Statistics
| Branch: | Revision:

root / cpu-exec.c @ 480c1cdb

History | View | Annotate | Download (46.3 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4))
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
179
#else
180
    flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
181
#endif
182
    cs_base = env->npc;
183
    pc = env->pc;
184
#elif defined(TARGET_PPC)
185
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
186
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
187
    cs_base = 0;
188
    pc = env->nip;
189
#elif defined(TARGET_MIPS)
190
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
191
    cs_base = 0;
192
    pc = env->PC;
193
#elif defined(TARGET_SH4)
194
    flags = env->sr & (SR_MD | SR_RB);
195
    cs_base = 0;         /* XXXXX */
196
    pc = env->pc;
197
#else
198
#error unsupported CPU
199
#endif
200
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
201
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
202
                         tb->flags != flags, 0)) {
203
        tb = tb_find_slow(pc, cs_base, flags);
204
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
205
           doing it in tb_find_slow */
206
        if (tb_invalidated_flag) {
207
            /* as some TB could have been invalidated because
208
               of memory exceptions while generating the code, we
209
               must recompute the hash index here */
210
            T0 = 0;
211
        }
212
    }
213
    return tb;
214
}
215

    
216

    
217
/* main execution loop */
218

    
219
int cpu_exec(CPUState *env1)
220
{
221
    int saved_T0, saved_T1;
222
#if defined(reg_T2)
223
    int saved_T2;
224
#endif
225
    CPUState *saved_env;
226
#if defined(TARGET_I386)
227
#ifdef reg_EAX
228
    int saved_EAX;
229
#endif
230
#ifdef reg_ECX
231
    int saved_ECX;
232
#endif
233
#ifdef reg_EDX
234
    int saved_EDX;
235
#endif
236
#ifdef reg_EBX
237
    int saved_EBX;
238
#endif
239
#ifdef reg_ESP
240
    int saved_ESP;
241
#endif
242
#ifdef reg_EBP
243
    int saved_EBP;
244
#endif
245
#ifdef reg_ESI
246
    int saved_ESI;
247
#endif
248
#ifdef reg_EDI
249
    int saved_EDI;
250
#endif
251
#elif defined(TARGET_SPARC)
252
#if defined(reg_REGWPTR)
253
    uint32_t *saved_regwptr;
254
#endif
255
#endif
256
#if defined(__sparc__) && !defined(HOST_SOLARIS)
257
    int saved_i7, tmp_T0;
258
#endif
259
    int ret, interrupt_request;
260
    void (*gen_func)(void);
261
    TranslationBlock *tb;
262
    uint8_t *tc_ptr;
263

    
264
#if defined(TARGET_I386)
265
    /* handle exit of HALTED state */
266
    if (env1->hflags & HF_HALTED_MASK) {
267
        /* disable halt condition */
268
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269
            (env1->eflags & IF_MASK)) {
270
            env1->hflags &= ~HF_HALTED_MASK;
271
        } else {
272
            return EXCP_HALTED;
273
        }
274
    }
275
#elif defined(TARGET_PPC)
276
    if (env1->halted) {
277
        if (env1->msr[MSR_EE] && 
278
            (env1->interrupt_request & 
279
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
280
            env1->halted = 0;
281
        } else {
282
            return EXCP_HALTED;
283
        }
284
    }
285
#elif defined(TARGET_SPARC)
286
    if (env1->halted) {
287
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
288
            (env1->psret != 0)) {
289
            env1->halted = 0;
290
        } else {
291
            return EXCP_HALTED;
292
        }
293
    }
294
#elif defined(TARGET_ARM)
295
    if (env1->halted) {
296
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
297
           set.  */
298
        if (env1->interrupt_request
299
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
300
            env1->halted = 0;
301
        } else {
302
            return EXCP_HALTED;
303
        }
304
    }
305
#elif defined(TARGET_MIPS)
306
    if (env1->halted) {
307
        if (env1->interrupt_request &
308
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
309
            env1->halted = 0;
310
        } else {
311
            return EXCP_HALTED;
312
        }
313
    }
314
#endif
315

    
316
    cpu_single_env = env1; 
317

    
318
    /* first we save global registers */
319
    saved_env = env;
320
    env = env1;
321
    saved_T0 = T0;
322
    saved_T1 = T1;
323
#if defined(reg_T2)
324
    saved_T2 = T2;
325
#endif
326
#if defined(__sparc__) && !defined(HOST_SOLARIS)
327
    /* we also save i7 because longjmp may not restore it */
328
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
329
#endif
330

    
331
#if defined(TARGET_I386)
332
#ifdef reg_EAX
333
    saved_EAX = EAX;
334
#endif
335
#ifdef reg_ECX
336
    saved_ECX = ECX;
337
#endif
338
#ifdef reg_EDX
339
    saved_EDX = EDX;
340
#endif
341
#ifdef reg_EBX
342
    saved_EBX = EBX;
343
#endif
344
#ifdef reg_ESP
345
    saved_ESP = ESP;
346
#endif
347
#ifdef reg_EBP
348
    saved_EBP = EBP;
349
#endif
350
#ifdef reg_ESI
351
    saved_ESI = ESI;
352
#endif
353
#ifdef reg_EDI
354
    saved_EDI = EDI;
355
#endif
356

    
357
    env_to_regs();
358
    /* put eflags in CPU temporary format */
359
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
360
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
361
    CC_OP = CC_OP_EFLAGS;
362
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
363
#elif defined(TARGET_ARM)
364
#elif defined(TARGET_SPARC)
365
#if defined(reg_REGWPTR)
366
    saved_regwptr = REGWPTR;
367
#endif
368
#elif defined(TARGET_PPC)
369
#elif defined(TARGET_MIPS)
370
#elif defined(TARGET_SH4)
371
    /* XXXXX */
372
#else
373
#error unsupported target CPU
374
#endif
375
    env->exception_index = -1;
376

    
377
    /* prepare setjmp context for exception handling */
378
    for(;;) {
379
        if (setjmp(env->jmp_env) == 0) {
380
            env->current_tb = NULL;
381
            /* if an exception is pending, we execute it here */
382
            if (env->exception_index >= 0) {
383
                if (env->exception_index >= EXCP_INTERRUPT) {
384
                    /* exit request from the cpu execution loop */
385
                    ret = env->exception_index;
386
                    break;
387
                } else if (env->user_mode_only) {
388
                    /* if user mode only, we simulate a fake exception
389
                       which will be hanlded outside the cpu execution
390
                       loop */
391
#if defined(TARGET_I386)
392
                    do_interrupt_user(env->exception_index, 
393
                                      env->exception_is_int, 
394
                                      env->error_code, 
395
                                      env->exception_next_eip);
396
#endif
397
                    ret = env->exception_index;
398
                    break;
399
                } else {
400
#if defined(TARGET_I386)
401
                    /* simulate a real cpu exception. On i386, it can
402
                       trigger new exceptions, but we do not handle
403
                       double or triple faults yet. */
404
                    do_interrupt(env->exception_index, 
405
                                 env->exception_is_int, 
406
                                 env->error_code, 
407
                                 env->exception_next_eip, 0);
408
#elif defined(TARGET_PPC)
409
                    do_interrupt(env);
410
#elif defined(TARGET_MIPS)
411
                    do_interrupt(env);
412
#elif defined(TARGET_SPARC)
413
                    do_interrupt(env->exception_index);
414
#elif defined(TARGET_ARM)
415
                    do_interrupt(env);
416
#elif defined(TARGET_SH4)
417
                    do_interrupt(env);
418
#endif
419
                }
420
                env->exception_index = -1;
421
            } 
422
#ifdef USE_KQEMU
423
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
424
                int ret;
425
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
426
                ret = kqemu_cpu_exec(env);
427
                /* put eflags in CPU temporary format */
428
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
429
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
430
                CC_OP = CC_OP_EFLAGS;
431
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
432
                if (ret == 1) {
433
                    /* exception */
434
                    longjmp(env->jmp_env, 1);
435
                } else if (ret == 2) {
436
                    /* softmmu execution needed */
437
                } else {
438
                    if (env->interrupt_request != 0) {
439
                        /* hardware interrupt will be executed just after */
440
                    } else {
441
                        /* otherwise, we restart */
442
                        longjmp(env->jmp_env, 1);
443
                    }
444
                }
445
            }
446
#endif
447

    
448
            T0 = 0; /* force lookup of first TB */
449
            for(;;) {
450
#if defined(__sparc__) && !defined(HOST_SOLARIS)
451
                /* g1 can be modified by some libc? functions */ 
452
                tmp_T0 = T0;
453
#endif            
454
                interrupt_request = env->interrupt_request;
455
                if (__builtin_expect(interrupt_request, 0)) {
456
#if defined(TARGET_I386)
457
                    /* if hardware interrupt pending, we execute it */
458
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
459
                        (env->eflags & IF_MASK) && 
460
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
461
                        int intno;
462
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
463
                        intno = cpu_get_pic_interrupt(env);
464
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
465
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
466
                        }
467
                        do_interrupt(intno, 0, 0, 0, 1);
468
                        /* ensure that no TB jump will be modified as
469
                           the program flow was changed */
470
#if defined(__sparc__) && !defined(HOST_SOLARIS)
471
                        tmp_T0 = 0;
472
#else
473
                        T0 = 0;
474
#endif
475
                    }
476
#elif defined(TARGET_PPC)
477
#if 0
478
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
479
                        cpu_ppc_reset(env);
480
                    }
481
#endif
482
                    if (msr_ee != 0) {
483
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
484
                            /* Raise it */
485
                            env->exception_index = EXCP_EXTERNAL;
486
                            env->error_code = 0;
487
                            do_interrupt(env);
488
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
489
#if defined(__sparc__) && !defined(HOST_SOLARIS)
490
                            tmp_T0 = 0;
491
#else
492
                            T0 = 0;
493
#endif
494
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
495
                            /* Raise it */
496
                            env->exception_index = EXCP_DECR;
497
                            env->error_code = 0;
498
                            do_interrupt(env);
499
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
500
#if defined(__sparc__) && !defined(HOST_SOLARIS)
501
                            tmp_T0 = 0;
502
#else
503
                            T0 = 0;
504
#endif
505
                        }
506
                    }
507
#elif defined(TARGET_MIPS)
508
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
509
                        (env->CP0_Status & (1 << CP0St_IE)) &&
510
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
511
                        !(env->hflags & MIPS_HFLAG_EXL) &&
512
                        !(env->hflags & MIPS_HFLAG_ERL) &&
513
                        !(env->hflags & MIPS_HFLAG_DM)) {
514
                        /* Raise it */
515
                        env->exception_index = EXCP_EXT_INTERRUPT;
516
                        env->error_code = 0;
517
                        do_interrupt(env);
518
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
519
#if defined(__sparc__) && !defined(HOST_SOLARIS)
520
                        tmp_T0 = 0;
521
#else
522
                        T0 = 0;
523
#endif
524
                    }
525
#elif defined(TARGET_SPARC)
526
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
527
                        (env->psret != 0)) {
528
                        int pil = env->interrupt_index & 15;
529
                        int type = env->interrupt_index & 0xf0;
530

    
531
                        if (((type == TT_EXTINT) &&
532
                             (pil == 15 || pil > env->psrpil)) ||
533
                            type != TT_EXTINT) {
534
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
535
                            do_interrupt(env->interrupt_index);
536
                            env->interrupt_index = 0;
537
#if defined(__sparc__) && !defined(HOST_SOLARIS)
538
                            tmp_T0 = 0;
539
#else
540
                            T0 = 0;
541
#endif
542
                        }
543
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
544
                        //do_interrupt(0, 0, 0, 0, 0);
545
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
546
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
547
                        env1->halted = 1;
548
                        return EXCP_HALTED;
549
                    }
550
#elif defined(TARGET_ARM)
551
                    if (interrupt_request & CPU_INTERRUPT_FIQ
552
                        && !(env->uncached_cpsr & CPSR_F)) {
553
                        env->exception_index = EXCP_FIQ;
554
                        do_interrupt(env);
555
                    }
556
                    if (interrupt_request & CPU_INTERRUPT_HARD
557
                        && !(env->uncached_cpsr & CPSR_I)) {
558
                        env->exception_index = EXCP_IRQ;
559
                        do_interrupt(env);
560
                    }
561
#elif defined(TARGET_SH4)
562
                    /* XXXXX */
563
#endif
564
                   /* Don't use the cached interupt_request value,
565
                      do_interrupt may have updated the EXITTB flag. */
566
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
567
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
568
                        /* ensure that no TB jump will be modified as
569
                           the program flow was changed */
570
#if defined(__sparc__) && !defined(HOST_SOLARIS)
571
                        tmp_T0 = 0;
572
#else
573
                        T0 = 0;
574
#endif
575
                    }
576
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
577
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
578
                        env->exception_index = EXCP_INTERRUPT;
579
                        cpu_loop_exit();
580
                    }
581
                }
582
#ifdef DEBUG_EXEC
583
                if ((loglevel & CPU_LOG_TB_CPU)) {
584
#if defined(TARGET_I386)
585
                    /* restore flags in standard format */
586
#ifdef reg_EAX
587
                    env->regs[R_EAX] = EAX;
588
#endif
589
#ifdef reg_EBX
590
                    env->regs[R_EBX] = EBX;
591
#endif
592
#ifdef reg_ECX
593
                    env->regs[R_ECX] = ECX;
594
#endif
595
#ifdef reg_EDX
596
                    env->regs[R_EDX] = EDX;
597
#endif
598
#ifdef reg_ESI
599
                    env->regs[R_ESI] = ESI;
600
#endif
601
#ifdef reg_EDI
602
                    env->regs[R_EDI] = EDI;
603
#endif
604
#ifdef reg_EBP
605
                    env->regs[R_EBP] = EBP;
606
#endif
607
#ifdef reg_ESP
608
                    env->regs[R_ESP] = ESP;
609
#endif
610
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
611
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
612
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
613
#elif defined(TARGET_ARM)
614
                    cpu_dump_state(env, logfile, fprintf, 0);
615
#elif defined(TARGET_SPARC)
616
                    REGWPTR = env->regbase + (env->cwp * 16);
617
                    env->regwptr = REGWPTR;
618
                    cpu_dump_state(env, logfile, fprintf, 0);
619
#elif defined(TARGET_PPC)
620
                    cpu_dump_state(env, logfile, fprintf, 0);
621
#elif defined(TARGET_MIPS)
622
                    cpu_dump_state(env, logfile, fprintf, 0);
623
#elif defined(TARGET_SH4)
624
                    cpu_dump_state(env, logfile, fprintf, 0);
625
#else
626
#error unsupported target CPU 
627
#endif
628
                }
629
#endif
630
                tb = tb_find_fast();
631
#ifdef DEBUG_EXEC
632
                if ((loglevel & CPU_LOG_EXEC)) {
633
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
634
                            (long)tb->tc_ptr, tb->pc,
635
                            lookup_symbol(tb->pc));
636
                }
637
#endif
638
#if defined(__sparc__) && !defined(HOST_SOLARIS)
639
                T0 = tmp_T0;
640
#endif            
641
                /* see if we can patch the calling TB. When the TB
642
                   spans two pages, we cannot safely do a direct
643
                   jump. */
644
                {
645
                    if (T0 != 0 &&
646
#if USE_KQEMU
647
                        (env->kqemu_enabled != 2) &&
648
#endif
649
                        tb->page_addr[1] == -1
650
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
651
                    && (tb->cflags & CF_CODE_COPY) == 
652
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
653
#endif
654
                    ) {
655
                    spin_lock(&tb_lock);
656
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
657
#if defined(USE_CODE_COPY)
658
                    /* propagates the FP use info */
659
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
660
                        (tb->cflags & CF_FP_USED);
661
#endif
662
                    spin_unlock(&tb_lock);
663
                }
664
                }
665
                tc_ptr = tb->tc_ptr;
666
                env->current_tb = tb;
667
                /* execute the generated code */
668
                gen_func = (void *)tc_ptr;
669
#if defined(__sparc__)
670
                __asm__ __volatile__("call        %0\n\t"
671
                                     "mov        %%o7,%%i0"
672
                                     : /* no outputs */
673
                                     : "r" (gen_func) 
674
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
675
                                       "l0", "l1", "l2", "l3", "l4", "l5",
676
                                       "l6", "l7");
677
#elif defined(__arm__)
678
                asm volatile ("mov pc, %0\n\t"
679
                              ".global exec_loop\n\t"
680
                              "exec_loop:\n\t"
681
                              : /* no outputs */
682
                              : "r" (gen_func)
683
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
684
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
685
{
686
    if (!(tb->cflags & CF_CODE_COPY)) {
687
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
688
            save_native_fp_state(env);
689
        }
690
        gen_func();
691
    } else {
692
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
693
            restore_native_fp_state(env);
694
        }
695
        /* we work with native eflags */
696
        CC_SRC = cc_table[CC_OP].compute_all();
697
        CC_OP = CC_OP_EFLAGS;
698
        asm(".globl exec_loop\n"
699
            "\n"
700
            "debug1:\n"
701
            "    pushl %%ebp\n"
702
            "    fs movl %10, %9\n"
703
            "    fs movl %11, %%eax\n"
704
            "    andl $0x400, %%eax\n"
705
            "    fs orl %8, %%eax\n"
706
            "    pushl %%eax\n"
707
            "    popf\n"
708
            "    fs movl %%esp, %12\n"
709
            "    fs movl %0, %%eax\n"
710
            "    fs movl %1, %%ecx\n"
711
            "    fs movl %2, %%edx\n"
712
            "    fs movl %3, %%ebx\n"
713
            "    fs movl %4, %%esp\n"
714
            "    fs movl %5, %%ebp\n"
715
            "    fs movl %6, %%esi\n"
716
            "    fs movl %7, %%edi\n"
717
            "    fs jmp *%9\n"
718
            "exec_loop:\n"
719
            "    fs movl %%esp, %4\n"
720
            "    fs movl %12, %%esp\n"
721
            "    fs movl %%eax, %0\n"
722
            "    fs movl %%ecx, %1\n"
723
            "    fs movl %%edx, %2\n"
724
            "    fs movl %%ebx, %3\n"
725
            "    fs movl %%ebp, %5\n"
726
            "    fs movl %%esi, %6\n"
727
            "    fs movl %%edi, %7\n"
728
            "    pushf\n"
729
            "    popl %%eax\n"
730
            "    movl %%eax, %%ecx\n"
731
            "    andl $0x400, %%ecx\n"
732
            "    shrl $9, %%ecx\n"
733
            "    andl $0x8d5, %%eax\n"
734
            "    fs movl %%eax, %8\n"
735
            "    movl $1, %%eax\n"
736
            "    subl %%ecx, %%eax\n"
737
            "    fs movl %%eax, %11\n"
738
            "    fs movl %9, %%ebx\n" /* get T0 value */
739
            "    popl %%ebp\n"
740
            :
741
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
742
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
743
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
744
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
745
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
746
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
747
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
748
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
749
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
750
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
751
            "a" (gen_func),
752
            "m" (*(uint8_t *)offsetof(CPUState, df)),
753
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
754
            : "%ecx", "%edx"
755
            );
756
    }
757
}
758
#elif defined(__ia64)
759
                struct fptr {
760
                        void *ip;
761
                        void *gp;
762
                } fp;
763

    
764
                fp.ip = tc_ptr;
765
                fp.gp = code_gen_buffer + 2 * (1 << 20);
766
                (*(void (*)(void)) &fp)();
767
#else
768
                gen_func();
769
#endif
770
                env->current_tb = NULL;
771
                /* reset soft MMU for next block (it can currently
772
                   only be set by a memory fault) */
773
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
774
                if (env->hflags & HF_SOFTMMU_MASK) {
775
                    env->hflags &= ~HF_SOFTMMU_MASK;
776
                    /* do not allow linking to another block */
777
                    T0 = 0;
778
                }
779
#endif
780
#if defined(USE_KQEMU)
781
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
782
                if (kqemu_is_ok(env) &&
783
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
784
                    cpu_loop_exit();
785
                }
786
#endif
787
            }
788
        } else {
789
            env_to_regs();
790
        }
791
    } /* for(;;) */
792

    
793

    
794
#if defined(TARGET_I386)
795
#if defined(USE_CODE_COPY)
796
    if (env->native_fp_regs) {
797
        save_native_fp_state(env);
798
    }
799
#endif
800
    /* restore flags in standard format */
801
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
802

    
803
    /* restore global registers */
804
#ifdef reg_EAX
805
    EAX = saved_EAX;
806
#endif
807
#ifdef reg_ECX
808
    ECX = saved_ECX;
809
#endif
810
#ifdef reg_EDX
811
    EDX = saved_EDX;
812
#endif
813
#ifdef reg_EBX
814
    EBX = saved_EBX;
815
#endif
816
#ifdef reg_ESP
817
    ESP = saved_ESP;
818
#endif
819
#ifdef reg_EBP
820
    EBP = saved_EBP;
821
#endif
822
#ifdef reg_ESI
823
    ESI = saved_ESI;
824
#endif
825
#ifdef reg_EDI
826
    EDI = saved_EDI;
827
#endif
828
#elif defined(TARGET_ARM)
829
    /* XXX: Save/restore host fpu exception state?.  */
830
#elif defined(TARGET_SPARC)
831
#if defined(reg_REGWPTR)
832
    REGWPTR = saved_regwptr;
833
#endif
834
#elif defined(TARGET_PPC)
835
#elif defined(TARGET_MIPS)
836
#elif defined(TARGET_SH4)
837
    /* XXXXX */
838
#else
839
#error unsupported target CPU
840
#endif
841
#if defined(__sparc__) && !defined(HOST_SOLARIS)
842
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
843
#endif
844
    T0 = saved_T0;
845
    T1 = saved_T1;
846
#if defined(reg_T2)
847
    T2 = saved_T2;
848
#endif
849
    env = saved_env;
850
    /* fail safe : never use cpu_single_env outside cpu_exec() */
851
    cpu_single_env = NULL; 
852
    return ret;
853
}
854

    
855
/* must only be called from the generated code as an exception can be
856
   generated */
857
void tb_invalidate_page_range(target_ulong start, target_ulong end)
858
{
859
    /* XXX: cannot enable it yet because it yields to MMU exception
860
       where NIP != read address on PowerPC */
861
#if 0
862
    target_ulong phys_addr;
863
    phys_addr = get_phys_addr_code(env, start);
864
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
865
#endif
866
}
867

    
868
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
869

    
870
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
871
{
872
    CPUX86State *saved_env;
873

    
874
    saved_env = env;
875
    env = s;
876
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
877
        selector &= 0xffff;
878
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
879
                               (selector << 4), 0xffff, 0);
880
    } else {
881
        load_seg(seg_reg, selector);
882
    }
883
    env = saved_env;
884
}
885

    
886
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
887
{
888
    CPUX86State *saved_env;
889

    
890
    saved_env = env;
891
    env = s;
892
    
893
    helper_fsave((target_ulong)ptr, data32);
894

    
895
    env = saved_env;
896
}
897

    
898
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
899
{
900
    CPUX86State *saved_env;
901

    
902
    saved_env = env;
903
    env = s;
904
    
905
    helper_frstor((target_ulong)ptr, data32);
906

    
907
    env = saved_env;
908
}
909

    
910
#endif /* TARGET_I386 */
911

    
912
#if !defined(CONFIG_SOFTMMU)
913

    
914
#if defined(TARGET_I386)
915

    
916
/* 'pc' is the host PC at which the exception was raised. 'address' is
917
   the effective address of the memory exception. 'is_write' is 1 if a
918
   write caused the exception and otherwise 0'. 'old_set' is the
919
   signal set which should be restored */
920
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
921
                                    int is_write, sigset_t *old_set, 
922
                                    void *puc)
923
{
924
    TranslationBlock *tb;
925
    int ret;
926

    
927
    if (cpu_single_env)
928
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
929
#if defined(DEBUG_SIGNAL)
930
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
931
                pc, address, is_write, *(unsigned long *)old_set);
932
#endif
933
    /* XXX: locking issue */
934
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
935
        return 1;
936
    }
937

    
938
    /* see if it is an MMU fault */
939
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
940
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
941
    if (ret < 0)
942
        return 0; /* not an MMU fault */
943
    if (ret == 0)
944
        return 1; /* the MMU fault was handled without causing real CPU fault */
945
    /* now we have a real cpu fault */
946
    tb = tb_find_pc(pc);
947
    if (tb) {
948
        /* the PC is inside the translated code. It means that we have
949
           a virtual CPU fault */
950
        cpu_restore_state(tb, env, pc, puc);
951
    }
952
    if (ret == 1) {
953
#if 0
954
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
955
               env->eip, env->cr[2], env->error_code);
956
#endif
957
        /* we restore the process signal mask as the sigreturn should
958
           do it (XXX: use sigsetjmp) */
959
        sigprocmask(SIG_SETMASK, old_set, NULL);
960
        raise_exception_err(env->exception_index, env->error_code);
961
    } else {
962
        /* activate soft MMU for this block */
963
        env->hflags |= HF_SOFTMMU_MASK;
964
        cpu_resume_from_signal(env, puc);
965
    }
966
    /* never comes here */
967
    return 1;
968
}
969

    
970
#elif defined(TARGET_ARM)
971
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
972
                                    int is_write, sigset_t *old_set,
973
                                    void *puc)
974
{
975
    TranslationBlock *tb;
976
    int ret;
977

    
978
    if (cpu_single_env)
979
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
980
#if defined(DEBUG_SIGNAL)
981
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
982
           pc, address, is_write, *(unsigned long *)old_set);
983
#endif
984
    /* XXX: locking issue */
985
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
986
        return 1;
987
    }
988
    /* see if it is an MMU fault */
989
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
990
    if (ret < 0)
991
        return 0; /* not an MMU fault */
992
    if (ret == 0)
993
        return 1; /* the MMU fault was handled without causing real CPU fault */
994
    /* now we have a real cpu fault */
995
    tb = tb_find_pc(pc);
996
    if (tb) {
997
        /* the PC is inside the translated code. It means that we have
998
           a virtual CPU fault */
999
        cpu_restore_state(tb, env, pc, puc);
1000
    }
1001
    /* we restore the process signal mask as the sigreturn should
1002
       do it (XXX: use sigsetjmp) */
1003
    sigprocmask(SIG_SETMASK, old_set, NULL);
1004
    cpu_loop_exit();
1005
}
1006
#elif defined(TARGET_SPARC)
1007
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1008
                                    int is_write, sigset_t *old_set,
1009
                                    void *puc)
1010
{
1011
    TranslationBlock *tb;
1012
    int ret;
1013

    
1014
    if (cpu_single_env)
1015
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1016
#if defined(DEBUG_SIGNAL)
1017
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1018
           pc, address, is_write, *(unsigned long *)old_set);
1019
#endif
1020
    /* XXX: locking issue */
1021
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1022
        return 1;
1023
    }
1024
    /* see if it is an MMU fault */
1025
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1026
    if (ret < 0)
1027
        return 0; /* not an MMU fault */
1028
    if (ret == 0)
1029
        return 1; /* the MMU fault was handled without causing real CPU fault */
1030
    /* now we have a real cpu fault */
1031
    tb = tb_find_pc(pc);
1032
    if (tb) {
1033
        /* the PC is inside the translated code. It means that we have
1034
           a virtual CPU fault */
1035
        cpu_restore_state(tb, env, pc, puc);
1036
    }
1037
    /* we restore the process signal mask as the sigreturn should
1038
       do it (XXX: use sigsetjmp) */
1039
    sigprocmask(SIG_SETMASK, old_set, NULL);
1040
    cpu_loop_exit();
1041
}
1042
#elif defined (TARGET_PPC)
1043
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1044
                                    int is_write, sigset_t *old_set,
1045
                                    void *puc)
1046
{
1047
    TranslationBlock *tb;
1048
    int ret;
1049
    
1050
    if (cpu_single_env)
1051
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1052
#if defined(DEBUG_SIGNAL)
1053
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1054
           pc, address, is_write, *(unsigned long *)old_set);
1055
#endif
1056
    /* XXX: locking issue */
1057
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1058
        return 1;
1059
    }
1060

    
1061
    /* see if it is an MMU fault */
1062
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1063
    if (ret < 0)
1064
        return 0; /* not an MMU fault */
1065
    if (ret == 0)
1066
        return 1; /* the MMU fault was handled without causing real CPU fault */
1067

    
1068
    /* now we have a real cpu fault */
1069
    tb = tb_find_pc(pc);
1070
    if (tb) {
1071
        /* the PC is inside the translated code. It means that we have
1072
           a virtual CPU fault */
1073
        cpu_restore_state(tb, env, pc, puc);
1074
    }
1075
    if (ret == 1) {
1076
#if 0
1077
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1078
               env->nip, env->error_code, tb);
1079
#endif
1080
    /* we restore the process signal mask as the sigreturn should
1081
       do it (XXX: use sigsetjmp) */
1082
        sigprocmask(SIG_SETMASK, old_set, NULL);
1083
        do_raise_exception_err(env->exception_index, env->error_code);
1084
    } else {
1085
        /* activate soft MMU for this block */
1086
        cpu_resume_from_signal(env, puc);
1087
    }
1088
    /* never comes here */
1089
    return 1;
1090
}
1091

    
1092
#elif defined (TARGET_MIPS)
1093
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1094
                                    int is_write, sigset_t *old_set,
1095
                                    void *puc)
1096
{
1097
    TranslationBlock *tb;
1098
    int ret;
1099
    
1100
    if (cpu_single_env)
1101
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1102
#if defined(DEBUG_SIGNAL)
1103
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1104
           pc, address, is_write, *(unsigned long *)old_set);
1105
#endif
1106
    /* XXX: locking issue */
1107
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1108
        return 1;
1109
    }
1110

    
1111
    /* see if it is an MMU fault */
1112
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1113
    if (ret < 0)
1114
        return 0; /* not an MMU fault */
1115
    if (ret == 0)
1116
        return 1; /* the MMU fault was handled without causing real CPU fault */
1117

    
1118
    /* now we have a real cpu fault */
1119
    tb = tb_find_pc(pc);
1120
    if (tb) {
1121
        /* the PC is inside the translated code. It means that we have
1122
           a virtual CPU fault */
1123
        cpu_restore_state(tb, env, pc, puc);
1124
    }
1125
    if (ret == 1) {
1126
#if 0
1127
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1128
               env->nip, env->error_code, tb);
1129
#endif
1130
    /* we restore the process signal mask as the sigreturn should
1131
       do it (XXX: use sigsetjmp) */
1132
        sigprocmask(SIG_SETMASK, old_set, NULL);
1133
        do_raise_exception_err(env->exception_index, env->error_code);
1134
    } else {
1135
        /* activate soft MMU for this block */
1136
        cpu_resume_from_signal(env, puc);
1137
    }
1138
    /* never comes here */
1139
    return 1;
1140
}
1141

    
1142
#elif defined (TARGET_SH4)
1143
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1144
                                    int is_write, sigset_t *old_set,
1145
                                    void *puc)
1146
{
1147
    TranslationBlock *tb;
1148
    int ret;
1149
    
1150
    if (cpu_single_env)
1151
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1152
#if defined(DEBUG_SIGNAL)
1153
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1154
           pc, address, is_write, *(unsigned long *)old_set);
1155
#endif
1156
    /* XXX: locking issue */
1157
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1158
        return 1;
1159
    }
1160

    
1161
    /* see if it is an MMU fault */
1162
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1163
    if (ret < 0)
1164
        return 0; /* not an MMU fault */
1165
    if (ret == 0)
1166
        return 1; /* the MMU fault was handled without causing real CPU fault */
1167

    
1168
    /* now we have a real cpu fault */
1169
    tb = tb_find_pc(pc);
1170
    if (tb) {
1171
        /* the PC is inside the translated code. It means that we have
1172
           a virtual CPU fault */
1173
        cpu_restore_state(tb, env, pc, puc);
1174
    }
1175
#if 0
1176
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1177
               env->nip, env->error_code, tb);
1178
#endif
1179
    /* we restore the process signal mask as the sigreturn should
1180
       do it (XXX: use sigsetjmp) */
1181
    sigprocmask(SIG_SETMASK, old_set, NULL);
1182
    cpu_loop_exit();
1183
    /* never comes here */
1184
    return 1;
1185
}
1186
#else
1187
#error unsupported target CPU
1188
#endif
1189

    
1190
#if defined(__i386__)
1191

    
1192
#if defined(USE_CODE_COPY)
1193
static void cpu_send_trap(unsigned long pc, int trap, 
1194
                          struct ucontext *uc)
1195
{
1196
    TranslationBlock *tb;
1197

    
1198
    if (cpu_single_env)
1199
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1200
    /* now we have a real cpu fault */
1201
    tb = tb_find_pc(pc);
1202
    if (tb) {
1203
        /* the PC is inside the translated code. It means that we have
1204
           a virtual CPU fault */
1205
        cpu_restore_state(tb, env, pc, uc);
1206
    }
1207
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1208
    raise_exception_err(trap, env->error_code);
1209
}
1210
#endif
1211

    
1212
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1213
                       void *puc)
1214
{
1215
    struct ucontext *uc = puc;
1216
    unsigned long pc;
1217
    int trapno;
1218

    
1219
#ifndef REG_EIP
1220
/* for glibc 2.1 */
1221
#define REG_EIP    EIP
1222
#define REG_ERR    ERR
1223
#define REG_TRAPNO TRAPNO
1224
#endif
1225
    pc = uc->uc_mcontext.gregs[REG_EIP];
1226
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1227
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1228
    if (trapno == 0x00 || trapno == 0x05) {
1229
        /* send division by zero or bound exception */
1230
        cpu_send_trap(pc, trapno, uc);
1231
        return 1;
1232
    } else
1233
#endif
1234
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1235
                                 trapno == 0xe ? 
1236
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1237
                                 &uc->uc_sigmask, puc);
1238
}
1239

    
1240
#elif defined(__x86_64__)
1241

    
1242
int cpu_signal_handler(int host_signum, struct siginfo *info,
1243
                       void *puc)
1244
{
1245
    struct ucontext *uc = puc;
1246
    unsigned long pc;
1247

    
1248
    pc = uc->uc_mcontext.gregs[REG_RIP];
1249
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1250
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1251
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1252
                             &uc->uc_sigmask, puc);
1253
}
1254

    
1255
#elif defined(__powerpc__)
1256

    
1257
/***********************************************************************
1258
 * signal context platform-specific definitions
1259
 * From Wine
1260
 */
1261
#ifdef linux
1262
/* All Registers access - only for local access */
1263
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1264
/* Gpr Registers access  */
1265
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1266
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1267
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1268
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1269
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1270
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1271
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1272
/* Float Registers access  */
1273
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1274
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1275
/* Exception Registers access */
1276
# define DAR_sig(context)                        REG_sig(dar, context)
1277
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1278
# define TRAP_sig(context)                        REG_sig(trap, context)
1279
#endif /* linux */
1280

    
1281
#ifdef __APPLE__
1282
# include <sys/ucontext.h>
1283
typedef struct ucontext SIGCONTEXT;
1284
/* All Registers access - only for local access */
1285
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1286
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1287
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1288
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1289
/* Gpr Registers access */
1290
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1291
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1292
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1293
# define CTR_sig(context)                        REG_sig(ctr, context)
1294
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1295
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1296
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1297
/* Float Registers access */
1298
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1299
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1300
/* Exception Registers access */
1301
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1302
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1303
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1304
#endif /* __APPLE__ */
1305

    
1306
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1307
                       void *puc)
1308
{
1309
    struct ucontext *uc = puc;
1310
    unsigned long pc;
1311
    int is_write;
1312

    
1313
    pc = IAR_sig(uc);
1314
    is_write = 0;
1315
#if 0
1316
    /* ppc 4xx case */
1317
    if (DSISR_sig(uc) & 0x00800000)
1318
        is_write = 1;
1319
#else
1320
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1321
        is_write = 1;
1322
#endif
1323
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1324
                             is_write, &uc->uc_sigmask, puc);
1325
}
1326

    
1327
#elif defined(__alpha__)
1328

    
1329
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1330
                           void *puc)
1331
{
1332
    struct ucontext *uc = puc;
1333
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1334
    uint32_t insn = *pc;
1335
    int is_write = 0;
1336

    
1337
    /* XXX: need kernel patch to get write flag faster */
1338
    switch (insn >> 26) {
1339
    case 0x0d: // stw
1340
    case 0x0e: // stb
1341
    case 0x0f: // stq_u
1342
    case 0x24: // stf
1343
    case 0x25: // stg
1344
    case 0x26: // sts
1345
    case 0x27: // stt
1346
    case 0x2c: // stl
1347
    case 0x2d: // stq
1348
    case 0x2e: // stl_c
1349
    case 0x2f: // stq_c
1350
        is_write = 1;
1351
    }
1352

    
1353
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1354
                             is_write, &uc->uc_sigmask, puc);
1355
}
1356
#elif defined(__sparc__)
1357

    
1358
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1359
                       void *puc)
1360
{
1361
    uint32_t *regs = (uint32_t *)(info + 1);
1362
    void *sigmask = (regs + 20);
1363
    unsigned long pc;
1364
    int is_write;
1365
    uint32_t insn;
1366
    
1367
    /* XXX: is there a standard glibc define ? */
1368
    pc = regs[1];
1369
    /* XXX: need kernel patch to get write flag faster */
1370
    is_write = 0;
1371
    insn = *(uint32_t *)pc;
1372
    if ((insn >> 30) == 3) {
1373
      switch((insn >> 19) & 0x3f) {
1374
      case 0x05: // stb
1375
      case 0x06: // sth
1376
      case 0x04: // st
1377
      case 0x07: // std
1378
      case 0x24: // stf
1379
      case 0x27: // stdf
1380
      case 0x25: // stfsr
1381
        is_write = 1;
1382
        break;
1383
      }
1384
    }
1385
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1386
                             is_write, sigmask, NULL);
1387
}
1388

    
1389
#elif defined(__arm__)
1390

    
1391
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1392
                       void *puc)
1393
{
1394
    struct ucontext *uc = puc;
1395
    unsigned long pc;
1396
    int is_write;
1397
    
1398
    pc = uc->uc_mcontext.gregs[R15];
1399
    /* XXX: compute is_write */
1400
    is_write = 0;
1401
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1402
                             is_write,
1403
                             &uc->uc_sigmask);
1404
}
1405

    
1406
#elif defined(__mc68000)
1407

    
1408
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1409
                       void *puc)
1410
{
1411
    struct ucontext *uc = puc;
1412
    unsigned long pc;
1413
    int is_write;
1414
    
1415
    pc = uc->uc_mcontext.gregs[16];
1416
    /* XXX: compute is_write */
1417
    is_write = 0;
1418
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1419
                             is_write,
1420
                             &uc->uc_sigmask, puc);
1421
}
1422

    
1423
#elif defined(__ia64)
1424

    
1425
#ifndef __ISR_VALID
1426
  /* This ought to be in <bits/siginfo.h>... */
1427
# define __ISR_VALID        1
1428
#endif
1429

    
1430
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1431
{
1432
    struct ucontext *uc = puc;
1433
    unsigned long ip;
1434
    int is_write = 0;
1435

    
1436
    ip = uc->uc_mcontext.sc_ip;
1437
    switch (host_signum) {
1438
      case SIGILL:
1439
      case SIGFPE:
1440
      case SIGSEGV:
1441
      case SIGBUS:
1442
      case SIGTRAP:
1443
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1444
              /* ISR.W (write-access) is bit 33:  */
1445
              is_write = (info->si_isr >> 33) & 1;
1446
          break;
1447

    
1448
      default:
1449
          break;
1450
    }
1451
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1452
                             is_write,
1453
                             &uc->uc_sigmask, puc);
1454
}
1455

    
1456
#elif defined(__s390__)
1457

    
1458
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1459
                       void *puc)
1460
{
1461
    struct ucontext *uc = puc;
1462
    unsigned long pc;
1463
    int is_write;
1464
    
1465
    pc = uc->uc_mcontext.psw.addr;
1466
    /* XXX: compute is_write */
1467
    is_write = 0;
1468
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1469
                             is_write,
1470
                             &uc->uc_sigmask, puc);
1471
}
1472

    
1473
#else
1474

    
1475
#error host CPU specific signal handler needed
1476

    
1477
#endif
1478

    
1479
#endif /* !defined(CONFIG_SOFTMMU) */