Statistics
| Branch: | Revision:

root / include / fpu / softfloat.h @ 47a34e00

History | View | Annotate | Download (25.3 kB)

1
/*
2
 * QEMU float support
3
 *
4
 * Derived from SoftFloat.
5
 */
6

    
7
/*============================================================================
8

9
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10
Package, Release 2b.
11

12
Written by John R. Hauser.  This work was made possible in part by the
13
International Computer Science Institute, located at Suite 600, 1947 Center
14
Street, Berkeley, California 94704.  Funding was partially provided by the
15
National Science Foundation under grant MIP-9311980.  The original version
16
of this code was written as part of a project to build a fixed-point vector
17
processor in collaboration with the University of California at Berkeley,
18
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20
arithmetic/SoftFloat.html'.
21

22
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30

31
Derivative works are acceptable, even for commercial purposes, so long as
32
(1) the source code for the derivative work includes prominent notice that
33
the work is derivative, and (2) the source code includes prominent notice with
34
these four paragraphs for those parts of this code that are retained.
35

36
=============================================================================*/
37

    
38
#ifndef SOFTFLOAT_H
39
#define SOFTFLOAT_H
40

    
41
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42
#include <sunmath.h>
43
#endif
44

    
45
#include <inttypes.h>
46
#include "config-host.h"
47
#include "qemu/osdep.h"
48

    
49
/*----------------------------------------------------------------------------
50
| Each of the following `typedef's defines the most convenient type that holds
51
| integers of at least as many bits as specified.  For example, `uint8' should
52
| be the most convenient type that can hold unsigned integers of as many as
53
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
54
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55
| to the same as `int'.
56
*----------------------------------------------------------------------------*/
57
typedef uint8_t flag;
58
typedef uint8_t uint8;
59
typedef int8_t int8;
60
typedef unsigned int uint32;
61
typedef signed int int32;
62
typedef uint64_t uint64;
63
typedef int64_t int64;
64

    
65
#define LIT64( a ) a##LL
66
#define INLINE static inline
67

    
68
#define STATUS_PARAM , float_status *status
69
#define STATUS(field) status->field
70
#define STATUS_VAR , status
71

    
72
/*----------------------------------------------------------------------------
73
| Software IEC/IEEE floating-point ordering relations
74
*----------------------------------------------------------------------------*/
75
enum {
76
    float_relation_less      = -1,
77
    float_relation_equal     =  0,
78
    float_relation_greater   =  1,
79
    float_relation_unordered =  2
80
};
81

    
82
/*----------------------------------------------------------------------------
83
| Software IEC/IEEE floating-point types.
84
*----------------------------------------------------------------------------*/
85
/* Use structures for soft-float types.  This prevents accidentally mixing
86
   them with native int/float types.  A sufficiently clever compiler and
87
   sane ABI should be able to see though these structs.  However
88
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
89
//#define USE_SOFTFLOAT_STRUCT_TYPES
90
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
91
typedef struct {
92
    uint16_t v;
93
} float16;
94
#define float16_val(x) (((float16)(x)).v)
95
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
96
#define const_float16(x) { x }
97
typedef struct {
98
    uint32_t v;
99
} float32;
100
/* The cast ensures an error if the wrong type is passed.  */
101
#define float32_val(x) (((float32)(x)).v)
102
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
103
#define const_float32(x) { x }
104
typedef struct {
105
    uint64_t v;
106
} float64;
107
#define float64_val(x) (((float64)(x)).v)
108
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
109
#define const_float64(x) { x }
110
#else
111
typedef uint16_t float16;
112
typedef uint32_t float32;
113
typedef uint64_t float64;
114
#define float16_val(x) (x)
115
#define float32_val(x) (x)
116
#define float64_val(x) (x)
117
#define make_float16(x) (x)
118
#define make_float32(x) (x)
119
#define make_float64(x) (x)
120
#define const_float16(x) (x)
121
#define const_float32(x) (x)
122
#define const_float64(x) (x)
123
#endif
124
typedef struct {
125
    uint64_t low;
126
    uint16_t high;
127
} floatx80;
128
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
129
#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
130
typedef struct {
131
#ifdef HOST_WORDS_BIGENDIAN
132
    uint64_t high, low;
133
#else
134
    uint64_t low, high;
135
#endif
136
} float128;
137
#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
138
#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
139

    
140
/*----------------------------------------------------------------------------
141
| Software IEC/IEEE floating-point underflow tininess-detection mode.
142
*----------------------------------------------------------------------------*/
143
enum {
144
    float_tininess_after_rounding  = 0,
145
    float_tininess_before_rounding = 1
146
};
147

    
148
/*----------------------------------------------------------------------------
149
| Software IEC/IEEE floating-point rounding mode.
150
*----------------------------------------------------------------------------*/
151
enum {
152
    float_round_nearest_even = 0,
153
    float_round_down         = 1,
154
    float_round_up           = 2,
155
    float_round_to_zero      = 3
156
};
157

    
158
/*----------------------------------------------------------------------------
159
| Software IEC/IEEE floating-point exception flags.
160
*----------------------------------------------------------------------------*/
161
enum {
162
    float_flag_invalid   =  1,
163
    float_flag_divbyzero =  4,
164
    float_flag_overflow  =  8,
165
    float_flag_underflow = 16,
166
    float_flag_inexact   = 32,
167
    float_flag_input_denormal = 64,
168
    float_flag_output_denormal = 128
169
};
170

    
171
typedef struct float_status {
172
    signed char float_detect_tininess;
173
    signed char float_rounding_mode;
174
    signed char float_exception_flags;
175
    signed char floatx80_rounding_precision;
176
    /* should denormalised results go to zero and set the inexact flag? */
177
    flag flush_to_zero;
178
    /* should denormalised inputs go to zero and set the input_denormal flag? */
179
    flag flush_inputs_to_zero;
180
    flag default_nan_mode;
181
} float_status;
182

    
183
void set_float_rounding_mode(int val STATUS_PARAM);
184
void set_float_exception_flags(int val STATUS_PARAM);
185
INLINE void set_float_detect_tininess(int val STATUS_PARAM)
186
{
187
    STATUS(float_detect_tininess) = val;
188
}
189
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
190
{
191
    STATUS(flush_to_zero) = val;
192
}
193
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
194
{
195
    STATUS(flush_inputs_to_zero) = val;
196
}
197
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
198
{
199
    STATUS(default_nan_mode) = val;
200
}
201
INLINE int get_float_exception_flags(float_status *status)
202
{
203
    return STATUS(float_exception_flags);
204
}
205
void set_floatx80_rounding_precision(int val STATUS_PARAM);
206

    
207
/*----------------------------------------------------------------------------
208
| Routine to raise any or all of the software IEC/IEEE floating-point
209
| exception flags.
210
*----------------------------------------------------------------------------*/
211
void float_raise( int8 flags STATUS_PARAM);
212

    
213
/*----------------------------------------------------------------------------
214
| Options to indicate which negations to perform in float*_muladd()
215
| Using these differs from negating an input or output before calling
216
| the muladd function in that this means that a NaN doesn't have its
217
| sign bit inverted before it is propagated.
218
*----------------------------------------------------------------------------*/
219
enum {
220
    float_muladd_negate_c = 1,
221
    float_muladd_negate_product = 2,
222
    float_muladd_negate_result = 4,
223
};
224

    
225
/*----------------------------------------------------------------------------
226
| Software IEC/IEEE integer-to-floating-point conversion routines.
227
*----------------------------------------------------------------------------*/
228
float32 int32_to_float32(int32_t STATUS_PARAM);
229
float64 int32_to_float64(int32_t STATUS_PARAM);
230
float32 uint32_to_float32(uint32_t STATUS_PARAM);
231
float64 uint32_to_float64(uint32_t STATUS_PARAM);
232
floatx80 int32_to_floatx80(int32_t STATUS_PARAM);
233
float128 int32_to_float128(int32_t STATUS_PARAM);
234
float32 int64_to_float32(int64_t STATUS_PARAM);
235
float32 uint64_to_float32(uint64_t STATUS_PARAM);
236
float64 int64_to_float64(int64_t STATUS_PARAM);
237
float64 uint64_to_float64(uint64_t STATUS_PARAM);
238
floatx80 int64_to_floatx80(int64_t STATUS_PARAM);
239
float128 int64_to_float128(int64_t STATUS_PARAM);
240
float128 uint64_to_float128(uint64_t STATUS_PARAM);
241

    
242
/* We provide the int16 versions for symmetry of API with float-to-int */
243
INLINE float32 int16_to_float32(int16_t v STATUS_PARAM)
244
{
245
    return int32_to_float32(v STATUS_VAR);
246
}
247

    
248
INLINE float32 uint16_to_float32(uint16_t v STATUS_PARAM)
249
{
250
    return uint32_to_float32(v STATUS_VAR);
251
}
252

    
253
INLINE float64 int16_to_float64(int16_t v STATUS_PARAM)
254
{
255
    return int32_to_float64(v STATUS_VAR);
256
}
257

    
258
INLINE float64 uint16_to_float64(uint16_t v STATUS_PARAM)
259
{
260
    return uint32_to_float64(v STATUS_VAR);
261
}
262

    
263
/*----------------------------------------------------------------------------
264
| Software half-precision conversion routines.
265
*----------------------------------------------------------------------------*/
266
float16 float32_to_float16( float32, flag STATUS_PARAM );
267
float32 float16_to_float32( float16, flag STATUS_PARAM );
268

    
269
/*----------------------------------------------------------------------------
270
| Software half-precision operations.
271
*----------------------------------------------------------------------------*/
272
int float16_is_quiet_nan( float16 );
273
int float16_is_signaling_nan( float16 );
274
float16 float16_maybe_silence_nan( float16 );
275

    
276
INLINE int float16_is_any_nan(float16 a)
277
{
278
    return ((float16_val(a) & ~0x8000) > 0x7c00);
279
}
280

    
281
/*----------------------------------------------------------------------------
282
| The pattern for a default generated half-precision NaN.
283
*----------------------------------------------------------------------------*/
284
extern const float16 float16_default_nan;
285

    
286
/*----------------------------------------------------------------------------
287
| Software IEC/IEEE single-precision conversion routines.
288
*----------------------------------------------------------------------------*/
289
int_fast16_t float32_to_int16(float32 STATUS_PARAM);
290
uint_fast16_t float32_to_uint16(float32 STATUS_PARAM);
291
int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
292
uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
293
int32 float32_to_int32( float32 STATUS_PARAM );
294
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
295
uint32 float32_to_uint32( float32 STATUS_PARAM );
296
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
297
int64 float32_to_int64( float32 STATUS_PARAM );
298
uint64 float32_to_uint64(float32 STATUS_PARAM);
299
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
300
float64 float32_to_float64( float32 STATUS_PARAM );
301
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
302
float128 float32_to_float128( float32 STATUS_PARAM );
303

    
304
/*----------------------------------------------------------------------------
305
| Software IEC/IEEE single-precision operations.
306
*----------------------------------------------------------------------------*/
307
float32 float32_round_to_int( float32 STATUS_PARAM );
308
float32 float32_add( float32, float32 STATUS_PARAM );
309
float32 float32_sub( float32, float32 STATUS_PARAM );
310
float32 float32_mul( float32, float32 STATUS_PARAM );
311
float32 float32_div( float32, float32 STATUS_PARAM );
312
float32 float32_rem( float32, float32 STATUS_PARAM );
313
float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
314
float32 float32_sqrt( float32 STATUS_PARAM );
315
float32 float32_exp2( float32 STATUS_PARAM );
316
float32 float32_log2( float32 STATUS_PARAM );
317
int float32_eq( float32, float32 STATUS_PARAM );
318
int float32_le( float32, float32 STATUS_PARAM );
319
int float32_lt( float32, float32 STATUS_PARAM );
320
int float32_unordered( float32, float32 STATUS_PARAM );
321
int float32_eq_quiet( float32, float32 STATUS_PARAM );
322
int float32_le_quiet( float32, float32 STATUS_PARAM );
323
int float32_lt_quiet( float32, float32 STATUS_PARAM );
324
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
325
int float32_compare( float32, float32 STATUS_PARAM );
326
int float32_compare_quiet( float32, float32 STATUS_PARAM );
327
float32 float32_min(float32, float32 STATUS_PARAM);
328
float32 float32_max(float32, float32 STATUS_PARAM);
329
float32 float32_minnum(float32, float32 STATUS_PARAM);
330
float32 float32_maxnum(float32, float32 STATUS_PARAM);
331
int float32_is_quiet_nan( float32 );
332
int float32_is_signaling_nan( float32 );
333
float32 float32_maybe_silence_nan( float32 );
334
float32 float32_scalbn( float32, int STATUS_PARAM );
335

    
336
INLINE float32 float32_abs(float32 a)
337
{
338
    /* Note that abs does *not* handle NaN specially, nor does
339
     * it flush denormal inputs to zero.
340
     */
341
    return make_float32(float32_val(a) & 0x7fffffff);
342
}
343

    
344
INLINE float32 float32_chs(float32 a)
345
{
346
    /* Note that chs does *not* handle NaN specially, nor does
347
     * it flush denormal inputs to zero.
348
     */
349
    return make_float32(float32_val(a) ^ 0x80000000);
350
}
351

    
352
INLINE int float32_is_infinity(float32 a)
353
{
354
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
355
}
356

    
357
INLINE int float32_is_neg(float32 a)
358
{
359
    return float32_val(a) >> 31;
360
}
361

    
362
INLINE int float32_is_zero(float32 a)
363
{
364
    return (float32_val(a) & 0x7fffffff) == 0;
365
}
366

    
367
INLINE int float32_is_any_nan(float32 a)
368
{
369
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
370
}
371

    
372
INLINE int float32_is_zero_or_denormal(float32 a)
373
{
374
    return (float32_val(a) & 0x7f800000) == 0;
375
}
376

    
377
INLINE float32 float32_set_sign(float32 a, int sign)
378
{
379
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
380
}
381

    
382
#define float32_zero make_float32(0)
383
#define float32_one make_float32(0x3f800000)
384
#define float32_ln2 make_float32(0x3f317218)
385
#define float32_pi make_float32(0x40490fdb)
386
#define float32_half make_float32(0x3f000000)
387
#define float32_infinity make_float32(0x7f800000)
388

    
389

    
390
/*----------------------------------------------------------------------------
391
| The pattern for a default generated single-precision NaN.
392
*----------------------------------------------------------------------------*/
393
extern const float32 float32_default_nan;
394

    
395
/*----------------------------------------------------------------------------
396
| Software IEC/IEEE double-precision conversion routines.
397
*----------------------------------------------------------------------------*/
398
int_fast16_t float64_to_int16(float64 STATUS_PARAM);
399
uint_fast16_t float64_to_uint16(float64 STATUS_PARAM);
400
int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
401
uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
402
int32 float64_to_int32( float64 STATUS_PARAM );
403
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
404
uint32 float64_to_uint32( float64 STATUS_PARAM );
405
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
406
int64 float64_to_int64( float64 STATUS_PARAM );
407
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
408
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
409
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
410
float32 float64_to_float32( float64 STATUS_PARAM );
411
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
412
float128 float64_to_float128( float64 STATUS_PARAM );
413

    
414
/*----------------------------------------------------------------------------
415
| Software IEC/IEEE double-precision operations.
416
*----------------------------------------------------------------------------*/
417
float64 float64_round_to_int( float64 STATUS_PARAM );
418
float64 float64_trunc_to_int( float64 STATUS_PARAM );
419
float64 float64_add( float64, float64 STATUS_PARAM );
420
float64 float64_sub( float64, float64 STATUS_PARAM );
421
float64 float64_mul( float64, float64 STATUS_PARAM );
422
float64 float64_div( float64, float64 STATUS_PARAM );
423
float64 float64_rem( float64, float64 STATUS_PARAM );
424
float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
425
float64 float64_sqrt( float64 STATUS_PARAM );
426
float64 float64_log2( float64 STATUS_PARAM );
427
int float64_eq( float64, float64 STATUS_PARAM );
428
int float64_le( float64, float64 STATUS_PARAM );
429
int float64_lt( float64, float64 STATUS_PARAM );
430
int float64_unordered( float64, float64 STATUS_PARAM );
431
int float64_eq_quiet( float64, float64 STATUS_PARAM );
432
int float64_le_quiet( float64, float64 STATUS_PARAM );
433
int float64_lt_quiet( float64, float64 STATUS_PARAM );
434
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
435
int float64_compare( float64, float64 STATUS_PARAM );
436
int float64_compare_quiet( float64, float64 STATUS_PARAM );
437
float64 float64_min(float64, float64 STATUS_PARAM);
438
float64 float64_max(float64, float64 STATUS_PARAM);
439
float64 float64_minnum(float64, float64 STATUS_PARAM);
440
float64 float64_maxnum(float64, float64 STATUS_PARAM);
441
int float64_is_quiet_nan( float64 a );
442
int float64_is_signaling_nan( float64 );
443
float64 float64_maybe_silence_nan( float64 );
444
float64 float64_scalbn( float64, int STATUS_PARAM );
445

    
446
INLINE float64 float64_abs(float64 a)
447
{
448
    /* Note that abs does *not* handle NaN specially, nor does
449
     * it flush denormal inputs to zero.
450
     */
451
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
452
}
453

    
454
INLINE float64 float64_chs(float64 a)
455
{
456
    /* Note that chs does *not* handle NaN specially, nor does
457
     * it flush denormal inputs to zero.
458
     */
459
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
460
}
461

    
462
INLINE int float64_is_infinity(float64 a)
463
{
464
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
465
}
466

    
467
INLINE int float64_is_neg(float64 a)
468
{
469
    return float64_val(a) >> 63;
470
}
471

    
472
INLINE int float64_is_zero(float64 a)
473
{
474
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
475
}
476

    
477
INLINE int float64_is_any_nan(float64 a)
478
{
479
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
480
}
481

    
482
INLINE int float64_is_zero_or_denormal(float64 a)
483
{
484
    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
485
}
486

    
487
INLINE float64 float64_set_sign(float64 a, int sign)
488
{
489
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
490
                        | ((int64_t)sign << 63));
491
}
492

    
493
#define float64_zero make_float64(0)
494
#define float64_one make_float64(0x3ff0000000000000LL)
495
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
496
#define float64_pi make_float64(0x400921fb54442d18LL)
497
#define float64_half make_float64(0x3fe0000000000000LL)
498
#define float64_infinity make_float64(0x7ff0000000000000LL)
499

    
500
/*----------------------------------------------------------------------------
501
| The pattern for a default generated double-precision NaN.
502
*----------------------------------------------------------------------------*/
503
extern const float64 float64_default_nan;
504

    
505
/*----------------------------------------------------------------------------
506
| Software IEC/IEEE extended double-precision conversion routines.
507
*----------------------------------------------------------------------------*/
508
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
509
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
510
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
511
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
512
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
513
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
514
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
515

    
516
/*----------------------------------------------------------------------------
517
| Software IEC/IEEE extended double-precision operations.
518
*----------------------------------------------------------------------------*/
519
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
520
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
521
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
522
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
523
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
524
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
525
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
526
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
527
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
528
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
529
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
530
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
531
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
532
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
533
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
534
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
535
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
536
int floatx80_is_quiet_nan( floatx80 );
537
int floatx80_is_signaling_nan( floatx80 );
538
floatx80 floatx80_maybe_silence_nan( floatx80 );
539
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
540

    
541
INLINE floatx80 floatx80_abs(floatx80 a)
542
{
543
    a.high &= 0x7fff;
544
    return a;
545
}
546

    
547
INLINE floatx80 floatx80_chs(floatx80 a)
548
{
549
    a.high ^= 0x8000;
550
    return a;
551
}
552

    
553
INLINE int floatx80_is_infinity(floatx80 a)
554
{
555
    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
556
}
557

    
558
INLINE int floatx80_is_neg(floatx80 a)
559
{
560
    return a.high >> 15;
561
}
562

    
563
INLINE int floatx80_is_zero(floatx80 a)
564
{
565
    return (a.high & 0x7fff) == 0 && a.low == 0;
566
}
567

    
568
INLINE int floatx80_is_zero_or_denormal(floatx80 a)
569
{
570
    return (a.high & 0x7fff) == 0;
571
}
572

    
573
INLINE int floatx80_is_any_nan(floatx80 a)
574
{
575
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
576
}
577

    
578
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
579
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
580
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
581
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
582
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
583
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
584

    
585
/*----------------------------------------------------------------------------
586
| The pattern for a default generated extended double-precision NaN.
587
*----------------------------------------------------------------------------*/
588
extern const floatx80 floatx80_default_nan;
589

    
590
/*----------------------------------------------------------------------------
591
| Software IEC/IEEE quadruple-precision conversion routines.
592
*----------------------------------------------------------------------------*/
593
int32 float128_to_int32( float128 STATUS_PARAM );
594
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
595
int64 float128_to_int64( float128 STATUS_PARAM );
596
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
597
float32 float128_to_float32( float128 STATUS_PARAM );
598
float64 float128_to_float64( float128 STATUS_PARAM );
599
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
600

    
601
/*----------------------------------------------------------------------------
602
| Software IEC/IEEE quadruple-precision operations.
603
*----------------------------------------------------------------------------*/
604
float128 float128_round_to_int( float128 STATUS_PARAM );
605
float128 float128_add( float128, float128 STATUS_PARAM );
606
float128 float128_sub( float128, float128 STATUS_PARAM );
607
float128 float128_mul( float128, float128 STATUS_PARAM );
608
float128 float128_div( float128, float128 STATUS_PARAM );
609
float128 float128_rem( float128, float128 STATUS_PARAM );
610
float128 float128_sqrt( float128 STATUS_PARAM );
611
int float128_eq( float128, float128 STATUS_PARAM );
612
int float128_le( float128, float128 STATUS_PARAM );
613
int float128_lt( float128, float128 STATUS_PARAM );
614
int float128_unordered( float128, float128 STATUS_PARAM );
615
int float128_eq_quiet( float128, float128 STATUS_PARAM );
616
int float128_le_quiet( float128, float128 STATUS_PARAM );
617
int float128_lt_quiet( float128, float128 STATUS_PARAM );
618
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
619
int float128_compare( float128, float128 STATUS_PARAM );
620
int float128_compare_quiet( float128, float128 STATUS_PARAM );
621
int float128_is_quiet_nan( float128 );
622
int float128_is_signaling_nan( float128 );
623
float128 float128_maybe_silence_nan( float128 );
624
float128 float128_scalbn( float128, int STATUS_PARAM );
625

    
626
INLINE float128 float128_abs(float128 a)
627
{
628
    a.high &= 0x7fffffffffffffffLL;
629
    return a;
630
}
631

    
632
INLINE float128 float128_chs(float128 a)
633
{
634
    a.high ^= 0x8000000000000000LL;
635
    return a;
636
}
637

    
638
INLINE int float128_is_infinity(float128 a)
639
{
640
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
641
}
642

    
643
INLINE int float128_is_neg(float128 a)
644
{
645
    return a.high >> 63;
646
}
647

    
648
INLINE int float128_is_zero(float128 a)
649
{
650
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
651
}
652

    
653
INLINE int float128_is_zero_or_denormal(float128 a)
654
{
655
    return (a.high & 0x7fff000000000000LL) == 0;
656
}
657

    
658
INLINE int float128_is_any_nan(float128 a)
659
{
660
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
661
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
662
}
663

    
664
#define float128_zero make_float128(0, 0)
665

    
666
/*----------------------------------------------------------------------------
667
| The pattern for a default generated quadruple-precision NaN.
668
*----------------------------------------------------------------------------*/
669
extern const float128 float128_default_nan;
670

    
671
#endif /* !SOFTFLOAT_H */