static int
450
extract_rba(insn, invalid)
451
     unsigned insn;
452
     int *invalid;
453
{
454
  if (invalid != (int *) NULL
455
      && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
456
    *invalid = 1;
457
  return 0;
458
}
459

    
460

    
461
/* The same for the RC field */
462

    
463
/*ARGSUSED*/
464
static unsigned
465
insert_rca(insn, value, errmsg)
466
     unsigned insn;
467
     int value ATTRIBUTE_UNUSED;
468
     const char **errmsg ATTRIBUTE_UNUSED;
469
{
470
  return insn | ((insn >> 21) & 0x1f);
471
}
472

    
473
static int
474
extract_rca(insn, invalid)
475
     unsigned insn;
476
     int *invalid;
477
{
478
  if (invalid != (int *) NULL
479
      && ((insn >> 21) & 0x1f) != (insn & 0x1f))
480
    *invalid = 1;
481
  return 0;
482
}
483

    
484

    
485
/* Fake arguments in which the registers must be set to ZERO */
486

    
487
/*ARGSUSED*/
488
static unsigned
489
insert_za(insn, value, errmsg)
490
     unsigned insn;
491
     int value ATTRIBUTE_UNUSED;
492
     const char **errmsg ATTRIBUTE_UNUSED;
493
{
494
  return insn | (31 << 21);
495
}
496

    
497
static int
498
extract_za(insn, invalid)
499
     unsigned insn;
500
     int *invalid;
501
{
502
  if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
503
    *invalid = 1;
504
  return 0;
505
}
506

    
507
/*ARGSUSED*/
508
static unsigned
509
insert_zb(insn, value, errmsg)
510
     unsigned insn;
511
     int value ATTRIBUTE_UNUSED;
512
     const char **errmsg ATTRIBUTE_UNUSED;
513
{
514
  return insn | (31 << 16);
515
}
516

    
517
static int
518
extract_zb(insn, invalid)
519
     unsigned insn;
520
     int *invalid;
521
{
522
  if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
523
    *invalid = 1;
524
  return 0;
525
}
526

    
527
/*ARGSUSED*/
528
static unsigned
529
insert_zc(insn, value, errmsg)
530
     unsigned insn;
531
     int value ATTRIBUTE_UNUSED;
532
     const char **errmsg ATTRIBUTE_UNUSED;
533
{
534
  return insn | 31;
535
}
536

    
537
static int
538
extract_zc(insn, invalid)
539
     unsigned insn;
540
     int *invalid;
541
{
542
  if (invalid != (int *) NULL && (insn & 0x1f) != 31)
543
    *invalid = 1;
544
  return 0;
545
}
546

    
547

    
548
/* The displacement field of a Branch format insn.  */
549

    
550
static unsigned
551
insert_bdisp(insn, value, errmsg)
552
     unsigned insn;
553
     int value;
554
     const char **errmsg;
555
{
556
  if (errmsg != (const char **)NULL && (value & 3))
557
    *errmsg = _("branch operand unaligned");
558
  return insn | ((value / 4) & 0x1FFFFF);
559
}
560

    
561
/*ARGSUSED*/
562
static int
563
extract_bdisp(insn, invalid)
564
     unsigned insn;
565
     int *invalid ATTRIBUTE_UNUSED;
566
{
567
  return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
568
}
569

    
570

    
571
/* The hint field of a JMP/JSR insn.  */
572

    
573
static unsigned
574
insert_jhint(insn, value, errmsg)
575
     unsigned insn;
576
     int value;
577
     const char **errmsg;
578
{
579
  if (errmsg != (const char **)NULL && (value & 3))
580
    *errmsg = _("jump hint unaligned");
581
  return insn | ((value / 4) & 0x3FFF);
582
}
583

    
584
/*ARGSUSED*/
585
static int
586
extract_jhint(insn, invalid)
587
     unsigned insn;
588
     int *invalid ATTRIBUTE_UNUSED;
589
{
590
  return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
591
}
592

    
593
/* The hint field of an EV6 HW_JMP/JSR insn.  */
594

    
595
static unsigned
596
insert_ev6hwjhint(insn, value, errmsg)
597
     unsigned insn;
598
     int value;
599
     const char **errmsg;
600
{
601
  if (errmsg != (const char **)NULL && (value & 3))
602
    *errmsg = _("jump hint unaligned");
603
  return insn | ((value / 4) & 0x1FFF);
604
}
605

    
606
/*ARGSUSED*/
607
static int
608
extract_ev6hwjhint(insn, invalid)
609
     unsigned insn;
610
     int *invalid ATTRIBUTE_UNUSED;
611
{
612
  return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
613
}
614

    
615
 
616
/* Macros used to form opcodes */
617

    
618
/* The main opcode */
619
#define OP(x)                (((x) & 0x3F) << 26)
620
#define OP_MASK                0xFC000000
621

    
622
/* Branch format instructions */
623
#define BRA_(oo)        OP(oo)
624
#define BRA_MASK        OP_MASK
625
#define BRA(oo)                BRA_(oo), BRA_MASK
626

    
627
/* Floating point format instructions */
628
#define FP_(oo,fff)        (OP(oo) | (((fff) & 0x7FF) << 5))
629
#define FP_MASK                (OP_MASK | 0xFFE0)
630
#define FP(oo,fff)        FP_(oo,fff), FP_MASK
631

    
632
/* Memory format instructions */
633
#define MEM_(oo)        OP(oo)
634
#define MEM_MASK        OP_MASK
635
#define MEM(oo)                MEM_(oo), MEM_MASK
636

    
637
/* Memory/Func Code format instructions */
638
#define MFC_(oo,ffff)        (OP(oo) | ((ffff) & 0xFFFF))
639
#define MFC_MASK        (OP_MASK | 0xFFFF)
640
#define MFC(oo,ffff)        MFC_(oo,ffff), MFC_MASK
641

    
642
/* Memory/Branch format instructions */
643
#define MBR_(oo,h)        (OP(oo) | (((h) & 3) << 14))
644
#define MBR_MASK        (OP_MASK | 0xC000)
645
#define MBR(oo,h)        MBR_(oo,h), MBR_MASK
646

    
647
/* Operate format instructions.  The OPRL variant specifies a
648
   literal second argument. */
649
#define OPR_(oo,ff)        (OP(oo) | (((ff) & 0x7F) << 5))
650
#define OPRL_(oo,ff)        (OPR_((oo),(ff)) | 0x1000)
651
#define OPR_MASK        (OP_MASK | 0x1FE0)
652
#define OPR(oo,ff)        OPR_(oo,ff), OPR_MASK
653
#define OPRL(oo,ff)        OPRL_(oo,ff), OPR_MASK
654

    
655
/* Generic PALcode format instructions */
656
#define PCD_(oo)        OP(oo)
657
#define PCD_MASK        OP_MASK
658
#define PCD(oo)                PCD_(oo), PCD_MASK
659

    
660
/* Specific PALcode instructions */
661
#define SPCD_(oo,ffff)        (OP(oo) | ((ffff) & 0x3FFFFFF))
662
#define SPCD_MASK        0xFFFFFFFF
663
#define SPCD(oo,ffff)        SPCD_(oo,ffff), SPCD_MASK
664

    
665
/* Hardware memory (hw_{ld,st}) instructions */
666
#define EV4HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
667
#define EV4HWMEM_MASK        (OP_MASK | 0xF000)
668
#define EV4HWMEM(oo,f)        EV4HWMEM_(oo,f), EV4HWMEM_MASK
669

    
670
#define EV5HWMEM_(oo,f)        (OP(oo) | (((f) & 0x3F) << 10))
671
#define EV5HWMEM_MASK        (OP_MASK | 0xF800)
672
#define EV5HWMEM(oo,f)        EV5HWMEM_(oo,f), EV5HWMEM_MASK
673

    
674
#define EV6HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
675
#define EV6HWMEM_MASK        (OP_MASK | 0xF000)
676
#define EV6HWMEM(oo,f)        EV6HWMEM_(oo,f), EV6HWMEM_MASK
677

    
678
#define EV6HWMBR_(oo,h)        (OP(oo) | (((h) & 7) << 13))
679
#define EV6HWMBR_MASK        (OP_MASK | 0xE000)
680
#define EV6HWMBR(oo,h)        EV6HWMBR_(oo,h), EV6HWMBR_MASK
681

    
682
/* Abbreviations for instruction subsets.  */
683
#define BASE                        AXP_OPCODE_BASE
684
#define EV4                        AXP_OPCODE_EV4
685
#define EV5                        AXP_OPCODE_EV5
686
#define EV6                        AXP_OPCODE_EV6
687
#define BWX                        AXP_OPCODE_BWX
688
#define CIX                        AXP_OPCODE_CIX
689
#define MAX                        AXP_OPCODE_MAX
690

    
691
/* Common combinations of arguments */
692
#define ARG_NONE                { 0 }
693
#define ARG_BRA                        { RA, BDISP }
694
#define ARG_FBRA                { FA, BDISP }
695
#define ARG_FP                        { FA, FB, DFC1 }
696
#define ARG_FPZ1                { ZA, FB, DFC1 }
697
#define ARG_MEM                        { RA, MDISP, PRB }
698
#define ARG_FMEM                { FA, MDISP, PRB }
699
#define ARG_OPR                        { RA, RB, DRC1 }
700
#define ARG_OPRL                { RA, LIT, DRC1 }
701
#define ARG_OPRZ1                { ZA, RB, DRC1 }
702
#define ARG_OPRLZ1                { ZA, LIT, RC }
703
#define ARG_PCD                        { PALFN }
704
#define ARG_EV4HWMEM                { RA, EV4HWDISP, PRB }
705
#define ARG_EV4HWMPR                { RA, RBA, EV4HWINDEX }
706
#define ARG_EV5HWMEM                { RA, EV5HWDISP, PRB }
707
#define ARG_EV6HWMEM                { RA, EV6HWDISP, PRB }
708
 
709
/* The opcode table.
710

711
   The format of the opcode table is:
712

713
   NAME OPCODE MASK { OPERANDS }
714

715
   NAME                is the name of the instruction.
716

717
   OPCODE        is the instruction opcode.
718

719
   MASK                is the opcode mask; this is used to tell the disassembler
720
                    which bits in the actual opcode must match OPCODE.
721

722
   OPERANDS        is the list of operands.
723

724
   The preceding macros merge the text of the OPCODE and MASK fields.
725

726
   The disassembler reads the table in order and prints the first
727
   instruction which matches, so this table is sorted to put more
728
   specific instructions before more general instructions.
729

730
   Otherwise, it is sorted by major opcode and minor function code.
731

732
   There are three classes of not-really-instructions in this table:
733

734
   ALIAS        is another name for another instruction.  Some of
735
                these come from the Architecture Handbook, some
736
                come from the original gas opcode tables.  In all
737
                cases, the functionality of the opcode is unchanged.
738

739
   PSEUDO        a stylized code form endorsed by Chapter A.4 of the
740
                Architecture Handbook.
741

742
   EXTRA        a stylized code form found in the original gas tables.
743

744
   And two annotations:
745

746
   EV56 BUT        opcodes that are officially introduced as of the ev56,
747
                   but with defined results on previous implementations.
748

749
   EV56 UNA        opcodes that were introduced as of the ev56 with
750
                   presumably undefined results on previous implementations
751
                that were not assigned to a particular extension.
752
*/
753

    
754
const struct alpha_opcode alpha_opcodes[] = {
755
  { "halt",                SPCD(0x00,0x0000), BASE, ARG_NONE },
756
  { "draina",                SPCD(0x00,0x0002), BASE, ARG_NONE },
757
  { "bpt",                SPCD(0x00,0x0080), BASE, ARG_NONE },
758
  { "bugchk",                SPCD(0x00,0x0081), BASE, ARG_NONE },
759
  { "callsys",                SPCD(0x00,0x0083), BASE, ARG_NONE },
760
  { "chmk",                 SPCD(0x00,0x0083), BASE, ARG_NONE },
761
  { "imb",                SPCD(0x00,0x0086), BASE, ARG_NONE },
762
  { "rduniq",                SPCD(0x00,0x009e), BASE, ARG_NONE },
763
  { "wruniq",                SPCD(0x00,0x009f), BASE, ARG_NONE },
764
  { "gentrap",                SPCD(0x00,0x00aa), BASE, ARG_NONE },
765
  { "call_pal",                PCD(0x00), BASE, ARG_PCD },
766
  { "pal",                PCD(0x00), BASE, ARG_PCD },                /* alias */
767

    
768
  { "lda",                MEM(0x08), BASE, { RA, MDISP, ZB } },        /* pseudo */
769
  { "lda",                MEM(0x08), BASE, ARG_MEM },
770
  { "ldah",                MEM(0x09), BASE, { RA, MDISP, ZB } },        /* pseudo */
771
  { "ldah",                MEM(0x09), BASE, ARG_MEM },
772
  { "ldbu",                MEM(0x0A), BWX, ARG_MEM },
773
  { "unop",                MEM_(0x0B) | (30 << 16),
774
                        MEM_MASK, BASE, { ZA } },                /* pseudo */
775
  { "ldq_u",                MEM(0x0B), BASE, ARG_MEM },
776
  { "ldwu",                MEM(0x0C), BWX, ARG_MEM },
777
  { "stw",                MEM(0x0D), BWX, ARG_MEM },
778
  { "stb",                MEM(0x0E), BWX, ARG_MEM },
779
  { "stq_u",                MEM(0x0F), BASE, ARG_MEM },
780

    
781
  { "sextl",                OPR(0x10,0x00), BASE, ARG_OPRZ1 },        /* pseudo */
782
  { "sextl",                OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },        /* pseudo */
783
  { "addl",                OPR(0x10,0x00), BASE, ARG_OPR },
784
  { "addl",                OPRL(0x10,0x00), BASE, ARG_OPRL },
785
  { "s4addl",                OPR(0x10,0x02), BASE, ARG_OPR },
786
  { "s4addl",                OPRL(0x10,0x02), BASE, ARG_OPRL },
787
  { "negl",                OPR(0x10,0x09), BASE, ARG_OPRZ1 },        /* pseudo */
788
  { "negl",                OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },        /* pseudo */
789
  { "subl",                OPR(0x10,0x09), BASE, ARG_OPR },
790
  { "subl",                OPRL(0x10,0x09), BASE, ARG_OPRL },
791
  { "s4subl",                OPR(0x10,0x0B), BASE, ARG_OPR },
792
  { "s4subl",                OPRL(0x10,0x0B), BASE, ARG_OPRL },
793
  { "cmpbge",                OPR(0x10,0x0F), BASE, ARG_OPR },
794
  { "cmpbge",                OPRL(0x10,0x0F), BASE, ARG_OPRL },
795
  { "s8addl",                OPR(0x10,0x12), BASE, ARG_OPR },
796
  { "s8addl",                OPRL(0x10,0x12), BASE, ARG_OPRL },
797
  { "s8subl",                OPR(0x10,0x1B), BASE, ARG_OPR },
798
  { "s8subl",                OPRL(0x10,0x1B), BASE, ARG_OPRL },
799
  { "cmpult",                OPR(0x10,0x1D), BASE, ARG_OPR },
800
  { "cmpult",                OPRL(0x10,0x1D), BASE, ARG_OPRL },
801
  { "addq",                OPR(0x10,0x20), BASE, ARG_OPR },
802
  { "addq",                OPRL(0x10,0x20), BASE, ARG_OPRL },
803
  { "s4addq",                OPR(0x10,0x22), BASE, ARG_OPR },
804
  { "s4addq",                OPRL(0x10,0x22), BASE, ARG_OPRL },
805
  { "negq",                 OPR(0x10,0x29), BASE, ARG_OPRZ1 },        /* pseudo */
806
  { "negq",                 OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },        /* pseudo */
807
  { "subq",                OPR(0x10,0x29), BASE, ARG_OPR },
808
  { "subq",                OPRL(0x10,0x29), BASE, ARG_OPRL },
809
  { "s4subq",                OPR(0x10,0x2B), BASE, ARG_OPR },
810
  { "s4subq",                OPRL(0x10,0x2B), BASE, ARG_OPRL },
811
  { "cmpeq",                OPR(0x10,0x2D), BASE, ARG_OPR },
812
  { "cmpeq",                OPRL(0x10,0x2D), BASE, ARG_OPRL },
813
  { "s8addq",                OPR(0x10,0x32), BASE, ARG_OPR },
814
  { "s8addq",                OPRL(0x10,0x32), BASE, ARG_OPRL },
815
  { "s8subq",                OPR(0x10,0x3B), BASE, ARG_OPR },
816
  { "s8subq",                OPRL(0x10,0x3B), BASE, ARG_OPRL },
817
  { "cmpule",                OPR(0x10,0x3D), BASE, ARG_OPR },
818
  { "cmpule",                OPRL(0x10,0x3D), BASE, ARG_OPRL },
819
  { "addl/v",                OPR(0x10,0x40), BASE, ARG_OPR },
820
  { "addl/v",                OPRL(0x10,0x40), BASE, ARG_OPRL },
821
  { "negl/v",                OPR(0x10,0x49), BASE, ARG_OPRZ1 },        /* pseudo */
822
  { "negl/v",                OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },        /* pseudo */
823
  { "subl/v",                OPR(0x10,0x49), BASE, ARG_OPR },
824
  { "subl/v",                OPRL(0x10,0x49), BASE, ARG_OPRL },
825
  { "cmplt",                OPR(0x10,0x4D), BASE, ARG_OPR },
826
  { "cmplt",                OPRL(0x10,0x4D), BASE, ARG_OPRL },
827
  { "addq/v",                OPR(0x10,0x60), BASE, ARG_OPR },
828
  { "addq/v",                OPRL(0x10,0x60), BASE, ARG_OPRL },
829
  { "negq/v",                OPR(0x10,0x69), BASE, ARG_OPRZ1 },        /* pseudo */
830
  { "negq/v",                OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },        /* pseudo */
831
  { "subq/v",                OPR(0x10,0x69), BASE, ARG_OPR },
832
  { "subq/v",                OPRL(0x10,0x69), BASE, ARG_OPRL },
833
  { "cmple",                OPR(0x10,0x6D), BASE, ARG_OPR },
834
  { "cmple",                OPRL(0x10,0x6D), BASE, ARG_OPRL },
835

    
836
  { "and",                OPR(0x11,0x00), BASE, ARG_OPR },
837
  { "and",                OPRL(0x11,0x00), BASE, ARG_OPRL },
838
  { "andnot",                OPR(0x11,0x08), BASE, ARG_OPR },        /* alias */
839
  { "andnot",                OPRL(0x11,0x08), BASE, ARG_OPRL },        /* alias */
840
  { "bic",                OPR(0x11,0x08), BASE, ARG_OPR },
841
  { "bic",                OPRL(0x11,0x08), BASE, ARG_OPRL },
842
  { "cmovlbs",                OPR(0x11,0x14), BASE, ARG_OPR },
843
  { "cmovlbs",                OPRL(0x11,0x14), BASE, ARG_OPRL },
844
  { "cmovlbc",                OPR(0x11,0x16), BASE, ARG_OPR },
845
  { "cmovlbc",                OPRL(0x11,0x16), BASE, ARG_OPRL },
846
  { "nop",                OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
847
  { "clr",                OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
848
  { "mov",                OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
849
  { "mov",                OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
850
  { "mov",                OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
851
  { "or",                OPR(0x11,0x20), BASE, ARG_OPR },        /* alias */
852
  { "or",                OPRL(0x11,0x20), BASE, ARG_OPRL },        /* alias */
853
  { "bis",                OPR(0x11,0x20), BASE, ARG_OPR },
854
  { "bis",                OPRL(0x11,0x20), BASE, ARG_OPRL },
855
  { "cmoveq",                OPR(0x11,0x24), BASE, ARG_OPR },
856
  { "cmoveq",                OPRL(0x11,0x24), BASE, ARG_OPRL },
857
  { "cmovne",                OPR(0x11,0x26), BASE, ARG_OPR },
858
  { "cmovne",                OPRL(0x11,0x26), BASE, ARG_OPRL },
859
  { "not",                OPR(0x11,0x28), BASE, ARG_OPRZ1 },        /* pseudo */
860
  { "not",                OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },        /* pseudo */
861
  { "ornot",                OPR(0x11,0x28), BASE, ARG_OPR },
862
  { "ornot",                OPRL(0x11,0x28), BASE, ARG_OPRL },
863
  { "xor",                OPR(0x11,0x40), BASE, ARG_OPR },
864
  { "xor",                OPRL(0x11,0x40), BASE, ARG_OPRL },
865
  { "cmovlt",                OPR(0x11,0x44), BASE, ARG_OPR },
866
  { "cmovlt",                OPRL(0x11,0x44), BASE, ARG_OPRL },
867
  { "cmovge",                OPR(0x11,0x46), BASE, ARG_OPR },
868
  { "cmovge",                OPRL(0x11,0x46), BASE, ARG_OPRL },
869
  { "eqv",                OPR(0x11,0x48), BASE, ARG_OPR },
870
  { "eqv",                OPRL(0x11,0x48), BASE, ARG_OPRL },
871
  { "xornot",                OPR(0x11,0x48), BASE, ARG_OPR },        /* alias */
872
  { "xornot",                OPRL(0x11,0x48), BASE, ARG_OPRL },        /* alias */
873
  { "amask",                OPR(0x11,0x61), BASE, ARG_OPRZ1 },        /* ev56 but */
874
  { "amask",                OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },        /* ev56 but */
875
  { "cmovle",                OPR(0x11,0x64), BASE, ARG_OPR },
876
  { "cmovle",                OPRL(0x11,0x64), BASE, ARG_OPRL },
877
  { "cmovgt",                OPR(0x11,0x66), BASE, ARG_OPR },
878
  { "cmovgt",                OPRL(0x11,0x66), BASE, ARG_OPRL },
879
  { "implver",                OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
880
                            0xFFFFFFE0, BASE, { RC } },                /* ev56 but */
881

    
882
  { "mskbl",                OPR(0x12,0x02), BASE, ARG_OPR },
883
  { "mskbl",                OPRL(0x12,0x02), BASE, ARG_OPRL },
884
  { "extbl",                OPR(0x12,0x06), BASE, ARG_OPR },
885
  { "extbl",                OPRL(0x12,0x06), BASE, ARG_OPRL },
886
  { "insbl",                OPR(0x12,0x0B), BASE, ARG_OPR },
887
  { "insbl",                OPRL(0x12,0x0B), BASE, ARG_OPRL },
888
  { "mskwl",                OPR(0x12,0x12), BASE, ARG_OPR },
889
  { "mskwl",                OPRL(0x12,0x12), BASE, ARG_OPRL },
890
  { "extwl",                OPR(0x12,0x16), BASE, ARG_OPR },
891
  { "extwl",                OPRL(0x12,0x16), BASE, ARG_OPRL },
892
  { "inswl",                OPR(0x12,0x1B), BASE, ARG_OPR },
893
  { "inswl",                OPRL(0x12,0x1B), BASE, ARG_OPRL },
894
  { "mskll",                OPR(0x12,0x22), BASE, ARG_OPR },
895
  { "mskll",                OPRL(0x12,0x22), BASE, ARG_OPRL },
896
  { "extll",                OPR(0x12,0x26), BASE, ARG_OPR },
897
  { "extll",                OPRL(0x12,0x26), BASE, ARG_OPRL },
898
  { "insll",                OPR(0x12,0x2B), BASE, ARG_OPR },
899
  { "insll",                OPRL(0x12,0x2B), BASE, ARG_OPRL },
900
  { "zap",                OPR(0x12,0x30), BASE, ARG_OPR },
901
  { "zap",                OPRL(0x12,0x30), BASE, ARG_OPRL },
902
  { "zapnot",                OPR(0x12,0x31), BASE, ARG_OPR },
903
  { "zapnot",                OPRL(0x12,0x31), BASE, ARG_OPRL },
904
  { "mskql",                OPR(0x12,0x32), BASE, ARG_OPR },
905
  { "mskql",                OPRL(0x12,0x32), BASE, ARG_OPRL },
906
  { "srl",                OPR(0x12,0x34), BASE, ARG_OPR },
907
  { "srl",                OPRL(0x12,0x34), BASE, ARG_OPRL },
908
  { "extql",                OPR(0x12,0x36), BASE, ARG_OPR },
909
  { "extql",                OPRL(0x12,0x36), BASE, ARG_OPRL },
910
  { "sll",                OPR(0x12,0x39), BASE, ARG_OPR },
911
  { "sll",                OPRL(0x12,0x39), BASE, ARG_OPRL },
912
  { "insql",                OPR(0x12,0x3B), BASE, ARG_OPR },
913
  { "insql",                OPRL(0x12,0x3B), BASE, ARG_OPRL },
914
  { "sra",                OPR(0x12,0x3C), BASE, ARG_OPR },
915
  { "sra",                OPRL(0x12,0x3C), BASE, ARG_OPRL },
916
  { "mskwh",                OPR(0x12,0x52), BASE, ARG_OPR },
917
  { "mskwh",                OPRL(0x12,0x52), BASE, ARG_OPRL },
918
  { "inswh",                OPR(0x12,0x57), BASE, ARG_OPR },
919
  { "inswh",                OPRL(0x12,0x57), BASE, ARG_OPRL },
920
  { "extwh",                OPR(0x12,0x5A), BASE, ARG_OPR },
921
  { "extwh",                OPRL(0x12,0x5A), BASE, ARG_OPRL },
922
  { "msklh",                OPR(0x12,0x62), BASE, ARG_OPR },
923
  { "msklh",                OPRL(0x12,0x62), BASE, ARG_OPRL },
924
  { "inslh",                OPR(0x12,0x67), BASE, ARG_OPR },
925
  { "inslh",                OPRL(0x12,0x67), BASE, ARG_OPRL },
926
  { "extlh",                OPR(0x12,0x6A), BASE, ARG_OPR },
927
  { "extlh",                OPRL(0x12,0x6A), BASE, ARG_OPRL },
928
  { "mskqh",                OPR(0x12,0x72), BASE, ARG_OPR },
929
  { "mskqh",                OPRL(0x12,0x72), BASE, ARG_OPRL },
930
  { "insqh",                OPR(0x12,0x77), BASE, ARG_OPR },
931
  { "insqh",                OPRL(0x12,0x77), BASE, ARG_OPRL },
932
  { "extqh",                OPR(0x12,0x7A), BASE, ARG_OPR },
933
  { "extqh",                OPRL(0x12,0x7A), BASE, ARG_OPRL },
934

    
935
  { "mull",                OPR(0x13,0x00), BASE, ARG_OPR },
936
  { "mull",                OPRL(0x13,0x00), BASE, ARG_OPRL },
937
  { "mulq",                OPR(0x13,0x20), BASE, ARG_OPR },
938
  { "mulq",                OPRL(0x13,0x20), BASE, ARG_OPRL },
939
  { "umulh",                OPR(0x13,0x30), BASE, ARG_OPR },
940
  { "umulh",                OPRL(0x13,0x30), BASE, ARG_OPRL },
941
  { "mull/v",                OPR(0x13,0x40), BASE, ARG_OPR },
942
  { "mull/v",                OPRL(0x13,0x40), BASE, ARG_OPRL },
943
  { "mulq/v",                OPR(0x13,0x60), BASE, ARG_OPR },
944
  { "mulq/v",                OPRL(0x13,0x60), BASE, ARG_OPRL },
945

    
946
  { "itofs",                FP(0x14,0x004), CIX, { RA, ZB, FC } },
947
  { "sqrtf/c",                FP(0x14,0x00A), CIX, ARG_FPZ1 },
948
  { "sqrts/c",                FP(0x14,0x00B), CIX, ARG_FPZ1 },
949
  { "itoff",                FP(0x14,0x014), CIX, { RA, ZB, FC } },
950
  { "itoft",                FP(0x14,0x024), CIX, { RA, ZB, FC } },
951
  { "sqrtg/c",                FP(0x14,0x02A), CIX, ARG_FPZ1 },
952
  { "sqrtt/c",                FP(0x14,0x02B), CIX, ARG_FPZ1 },
953
  { "sqrts/m",                FP(0x14,0x04B), CIX, ARG_FPZ1 },
954
  { "sqrtt/m",                FP(0x14,0x06B), CIX, ARG_FPZ1 },
955
  { "sqrtf",                FP(0x14,0x08A), CIX, ARG_FPZ1 },
956
  { "sqrts",                FP(0x14,0x08B), CIX, ARG_FPZ1 },
957
  { "sqrtg",                FP(0x14,0x0AA), CIX, ARG_FPZ1 },
958
  { "sqrtt",                FP(0x14,0x0AB), CIX, ARG_FPZ1 },
959
  { "sqrts/d",                FP(0x14,0x0CB), CIX, ARG_FPZ1 },
960
  { "sqrtt/d",                FP(0x14,0x0EB), CIX, ARG_FPZ1 },
961
  { "sqrtf/uc",                FP(0x14,0x10A), CIX, ARG_FPZ1 },
962
  { "sqrts/uc",                FP(0x14,0x10B), CIX, ARG_FPZ1 },
963
  { "sqrtg/uc",                FP(0x14,0x12A), CIX, ARG_FPZ1 },
964
  { "sqrtt/uc",                FP(0x14,0x12B), CIX, ARG_FPZ1 },
965
  { "sqrts/um",                FP(0x14,0x14B), CIX, ARG_FPZ1 },
966
  { "sqrtt/um",                FP(0x14,0x16B), CIX, ARG_FPZ1 },
967
  { "sqrtf/u",                FP(0x14,0x18A), CIX, ARG_FPZ1 },
968
  { "sqrts/u",                FP(0x14,0x18B), CIX, ARG_FPZ1 },
969
  { "sqrtg/u",                FP(0x14,0x1AA), CIX, ARG_FPZ1 },
970
  { "sqrtt/u",                FP(0x14,0x1AB), CIX, ARG_FPZ1 },
971
  { "sqrts/ud",                FP(0x14,0x1CB), CIX, ARG_FPZ1 },
972
  { "sqrtt/ud",                FP(0x14,0x1EB), CIX, ARG_FPZ1 },
973
  { "sqrtf/sc",                FP(0x14,0x40A), CIX, ARG_FPZ1 },
974
  { "sqrtg/sc",                FP(0x14,0x42A), CIX, ARG_FPZ1 },
975
  { "sqrtf/s",                FP(0x14,0x48A), CIX, ARG_FPZ1 },
976
  { "sqrtg/s",                FP(0x14,0x4AA), CIX, ARG_FPZ1 },
977
  { "sqrtf/suc",        FP(0x14,0x50A), CIX, ARG_FPZ1 },
978
  { "sqrts/suc",        FP(0x14,0x50B), CIX, ARG_FPZ1 },
979
  { "sqrtg/suc",        FP(0x14,0x52A), CIX, ARG_FPZ1 },
980
  { "sqrtt/suc",        FP(0x14,0x52B), CIX, ARG_FPZ1 },
981
  { "sqrts/sum",        FP(0x14,0x54B), CIX, ARG_FPZ1 },
982
  { "sqrtt/sum",        FP(0x14,0x56B), CIX, ARG_FPZ1 },
983
  { "sqrtf/su",                FP(0x14,0x58A), CIX, ARG_FPZ1 },
984
  { "sqrts/su",                FP(0x14,0x58B), CIX, ARG_FPZ1 },
985
  { "sqrtg/su",                FP(0x14,0x5AA), CIX, ARG_FPZ1 },
986
  { "sqrtt/su",                FP(0x14,0x5AB), CIX, ARG_FPZ1 },
987
  { "sqrts/sud",        FP(0x14,0x5CB), CIX, ARG_FPZ1 },
988
  { "sqrtt/sud",        FP(0x14,0x5EB), CIX, ARG_FPZ1 },
989
  { "sqrts/suic",        FP(0x14,0x70B), CIX, ARG_FPZ1 },
990
  { "sqrtt/suic",        FP(0x14,0x72B), CIX, ARG_FPZ1 },
991
  { "sqrts/suim",        FP(0x14,0x74B), CIX, ARG_FPZ1 },
992
  { "sqrtt/suim",        FP(0x14,0x76B), CIX, ARG_FPZ1 },
993
  { "sqrts/sui",        FP(0x14,0x78B), CIX, ARG_FPZ1 },
994
  { "sqrtt/sui",        FP(0x14,0x7AB), CIX, ARG_FPZ1 },
995
  { "sqrts/suid",        FP(0x14,0x7CB), CIX, ARG_FPZ1 },
996
  { "sqrtt/suid",        FP(0x14,0x7EB), CIX, ARG_FPZ1 },
997

    
998
  { "addf/c",                FP(0x15,0x000), BASE, ARG_FP },
999
  { "subf/c",                FP(0x15,0x001), BASE, ARG_FP },
1000
  { "mulf/c",                FP(0x15,0x002), BASE, ARG_FP },
1001
  { "divf/c",                FP(0x15,0x003), BASE, ARG_FP },
1002
  { "cvtdg/c",                FP(0x15,0x01E), BASE, ARG_FPZ1 },
1003
  { "addg/c",                FP(0x15,0x020), BASE, ARG_FP },
1004
  { "subg/c",                FP(0x15,0x021), BASE, ARG_FP },
1005
  { "mulg/c",                FP(0x15,0x022), BASE, ARG_FP },
1006
  { "divg/c",                FP(0x15,0x023), BASE, ARG_FP },
1007
  { "cvtgf/c",                FP(0x15,0x02C), BASE, ARG_FPZ1 },
1008
  { "cvtgd/c",                FP(0x15,0x02D), BASE, ARG_FPZ1 },
1009
  { "cvtgq/c",                FP(0x15,0x02F), BASE, ARG_FPZ1 },
1010
  { "cvtqf/c",                FP(0x15,0x03C), BASE, ARG_FPZ1 },
1011
  { "cvtqg/c",                FP(0x15,0x03E), BASE, ARG_FPZ1 },
1012
  { "addf",                FP(0x15,0x080), BASE, ARG_FP },
1013
  { "negf",                FP(0x15,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1014
  { "subf",                FP(0x15,0x081), BASE, ARG_FP },
1015
  { "mulf",                FP(0x15,0x082), BASE, ARG_FP },
1016
  { "divf",                FP(0x15,0x083), BASE, ARG_FP },
1017
  { "cvtdg",                FP(0x15,0x09E), BASE, ARG_FPZ1 },
1018
  { "addg",                FP(0x15,0x0A0), BASE, ARG_FP },
1019
  { "negg",                FP(0x15,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1020
  { "subg",                FP(0x15,0x0A1), BASE, ARG_FP },
1021
  { "mulg",                FP(0x15,0x0A2), BASE, ARG_FP },
1022
  { "divg",                FP(0x15,0x0A3), BASE, ARG_FP },
1023
  { "cmpgeq",                FP(0x15,0x0A5), BASE, ARG_FP },
1024
  { "cmpglt",                FP(0x15,0x0A6), BASE, ARG_FP },
1025
  { "cmpgle",                FP(0x15,0x0A7), BASE, ARG_FP },
1026
  { "cvtgf",                FP(0x15,0x0AC), BASE, ARG_FPZ1 },
1027
  { "cvtgd",                FP(0x15,0x0AD), BASE, ARG_FPZ1 },
1028
  { "cvtgq",                FP(0x15,0x0AF), BASE, ARG_FPZ1 },
1029
  { "cvtqf",                FP(0x15,0x0BC), BASE, ARG_FPZ1 },
1030
  { "cvtqg",                FP(0x15,0x0BE), BASE, ARG_FPZ1 },
1031
  { "addf/uc",                FP(0x15,0x100), BASE, ARG_FP },
1032
  { "subf/uc",                FP(0x15,0x101), BASE, ARG_FP },
1033
  { "mulf/uc",                FP(0x15,0x102), BASE, ARG_FP },
1034
  { "divf/uc",                FP(0x15,0x103), BASE, ARG_FP },
1035
  { "cvtdg/uc",                FP(0x15,0x11E), BASE, ARG_FPZ1 },
1036
  { "addg/uc",                FP(0x15,0x120), BASE, ARG_FP },
1037
  { "subg/uc",                FP(0x15,0x121), BASE, ARG_FP },
1038
  { "mulg/uc",                FP(0x15,0x122), BASE, ARG_FP },
1039
  { "divg/uc",                FP(0x15,0x123), BASE, ARG_FP },
1040
  { "cvtgf/uc",                FP(0x15,0x12C), BASE, ARG_FPZ1 },
1041
  { "cvtgd/uc",                FP(0x15,0x12D), BASE, ARG_FPZ1 },
1042
  { "cvtgq/vc",                FP(0x15,0x12F), BASE, ARG_FPZ1 },
1043
  { "addf/u",                FP(0x15,0x180), BASE, ARG_FP },
1044
  { "subf/u",                FP(0x15,0x181), BASE, ARG_FP },
1045
  { "mulf/u",                FP(0x15,0x182), BASE, ARG_FP },
1046
  { "divf/u",                FP(0x15,0x183), BASE, ARG_FP },
1047
  { "cvtdg/u",                FP(0x15,0x19E), BASE, ARG_FPZ1 },
1048
  { "addg/u",                FP(0x15,0x1A0), BASE, ARG_FP },
1049
  { "subg/u",                FP(0x15,0x1A1), BASE, ARG_FP },
1050
  { "mulg/u",                FP(0x15,0x1A2), BASE, ARG_FP },
1051
  { "divg/u",                FP(0x15,0x1A3), BASE, ARG_FP },
1052
  { "cvtgf/u",                FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1053
  { "cvtgd/u",                FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1054
  { "cvtgq/v",                FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1055
  { "addf/sc",                FP(0x15,0x400), BASE, ARG_FP },
1056
  { "subf/sc",                FP(0x15,0x401), BASE, ARG_FP },
1057
  { "mulf/sc",                FP(0x15,0x402), BASE, ARG_FP },
1058
  { "divf/sc",                FP(0x15,0x403), BASE, ARG_FP },
1059
  { "cvtdg/sc",                FP(0x15,0x41E), BASE, ARG_FPZ1 },
1060
  { "addg/sc",                FP(0x15,0x420), BASE, ARG_FP },
1061
  { "subg/sc",                FP(0x15,0x421), BASE, ARG_FP },
1062
  { "mulg/sc",                FP(0x15,0x422), BASE, ARG_FP },
1063
  { "divg/sc",                FP(0x15,0x423), BASE, ARG_FP },
1064
  { "cvtgf/sc",                FP(0x15,0x42C), BASE, ARG_FPZ1 },
1065
  { "cvtgd/sc",                FP(0x15,0x42D), BASE, ARG_FPZ1 },
1066
  { "cvtgq/sc",                FP(0x15,0x42F), BASE, ARG_FPZ1 },
1067
  { "addf/s",                FP(0x15,0x480), BASE, ARG_FP },
1068
  { "negf/s",                FP(0x15,0x481), BASE, ARG_FPZ1 },        /* pseudo */
1069
  { "subf/s",                FP(0x15,0x481), BASE, ARG_FP },
1070
  { "mulf/s",                FP(0x15,0x482), BASE, ARG_FP },
1071
  { "divf/s",                FP(0x15,0x483), BASE, ARG_FP },
1072
  { "cvtdg/s",                FP(0x15,0x49E), BASE, ARG_FPZ1 },
1073
  { "addg/s",                FP(0x15,0x4A0), BASE, ARG_FP },
1074
  { "negg/s",                FP(0x15,0x4A1), BASE, ARG_FPZ1 },        /* pseudo */
1075
  { "subg/s",                FP(0x15,0x4A1), BASE, ARG_FP },
1076
  { "mulg/s",                FP(0x15,0x4A2), BASE, ARG_FP },
1077
  { "divg/s",                FP(0x15,0x4A3), BASE, ARG_FP },
1078
  { "cmpgeq/s",                FP(0x15,0x4A5), BASE, ARG_FP },
1079
  { "cmpglt/s",                FP(0x15,0x4A6), BASE, ARG_FP },
1080
  { "cmpgle/s",                FP(0x15,0x4A7), BASE, ARG_FP },
1081
  { "cvtgf/s",                FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1082
  { "cvtgd/s",                FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1083
  { "cvtgq/s",                FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1084
  { "addf/suc",                FP(0x15,0x500), BASE, ARG_FP },
1085
  { "subf/suc",                FP(0x15,0x501), BASE, ARG_FP },
1086
  { "mulf/suc",                FP(0x15,0x502), BASE, ARG_FP },
1087
  { "divf/suc",                FP(0x15,0x503), BASE, ARG_FP },
1088
  { "cvtdg/suc",        FP(0x15,0x51E), BASE, ARG_FPZ1 },
1089
  { "addg/suc",                FP(0x15,0x520), BASE, ARG_FP },
1090
  { "subg/suc",                FP(0x15,0x521), BASE, ARG_FP },
1091
  { "mulg/suc",                FP(0x15,0x522), BASE, ARG_FP },
1092
  { "divg/suc",                FP(0x15,0x523), BASE, ARG_FP },
1093
  { "cvtgf/suc",        FP(0x15,0x52C), BASE, ARG_FPZ1 },
1094
  { "cvtgd/suc",        FP(0x15,0x52D), BASE, ARG_FPZ1 },
1095
  { "cvtgq/svc",        FP(0x15,0x52F), BASE, ARG_FPZ1 },
1096
  { "addf/su",                FP(0x15,0x580), BASE, ARG_FP },
1097
  { "subf/su",                FP(0x15,0x581), BASE, ARG_FP },
1098
  { "mulf/su",                FP(0x15,0x582), BASE, ARG_FP },
1099
  { "divf/su",                FP(0x15,0x583), BASE, ARG_FP },
1100
  { "cvtdg/su",                FP(0x15,0x59E), BASE, ARG_FPZ1 },
1101
  { "addg/su",                FP(0x15,0x5A0), BASE, ARG_FP },
1102
  { "subg/su",                FP(0x15,0x5A1), BASE, ARG_FP },
1103
  { "mulg/su",                FP(0x15,0x5A2), BASE, ARG_FP },
1104
  { "divg/su",                FP(0x15,0x5A3), BASE, ARG_FP },
1105
  { "cvtgf/su",                FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1106
  { "cvtgd/su",                FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1107
  { "cvtgq/sv",                FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1108

    
1109
  { "adds/c",                FP(0x16,0x000), BASE, ARG_FP },
1110
  { "subs/c",                FP(0x16,0x001), BASE, ARG_FP },
1111
  { "muls/c",                FP(0x16,0x002), BASE, ARG_FP },
1112
  { "divs/c",                FP(0x16,0x003), BASE, ARG_FP },
1113
  { "addt/c",                FP(0x16,0x020), BASE, ARG_FP },
1114
  { "subt/c",                FP(0x16,0x021), BASE, ARG_FP },
1115
  { "mult/c",                FP(0x16,0x022), BASE, ARG_FP },
1116
  { "divt/c",                FP(0x16,0x023), BASE, ARG_FP },
1117
  { "cvtts/c",                FP(0x16,0x02C), BASE, ARG_FPZ1 },
1118
  { "cvttq/c",                FP(0x16,0x02F), BASE, ARG_FPZ1 },
1119
  { "cvtqs/c",                FP(0x16,0x03C), BASE, ARG_FPZ1 },
1120
  { "cvtqt/c",                FP(0x16,0x03E), BASE, ARG_FPZ1 },
1121
  { "adds/m",                FP(0x16,0x040), BASE, ARG_FP },
1122
  { "subs/m",                FP(0x16,0x041), BASE, ARG_FP },
1123
  { "muls/m",                FP(0x16,0x042), BASE, ARG_FP },
1124
  { "divs/m",                FP(0x16,0x043), BASE, ARG_FP },
1125
  { "addt/m",                FP(0x16,0x060), BASE, ARG_FP },
1126
  { "subt/m",                FP(0x16,0x061), BASE, ARG_FP },
1127
  { "mult/m",                FP(0x16,0x062), BASE, ARG_FP },
1128
  { "divt/m",                FP(0x16,0x063), BASE, ARG_FP },
1129
  { "cvtts/m",                FP(0x16,0x06C), BASE, ARG_FPZ1 },
1130
  { "cvttq/m",                FP(0x16,0x06F), BASE, ARG_FPZ1 },
1131
  { "cvtqs/m",                FP(0x16,0x07C), BASE, ARG_FPZ1 },
1132
  { "cvtqt/m",                FP(0x16,0x07E), BASE, ARG_FPZ1 },
1133
  { "adds",                FP(0x16,0x080), BASE, ARG_FP },
1134
  { "negs",                 FP(0x16,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1135
  { "subs",                FP(0x16,0x081), BASE, ARG_FP },
1136
  { "muls",                FP(0x16,0x082), BASE, ARG_FP },
1137
  { "divs",                FP(0x16,0x083), BASE, ARG_FP },
1138
  { "addt",                FP(0x16,0x0A0), BASE, ARG_FP },
1139
  { "negt",                 FP(0x16,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1140
  { "subt",                FP(0x16,0x0A1), BASE, ARG_FP },
1141
  { "mult",                FP(0x16,0x0A2), BASE, ARG_FP },
1142
  { "divt",                FP(0x16,0x0A3), BASE, ARG_FP },
1143
  { "cmptun",                FP(0x16,0x0A4), BASE, ARG_FP },
1144
  { "cmpteq",                FP(0x16,0x0A5), BASE, ARG_FP },
1145
  { "cmptlt",                FP(0x16,0x0A6), BASE, ARG_FP },
1146
  { "cmptle",                FP(0x16,0x0A7), BASE, ARG_FP },
1147
  { "cvtts",                FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1148
  { "cvttq",                FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1149
  { "cvtqs",                FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1150
  { "cvtqt",                FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1151
  { "adds/d",                FP(0x16,0x0C0), BASE, ARG_FP },
1152
  { "subs/d",                FP(0x16,0x0C1), BASE, ARG_FP },
1153
  { "muls/d",                FP(0x16,0x0C2), BASE, ARG_FP },
1154
  { "divs/d",                FP(0x16,0x0C3), BASE, ARG_FP },
1155
  { "addt/d",                FP(0x16,0x0E0), BASE, ARG_FP },
1156
  { "subt/d",                FP(0x16,0x0E1), BASE, ARG_FP },
1157
  { "mult/d",                FP(0x16,0x0E2), BASE, ARG_FP },
1158
  { "divt/d",                FP(0x16,0x0E3), BASE, ARG_FP },
1159
  { "cvtts/d",                FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1160
  { "cvttq/d",                FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1161
  { "cvtqs/d",                FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1162
  { "cvtqt/d",                FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1163
  { "adds/uc",                FP(0x16,0x100), BASE, ARG_FP },
1164
  { "subs/uc",                FP(0x16,0x101), BASE, ARG_FP },
1165
  { "muls/uc",                FP(0x16,0x102), BASE, ARG_FP },
1166
  { "divs/uc",                FP(0x16,0x103), BASE, ARG_FP },
1167
  { "addt/uc",                FP(0x16,0x120), BASE, ARG_FP },
1168
  { "subt/uc",                FP(0x16,0x121), BASE, ARG_FP },
1169
  { "mult/uc",                FP(0x16,0x122), BASE, ARG_FP },
1170
  { "divt/uc",                FP(0x16,0x123), BASE, ARG_FP },
1171
  { "cvtts/uc",                FP(0x16,0x12C), BASE, ARG_FPZ1 },
1172
  { "cvttq/vc",                FP(0x16,0x12F), BASE, ARG_FPZ1 },
1173
  { "adds/um",                FP(0x16,0x140), BASE, ARG_FP },
1174
  { "subs/um",                FP(0x16,0x141), BASE, ARG_FP },
1175
  { "muls/um",                FP(0x16,0x142), BASE, ARG_FP },
1176
  { "divs/um",                FP(0x16,0x143), BASE, ARG_FP },
1177
  { "addt/um",                FP(0x16,0x160), BASE, ARG_FP },
1178
  { "subt/um",                FP(0x16,0x161), BASE, ARG_FP },
1179
  { "mult/um",                FP(0x16,0x162), BASE, ARG_FP },
1180
  { "divt/um",                FP(0x16,0x163), BASE, ARG_FP },
1181
  { "cvtts/um",                FP(0x16,0x16C), BASE, ARG_FPZ1 },
1182
  { "cvttq/vm",                FP(0x16,0x16F), BASE, ARG_FPZ1 },
1183
  { "adds/u",                FP(0x16,0x180), BASE, ARG_FP },
1184
  { "subs/u",                FP(0x16,0x181), BASE, ARG_FP },
1185
  { "muls/u",                FP(0x16,0x182), BASE, ARG_FP },
1186
  { "divs/u",                FP(0x16,0x183), BASE, ARG_FP },
1187
  { "addt/u",                FP(0x16,0x1A0), BASE, ARG_FP },
1188
  { "subt/u",                FP(0x16,0x1A1), BASE, ARG_FP },
1189
  { "mult/u",                FP(0x16,0x1A2), BASE, ARG_FP },
1190
  { "divt/u",                FP(0x16,0x1A3), BASE, ARG_FP },
1191
  { "cvtts/u",                FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1192
  { "cvttq/v",                FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1193
  { "adds/ud",                FP(0x16,0x1C0), BASE, ARG_FP },
1194
  { "subs/ud",                FP(0x16,0x1C1), BASE, ARG_FP },
1195
  { "muls/ud",                FP(0x16,0x1C2), BASE, ARG_FP },
1196
  { "divs/ud",                FP(0x16,0x1C3), BASE, ARG_FP },
1197
  { "addt/ud",                FP(0x16,0x1E0), BASE, ARG_FP },
1198
  { "subt/ud",                FP(0x16,0x1E1), BASE, ARG_FP },
1199
  { "mult/ud",                FP(0x16,0x1E2), BASE, ARG_FP },
1200
  { "divt/ud",                FP(0x16,0x1E3), BASE, ARG_FP },
1201
  { "cvtts/ud",                FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1202
  { "cvttq/vd",                FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1203
  { "cvtst",                FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1204
  { "adds/suc",                FP(0x16,0x500), BASE, ARG_FP },
1205
  { "subs/suc",                FP(0x16,0x501), BASE, ARG_FP },
1206
  { "muls/suc",                FP(0x16,0x502), BASE, ARG_FP },
1207
  { "divs/suc",                FP(0x16,0x503), BASE, ARG_FP },
1208
  { "addt/suc",                FP(0x16,0x520), BASE, ARG_FP },
1209
  { "subt/suc",                FP(0x16,0x521), BASE, ARG_FP },
1210
  { "mult/suc",                FP(0x16,0x522), BASE, ARG_FP },
1211
  { "divt/suc",                FP(0x16,0x523), BASE, ARG_FP },
1212
  { "cvtts/suc",        FP(0x16,0x52C), BASE, ARG_FPZ1 },
1213
  { "cvttq/svc",        FP(0x16,0x52F), BASE, ARG_FPZ1 },
1214
  { "adds/sum",                FP(0x16,0x540), BASE, ARG_FP },
1215
  { "subs/sum",                FP(0x16,0x541), BASE, ARG_FP },
1216
  { "muls/sum",                FP(0x16,0x542), BASE, ARG_FP },
1217
  { "divs/sum",                FP(0x16,0x543), BASE, ARG_FP },
1218
  { "addt/sum",                FP(0x16,0x560), BASE, ARG_FP },
1219
  { "subt/sum",                FP(0x16,0x561), BASE, ARG_FP },
1220
  { "mult/sum",                FP(0x16,0x562), BASE, ARG_FP },
1221
  { "divt/sum",                FP(0x16,0x563), BASE, ARG_FP },
1222
  { "cvtts/sum",        FP(0x16,0x56C), BASE, ARG_FPZ1 },
1223
  { "cvttq/svm",        FP(0x16,0x56F), BASE, ARG_FPZ1 },
1224
  { "adds/su",                FP(0x16,0x580), BASE, ARG_FP },
1225
  { "negs/su",                FP(0x16,0x581), BASE, ARG_FPZ1 },        /* pseudo */
1226
  { "subs/su",                FP(0x16,0x581), BASE, ARG_FP },
1227
  { "muls/su",                FP(0x16,0x582), BASE, ARG_FP },
1228
  { "divs/su",                FP(0x16,0x583), BASE, ARG_FP },
1229
  { "addt/su",                FP(0x16,0x5A0), BASE, ARG_FP },
1230
  { "negt/su",                FP(0x16,0x5A1), BASE, ARG_FPZ1 },        /* pseudo */
1231
  { "subt/su",                FP(0x16,0x5A1), BASE, ARG_FP },
1232
  { "mult/su",                FP(0x16,0x5A2), BASE, ARG_FP },
1233
  { "divt/su",                FP(0x16,0x5A3), BASE, ARG_FP },
1234
  { "cmptun/su",        FP(0x16,0x5A4), BASE, ARG_FP },
1235
  { "cmpteq/su",        FP(0x16,0x5A5), BASE, ARG_FP },
1236
  { "cmptlt/su",        FP(0x16,0x5A6), BASE, ARG_FP },
1237
  { "cmptle/su",        FP(0x16,0x5A7), BASE, ARG_FP },
1238
  { "cvtts/su",                FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1239
  { "cvttq/sv",                FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1240
  { "adds/sud",                FP(0x16,0x5C0), BASE, ARG_FP },
1241
  { "subs/sud",                FP(0x16,0x5C1), BASE, ARG_FP },
1242
  { "muls/sud",                FP(0x16,0x5C2), BASE, ARG_FP },
1243
  { "divs/sud",                FP(0x16,0x5C3), BASE, ARG_FP },
1244
  { "addt/sud",                FP(0x16,0x5E0), BASE, ARG_FP },
1245
  { "subt/sud",                FP(0x16,0x5E1), BASE, ARG_FP },
1246
  { "mult/sud",                FP(0x16,0x5E2), BASE, ARG_FP },
1247
  { "divt/sud",                FP(0x16,0x5E3), BASE, ARG_FP },
1248
  { "cvtts/sud",        FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1249
  { "cvttq/svd",        FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1250
  { "cvtst/s",                FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1251
  { "adds/suic",        FP(0x16,0x700), BASE, ARG_FP },
1252
  { "subs/suic",        FP(0x16,0x701), BASE, ARG_FP },
1253
  { "muls/suic",        FP(0x16,0x702), BASE, ARG_FP },
1254
  { "divs/suic",        FP(0x16,0x703), BASE, ARG_FP },
1255
  { "addt/suic",        FP(0x16,0x720), BASE, ARG_FP },
1256
  { "subt/suic",        FP(0x16,0x721), BASE, ARG_FP },
1257
  { "mult/suic",        FP(0x16,0x722), BASE, ARG_FP },
1258
  { "divt/suic",        FP(0x16,0x723), BASE, ARG_FP },
1259
  { "cvtts/suic",        FP(0x16,0x72C), BASE, ARG_FPZ1 },
1260
  { "cvttq/svic",        FP(0x16,0x72F), BASE, ARG_FPZ1 },
1261
  { "cvtqs/suic",        FP(0x16,0x73C), BASE, ARG_FPZ1 },
1262
  { "cvtqt/suic",        FP(0x16,0x73E), BASE, ARG_FPZ1 },
1263
  { "adds/suim",        FP(0x16,0x740), BASE, ARG_FP },
1264
  { "subs/suim",        FP(0x16,0x741), BASE, ARG_FP },
1265
  { "muls/suim",        FP(0x16,0x742), BASE, ARG_FP },
1266
  { "divs/suim",        FP(0x16,0x743), BASE, ARG_FP },
1267
  { "addt/suim",        FP(0x16,0x760), BASE, ARG_FP },
1268
  { "subt/suim",        FP(0x16,0x761), BASE, ARG_FP },
1269
  { "mult/suim",        FP(0x16,0x762), BASE, ARG_FP },
1270
  { "divt/suim",        FP(0x16,0x763), BASE, ARG_FP },
1271
  { "cvtts/suim",        FP(0x16,0x76C), BASE, ARG_FPZ1 },
1272
  { "cvttq/svim",        FP(0x16,0x76F), BASE, ARG_FPZ1 },
1273
  { "cvtqs/suim",        FP(0x16,0x77C), BASE, ARG_FPZ1 },
1274
  { "cvtqt/suim",        FP(0x16,0x77E), BASE, ARG_FPZ1 },
1275
  { "adds/sui",                FP(0x16,0x780), BASE, ARG_FP },
1276
  { "negs/sui",         FP(0x16,0x781), BASE, ARG_FPZ1 },        /* pseudo */
1277
  { "subs/sui",                FP(0x16,0x781), BASE, ARG_FP },
1278
  { "muls/sui",                FP(0x16,0x782), BASE, ARG_FP },
1279
  { "divs/sui",                FP(0x16,0x783), BASE, ARG_FP },
1280
  { "addt/sui",                FP(0x16,0x7A0), BASE, ARG_FP },
1281
  { "negt/sui",         FP(0x16,0x7A1), BASE, ARG_FPZ1 },        /* pseudo */
1282
  { "subt/sui",                FP(0x16,0x7A1), BASE, ARG_FP },
1283
  { "mult/sui",                FP(0x16,0x7A2), BASE, ARG_FP },
1284
  { "divt/sui",                FP(0x16,0x7A3), BASE, ARG_FP },
1285
  { "cvtts/sui",        FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1286
  { "cvttq/svi",        FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1287
  { "cvtqs/sui",        FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1288
  { "cvtqt/sui",        FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1289
  { "adds/suid",        FP(0x16,0x7C0), BASE, ARG_FP },
1290
  { "subs/suid",        FP(0x16,0x7C1), BASE, ARG_FP },
1291
  { "muls/suid",        FP(0x16,0x7C2), BASE, ARG_FP },
1292
  { "divs/suid",        FP(0x16,0x7C3), BASE, ARG_FP },
1293
  { "addt/suid",        FP(0x16,0x7E0), BASE, ARG_FP },
1294
  { "subt/suid",        FP(0x16,0x7E1), BASE, ARG_FP },
1295
  { "mult/suid",        FP(0x16,0x7E2), BASE, ARG_FP },
1296
  { "divt/suid",        FP(0x16,0x7E3), BASE, ARG_FP },
1297
  { "cvtts/suid",        FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1298
  { "cvttq/svid",        FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1299
  { "cvtqs/suid",        FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1300
  { "cvtqt/suid",        FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1301

    
1302
  { "cvtlq",                FP(0x17,0x010), BASE, ARG_FPZ1 },
1303
  { "fnop",                FP(0x17,0x020), BASE, { ZA, ZB, ZC } },        /* pseudo */
1304
  { "fclr",                FP(0x17,0x020), BASE, { ZA, ZB, FC } },        /* pseudo */
1305
  { "fabs",                FP(0x17,0x020), BASE, ARG_FPZ1 },        /* pseudo */
1306
  { "fmov",                FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1307
  { "cpys",                FP(0x17,0x020), BASE, ARG_FP },
1308
  { "fneg",                FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1309
  { "cpysn",                FP(0x17,0x021), BASE, ARG_FP },
1310
  { "cpyse",                FP(0x17,0x022), BASE, ARG_FP },
1311
  { "mt_fpcr",                FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1312
  { "mf_fpcr",                FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1313
  { "fcmoveq",                FP(0x17,0x02A), BASE, ARG_FP },
1314
  { "fcmovne",                FP(0x17,0x02B), BASE, ARG_FP },
1315
  { "fcmovlt",                FP(0x17,0x02C), BASE, ARG_FP },
1316
  { "fcmovge",                FP(0x17,0x02D), BASE, ARG_FP },
1317
  { "fcmovle",                FP(0x17,0x02E), BASE, ARG_FP },
1318
  { "fcmovgt",                FP(0x17,0x02F), BASE, ARG_FP },
1319
  { "cvtql",                FP(0x17,0x030), BASE, ARG_FPZ1 },
1320
  { "cvtql/v",                FP(0x17,0x130), BASE, ARG_FPZ1 },
1321
  { "cvtql/sv",                FP(0x17,0x530), BASE, ARG_FPZ1 },
1322

    
1323
  { "trapb",                MFC(0x18,0x0000), BASE, ARG_NONE },
1324
  { "draint",                MFC(0x18,0x0000), BASE, ARG_NONE },        /* alias */
1325
  { "excb",                MFC(0x18,0x0400), BASE, ARG_NONE },
1326
  { "mb",                MFC(0x18,0x4000), BASE, ARG_NONE },
1327
  { "wmb",                MFC(0x18,0x4400), BASE, ARG_NONE },
1328
  { "fetch",                MFC(0x18,0x8000), BASE, { ZA, PRB } },
1329
  { "fetch_m",                MFC(0x18,0xA000), BASE, { ZA, PRB } },
1330
  { "rpcc",                MFC(0x18,0xC000), BASE, { RA } },
1331
  { "rc",                MFC(0x18,0xE000), BASE, { RA } },
1332
  { "ecb",                MFC(0x18,0xE800), BASE, { ZA, PRB } },        /* ev56 una */
1333
  { "rs",                MFC(0x18,0xF000), BASE, { RA } },
1334
  { "wh64",                MFC(0x18,0xF800), BASE, { ZA, PRB } },        /* ev56 una */
1335
  { "wh64en",                MFC(0x18,0xFC00), BASE, { ZA, PRB } },        /* ev7 una */
1336

    
1337
  { "hw_mfpr",                OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1338
  { "hw_mfpr",                OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1339
  { "hw_mfpr",                OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1340
  { "hw_mfpr/i",        OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1341
  { "hw_mfpr/a",        OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1342
  { "hw_mfpr/ai",        OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1343
  { "hw_mfpr/p",        OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1344
  { "hw_mfpr/pi",        OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1345
  { "hw_mfpr/pa",        OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1346
  { "hw_mfpr/pai",        OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1347
  { "pal19",                PCD(0x19), BASE, ARG_PCD },
1348

    
1349
  { "jmp",                MBR_(0x1A,0), MBR_MASK | 0x3FFF,        /* pseudo */
1350
                        BASE, { ZA, CPRB } },
1351
  { "jmp",                MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1352
  { "jsr",                MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1353
  { "ret",                MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1354
                        0xFFFFFFFF, BASE, { 0 } },
1355
  { "ret",                MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1356
  { "jcr",                MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1357
  { "jsr_coroutine",        MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1358

    
1359
  { "hw_ldl",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1360
  { "hw_ldl",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1361
  { "hw_ldl",                EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1362
  { "hw_ldl/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1363
  { "hw_ldl/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1364
  { "hw_ldl/a",                EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1365
  { "hw_ldl/al",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1366
  { "hw_ldl/ar",        EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1367
  { "hw_ldl/av",        EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1368
  { "hw_ldl/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1369
  { "hw_ldl/aw",        EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1370
  { "hw_ldl/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1371
  { "hw_ldl/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1372
  { "hw_ldl/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1373
  { "hw_ldl/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1374
  { "hw_ldl/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1375
  { "hw_ldl/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1376
  { "hw_ldl/p",                EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1377
  { "hw_ldl/pa",        EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1378
  { "hw_ldl/pa",        EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1379
  { "hw_ldl/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1380
  { "hw_ldl/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1381
  { "hw_ldl/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1382
  { "hw_ldl/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1383
  { "hw_ldl/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1384
  { "hw_ldl/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1385
  { "hw_ldl/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1386
  { "hw_ldl/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1387
  { "hw_ldl/pl",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1388
  { "hw_ldl/pr",        EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1389
  { "hw_ldl/pv",        EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1390
  { "hw_ldl/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1391
  { "hw_ldl/pw",        EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1392
  { "hw_ldl/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1393
  { "hw_ldl/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1394
  { "hw_ldl/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1395
  { "hw_ldl/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1396
  { "hw_ldl/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1397
  { "hw_ldl/v",                EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1398
  { "hw_ldl/vl",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1399
  { "hw_ldl/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1400
  { "hw_ldl/w",                EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1401
  { "hw_ldl/wa",        EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1402
  { "hw_ldl/wl",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1403
  { "hw_ldl/wv",        EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1404
  { "hw_ldl/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1405
  { "hw_ldl_l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1406
  { "hw_ldl_l/a",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1407
  { "hw_ldl_l/av",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1408
  { "hw_ldl_l/aw",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1409
  { "hw_ldl_l/awv",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1410
  { "hw_ldl_l/p",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1411
  { "hw_ldl_l/p",        EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1412
  { "hw_ldl_l/pa",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1413
  { "hw_ldl_l/pav",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1414
  { "hw_ldl_l/paw",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1415
  { "hw_ldl_l/pawv",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1416
  { "hw_ldl_l/pv",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1417
  { "hw_ldl_l/pw",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1418
  { "hw_ldl_l/pwv",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1419
  { "hw_ldl_l/v",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1420
  { "hw_ldl_l/w",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1421
  { "hw_ldl_l/wv",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1422
  { "hw_ldq",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1423
  { "hw_ldq",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1424
  { "hw_ldq",                EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1425
  { "hw_ldq/a",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1426
  { "hw_ldq/a",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1427
  { "hw_ldq/a",                EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1428
  { "hw_ldq/al",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1429
  { "hw_ldq/ar",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1430
  { "hw_ldq/av",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1431
  { "hw_ldq/avl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1432
  { "hw_ldq/aw",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1433
  { "hw_ldq/awl",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1434
  { "hw_ldq/awv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1435
  { "hw_ldq/awvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1436
  { "hw_ldq/l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1437
  { "hw_ldq/p",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1438
  { "hw_ldq/p",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1439
  { "hw_ldq/p",                EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1440
  { "hw_ldq/pa",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1441
  { "hw_ldq/pa",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1442
  { "hw_ldq/pal",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1443
  { "hw_ldq/par",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1444
  { "hw_ldq/pav",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1445
  { "hw_ldq/pavl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1446
  { "hw_ldq/paw",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1447
  { "hw_ldq/pawl",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1448
  { "hw_ldq/pawv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1449
  { "hw_ldq/pawvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1450
  { "hw_ldq/pl",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1451
  { "hw_ldq/pr",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1452
  { "hw_ldq/pv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1453
  { "hw_ldq/pvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1454
  { "hw_ldq/pw",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1455
  { "hw_ldq/pwl",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1456
  { "hw_ldq/pwv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1457
  { "hw_ldq/pwvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1458
  { "hw_ldq/r",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1459
  { "hw_ldq/v",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1460
  { "hw_ldq/v",                EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1461
  { "hw_ldq/vl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1462
  { "hw_ldq/w",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1463
  { "hw_ldq/w",                EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1464
  { "hw_ldq/wa",        EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1465
  { "hw_ldq/wl",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1466
  { "hw_ldq/wv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1467
  { "hw_ldq/wvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1468
  { "hw_ldq_l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1469
  { "hw_ldq_l/a",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1470
  { "hw_ldq_l/av",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1471
  { "hw_ldq_l/aw",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1472
  { "hw_ldq_l/awv",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1473
  { "hw_ldq_l/p",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1474
  { "hw_ldq_l/p",        EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1475
  { "hw_ldq_l/pa",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1476
  { "hw_ldq_l/pav",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1477
  { "hw_ldq_l/paw",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1478
  { "hw_ldq_l/pawv",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1479
  { "hw_ldq_l/pv",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1480
  { "hw_ldq_l/pw",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1481
  { "hw_ldq_l/pwv",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1482
  { "hw_ldq_l/v",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1483
  { "hw_ldq_l/w",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1484
  { "hw_ldq_l/wv",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1485
  { "hw_ld",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1486
  { "hw_ld",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1487
  { "hw_ld/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1488
  { "hw_ld/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1489
  { "hw_ld/al",                EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1490
  { "hw_ld/aq",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1491
  { "hw_ld/aq",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1492
  { "hw_ld/aql",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1493
  { "hw_ld/aqv",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1494
  { "hw_ld/aqvl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1495
  { "hw_ld/ar",                EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1496
  { "hw_ld/arq",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1497
  { "hw_ld/av",                EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1498
  { "hw_ld/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1499
  { "hw_ld/aw",                EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1500
  { "hw_ld/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1501
  { "hw_ld/awq",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1502
  { "hw_ld/awql",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1503
  { "hw_ld/awqv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1504
  { "hw_ld/awqvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1505
  { "hw_ld/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1506
  { "hw_ld/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1507
  { "hw_ld/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1508
  { "hw_ld/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1509
  { "hw_ld/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1510
  { "hw_ld/pa",                EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1511
  { "hw_ld/pa",                EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1512
  { "hw_ld/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1513
  { "hw_ld/paq",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1514
  { "hw_ld/paq",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1515
  { "hw_ld/paql",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1516
  { "hw_ld/paqv",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1517
  { "hw_ld/paqvl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1518
  { "hw_ld/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1519
  { "hw_ld/parq",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1520
  { "hw_ld/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1521
  { "hw_ld/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1522
  { "hw_ld/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1523
  { "hw_ld/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1524
  { "hw_ld/pawq",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1525
  { "hw_ld/pawql",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1526
  { "hw_ld/pawqv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1527
  { "hw_ld/pawqvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1528
  { "hw_ld/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1529
  { "hw_ld/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1530
  { "hw_ld/pl",                EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1531
  { "hw_ld/pq",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1532
  { "hw_ld/pq",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1533
  { "hw_ld/pql",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1534
  { "hw_ld/pqv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1535
  { "hw_ld/pqvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1536
  { "hw_ld/pr",                EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1537
  { "hw_ld/prq",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1538
  { "hw_ld/pv",                EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1539
  { "hw_ld/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1540
  { "hw_ld/pw",                EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1541
  { "hw_ld/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1542
  { "hw_ld/pwq",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1543
  { "hw_ld/pwql",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1544
  { "hw_ld/pwqv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1545
  { "hw_ld/pwqvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1546
  { "hw_ld/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1547
  { "hw_ld/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1548
  { "hw_ld/q",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1549
  { "hw_ld/q",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1550
  { "hw_ld/ql",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1551
  { "hw_ld/qv",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1552
  { "hw_ld/qvl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1553
  { "hw_ld/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1554
  { "hw_ld/rq",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1555
  { "hw_ld/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1556
  { "hw_ld/vl",                EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1557
  { "hw_ld/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1558
  { "hw_ld/wl",                EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1559
  { "hw_ld/wq",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1560
  { "hw_ld/wql",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1561
  { "hw_ld/wqv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1562
  { "hw_ld/wqvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1563
  { "hw_ld/wv",                EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1564
  { "hw_ld/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1565
  { "pal1b",                PCD(0x1B), BASE, ARG_PCD },
1566

    
1567
  { "sextb",                OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1568
  { "sextw",                OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1569
  { "ctpop",                OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1570
  { "perr",                OPR(0x1C, 0x31), MAX, ARG_OPR },
1571
  { "ctlz",                OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1572
  { "cttz",                OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1573
  { "unpkbw",                OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1574
  { "unpkbl",                OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1575
  { "pkwb",                OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1576
  { "pklb",                OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1577
  { "minsb8",                 OPR(0x1C, 0x38), MAX, ARG_OPR },
1578
  { "minsb8",                 OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1579
  { "minsw4",                 OPR(0x1C, 0x39), MAX, ARG_OPR },
1580
  { "minsw4",                 OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1581
  { "minub8",                 OPR(0x1C, 0x3A), MAX, ARG_OPR },
1582
  { "minub8",                 OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1583
  { "minuw4",                 OPR(0x1C, 0x3B), MAX, ARG_OPR },
1584
  { "minuw4",                 OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1585
  { "maxub8",                OPR(0x1C, 0x3C), MAX, ARG_OPR },
1586
  { "maxub8",                OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1587
  { "maxuw4",                OPR(0x1C, 0x3D), MAX, ARG_OPR },
1588
  { "maxuw4",                OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1589
  { "maxsb8",                OPR(0x1C, 0x3E), MAX, ARG_OPR },
1590
  { "maxsb8",                OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1591
  { "maxsw4",                OPR(0x1C, 0x3F), MAX, ARG_OPR },
1592
  { "maxsw4",                OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1593
  { "ftoit",                FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1594
  { "ftois",                FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1595

    
1596
  { "hw_mtpr",                OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1597
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1598
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1599
  { "hw_mtpr/i",         OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1600
  { "hw_mtpr/a",         OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1601
  { "hw_mtpr/ai",        OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1602
  { "hw_mtpr/p",         OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1603
  { "hw_mtpr/pi",        OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1604
  { "hw_mtpr/pa",        OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1605
  { "hw_mtpr/pai",        OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1606
  { "pal1d",                PCD(0x1D), BASE, ARG_PCD },
1607

    
1608
  { "hw_rei",                SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1609
  { "hw_rei_stall",        SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1610
  { "hw_jmp",                 EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1611
  { "hw_jsr",                 EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1612
  { "hw_ret",                 EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1613
  { "hw_jcr",                 EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1614
  { "hw_coroutine",        EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1615
  { "hw_jmp/stall",        EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1616
  { "hw_jsr/stall",         EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1617
  { "hw_ret/stall",        EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1618
  { "hw_jcr/stall",         EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1619
  { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1620
  { "pal1e",                PCD(0x1E), BASE, ARG_PCD },
1621

    
1622
  { "hw_stl",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1623
  { "hw_stl",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1624
  { "hw_stl",                EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1625
  { "hw_stl/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1626
  { "hw_stl/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1627
  { "hw_stl/a",                EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1628
  { "hw_stl/ac",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1629
  { "hw_stl/ar",        EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1630
  { "hw_stl/av",        EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1631
  { "hw_stl/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1632
  { "hw_stl/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1633
  { "hw_stl/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1634
  { "hw_stl/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1635
  { "hw_stl/p",                EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1636
  { "hw_stl/pa",        EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1637
  { "hw_stl/pa",        EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1638
  { "hw_stl/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1639
  { "hw_stl/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1640
  { "hw_stl/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1641
  { "hw_stl/pc",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1642
  { "hw_stl/pr",        EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1643
  { "hw_stl/pv",        EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1644
  { "hw_stl/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1645
  { "hw_stl/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1646
  { "hw_stl/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1647
  { "hw_stl/vc",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1648
  { "hw_stl_c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1649
  { "hw_stl_c/a",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1650
  { "hw_stl_c/av",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1651
  { "hw_stl_c/p",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1652
  { "hw_stl_c/p",        EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1653
  { "hw_stl_c/pa",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1654
  { "hw_stl_c/pav",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1655
  { "hw_stl_c/pv",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1656
  { "hw_stl_c/v",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1657
  { "hw_stq",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1658
  { "hw_stq",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1659
  { "hw_stq",                EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1660
  { "hw_stq/a",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1661
  { "hw_stq/a",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1662
  { "hw_stq/a",                EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1663
  { "hw_stq/ac",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1664
  { "hw_stq/ar",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1665
  { "hw_stq/av",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1666
  { "hw_stq/avc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1667
  { "hw_stq/c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1668
  { "hw_stq/p",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1669
  { "hw_stq/p",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1670
  { "hw_stq/p",                EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1671
  { "hw_stq/pa",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1672
  { "hw_stq/pa",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1673
  { "hw_stq/pac",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1674
  { "hw_stq/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1675
  { "hw_stq/par",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1676
  { "hw_stq/pav",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1677
  { "hw_stq/pavc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1678
  { "hw_stq/pc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1679
  { "hw_stq/pr",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1680
  { "hw_stq/pv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1681
  { "hw_stq/pvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1682
  { "hw_stq/r",                EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1683
  { "hw_stq/v",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1684
  { "hw_stq/vc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1685
  { "hw_stq_c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1686
  { "hw_stq_c/a",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1687
  { "hw_stq_c/av",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1688
  { "hw_stq_c/p",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1689
  { "hw_stq_c/p",        EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1690
  { "hw_stq_c/pa",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1691
  { "hw_stq_c/pav",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1692
  { "hw_stq_c/pv",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1693
  { "hw_stq_c/v",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1694
  { "hw_st",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1695
  { "hw_st",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1696
  { "hw_st/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1697
  { "hw_st/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1698
  { "hw_st/ac",                EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1699
  { "hw_st/aq",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1700
  { "hw_st/aq",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1701
  { "hw_st/aqc",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1702
  { "hw_st/aqv",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1703
  { "hw_st/aqvc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1704
  { "hw_st/ar",                EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1705
  { "hw_st/arq",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1706
  { "hw_st/av",                EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1707
  { "hw_st/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1708
  { "hw_st/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1709
  { "hw_st/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1710
  { "hw_st/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1711
  { "hw_st/pa",                EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1712
  { "hw_st/pa",                EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1713
  { "hw_st/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1714
  { "hw_st/paq",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1715
  { "hw_st/paq",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1716
  { "hw_st/paqc",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1717
  { "hw_st/paqv",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1718
  { "hw_st/paqvc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1719
  { "hw_st/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1720
  { "hw_st/parq",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1721
  { "hw_st/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1722
  { "hw_st/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1723
  { "hw_st/pc",                EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1724
  { "hw_st/pq",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1725
  { "hw_st/pq",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1726
  { "hw_st/pqc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1727
  { "hw_st/pqv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1728
  { "hw_st/pqvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1729
  { "hw_st/pr",                EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1730
  { "hw_st/prq",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1731
  { "hw_st/pv",                EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1732
  { "hw_st/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1733
  { "hw_st/q",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1734
  { "hw_st/q",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1735
  { "hw_st/qc",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1736
  { "hw_st/qv",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1737
  { "hw_st/qvc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1738
  { "hw_st/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1739
  { "hw_st/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1740
  { "hw_st/vc",                EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1741
  { "pal1f",                PCD(0x1F), BASE, ARG_PCD },
1742

    
1743
  { "ldf",                MEM(0x20), BASE, ARG_FMEM },
1744
  { "ldg",                MEM(0x21), BASE, ARG_FMEM },
1745
  { "lds",                MEM(0x22), BASE, ARG_FMEM },
1746
  { "ldt",                MEM(0x23), BASE, ARG_FMEM },
1747
  { "stf",                MEM(0x24), BASE, ARG_FMEM },
1748
  { "stg",                MEM(0x25), BASE, ARG_FMEM },
1749
  { "sts",                MEM(0x26), BASE, ARG_FMEM },
1750
  { "stt",                MEM(0x27), BASE, ARG_FMEM },
1751

    
1752
  { "ldl",                MEM(0x28), BASE, ARG_MEM },
1753
  { "ldq",                MEM(0x29), BASE, ARG_MEM },
1754
  { "ldl_l",                MEM(0x2A), BASE, ARG_MEM },
1755
  { "ldq_l",                MEM(0x2B), BASE, ARG_MEM },
1756
  { "stl",                MEM(0x2C), BASE, ARG_MEM },
1757
  { "stq",                MEM(0x2D), BASE, ARG_MEM },
1758
  { "stl_c",                MEM(0x2E), BASE, ARG_MEM },
1759
  { "stq_c",                MEM(0x2F), BASE, ARG_MEM },
1760

    
1761
  { "br",                BRA(0x30), BASE, { ZA, BDISP } },        /* pseudo */
1762
  { "br",                BRA(0x30), BASE, ARG_BRA },
1763
  { "fbeq",                BRA(0x31), BASE, ARG_FBRA },
1764
  { "fblt",                BRA(0x32), BASE, ARG_FBRA },
1765
  { "fble",                BRA(0x33), BASE, ARG_FBRA },
1766
  { "bsr",                BRA(0x34), BASE, ARG_BRA },
1767
  { "fbne",                BRA(0x35), BASE, ARG_FBRA },
1768
  { "fbge",                BRA(0x36), BASE, ARG_FBRA },
1769
  { "fbgt",                BRA(0x37), BASE, ARG_FBRA },
1770
  { "blbc",                BRA(0x38), BASE, ARG_BRA },
1771
  { "beq",                BRA(0x39), BASE, ARG_BRA },
1772
  { "blt",                BRA(0x3A), BASE, ARG_BRA },
1773
  { "ble",                BRA(0x3B), BASE, ARG_BRA },
1774
  { "blbs",                BRA(0x3C), BASE, ARG_BRA },
1775
  { "bne",                BRA(0x3D), BASE, ARG_BRA },
1776
  { "bge",                BRA(0x3E), BASE, ARG_BRA },
1777
  { "bgt",                BRA(0x3F), BASE, ARG_BRA },
1778
};
1779

    
1780
const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1781

    
1782
/* OSF register names.  */
1783

    
1784
static const char * const osf_regnames[64] = {
1785
  "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1786
  "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1787
  "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1788
  "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1789
  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1790
  "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1791
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1792
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1793
};
1794

    
1795
/* VMS register names.  */
1796

    
1797
static const char * const vms_regnames[64] = {
1798
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1799
  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1800
  "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1801
  "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1802
  "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1803
  "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1804
  "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1805
  "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1806
};
1807

    
1808
/* Disassemble Alpha instructions.  */
1809

    
1810
int
1811
print_insn_alpha (memaddr, info)
1812
     bfd_vma memaddr;
1813
     struct disassemble_info *info;
1814
{
1815
  static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1816
  const char * const * regnames;
1817
  const struct alpha_opcode *opcode, *opcode_end;
1818
  const unsigned char *opindex;
1819
  unsigned insn, op, isa_mask;
1820
  int need_comma;
1821

    
1822
  /* Initialize the majorop table the first time through */
1823
  if (!opcode_index[0])
1824
    {
1825
      opcode = alpha_opcodes;
1826
      opcode_end = opcode + alpha_num_opcodes;
1827

    
1828
      for (op = 0; op < AXP_NOPS; ++op)
1829
        {
1830
          opcode_index[op] = opcode;
1831
          while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1832
            ++opcode;
1833
        }
1834
      opcode_index[op] = opcode;
1835
    }
1836

    
1837
  if (info->flavour == bfd_target_evax_flavour)
1838
    regnames = vms_regnames;
1839
  else
1840
    regnames = osf_regnames;
1841

    
1842
  isa_mask = AXP_OPCODE_NOPAL;
1843
  switch (info->mach)
1844
    {
1845
    case bfd_mach_alpha_ev4:
1846
      isa_mask |= AXP_OPCODE_EV4;
1847
      break;
1848
    case bfd_mach_alpha_ev5:
1849
      isa_mask |= AXP_OPCODE_EV5;
1850
      break;
1851
    case bfd_mach_alpha_ev6:
1852
      isa_mask |= AXP_OPCODE_EV6;
1853
      break;
1854
    }
1855

    
1856
  /* Read the insn into a host word */
1857
  {
1858
    bfd_byte buffer[4];
1859
    int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1860
    if (status != 0)
1861
      {
1862
        (*info->memory_error_func) (status, memaddr, info);
1863
        return -1;
1864
      }
1865
    insn = bfd_getl32 (buffer);
1866
  }
1867

    
1868
  /* Get the major opcode of the instruction.  */
1869
  op = AXP_OP (insn);
1870

    
1871
  /* Find the first match in the opcode table.  */
1872
  opcode_end = opcode_index[op + 1];
1873
  for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1874
    {
1875
      if ((insn ^ opcode->opcode) & opcode->mask)
1876
        continue;
1877

    
1878
      if (!(opcode->flags & isa_mask))
1879
        continue;
1880

    
1881
      /* Make two passes over the operands.  First see if any of them
1882
         have extraction functions, and, if they do, make sure the
1883
         instruction is valid.  */
1884
      {
1885
        int invalid = 0;
1886
        for (opindex = opcode->operands; *opindex != 0; opindex++)
1887
          {
1888
            const struct alpha_operand *operand = alpha_operands + *opindex;
1889
            if (operand->extract)
1890
              (*operand->extract) (insn, &invalid);
1891
          }
1892
        if (invalid)
1893
          continue;
1894
      }
1895

    
1896
      /* The instruction is valid.  */
1897
      goto found;
1898
    }
1899

    
1900
  /* No instruction found */
1901
  (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1902

    
1903
  return 4;
1904

    
1905
found:
1906
  (*info->fprintf_func) (info->stream, "%s", opcode->name);
1907
  if (opcode->operands[0] != 0)
1908
    (*info->fprintf_func) (info->stream, "\t");
1909

    
1910
  /* Now extract and print the operands.  */
1911
  need_comma = 0;
1912
  for (opindex = opcode->operands; *opindex != 0; opindex++)
1913
    {
1914
      const struct alpha_operand *operand = alpha_operands + *opindex;
1915
      int value;
1916

    
1917
      /* Operands that are marked FAKE are simply ignored.  We
1918
         already made sure that the extract function considered
1919
         the instruction to be valid.  */
1920
      if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1921
        continue;
1922

    
1923
      /* Extract the value from the instruction.  */
1924
      if (operand->extract)
1925
        value = (*operand->extract) (insn, (int *) NULL);
1926
      else
1927
        {
1928
          value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1929
          if (operand->flags & AXP_OPERAND_SIGNED)
1930
            {
1931
              int signbit = 1 << (operand->bits - 1);
1932
              value = (value ^ signbit) - signbit;
1933
            }
1934
        }
1935

    
1936
      if (need_comma &&
1937
          ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1938
           != AXP_OPERAND_PARENS))
1939
        {
1940
          (*info->fprintf_func) (info->stream, ",");
1941
        }
1942
      if (operand->flags & AXP_OPERAND_PARENS)
1943
        (*info->fprintf_func) (info->stream, "(");
1944

    
1945
      /* Print the operand as directed by the flags.  */
1946
      if (operand->flags & AXP_OPERAND_IR)
1947
        (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1948
      else if (operand->flags & AXP_OPERAND_FPR)
1949
        (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1950
      else if (operand->flags & AXP_OPERAND_RELATIVE)
1951
        (*info->print_address_func) (memaddr + 4 + value, info);
1952
      else if (operand->flags & AXP_OPERAND_SIGNED)
1953
        (*info->fprintf_func) (info->stream, "%d", value);
1954
      else
1955
        (*info->fprintf_func) (info->stream, "%#x", value);
1956

    
1957
      if (operand->flags & AXP_OPERAND_PARENS)
1958
        (*info->fprintf_func) (info->stream, ")");
1959
      need_comma = 1;
1960
    }
1961

    
1962
  return 4;
1963
}