Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 486bd5a2

History | View | Annotate | Download (103.1 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
94 52c00a5f bellard
@end itemize
95 386405f7 bellard
96 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97 0806e3f6 bellard
98 debc7065 bellard
@node Installation
99 5b9f457a bellard
@chapter Installation
100 5b9f457a bellard
101 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
102 15a34c63 bellard
103 debc7065 bellard
@menu
104 debc7065 bellard
* install_linux::   Linux
105 debc7065 bellard
* install_windows:: Windows
106 debc7065 bellard
* install_mac::     Macintosh
107 debc7065 bellard
@end menu
108 debc7065 bellard
109 debc7065 bellard
@node install_linux
110 1f673135 bellard
@section Linux
111 1f673135 bellard
112 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
113 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
114 5b9f457a bellard
115 debc7065 bellard
@node install_windows
116 1f673135 bellard
@section Windows
117 8cd0ac2f bellard
118 15a34c63 bellard
Download the experimental binary installer at
119 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
120 d691f669 bellard
121 debc7065 bellard
@node install_mac
122 1f673135 bellard
@section Mac OS X
123 d691f669 bellard
124 15a34c63 bellard
Download the experimental binary installer at
125 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
126 df0f11a0 bellard
127 debc7065 bellard
@node QEMU PC System emulator
128 3f9f3aa1 bellard
@chapter QEMU PC System emulator
129 1eb20527 bellard
130 debc7065 bellard
@menu
131 debc7065 bellard
* pcsys_introduction:: Introduction
132 debc7065 bellard
* pcsys_quickstart::   Quick Start
133 debc7065 bellard
* sec_invocation::     Invocation
134 debc7065 bellard
* pcsys_keys::         Keys
135 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
136 debc7065 bellard
* disk_images::        Disk Images
137 debc7065 bellard
* pcsys_network::      Network emulation
138 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
139 debc7065 bellard
* pcsys_usb::          USB emulation
140 f858dcae ths
* vnc_security::       VNC security
141 debc7065 bellard
* gdb_usage::          GDB usage
142 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
143 debc7065 bellard
@end menu
144 debc7065 bellard
145 debc7065 bellard
@node pcsys_introduction
146 0806e3f6 bellard
@section Introduction
147 0806e3f6 bellard
148 0806e3f6 bellard
@c man begin DESCRIPTION
149 0806e3f6 bellard
150 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
151 3f9f3aa1 bellard
following peripherals:
152 0806e3f6 bellard
153 0806e3f6 bellard
@itemize @minus
154 5fafdf24 ths
@item
155 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156 0806e3f6 bellard
@item
157 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158 15a34c63 bellard
extensions (hardware level, including all non standard modes).
159 0806e3f6 bellard
@item
160 0806e3f6 bellard
PS/2 mouse and keyboard
161 5fafdf24 ths
@item
162 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
163 1f673135 bellard
@item
164 1f673135 bellard
Floppy disk
165 5fafdf24 ths
@item
166 c4a7060c blueswir1
PCI/ISA PCI network adapters
167 0806e3f6 bellard
@item
168 05d5818c bellard
Serial ports
169 05d5818c bellard
@item
170 c0fe3827 bellard
Creative SoundBlaster 16 sound card
171 c0fe3827 bellard
@item
172 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
173 c0fe3827 bellard
@item
174 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
175 e5c9a13e balrog
@item
176 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
177 b389dbfb bellard
@item
178 26463dbc balrog
Gravis Ultrasound GF1 sound card
179 26463dbc balrog
@item
180 cc53d26d malc
CS4231A compatible sound card
181 cc53d26d malc
@item
182 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
183 0806e3f6 bellard
@end itemize
184 0806e3f6 bellard
185 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
186 3f9f3aa1 bellard
187 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
188 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
189 e5178e8d malc
required card(s).
190 c0fe3827 bellard
191 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192 15a34c63 bellard
VGA BIOS.
193 15a34c63 bellard
194 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195 c0fe3827 bellard
196 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197 26463dbc balrog
by Tibor "TS" Sch?tz.
198 423d65f4 balrog
199 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
200 cc53d26d malc
201 0806e3f6 bellard
@c man end
202 0806e3f6 bellard
203 debc7065 bellard
@node pcsys_quickstart
204 1eb20527 bellard
@section Quick Start
205 1eb20527 bellard
206 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
207 0806e3f6 bellard
208 0806e3f6 bellard
@example
209 285dc330 bellard
qemu linux.img
210 0806e3f6 bellard
@end example
211 0806e3f6 bellard
212 0806e3f6 bellard
Linux should boot and give you a prompt.
213 0806e3f6 bellard
214 6cc721cf bellard
@node sec_invocation
215 ec410fc9 bellard
@section Invocation
216 ec410fc9 bellard
217 ec410fc9 bellard
@example
218 0806e3f6 bellard
@c man begin SYNOPSIS
219 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
220 0806e3f6 bellard
@c man end
221 ec410fc9 bellard
@end example
222 ec410fc9 bellard
223 0806e3f6 bellard
@c man begin OPTIONS
224 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225 d2c639d6 blueswir1
targets do not need a disk image.
226 ec410fc9 bellard
227 ec410fc9 bellard
General options:
228 ec410fc9 bellard
@table @option
229 d2c639d6 blueswir1
@item -h
230 d2c639d6 blueswir1
Display help and exit
231 d2c639d6 blueswir1
232 89dfe898 ths
@item -M @var{machine}
233 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
234 3dbbdc25 bellard
235 d2c639d6 blueswir1
@item -cpu @var{model}
236 d2c639d6 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
237 d2c639d6 blueswir1
238 d2c639d6 blueswir1
@item -smp @var{n}
239 d2c639d6 blueswir1
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 d2c639d6 blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241 d2c639d6 blueswir1
to 4.
242 d2c639d6 blueswir1
243 89dfe898 ths
@item -fda @var{file}
244 89dfe898 ths
@item -fdb @var{file}
245 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
246 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
247 2be3bc02 bellard
248 89dfe898 ths
@item -hda @var{file}
249 89dfe898 ths
@item -hdb @var{file}
250 89dfe898 ths
@item -hdc @var{file}
251 89dfe898 ths
@item -hdd @var{file}
252 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
253 1f47a922 bellard
254 89dfe898 ths
@item -cdrom @var{file}
255 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
256 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
257 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
258 181f1558 bellard
259 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
260 e0e7ada1 balrog
261 e0e7ada1 balrog
Define a new drive. Valid options are:
262 e0e7ada1 balrog
263 e0e7ada1 balrog
@table @code
264 e0e7ada1 balrog
@item file=@var{file}
265 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
266 609497ab balrog
this drive. If the filename contains comma, you must double it
267 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
268 e0e7ada1 balrog
@item if=@var{interface}
269 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
270 6e02c38d aliguori
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
271 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
272 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
273 e0e7ada1 balrog
the unit id.
274 e0e7ada1 balrog
@item index=@var{index}
275 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
276 e0e7ada1 balrog
of available connectors of a given interface type.
277 e0e7ada1 balrog
@item media=@var{media}
278 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
279 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
281 e0e7ada1 balrog
@item snapshot=@var{snapshot}
282 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
283 33f00271 balrog
@item cache=@var{cache}
284 9f7965c7 aliguori
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
285 1e72d3b7 aurel32
@item format=@var{format}
286 1e72d3b7 aurel32
Specify which disk @var{format} will be used rather than detecting
287 1e72d3b7 aurel32
the format.  Can be used to specifiy format=raw to avoid interpreting
288 1e72d3b7 aurel32
an untrusted format header.
289 fa879c64 aliguori
@item serial=@var{serial}
290 fa879c64 aliguori
This option specifies the serial number to assign to the device.
291 e0e7ada1 balrog
@end table
292 e0e7ada1 balrog
293 9f7965c7 aliguori
By default, writethrough caching is used for all block device.  This means that
294 9f7965c7 aliguori
the host page cache will be used to read and write data but write notification
295 9f7965c7 aliguori
will be sent to the guest only when the data has been reported as written by
296 9f7965c7 aliguori
the storage subsystem.
297 9f7965c7 aliguori
298 9f7965c7 aliguori
Writeback caching will report data writes as completed as soon as the data is
299 9f7965c7 aliguori
present in the host page cache.  This is safe as long as you trust your host.
300 9f7965c7 aliguori
If your host crashes or loses power, then the guest may experience data
301 9f7965c7 aliguori
corruption.  When using the @option{-snapshot} option, writeback caching is
302 9f7965c7 aliguori
used by default.
303 9f7965c7 aliguori
304 9f7965c7 aliguori
The host page can be avoided entirely with @option{cache=none}.  This will
305 9f7965c7 aliguori
attempt to do disk IO directly to the guests memory.  QEMU may still perform
306 9f7965c7 aliguori
an internal copy of the data.
307 9f7965c7 aliguori
308 4dc822d7 aliguori
Some block drivers perform badly with @option{cache=writethrough}, most notably,
309 4dc822d7 aliguori
qcow2.  If performance is more important than correctness,
310 4dc822d7 aliguori
@option{cache=writeback} should be used with qcow2.  By default, if no explicit
311 4dc822d7 aliguori
caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312 4dc822d7 aliguori
used.  For all other disk types, @option{cache=writethrough} is the default.
313 4dc822d7 aliguori
314 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
315 e0e7ada1 balrog
@example
316 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
317 e0e7ada1 balrog
@end example
318 e0e7ada1 balrog
319 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320 e0e7ada1 balrog
use:
321 e0e7ada1 balrog
@example
322 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
323 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
324 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
325 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
326 e0e7ada1 balrog
@end example
327 e0e7ada1 balrog
328 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
329 e0e7ada1 balrog
@example
330 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
331 e0e7ada1 balrog
@end example
332 e0e7ada1 balrog
333 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
334 e0e7ada1 balrog
@example
335 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
336 e0e7ada1 balrog
@end example
337 e0e7ada1 balrog
338 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
339 e0e7ada1 balrog
@example
340 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
341 e0e7ada1 balrog
@end example
342 e0e7ada1 balrog
343 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
344 e0e7ada1 balrog
@example
345 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
346 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
347 e0e7ada1 balrog
@end example
348 e0e7ada1 balrog
349 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
350 e0e7ada1 balrog
incremented:
351 e0e7ada1 balrog
@example
352 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
353 e0e7ada1 balrog
@end example
354 e0e7ada1 balrog
is interpreted like:
355 e0e7ada1 balrog
@example
356 e0e7ada1 balrog
qemu -hda a -hdb b
357 e0e7ada1 balrog
@end example
358 e0e7ada1 balrog
359 d2c639d6 blueswir1
@item -mtdblock file
360 d2c639d6 blueswir1
Use 'file' as on-board Flash memory image.
361 d2c639d6 blueswir1
362 d2c639d6 blueswir1
@item -sd file
363 d2c639d6 blueswir1
Use 'file' as SecureDigital card image.
364 d2c639d6 blueswir1
365 d2c639d6 blueswir1
@item -pflash file
366 d2c639d6 blueswir1
Use 'file' as a parallel flash image.
367 d2c639d6 blueswir1
368 eec85c2a ths
@item -boot [a|c|d|n]
369 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370 eec85c2a ths
is the default.
371 1f47a922 bellard
372 181f1558 bellard
@item -snapshot
373 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
374 1f47a922 bellard
the raw disk image you use is not written back. You can however force
375 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
376 ec410fc9 bellard
377 89dfe898 ths
@item -m @var{megs}
378 00f82b8a aurel32
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
379 00f82b8a aurel32
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380 00f82b8a aurel32
gigabytes respectively.
381 ec410fc9 bellard
382 d2c639d6 blueswir1
@item -k @var{language}
383 34a3d239 blueswir1
384 d2c639d6 blueswir1
Use keyboard layout @var{language} (for example @code{fr} for
385 d2c639d6 blueswir1
French). This option is only needed where it is not easy to get raw PC
386 d2c639d6 blueswir1
keycodes (e.g. on Macs, with some X11 servers or with a VNC
387 d2c639d6 blueswir1
display). You don't normally need to use it on PC/Linux or PC/Windows
388 d2c639d6 blueswir1
hosts.
389 d2c639d6 blueswir1
390 d2c639d6 blueswir1
The available layouts are:
391 d2c639d6 blueswir1
@example
392 d2c639d6 blueswir1
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
393 d2c639d6 blueswir1
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
394 d2c639d6 blueswir1
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
395 d2c639d6 blueswir1
@end example
396 d2c639d6 blueswir1
397 d2c639d6 blueswir1
The default is @code{en-us}.
398 3f9f3aa1 bellard
399 1d14ffa9 bellard
@item -audio-help
400 1d14ffa9 bellard
401 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
402 1d14ffa9 bellard
parameters.
403 1d14ffa9 bellard
404 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
405 1d14ffa9 bellard
406 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
407 1d14ffa9 bellard
available sound hardware.
408 1d14ffa9 bellard
409 1d14ffa9 bellard
@example
410 9b3469cc malc
qemu -soundhw sb16,adlib disk.img
411 9b3469cc malc
qemu -soundhw es1370 disk.img
412 9b3469cc malc
qemu -soundhw ac97 disk.img
413 9b3469cc malc
qemu -soundhw all disk.img
414 1d14ffa9 bellard
qemu -soundhw ?
415 1d14ffa9 bellard
@end example
416 a8c490cd bellard
417 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
418 e5c9a13e balrog
require manually specifying clocking.
419 e5c9a13e balrog
420 e5c9a13e balrog
@example
421 e5c9a13e balrog
modprobe i810_audio clocking=48000
422 e5c9a13e balrog
@end example
423 e5c9a13e balrog
424 d2c639d6 blueswir1
@end table
425 15a34c63 bellard
426 d2c639d6 blueswir1
USB options:
427 d2c639d6 blueswir1
@table @option
428 7e0af5d0 bellard
429 d2c639d6 blueswir1
@item -usb
430 d2c639d6 blueswir1
Enable the USB driver (will be the default soon)
431 f7cce898 bellard
432 d2c639d6 blueswir1
@item -usbdevice @var{devname}
433 d2c639d6 blueswir1
Add the USB device @var{devname}. @xref{usb_devices}.
434 71e3ceb8 ths
435 d2c639d6 blueswir1
@table @code
436 9d0a8e6f bellard
437 d2c639d6 blueswir1
@item mouse
438 d2c639d6 blueswir1
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
439 73822ec8 aliguori
440 d2c639d6 blueswir1
@item tablet
441 d2c639d6 blueswir1
Pointer device that uses absolute coordinates (like a touchscreen). This
442 d2c639d6 blueswir1
means qemu is able to report the mouse position without having to grab the
443 d2c639d6 blueswir1
mouse. Also overrides the PS/2 mouse emulation when activated.
444 d2c639d6 blueswir1
445 d2c639d6 blueswir1
@item disk:[format=@var{format}]:file
446 d2c639d6 blueswir1
Mass storage device based on file. The optional @var{format} argument
447 d2c639d6 blueswir1
will be used rather than detecting the format. Can be used to specifiy
448 d2c639d6 blueswir1
format=raw to avoid interpreting an untrusted format header.
449 d2c639d6 blueswir1
450 d2c639d6 blueswir1
@item host:bus.addr
451 d2c639d6 blueswir1
Pass through the host device identified by bus.addr (Linux only).
452 d2c639d6 blueswir1
453 d2c639d6 blueswir1
@item host:vendor_id:product_id
454 d2c639d6 blueswir1
Pass through the host device identified by vendor_id:product_id (Linux only).
455 d2c639d6 blueswir1
456 d2c639d6 blueswir1
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457 d2c639d6 blueswir1
Serial converter to host character device @var{dev}, see @code{-serial} for the
458 d2c639d6 blueswir1
available devices.
459 d2c639d6 blueswir1
460 d2c639d6 blueswir1
@item braille
461 d2c639d6 blueswir1
Braille device.  This will use BrlAPI to display the braille output on a real
462 d2c639d6 blueswir1
or fake device.
463 d2c639d6 blueswir1
464 d2c639d6 blueswir1
@item net:options
465 d2c639d6 blueswir1
Network adapter that supports CDC ethernet and RNDIS protocols.
466 d2c639d6 blueswir1
467 d2c639d6 blueswir1
@end table
468 9ae02555 ths
469 89dfe898 ths
@item -name @var{name}
470 89dfe898 ths
Sets the @var{name} of the guest.
471 1addc7c5 aurel32
This name will be displayed in the SDL window caption.
472 89dfe898 ths
The @var{name} will also be used for the VNC server.
473 c35734b2 ths
474 d2c639d6 blueswir1
@item -uuid @var{uuid}
475 d2c639d6 blueswir1
Set system UUID.
476 d2c639d6 blueswir1
477 0806e3f6 bellard
@end table
478 0806e3f6 bellard
479 f858dcae ths
Display options:
480 f858dcae ths
@table @option
481 f858dcae ths
482 f858dcae ths
@item -nographic
483 f858dcae ths
484 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
485 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
486 f858dcae ths
command line application. The emulated serial port is redirected on
487 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
488 f858dcae ths
with a serial console.
489 f858dcae ths
490 052caf70 aurel32
@item -curses
491 052caf70 aurel32
492 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
493 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
494 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
495 052caf70 aurel32
496 f858dcae ths
@item -no-frame
497 f858dcae ths
498 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
499 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
500 f858dcae ths
workspace more convenient.
501 f858dcae ths
502 d2c639d6 blueswir1
@item -alt-grab
503 d2c639d6 blueswir1
504 d2c639d6 blueswir1
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
505 d2c639d6 blueswir1
506 99aa9e4c aurel32
@item -no-quit
507 99aa9e4c aurel32
508 99aa9e4c aurel32
Disable SDL window close capability.
509 99aa9e4c aurel32
510 d2c639d6 blueswir1
@item -sdl
511 d2c639d6 blueswir1
512 d2c639d6 blueswir1
Enable SDL.
513 d2c639d6 blueswir1
514 d2c639d6 blueswir1
@item -portrait
515 d2c639d6 blueswir1
516 d2c639d6 blueswir1
Rotate graphical output 90 deg left (only PXA LCD).
517 d2c639d6 blueswir1
518 d2c639d6 blueswir1
@item -vga @var{type}
519 d2c639d6 blueswir1
Select type of VGA card to emulate. Valid values for @var{type} are
520 d2c639d6 blueswir1
@table @code
521 d2c639d6 blueswir1
@item cirrus
522 d2c639d6 blueswir1
Cirrus Logic GD5446 Video card. All Windows versions starting from
523 d2c639d6 blueswir1
Windows 95 should recognize and use this graphic card. For optimal
524 d2c639d6 blueswir1
performances, use 16 bit color depth in the guest and the host OS.
525 d2c639d6 blueswir1
(This one is the default)
526 d2c639d6 blueswir1
@item std
527 d2c639d6 blueswir1
Standard VGA card with Bochs VBE extensions.  If your guest OS
528 d2c639d6 blueswir1
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529 d2c639d6 blueswir1
to use high resolution modes (>= 1280x1024x16) then you should use
530 d2c639d6 blueswir1
this option.
531 d2c639d6 blueswir1
@item vmware
532 d2c639d6 blueswir1
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533 d2c639d6 blueswir1
recent XFree86/XOrg server or Windows guest with a driver for this
534 d2c639d6 blueswir1
card.
535 d2c639d6 blueswir1
@item none
536 d2c639d6 blueswir1
Disable VGA card.
537 d2c639d6 blueswir1
@end table
538 d2c639d6 blueswir1
539 f858dcae ths
@item -full-screen
540 f858dcae ths
Start in full screen.
541 f858dcae ths
542 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
543 f858dcae ths
544 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
545 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
546 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
547 f858dcae ths
tablet device when using this option (option @option{-usbdevice
548 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
549 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
550 f858dcae ths
syntax for the @var{display} is
551 f858dcae ths
552 f858dcae ths
@table @code
553 f858dcae ths
554 3aa3eea3 balrog
@item @var{host}:@var{d}
555 f858dcae ths
556 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
557 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
559 f858dcae ths
560 3aa3eea3 balrog
@item @code{unix}:@var{path}
561 f858dcae ths
562 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
563 f858dcae ths
location of a unix socket to listen for connections on.
564 f858dcae ths
565 89dfe898 ths
@item none
566 f858dcae ths
567 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
568 3aa3eea3 balrog
can be used to later start the VNC server.
569 f858dcae ths
570 f858dcae ths
@end table
571 f858dcae ths
572 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
573 f858dcae ths
separated by commas. Valid options are
574 f858dcae ths
575 f858dcae ths
@table @code
576 f858dcae ths
577 3aa3eea3 balrog
@item reverse
578 3aa3eea3 balrog
579 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
580 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
581 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582 3aa3eea3 balrog
is a TCP port number, not a display number.
583 3aa3eea3 balrog
584 89dfe898 ths
@item password
585 f858dcae ths
586 f858dcae ths
Require that password based authentication is used for client connections.
587 f858dcae ths
The password must be set separately using the @code{change} command in the
588 f858dcae ths
@ref{pcsys_monitor}
589 f858dcae ths
590 89dfe898 ths
@item tls
591 f858dcae ths
592 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
593 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594 f858dcae ths
attack. It is recommended that this option be combined with either the
595 f858dcae ths
@var{x509} or @var{x509verify} options.
596 f858dcae ths
597 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
598 f858dcae ths
599 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
600 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
601 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
602 f858dcae ths
to provide authentication of the client when this is used. The path following
603 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
604 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
605 f858dcae ths
606 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
607 f858dcae ths
608 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
609 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
610 f858dcae ths
to the client, and request that the client send its own x509 certificate.
611 f858dcae ths
The server will validate the client's certificate against the CA certificate,
612 f858dcae ths
and reject clients when validation fails. If the certificate authority is
613 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
614 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
615 f858dcae ths
path following this option specifies where the x509 certificates are to
616 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
617 f858dcae ths
certificates.
618 f858dcae ths
619 f858dcae ths
@end table
620 f858dcae ths
621 b389dbfb bellard
@end table
622 b389dbfb bellard
623 1f673135 bellard
Network options:
624 1f673135 bellard
625 1f673135 bellard
@table @option
626 1f673135 bellard
627 7a9f6e4a aliguori
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
628 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
629 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
630 7a9f6e4a aliguori
target. Optionally, the MAC address can be changed to @var{addr}
631 7a9f6e4a aliguori
and a @var{name} can be assigned for use in monitor commands. If no
632 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
633 549444e1 balrog
Qemu can emulate several different models of network card.
634 549444e1 balrog
Valid values for @var{type} are
635 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
636 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
637 9ad97e65 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
638 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
639 c4a7060c blueswir1
for a list of available devices for your target.
640 41d03949 bellard
641 7a9f6e4a aliguori
@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
642 7e89463d bellard
Use the user mode network stack which requires no administrator
643 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
644 115defd1 pbrook
hostname reported by the builtin DHCP server.
645 41d03949 bellard
646 7a9f6e4a aliguori
@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
647 030370a2 aurel32
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
648 030370a2 aurel32
the network script @var{file} to configure it and the network script 
649 030370a2 aurel32
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
650 030370a2 aurel32
automatically provides one. @option{fd}=@var{h} can be used to specify
651 030370a2 aurel32
the handle of an already opened host TAP interface. The default network 
652 030370a2 aurel32
configure script is @file{/etc/qemu-ifup} and the default network 
653 030370a2 aurel32
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
654 030370a2 aurel32
or @option{downscript=no} to disable script execution. Example:
655 1f673135 bellard
656 41d03949 bellard
@example
657 41d03949 bellard
qemu linux.img -net nic -net tap
658 41d03949 bellard
@end example
659 41d03949 bellard
660 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
661 41d03949 bellard
@example
662 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
663 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
664 41d03949 bellard
@end example
665 3f1a88f4 bellard
666 3f1a88f4 bellard
667 7a9f6e4a aliguori
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
668 1f673135 bellard
669 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
670 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
671 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
672 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
673 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
674 3d830459 bellard
specifies an already opened TCP socket.
675 1f673135 bellard
676 41d03949 bellard
Example:
677 41d03949 bellard
@example
678 41d03949 bellard
# launch a first QEMU instance
679 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
680 debc7065 bellard
               -net socket,listen=:1234
681 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
682 debc7065 bellard
# of the first instance
683 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
684 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
685 41d03949 bellard
@end example
686 52c00a5f bellard
687 7a9f6e4a aliguori
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
688 3d830459 bellard
689 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
690 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
691 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
692 3d830459 bellard
NOTES:
693 3d830459 bellard
@enumerate
694 5fafdf24 ths
@item
695 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
696 3d830459 bellard
correct multicast setup for these hosts).
697 3d830459 bellard
@item
698 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
699 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
700 4be456f1 ths
@item
701 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
702 3d830459 bellard
@end enumerate
703 3d830459 bellard
704 3d830459 bellard
Example:
705 3d830459 bellard
@example
706 3d830459 bellard
# launch one QEMU instance
707 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
708 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
709 3d830459 bellard
# launch another QEMU instance on same "bus"
710 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
711 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
712 3d830459 bellard
# launch yet another QEMU instance on same "bus"
713 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
714 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
715 3d830459 bellard
@end example
716 3d830459 bellard
717 3d830459 bellard
Example (User Mode Linux compat.):
718 3d830459 bellard
@example
719 debc7065 bellard
# launch QEMU instance (note mcast address selected
720 debc7065 bellard
# is UML's default)
721 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
722 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
723 3d830459 bellard
# launch UML
724 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
725 3d830459 bellard
@end example
726 8a16d273 ths
727 7a9f6e4a aliguori
@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
728 8a16d273 ths
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
729 8a16d273 ths
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
730 8a16d273 ths
and MODE @var{octalmode} to change default ownership and permissions for
731 8a16d273 ths
communication port. This option is available only if QEMU has been compiled
732 8a16d273 ths
with vde support enabled.
733 8a16d273 ths
734 8a16d273 ths
Example:
735 8a16d273 ths
@example
736 8a16d273 ths
# launch vde switch
737 8a16d273 ths
vde_switch -F -sock /tmp/myswitch
738 8a16d273 ths
# launch QEMU instance
739 8a16d273 ths
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
740 8a16d273 ths
@end example
741 3d830459 bellard
742 41d03949 bellard
@item -net none
743 41d03949 bellard
Indicate that no network devices should be configured. It is used to
744 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
745 039af320 bellard
is activated if no @option{-net} options are provided.
746 52c00a5f bellard
747 89dfe898 ths
@item -tftp @var{dir}
748 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
749 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
750 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
751 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
752 0db1137d ths
usual 10.0.2.2.
753 9bf05444 bellard
754 89dfe898 ths
@item -bootp @var{file}
755 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
756 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
757 47d5d01a ths
a guest from a local directory.
758 47d5d01a ths
759 47d5d01a ths
Example (using pxelinux):
760 47d5d01a ths
@example
761 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
762 47d5d01a ths
@end example
763 47d5d01a ths
764 89dfe898 ths
@item -smb @var{dir}
765 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
766 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
767 2518bd0d bellard
transparently.
768 2518bd0d bellard
769 2518bd0d bellard
In the guest Windows OS, the line:
770 2518bd0d bellard
@example
771 2518bd0d bellard
10.0.2.4 smbserver
772 2518bd0d bellard
@end example
773 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
774 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
775 2518bd0d bellard
776 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
777 2518bd0d bellard
778 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
779 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
780 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
781 2518bd0d bellard
782 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
783 9bf05444 bellard
784 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
785 9bf05444 bellard
connections to the host port @var{host-port} to the guest
786 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
787 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
788 9bf05444 bellard
built-in DHCP server).
789 9bf05444 bellard
790 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
791 9bf05444 bellard
screen 0, use the following:
792 9bf05444 bellard
793 9bf05444 bellard
@example
794 9bf05444 bellard
# on the host
795 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
796 9bf05444 bellard
# this host xterm should open in the guest X11 server
797 9bf05444 bellard
xterm -display :1
798 9bf05444 bellard
@end example
799 9bf05444 bellard
800 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
801 9bf05444 bellard
the guest, use the following:
802 9bf05444 bellard
803 9bf05444 bellard
@example
804 9bf05444 bellard
# on the host
805 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
806 9bf05444 bellard
telnet localhost 5555
807 9bf05444 bellard
@end example
808 9bf05444 bellard
809 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
810 9bf05444 bellard
connect to the guest telnet server.
811 9bf05444 bellard
812 1f673135 bellard
@end table
813 1f673135 bellard
814 2d564691 balrog
Bluetooth(R) options:
815 2d564691 balrog
@table @option
816 2d564691 balrog
817 2d564691 balrog
@item -bt hci[...]
818 2d564691 balrog
Defines the function of the corresponding Bluetooth HCI.  -bt options
819 2d564691 balrog
are matched with the HCIs present in the chosen machine type.  For
820 2d564691 balrog
example when emulating a machine with only one HCI built into it, only
821 2d564691 balrog
the first @code{-bt hci[...]} option is valid and defines the HCI's
822 2d564691 balrog
logic.  The Transport Layer is decided by the machine type.  Currently
823 2d564691 balrog
the machines @code{n800} and @code{n810} have one HCI and all other
824 2d564691 balrog
machines have none.
825 2d564691 balrog
826 2d564691 balrog
@anchor{bt-hcis}
827 2d564691 balrog
The following three types are recognized:
828 2d564691 balrog
829 2d564691 balrog
@table @code
830 2d564691 balrog
@item -bt hci,null
831 2d564691 balrog
(default) The corresponding Bluetooth HCI assumes no internal logic
832 2d564691 balrog
and will not respond to any HCI commands or emit events.
833 2d564691 balrog
834 2d564691 balrog
@item -bt hci,host[:@var{id}]
835 2d564691 balrog
(@code{bluez} only) The corresponding HCI passes commands / events
836 2d564691 balrog
to / from the physical HCI identified by the name @var{id} (default:
837 2d564691 balrog
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
838 2d564691 balrog
capable systems like Linux.
839 2d564691 balrog
840 2d564691 balrog
@item -bt hci[,vlan=@var{n}]
841 2d564691 balrog
Add a virtual, standard HCI that will participate in the Bluetooth
842 2d564691 balrog
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
843 2d564691 balrog
VLANs, devices inside a bluetooth network @var{n} can only communicate
844 2d564691 balrog
with other devices in the same network (scatternet).
845 2d564691 balrog
@end table
846 2d564691 balrog
847 2d564691 balrog
@item -bt vhci[,vlan=@var{n}]
848 2d564691 balrog
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
849 2d564691 balrog
to the host bluetooth stack instead of to the emulated target.  This
850 2d564691 balrog
allows the host and target machines to participate in a common scatternet
851 2d564691 balrog
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
852 2d564691 balrog
be used as following:
853 2d564691 balrog
854 2d564691 balrog
@example
855 2d564691 balrog
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
856 2d564691 balrog
@end example
857 2d564691 balrog
858 2d564691 balrog
@item -bt device:@var{dev}[,vlan=@var{n}]
859 2d564691 balrog
Emulate a bluetooth device @var{dev} and place it in network @var{n}
860 2d564691 balrog
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
861 2d564691 balrog
currently:
862 2d564691 balrog
863 2d564691 balrog
@table @code
864 2d564691 balrog
@item keyboard
865 2d564691 balrog
Virtual wireless keyboard implementing the HIDP bluetooth profile.
866 2d564691 balrog
@end table
867 2d564691 balrog
868 2d564691 balrog
@end table
869 2d564691 balrog
870 d2c639d6 blueswir1
i386 target only:
871 d2c639d6 blueswir1
872 d2c639d6 blueswir1
@table @option
873 d2c639d6 blueswir1
874 d2c639d6 blueswir1
@item -win2k-hack
875 d2c639d6 blueswir1
Use it when installing Windows 2000 to avoid a disk full bug. After
876 d2c639d6 blueswir1
Windows 2000 is installed, you no longer need this option (this option
877 d2c639d6 blueswir1
slows down the IDE transfers).
878 d2c639d6 blueswir1
879 d2c639d6 blueswir1
@item -rtc-td-hack
880 d2c639d6 blueswir1
Use it if you experience time drift problem in Windows with ACPI HAL.
881 d2c639d6 blueswir1
This option will try to figure out how many timer interrupts were not
882 d2c639d6 blueswir1
processed by the Windows guest and will re-inject them.
883 d2c639d6 blueswir1
884 d2c639d6 blueswir1
@item -no-fd-bootchk
885 d2c639d6 blueswir1
Disable boot signature checking for floppy disks in Bochs BIOS. It may
886 d2c639d6 blueswir1
be needed to boot from old floppy disks.
887 d2c639d6 blueswir1
888 d2c639d6 blueswir1
@item -no-acpi
889 d2c639d6 blueswir1
Disable ACPI (Advanced Configuration and Power Interface) support. Use
890 d2c639d6 blueswir1
it if your guest OS complains about ACPI problems (PC target machine
891 d2c639d6 blueswir1
only).
892 d2c639d6 blueswir1
893 d2c639d6 blueswir1
@item -no-hpet
894 d2c639d6 blueswir1
Disable HPET support.
895 d2c639d6 blueswir1
896 d2c639d6 blueswir1
@end table
897 d2c639d6 blueswir1
898 41d03949 bellard
Linux boot specific: When using these options, you can use a given
899 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
900 1f673135 bellard
for easier testing of various kernels.
901 1f673135 bellard
902 0806e3f6 bellard
@table @option
903 0806e3f6 bellard
904 89dfe898 ths
@item -kernel @var{bzImage}
905 0806e3f6 bellard
Use @var{bzImage} as kernel image.
906 0806e3f6 bellard
907 89dfe898 ths
@item -append @var{cmdline}
908 0806e3f6 bellard
Use @var{cmdline} as kernel command line
909 0806e3f6 bellard
910 89dfe898 ths
@item -initrd @var{file}
911 0806e3f6 bellard
Use @var{file} as initial ram disk.
912 0806e3f6 bellard
913 ec410fc9 bellard
@end table
914 ec410fc9 bellard
915 15a34c63 bellard
Debug/Expert options:
916 ec410fc9 bellard
@table @option
917 a0a821a4 bellard
918 89dfe898 ths
@item -serial @var{dev}
919 0bab00f3 bellard
Redirect the virtual serial port to host character device
920 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
921 0bab00f3 bellard
@code{stdio} in non graphical mode.
922 0bab00f3 bellard
923 d2c639d6 blueswir1
This option can be used several times to simulate up to 4 serial
924 0bab00f3 bellard
ports.
925 0bab00f3 bellard
926 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
927 c03b0f0f bellard
928 0bab00f3 bellard
Available character devices are:
929 a0a821a4 bellard
@table @code
930 af3a9031 ths
@item vc[:WxH]
931 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
932 af3a9031 ths
@example
933 af3a9031 ths
vc:800x600
934 af3a9031 ths
@end example
935 af3a9031 ths
It is also possible to specify width or height in characters:
936 af3a9031 ths
@example
937 af3a9031 ths
vc:80Cx24C
938 af3a9031 ths
@end example
939 a0a821a4 bellard
@item pty
940 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
941 c03b0f0f bellard
@item none
942 c03b0f0f bellard
No device is allocated.
943 a0a821a4 bellard
@item null
944 a0a821a4 bellard
void device
945 f8d179e3 bellard
@item /dev/XXX
946 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
947 f8d179e3 bellard
parameters are set according to the emulated ones.
948 89dfe898 ths
@item /dev/parport@var{N}
949 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
950 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
951 89dfe898 ths
@item file:@var{filename}
952 89dfe898 ths
Write output to @var{filename}. No character can be read.
953 a0a821a4 bellard
@item stdio
954 a0a821a4 bellard
[Unix only] standard input/output
955 89dfe898 ths
@item pipe:@var{filename}
956 0bab00f3 bellard
name pipe @var{filename}
957 89dfe898 ths
@item COM@var{n}
958 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
959 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
960 89dfe898 ths
This implements UDP Net Console.
961 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
962 89dfe898 ths
they default to @code{0.0.0.0}.
963 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
964 aa71cf80 aurel32
@item msmouse
965 aa71cf80 aurel32
Three button serial mouse. Configure the guest to use Microsoft protocol.
966 951f1351 bellard
967 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
968 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
969 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
970 951f1351 bellard
will appear in the netconsole session.
971 0bab00f3 bellard
972 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
973 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
974 0bab00f3 bellard
source port each time by using something like @code{-serial
975 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
976 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
977 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
978 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
979 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
980 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
981 0bab00f3 bellard
@table @code
982 951f1351 bellard
@item Qemu Options:
983 951f1351 bellard
-serial udp::4555@@:4556
984 951f1351 bellard
@item netcat options:
985 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
986 951f1351 bellard
@item telnet options:
987 951f1351 bellard
localhost 5555
988 951f1351 bellard
@end table
989 951f1351 bellard
990 951f1351 bellard
991 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
992 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
993 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
994 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
995 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
996 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
997 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
998 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
999 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
1000 951f1351 bellard
connect to the corresponding character device.
1001 951f1351 bellard
@table @code
1002 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
1003 951f1351 bellard
-serial tcp:192.168.0.2:4444
1004 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
1005 951f1351 bellard
-serial tcp::4444,server
1006 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
1007 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
1008 a0a821a4 bellard
@end table
1009 a0a821a4 bellard
1010 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1011 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
1012 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
1013 951f1351 bellard
difference is that the port acts like a telnet server or client using
1014 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
1015 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1016 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
1017 951f1351 bellard
type "send break" followed by pressing the enter key.
1018 0bab00f3 bellard
1019 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
1020 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
1021 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
1022 ffd843bc ths
@var{path} is used for connections.
1023 ffd843bc ths
1024 89dfe898 ths
@item mon:@var{dev_string}
1025 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
1026 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
1027 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
1028 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
1029 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
1030 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
1031 20d8a3ed ths
listening on port 4444 would be:
1032 20d8a3ed ths
@table @code
1033 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
1034 20d8a3ed ths
@end table
1035 20d8a3ed ths
1036 2e4d9fb1 aurel32
@item braille
1037 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1038 2e4d9fb1 aurel32
or fake device.
1039 2e4d9fb1 aurel32
1040 0bab00f3 bellard
@end table
1041 05d5818c bellard
1042 89dfe898 ths
@item -parallel @var{dev}
1043 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
1044 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1045 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
1046 e57a8c0e bellard
parallel port.
1047 e57a8c0e bellard
1048 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
1049 e57a8c0e bellard
ports.
1050 e57a8c0e bellard
1051 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
1052 c03b0f0f bellard
1053 89dfe898 ths
@item -monitor @var{dev}
1054 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
1055 a0a821a4 bellard
serial port).
1056 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
1057 a0a821a4 bellard
non graphical mode.
1058 a0a821a4 bellard
1059 d2c639d6 blueswir1
@item -pidfile @var{file}
1060 d2c639d6 blueswir1
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1061 d2c639d6 blueswir1
from a script.
1062 d2c639d6 blueswir1
1063 d2c639d6 blueswir1
@item -S
1064 d2c639d6 blueswir1
Do not start CPU at startup (you must type 'c' in the monitor).
1065 20d8a3ed ths
1066 ec410fc9 bellard
@item -s
1067 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1068 d2c639d6 blueswir1
1069 89dfe898 ths
@item -p @var{port}
1070 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
1071 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
1072 d2c639d6 blueswir1
1073 3b46e624 ths
@item -d
1074 9d4520d0 bellard
Output log in /tmp/qemu.log
1075 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1076 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1077 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1078 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1079 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
1080 46d4767d bellard
images.
1081 7c3fc84d bellard
1082 d2c639d6 blueswir1
@item -L  @var{path}
1083 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
1084 87b47350 bellard
1085 d2c639d6 blueswir1
@item -bios @var{file}
1086 d2c639d6 blueswir1
Set the filename for the BIOS.
1087 3cb0853a bellard
1088 d2c639d6 blueswir1
@item -kernel-kqemu
1089 d2c639d6 blueswir1
Enable KQEMU full virtualization (default is user mode only).
1090 d2c639d6 blueswir1
1091 d2c639d6 blueswir1
@item -no-kqemu
1092 d2c639d6 blueswir1
Disable KQEMU kernel module usage. KQEMU options are only available if
1093 d2c639d6 blueswir1
KQEMU support is enabled when compiling.
1094 d2c639d6 blueswir1
1095 d2c639d6 blueswir1
@item -enable-kvm
1096 d2c639d6 blueswir1
Enable KVM full virtualization support. This option is only available
1097 d2c639d6 blueswir1
if KVM support is enabled when compiling.
1098 3c656346 bellard
1099 d1beab82 bellard
@item -no-reboot
1100 d1beab82 bellard
Exit instead of rebooting.
1101 d1beab82 bellard
1102 99aa9e4c aurel32
@item -no-shutdown
1103 99aa9e4c aurel32
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1104 99aa9e4c aurel32
This allows for instance switching to monitor to commit changes to the
1105 99aa9e4c aurel32
disk image.
1106 99aa9e4c aurel32
1107 d2c639d6 blueswir1
@item -loadvm @var{file}
1108 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
1109 8e71621f pbrook
1110 d2c639d6 blueswir1
@item -daemonize
1111 d2c639d6 blueswir1
Daemonize the QEMU process after initialization.  QEMU will not detach from
1112 d2c639d6 blueswir1
standard IO until it is ready to receive connections on any of its devices.
1113 d2c639d6 blueswir1
This option is a useful way for external programs to launch QEMU without having
1114 d2c639d6 blueswir1
to cope with initialization race conditions.
1115 a87295e8 pbrook
1116 d2c639d6 blueswir1
@item -option-rom @var{file}
1117 d2c639d6 blueswir1
Load the contents of @var{file} as an option ROM.
1118 d2c639d6 blueswir1
This option is useful to load things like EtherBoot.
1119 a87295e8 pbrook
1120 d2c639d6 blueswir1
@item -clock @var{method}
1121 d2c639d6 blueswir1
Force the use of the given methods for timer alarm. To see what timers
1122 d2c639d6 blueswir1
are available use -clock ?.
1123 d2c639d6 blueswir1
1124 d2c639d6 blueswir1
@item -localtime
1125 d2c639d6 blueswir1
Set the real time clock to local time (the default is to UTC
1126 d2c639d6 blueswir1
time). This option is needed to have correct date in MS-DOS or
1127 d2c639d6 blueswir1
Windows.
1128 d2c639d6 blueswir1
1129 d2c639d6 blueswir1
@item -startdate @var{date}
1130 d2c639d6 blueswir1
Set the initial date of the real time clock. Valid formats for
1131 d2c639d6 blueswir1
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1132 d2c639d6 blueswir1
@code{2006-06-17}. The default value is @code{now}.
1133 2e70f6ef pbrook
1134 2e70f6ef pbrook
@item -icount [N|auto]
1135 2e70f6ef pbrook
Enable virtual instruction counter.  The virtual cpu will execute one
1136 2e70f6ef pbrook
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1137 2e70f6ef pbrook
then the virtual cpu speed will be automatically adjusted to keep virtual
1138 2e70f6ef pbrook
time within a few seconds of real time.
1139 2e70f6ef pbrook
1140 2e70f6ef pbrook
Note that while this option can give deterministic behavior, it does not
1141 2e70f6ef pbrook
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1142 dd5d6fe9 pbrook
order cores with complex cache hierarchies.  The number of instructions
1143 2e70f6ef pbrook
executed often has little or no correlation with actual performance.
1144 d2c639d6 blueswir1
1145 d2c639d6 blueswir1
@item -echr numeric_ascii_value
1146 d2c639d6 blueswir1
Change the escape character used for switching to the monitor when using
1147 d2c639d6 blueswir1
monitor and serial sharing.  The default is @code{0x01} when using the
1148 d2c639d6 blueswir1
@code{-nographic} option.  @code{0x01} is equal to pressing
1149 d2c639d6 blueswir1
@code{Control-a}.  You can select a different character from the ascii
1150 d2c639d6 blueswir1
control keys where 1 through 26 map to Control-a through Control-z.  For
1151 d2c639d6 blueswir1
instance you could use the either of the following to change the escape
1152 d2c639d6 blueswir1
character to Control-t.
1153 d2c639d6 blueswir1
@table @code
1154 d2c639d6 blueswir1
@item -echr 0x14
1155 d2c639d6 blueswir1
@item -echr 20
1156 d2c639d6 blueswir1
@end table
1157 d2c639d6 blueswir1
1158 ec410fc9 bellard
@end table
1159 ec410fc9 bellard
1160 3e11db9a bellard
@c man end
1161 3e11db9a bellard
1162 debc7065 bellard
@node pcsys_keys
1163 3e11db9a bellard
@section Keys
1164 3e11db9a bellard
1165 3e11db9a bellard
@c man begin OPTIONS
1166 3e11db9a bellard
1167 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
1168 a1b74fe8 bellard
@table @key
1169 f9859310 bellard
@item Ctrl-Alt-f
1170 a1b74fe8 bellard
Toggle full screen
1171 a0a821a4 bellard
1172 f9859310 bellard
@item Ctrl-Alt-n
1173 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
1174 a0a821a4 bellard
@table @emph
1175 a0a821a4 bellard
@item 1
1176 a0a821a4 bellard
Target system display
1177 a0a821a4 bellard
@item 2
1178 a0a821a4 bellard
Monitor
1179 a0a821a4 bellard
@item 3
1180 a0a821a4 bellard
Serial port
1181 a1b74fe8 bellard
@end table
1182 a1b74fe8 bellard
1183 f9859310 bellard
@item Ctrl-Alt
1184 a0a821a4 bellard
Toggle mouse and keyboard grab.
1185 a0a821a4 bellard
@end table
1186 a0a821a4 bellard
1187 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1188 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1189 3e11db9a bellard
1190 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
1191 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
1192 ec410fc9 bellard
1193 ec410fc9 bellard
@table @key
1194 a1b74fe8 bellard
@item Ctrl-a h
1195 d2c639d6 blueswir1
@item Ctrl-a ?
1196 ec410fc9 bellard
Print this help
1197 3b46e624 ths
@item Ctrl-a x
1198 366dfc52 ths
Exit emulator
1199 3b46e624 ths
@item Ctrl-a s
1200 1f47a922 bellard
Save disk data back to file (if -snapshot)
1201 20d8a3ed ths
@item Ctrl-a t
1202 d2c639d6 blueswir1
Toggle console timestamps
1203 a1b74fe8 bellard
@item Ctrl-a b
1204 1f673135 bellard
Send break (magic sysrq in Linux)
1205 a1b74fe8 bellard
@item Ctrl-a c
1206 1f673135 bellard
Switch between console and monitor
1207 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
1208 a1b74fe8 bellard
Send Ctrl-a
1209 ec410fc9 bellard
@end table
1210 0806e3f6 bellard
@c man end
1211 0806e3f6 bellard
1212 0806e3f6 bellard
@ignore
1213 0806e3f6 bellard
1214 1f673135 bellard
@c man begin SEEALSO
1215 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
1216 1f673135 bellard
user mode emulator invocation.
1217 1f673135 bellard
@c man end
1218 1f673135 bellard
1219 1f673135 bellard
@c man begin AUTHOR
1220 1f673135 bellard
Fabrice Bellard
1221 1f673135 bellard
@c man end
1222 1f673135 bellard
1223 1f673135 bellard
@end ignore
1224 1f673135 bellard
1225 debc7065 bellard
@node pcsys_monitor
1226 1f673135 bellard
@section QEMU Monitor
1227 1f673135 bellard
1228 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1229 1f673135 bellard
emulator. You can use it to:
1230 1f673135 bellard
1231 1f673135 bellard
@itemize @minus
1232 1f673135 bellard
1233 1f673135 bellard
@item
1234 e598752a ths
Remove or insert removable media images
1235 89dfe898 ths
(such as CD-ROM or floppies).
1236 1f673135 bellard
1237 5fafdf24 ths
@item
1238 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1239 1f673135 bellard
from a disk file.
1240 1f673135 bellard
1241 1f673135 bellard
@item Inspect the VM state without an external debugger.
1242 1f673135 bellard
1243 1f673135 bellard
@end itemize
1244 1f673135 bellard
1245 1f673135 bellard
@subsection Commands
1246 1f673135 bellard
1247 1f673135 bellard
The following commands are available:
1248 1f673135 bellard
1249 1f673135 bellard
@table @option
1250 1f673135 bellard
1251 89dfe898 ths
@item help or ? [@var{cmd}]
1252 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1253 1f673135 bellard
1254 3b46e624 ths
@item commit
1255 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1256 1f673135 bellard
1257 89dfe898 ths
@item info @var{subcommand}
1258 89dfe898 ths
Show various information about the system state.
1259 1f673135 bellard
1260 1f673135 bellard
@table @option
1261 d2c639d6 blueswir1
@item info version
1262 d2c639d6 blueswir1
show the version of QEMU
1263 1f673135 bellard
@item info network
1264 41d03949 bellard
show the various VLANs and the associated devices
1265 d2c639d6 blueswir1
@item info chardev
1266 d2c639d6 blueswir1
show the character devices
1267 1f673135 bellard
@item info block
1268 1f673135 bellard
show the block devices
1269 d2c639d6 blueswir1
@item info block
1270 d2c639d6 blueswir1
show block device statistics
1271 1f673135 bellard
@item info registers
1272 1f673135 bellard
show the cpu registers
1273 d2c639d6 blueswir1
@item info cpus
1274 d2c639d6 blueswir1
show infos for each CPU
1275 1f673135 bellard
@item info history
1276 1f673135 bellard
show the command line history
1277 d2c639d6 blueswir1
@item info irq
1278 d2c639d6 blueswir1
show the interrupts statistics (if available)
1279 d2c639d6 blueswir1
@item info pic
1280 d2c639d6 blueswir1
show i8259 (PIC) state
1281 b389dbfb bellard
@item info pci
1282 d2c639d6 blueswir1
show emulated PCI device info
1283 d2c639d6 blueswir1
@item info tlb
1284 d2c639d6 blueswir1
show virtual to physical memory mappings (i386 only)
1285 d2c639d6 blueswir1
@item info mem
1286 d2c639d6 blueswir1
show the active virtual memory mappings (i386 only)
1287 d2c639d6 blueswir1
@item info hpet
1288 d2c639d6 blueswir1
show state of HPET (i386 only)
1289 d2c639d6 blueswir1
@item info kqemu
1290 d2c639d6 blueswir1
show KQEMU information
1291 d2c639d6 blueswir1
@item info kvm
1292 d2c639d6 blueswir1
show KVM information
1293 b389dbfb bellard
@item info usb
1294 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1295 b389dbfb bellard
@item info usbhost
1296 b389dbfb bellard
show all USB host devices
1297 d2c639d6 blueswir1
@item info profile
1298 d2c639d6 blueswir1
show profiling information
1299 a3c25997 bellard
@item info capture
1300 a3c25997 bellard
show information about active capturing
1301 13a2e80f bellard
@item info snapshots
1302 13a2e80f bellard
show list of VM snapshots
1303 d2c639d6 blueswir1
@item info status
1304 d2c639d6 blueswir1
show the current VM status (running|paused)
1305 d2c639d6 blueswir1
@item info pcmcia
1306 d2c639d6 blueswir1
show guest PCMCIA status
1307 455204eb ths
@item info mice
1308 455204eb ths
show which guest mouse is receiving events
1309 d2c639d6 blueswir1
@item info vnc
1310 d2c639d6 blueswir1
show the vnc server status
1311 d2c639d6 blueswir1
@item info name
1312 d2c639d6 blueswir1
show the current VM name
1313 d2c639d6 blueswir1
@item info uuid
1314 d2c639d6 blueswir1
show the current VM UUID
1315 d2c639d6 blueswir1
@item info cpustats
1316 d2c639d6 blueswir1
show CPU statistics
1317 d2c639d6 blueswir1
@item info slirp
1318 d2c639d6 blueswir1
show SLIRP statistics (if available)
1319 d2c639d6 blueswir1
@item info migrate
1320 d2c639d6 blueswir1
show migration status
1321 d2c639d6 blueswir1
@item info balloon
1322 d2c639d6 blueswir1
show balloon information
1323 1f673135 bellard
@end table
1324 1f673135 bellard
1325 1f673135 bellard
@item q or quit
1326 1f673135 bellard
Quit the emulator.
1327 1f673135 bellard
1328 89dfe898 ths
@item eject [-f] @var{device}
1329 e598752a ths
Eject a removable medium (use -f to force it).
1330 1f673135 bellard
1331 89dfe898 ths
@item change @var{device} @var{setting}
1332 f858dcae ths
1333 89dfe898 ths
Change the configuration of a device.
1334 f858dcae ths
1335 f858dcae ths
@table @option
1336 d2c639d6 blueswir1
@item change @var{diskdevice} @var{filename} [@var{format}]
1337 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1338 f858dcae ths
1339 f858dcae ths
@example
1340 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1341 f858dcae ths
@end example
1342 f858dcae ths
1343 d2c639d6 blueswir1
@var{format} is optional.
1344 d2c639d6 blueswir1
1345 89dfe898 ths
@item change vnc @var{display},@var{options}
1346 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1347 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1348 f858dcae ths
1349 f858dcae ths
@example
1350 f858dcae ths
(qemu) change vnc localhost:1
1351 f858dcae ths
@end example
1352 f858dcae ths
1353 2569da0c aliguori
@item change vnc password [@var{password}]
1354 f858dcae ths
1355 2569da0c aliguori
Change the password associated with the VNC server. If the new password is not
1356 2569da0c aliguori
supplied, the monitor will prompt for it to be entered. VNC passwords are only
1357 2569da0c aliguori
significant up to 8 letters. eg
1358 f858dcae ths
1359 f858dcae ths
@example
1360 f858dcae ths
(qemu) change vnc password
1361 f858dcae ths
Password: ********
1362 f858dcae ths
@end example
1363 f858dcae ths
1364 f858dcae ths
@end table
1365 1f673135 bellard
1366 89dfe898 ths
@item screendump @var{filename}
1367 1f673135 bellard
Save screen into PPM image @var{filename}.
1368 1f673135 bellard
1369 d2c639d6 blueswir1
@item logfile @var{filename}
1370 d2c639d6 blueswir1
Output logs to @var{filename}.
1371 a3c25997 bellard
1372 89dfe898 ths
@item log @var{item1}[,...]
1373 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1374 1f673135 bellard
1375 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1376 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1377 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1378 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1379 13a2e80f bellard
@ref{vm_snapshots}.
1380 1f673135 bellard
1381 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1382 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1383 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1384 13a2e80f bellard
1385 89dfe898 ths
@item delvm @var{tag}|@var{id}
1386 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1387 1f673135 bellard
1388 1f673135 bellard
@item stop
1389 1f673135 bellard
Stop emulation.
1390 1f673135 bellard
1391 1f673135 bellard
@item c or cont
1392 1f673135 bellard
Resume emulation.
1393 1f673135 bellard
1394 89dfe898 ths
@item gdbserver [@var{port}]
1395 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1396 1f673135 bellard
1397 89dfe898 ths
@item x/fmt @var{addr}
1398 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1399 1f673135 bellard
1400 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1401 1f673135 bellard
Physical memory dump starting at @var{addr}.
1402 1f673135 bellard
1403 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1404 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1405 1f673135 bellard
1406 1f673135 bellard
@table @var
1407 5fafdf24 ths
@item count
1408 1f673135 bellard
is the number of items to be dumped.
1409 1f673135 bellard
1410 1f673135 bellard
@item format
1411 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1412 1f673135 bellard
c (char) or i (asm instruction).
1413 1f673135 bellard
1414 1f673135 bellard
@item size
1415 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1416 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1417 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1418 1f673135 bellard
1419 1f673135 bellard
@end table
1420 1f673135 bellard
1421 5fafdf24 ths
Examples:
1422 1f673135 bellard
@itemize
1423 1f673135 bellard
@item
1424 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1425 5fafdf24 ths
@example
1426 1f673135 bellard
(qemu) x/10i $eip
1427 1f673135 bellard
0x90107063:  ret
1428 1f673135 bellard
0x90107064:  sti
1429 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1430 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1431 1f673135 bellard
0x90107070:  ret
1432 1f673135 bellard
0x90107071:  jmp    0x90107080
1433 1f673135 bellard
0x90107073:  nop
1434 1f673135 bellard
0x90107074:  nop
1435 1f673135 bellard
0x90107075:  nop
1436 1f673135 bellard
0x90107076:  nop
1437 1f673135 bellard
@end example
1438 1f673135 bellard
1439 1f673135 bellard
@item
1440 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1441 5fafdf24 ths
@smallexample
1442 1f673135 bellard
(qemu) xp/80hx 0xb8000
1443 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1444 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1445 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1446 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1447 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1448 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1449 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1450 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1451 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1452 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1453 debc7065 bellard
@end smallexample
1454 1f673135 bellard
@end itemize
1455 1f673135 bellard
1456 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1457 1f673135 bellard
1458 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1459 1f673135 bellard
used.
1460 0806e3f6 bellard
1461 89dfe898 ths
@item sendkey @var{keys}
1462 a3a91a35 bellard
1463 54ae1fbd aurel32
Send @var{keys} to the emulator. @var{keys} could be the name of the
1464 54ae1fbd aurel32
key or @code{#} followed by the raw value in either decimal or hexadecimal
1465 54ae1fbd aurel32
format. Use @code{-} to press several keys simultaneously. Example:
1466 a3a91a35 bellard
@example
1467 a3a91a35 bellard
sendkey ctrl-alt-f1
1468 a3a91a35 bellard
@end example
1469 a3a91a35 bellard
1470 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1471 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1472 a3a91a35 bellard
1473 15a34c63 bellard
@item system_reset
1474 15a34c63 bellard
1475 15a34c63 bellard
Reset the system.
1476 15a34c63 bellard
1477 d2c639d6 blueswir1
@item system_powerdown
1478 0ecdffbb aurel32
1479 d2c639d6 blueswir1
Power down the system (if supported).
1480 0ecdffbb aurel32
1481 d2c639d6 blueswir1
@item sum @var{addr} @var{size}
1482 d2c639d6 blueswir1
1483 d2c639d6 blueswir1
Compute the checksum of a memory region.
1484 0ecdffbb aurel32
1485 89dfe898 ths
@item usb_add @var{devname}
1486 b389dbfb bellard
1487 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1488 0aff66b5 pbrook
@ref{usb_devices}
1489 b389dbfb bellard
1490 89dfe898 ths
@item usb_del @var{devname}
1491 b389dbfb bellard
1492 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1493 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1494 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1495 b389dbfb bellard
1496 d2c639d6 blueswir1
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1497 d2c639d6 blueswir1
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1498 d2c639d6 blueswir1
with optional scroll axis @var{dz}.
1499 d2c639d6 blueswir1
1500 d2c639d6 blueswir1
@item mouse_button @var{val}
1501 d2c639d6 blueswir1
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1502 d2c639d6 blueswir1
1503 d2c639d6 blueswir1
@item mouse_set @var{index}
1504 d2c639d6 blueswir1
Set which mouse device receives events at given @var{index}, index
1505 d2c639d6 blueswir1
can be obtained with
1506 d2c639d6 blueswir1
@example
1507 d2c639d6 blueswir1
info mice
1508 d2c639d6 blueswir1
@end example
1509 d2c639d6 blueswir1
1510 d2c639d6 blueswir1
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1511 d2c639d6 blueswir1
Capture audio into @var{filename}. Using sample rate @var{frequency}
1512 d2c639d6 blueswir1
bits per sample @var{bits} and number of channels @var{channels}.
1513 d2c639d6 blueswir1
1514 d2c639d6 blueswir1
Defaults:
1515 d2c639d6 blueswir1
@itemize @minus
1516 d2c639d6 blueswir1
@item Sample rate = 44100 Hz - CD quality
1517 d2c639d6 blueswir1
@item Bits = 16
1518 d2c639d6 blueswir1
@item Number of channels = 2 - Stereo
1519 d2c639d6 blueswir1
@end itemize
1520 d2c639d6 blueswir1
1521 d2c639d6 blueswir1
@item stopcapture @var{index}
1522 d2c639d6 blueswir1
Stop capture with a given @var{index}, index can be obtained with
1523 d2c639d6 blueswir1
@example
1524 d2c639d6 blueswir1
info capture
1525 d2c639d6 blueswir1
@end example
1526 d2c639d6 blueswir1
1527 d2c639d6 blueswir1
@item memsave @var{addr} @var{size} @var{file}
1528 d2c639d6 blueswir1
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1529 d2c639d6 blueswir1
1530 d2c639d6 blueswir1
@item pmemsave @var{addr} @var{size} @var{file}
1531 d2c639d6 blueswir1
save to disk physical memory dump starting at @var{addr} of size @var{size}.
1532 d2c639d6 blueswir1
1533 d2c639d6 blueswir1
@item boot_set @var{bootdevicelist}
1534 d2c639d6 blueswir1
1535 d2c639d6 blueswir1
Define new values for the boot device list. Those values will override
1536 d2c639d6 blueswir1
the values specified on the command line through the @code{-boot} option.
1537 d2c639d6 blueswir1
1538 d2c639d6 blueswir1
The values that can be specified here depend on the machine type, but are
1539 d2c639d6 blueswir1
the same that can be specified in the @code{-boot} command line option.
1540 d2c639d6 blueswir1
1541 d2c639d6 blueswir1
@item nmi @var{cpu}
1542 d2c639d6 blueswir1
Inject an NMI on the given CPU.
1543 d2c639d6 blueswir1
1544 d2c639d6 blueswir1
@item migrate [-d] @var{uri}
1545 d2c639d6 blueswir1
Migrate to @var{uri} (using -d to not wait for completion).
1546 d2c639d6 blueswir1
1547 d2c639d6 blueswir1
@item migrate_cancel
1548 d2c639d6 blueswir1
Cancel the current VM migration.
1549 d2c639d6 blueswir1
1550 d2c639d6 blueswir1
@item migrate_set_speed @var{value}
1551 d2c639d6 blueswir1
Set maximum speed to @var{value} (in bytes) for migrations.
1552 d2c639d6 blueswir1
1553 d2c639d6 blueswir1
@item balloon @var{value}
1554 d2c639d6 blueswir1
Request VM to change its memory allocation to @var{value} (in MB).
1555 d2c639d6 blueswir1
1556 d2c639d6 blueswir1
@item set_link @var{name} [up|down]
1557 d2c639d6 blueswir1
Set link @var{name} up or down.
1558 d2c639d6 blueswir1
1559 1f673135 bellard
@end table
1560 0806e3f6 bellard
1561 1f673135 bellard
@subsection Integer expressions
1562 1f673135 bellard
1563 1f673135 bellard
The monitor understands integers expressions for every integer
1564 1f673135 bellard
argument. You can use register names to get the value of specifics
1565 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1566 ec410fc9 bellard
1567 1f47a922 bellard
@node disk_images
1568 1f47a922 bellard
@section Disk Images
1569 1f47a922 bellard
1570 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1571 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1572 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1573 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1574 13a2e80f bellard
snapshots.
1575 1f47a922 bellard
1576 debc7065 bellard
@menu
1577 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1578 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1579 13a2e80f bellard
* vm_snapshots::              VM snapshots
1580 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1581 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
1582 19cb3738 bellard
* host_drives::               Using host drives
1583 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1584 75818250 ths
* disk_images_nbd::           NBD access
1585 debc7065 bellard
@end menu
1586 debc7065 bellard
1587 debc7065 bellard
@node disk_images_quickstart
1588 acd935ef bellard
@subsection Quick start for disk image creation
1589 acd935ef bellard
1590 acd935ef bellard
You can create a disk image with the command:
1591 1f47a922 bellard
@example
1592 acd935ef bellard
qemu-img create myimage.img mysize
1593 1f47a922 bellard
@end example
1594 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1595 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1596 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1597 acd935ef bellard
1598 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1599 1f47a922 bellard
1600 debc7065 bellard
@node disk_images_snapshot_mode
1601 1f47a922 bellard
@subsection Snapshot mode
1602 1f47a922 bellard
1603 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1604 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1605 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1606 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1607 acd935ef bellard
command (or @key{C-a s} in the serial console).
1608 1f47a922 bellard
1609 13a2e80f bellard
@node vm_snapshots
1610 13a2e80f bellard
@subsection VM snapshots
1611 13a2e80f bellard
1612 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1613 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1614 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1615 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1616 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1617 13a2e80f bellard
1618 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1619 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1620 19d36792 bellard
snapshot in addition to its numerical ID.
1621 13a2e80f bellard
1622 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1623 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1624 13a2e80f bellard
with their associated information:
1625 13a2e80f bellard
1626 13a2e80f bellard
@example
1627 13a2e80f bellard
(qemu) info snapshots
1628 13a2e80f bellard
Snapshot devices: hda
1629 13a2e80f bellard
Snapshot list (from hda):
1630 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1631 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1632 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1633 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1634 13a2e80f bellard
@end example
1635 13a2e80f bellard
1636 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1637 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1638 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1639 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1640 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1641 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1642 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1643 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1644 19d36792 bellard
disk images).
1645 13a2e80f bellard
1646 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1647 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1648 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1649 13a2e80f bellard
1650 13a2e80f bellard
VM snapshots currently have the following known limitations:
1651 13a2e80f bellard
@itemize
1652 5fafdf24 ths
@item
1653 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1654 13a2e80f bellard
inserted after a snapshot is done.
1655 5fafdf24 ths
@item
1656 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1657 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1658 13a2e80f bellard
@end itemize
1659 13a2e80f bellard
1660 acd935ef bellard
@node qemu_img_invocation
1661 acd935ef bellard
@subsection @code{qemu-img} Invocation
1662 1f47a922 bellard
1663 acd935ef bellard
@include qemu-img.texi
1664 05efe46e bellard
1665 975b092b ths
@node qemu_nbd_invocation
1666 975b092b ths
@subsection @code{qemu-nbd} Invocation
1667 975b092b ths
1668 975b092b ths
@include qemu-nbd.texi
1669 975b092b ths
1670 19cb3738 bellard
@node host_drives
1671 19cb3738 bellard
@subsection Using host drives
1672 19cb3738 bellard
1673 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1674 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1675 19cb3738 bellard
1676 19cb3738 bellard
@subsubsection Linux
1677 19cb3738 bellard
1678 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1679 4be456f1 ths
disk image filename provided you have enough privileges to access
1680 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1681 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1682 19cb3738 bellard
1683 f542086d bellard
@table @code
1684 19cb3738 bellard
@item CD
1685 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1686 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1687 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1688 19cb3738 bellard
@item Floppy
1689 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1690 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1691 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1692 19cb3738 bellard
OS will think that the same floppy is loaded).
1693 19cb3738 bellard
@item Hard disks
1694 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1695 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1696 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1697 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1698 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1699 19cb3738 bellard
line option or modify the device permissions accordingly).
1700 19cb3738 bellard
@end table
1701 19cb3738 bellard
1702 19cb3738 bellard
@subsubsection Windows
1703 19cb3738 bellard
1704 01781963 bellard
@table @code
1705 01781963 bellard
@item CD
1706 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1707 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1708 01781963 bellard
supported as an alias to the first CDROM drive.
1709 19cb3738 bellard
1710 e598752a ths
Currently there is no specific code to handle removable media, so it
1711 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1712 19cb3738 bellard
change or eject media.
1713 01781963 bellard
@item Hard disks
1714 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1715 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1716 01781963 bellard
1717 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1718 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1719 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1720 01781963 bellard
modifications are written in a temporary file).
1721 01781963 bellard
@end table
1722 01781963 bellard
1723 19cb3738 bellard
1724 19cb3738 bellard
@subsubsection Mac OS X
1725 19cb3738 bellard
1726 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1727 19cb3738 bellard
1728 e598752a ths
Currently there is no specific code to handle removable media, so it
1729 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1730 19cb3738 bellard
change or eject media.
1731 19cb3738 bellard
1732 debc7065 bellard
@node disk_images_fat_images
1733 2c6cadd4 bellard
@subsection Virtual FAT disk images
1734 2c6cadd4 bellard
1735 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1736 2c6cadd4 bellard
directory tree. In order to use it, just type:
1737 2c6cadd4 bellard
1738 5fafdf24 ths
@example
1739 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1740 2c6cadd4 bellard
@end example
1741 2c6cadd4 bellard
1742 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1743 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1744 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1745 2c6cadd4 bellard
1746 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1747 2c6cadd4 bellard
1748 5fafdf24 ths
@example
1749 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1750 2c6cadd4 bellard
@end example
1751 2c6cadd4 bellard
1752 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1753 2c6cadd4 bellard
@code{:rw:} option:
1754 2c6cadd4 bellard
1755 5fafdf24 ths
@example
1756 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1757 2c6cadd4 bellard
@end example
1758 2c6cadd4 bellard
1759 2c6cadd4 bellard
What you should @emph{never} do:
1760 2c6cadd4 bellard
@itemize
1761 2c6cadd4 bellard
@item use non-ASCII filenames ;
1762 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1763 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1764 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1765 2c6cadd4 bellard
@end itemize
1766 2c6cadd4 bellard
1767 75818250 ths
@node disk_images_nbd
1768 75818250 ths
@subsection NBD access
1769 75818250 ths
1770 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
1771 75818250 ths
protocol.
1772 75818250 ths
1773 75818250 ths
@example
1774 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1775 75818250 ths
@end example
1776 75818250 ths
1777 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
1778 75818250 ths
of an inet socket:
1779 75818250 ths
1780 75818250 ths
@example
1781 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1782 75818250 ths
@end example
1783 75818250 ths
1784 75818250 ths
In this case, the block device must be exported using qemu-nbd:
1785 75818250 ths
1786 75818250 ths
@example
1787 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1788 75818250 ths
@end example
1789 75818250 ths
1790 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
1791 75818250 ths
@example
1792 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1793 75818250 ths
@end example
1794 75818250 ths
1795 75818250 ths
and then you can use it with two guests:
1796 75818250 ths
@example
1797 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1798 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1799 75818250 ths
@end example
1800 75818250 ths
1801 debc7065 bellard
@node pcsys_network
1802 9d4fb82e bellard
@section Network emulation
1803 9d4fb82e bellard
1804 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1805 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1806 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1807 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1808 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1809 41d03949 bellard
network stack can replace the TAP device to have a basic network
1810 41d03949 bellard
connection.
1811 41d03949 bellard
1812 41d03949 bellard
@subsection VLANs
1813 9d4fb82e bellard
1814 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1815 41d03949 bellard
connection between several network devices. These devices can be for
1816 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1817 41d03949 bellard
(TAP devices).
1818 9d4fb82e bellard
1819 41d03949 bellard
@subsection Using TAP network interfaces
1820 41d03949 bellard
1821 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1822 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1823 41d03949 bellard
can then configure it as if it was a real ethernet card.
1824 9d4fb82e bellard
1825 8f40c388 bellard
@subsubsection Linux host
1826 8f40c388 bellard
1827 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1828 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1829 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1830 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1831 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1832 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1833 9d4fb82e bellard
1834 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1835 ee0f4751 bellard
TAP network interfaces.
1836 9d4fb82e bellard
1837 8f40c388 bellard
@subsubsection Windows host
1838 8f40c388 bellard
1839 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1840 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1841 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1842 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1843 8f40c388 bellard
1844 9d4fb82e bellard
@subsection Using the user mode network stack
1845 9d4fb82e bellard
1846 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1847 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1848 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1849 41d03949 bellard
network). The virtual network configuration is the following:
1850 9d4fb82e bellard
1851 9d4fb82e bellard
@example
1852 9d4fb82e bellard
1853 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1854 41d03949 bellard
                           |          (10.0.2.2)
1855 9d4fb82e bellard
                           |
1856 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1857 3b46e624 ths
                           |
1858 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1859 9d4fb82e bellard
@end example
1860 9d4fb82e bellard
1861 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1862 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1863 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1864 41d03949 bellard
to the hosts starting from 10.0.2.15.
1865 9d4fb82e bellard
1866 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1867 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1868 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1869 9d4fb82e bellard
1870 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1871 4be456f1 ths
would require root privileges. It means you can only ping the local
1872 b415a407 bellard
router (10.0.2.2).
1873 b415a407 bellard
1874 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1875 9bf05444 bellard
server.
1876 9bf05444 bellard
1877 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1878 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1879 9bf05444 bellard
redirect X11, telnet or SSH connections.
1880 443f1376 bellard
1881 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1882 41d03949 bellard
1883 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1884 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1885 41d03949 bellard
basic example.
1886 41d03949 bellard
1887 9d4fb82e bellard
@node direct_linux_boot
1888 9d4fb82e bellard
@section Direct Linux Boot
1889 1f673135 bellard
1890 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1891 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1892 ee0f4751 bellard
kernel testing.
1893 1f673135 bellard
1894 ee0f4751 bellard
The syntax is:
1895 1f673135 bellard
@example
1896 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1897 1f673135 bellard
@end example
1898 1f673135 bellard
1899 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1900 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1901 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1902 1f673135 bellard
1903 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1904 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1905 ee0f4751 bellard
Linux kernel.
1906 1f673135 bellard
1907 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1908 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1909 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1910 1f673135 bellard
@example
1911 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1912 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1913 1f673135 bellard
@end example
1914 1f673135 bellard
1915 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1916 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1917 1f673135 bellard
1918 debc7065 bellard
@node pcsys_usb
1919 b389dbfb bellard
@section USB emulation
1920 b389dbfb bellard
1921 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1922 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1923 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1924 f542086d bellard
as necessary to connect multiple USB devices.
1925 b389dbfb bellard
1926 0aff66b5 pbrook
@menu
1927 0aff66b5 pbrook
* usb_devices::
1928 0aff66b5 pbrook
* host_usb_devices::
1929 0aff66b5 pbrook
@end menu
1930 0aff66b5 pbrook
@node usb_devices
1931 0aff66b5 pbrook
@subsection Connecting USB devices
1932 b389dbfb bellard
1933 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1934 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1935 b389dbfb bellard
1936 db380c06 balrog
@table @code
1937 db380c06 balrog
@item mouse
1938 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1939 db380c06 balrog
@item tablet
1940 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1941 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1942 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1943 db380c06 balrog
@item disk:@var{file}
1944 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1945 db380c06 balrog
@item host:@var{bus.addr}
1946 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1947 0aff66b5 pbrook
(Linux only)
1948 db380c06 balrog
@item host:@var{vendor_id:product_id}
1949 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1950 0aff66b5 pbrook
(Linux only)
1951 db380c06 balrog
@item wacom-tablet
1952 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1953 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1954 f6d2a316 balrog
coordinates it reports touch pressure.
1955 db380c06 balrog
@item keyboard
1956 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1957 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1958 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1959 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1960 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1961 a11d070e balrog
used to override the default 0403:6001. For instance, 
1962 db380c06 balrog
@example
1963 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1964 db380c06 balrog
@end example
1965 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1966 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1967 2e4d9fb1 aurel32
@item braille
1968 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1969 2e4d9fb1 aurel32
or fake device.
1970 9ad97e65 balrog
@item net:@var{options}
1971 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1972 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1973 9ad97e65 balrog
For instance, user-mode networking can be used with
1974 6c9f886c balrog
@example
1975 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1976 6c9f886c balrog
@end example
1977 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
1978 2d564691 balrog
@item bt[:@var{hci-type}]
1979 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
1980 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1981 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1982 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
1983 2d564691 balrog
usage:
1984 2d564691 balrog
@example
1985 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1986 2d564691 balrog
@end example
1987 0aff66b5 pbrook
@end table
1988 b389dbfb bellard
1989 0aff66b5 pbrook
@node host_usb_devices
1990 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1991 b389dbfb bellard
1992 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1993 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1994 b389dbfb bellard
Cameras) are not supported yet.
1995 b389dbfb bellard
1996 b389dbfb bellard
@enumerate
1997 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1998 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1999 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
2000 b389dbfb bellard
to @file{mydriver.o.disabled}.
2001 b389dbfb bellard
2002 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2003 b389dbfb bellard
@example
2004 b389dbfb bellard
ls /proc/bus/usb
2005 b389dbfb bellard
001  devices  drivers
2006 b389dbfb bellard
@end example
2007 b389dbfb bellard
2008 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2009 b389dbfb bellard
@example
2010 b389dbfb bellard
chown -R myuid /proc/bus/usb
2011 b389dbfb bellard
@end example
2012 b389dbfb bellard
2013 b389dbfb bellard
@item Launch QEMU and do in the monitor:
2014 5fafdf24 ths
@example
2015 b389dbfb bellard
info usbhost
2016 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
2017 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
2018 b389dbfb bellard
@end example
2019 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
2020 b389dbfb bellard
hubs, it won't work).
2021 b389dbfb bellard
2022 b389dbfb bellard
@item Add the device in QEMU by using:
2023 5fafdf24 ths
@example
2024 b389dbfb bellard
usb_add host:1234:5678
2025 b389dbfb bellard
@end example
2026 b389dbfb bellard
2027 b389dbfb bellard
Normally the guest OS should report that a new USB device is
2028 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
2029 b389dbfb bellard
2030 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
2031 b389dbfb bellard
2032 b389dbfb bellard
@end enumerate
2033 b389dbfb bellard
2034 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
2035 b389dbfb bellard
device to make it work again (this is a bug).
2036 b389dbfb bellard
2037 f858dcae ths
@node vnc_security
2038 f858dcae ths
@section VNC security
2039 f858dcae ths
2040 f858dcae ths
The VNC server capability provides access to the graphical console
2041 f858dcae ths
of the guest VM across the network. This has a number of security
2042 f858dcae ths
considerations depending on the deployment scenarios.
2043 f858dcae ths
2044 f858dcae ths
@menu
2045 f858dcae ths
* vnc_sec_none::
2046 f858dcae ths
* vnc_sec_password::
2047 f858dcae ths
* vnc_sec_certificate::
2048 f858dcae ths
* vnc_sec_certificate_verify::
2049 f858dcae ths
* vnc_sec_certificate_pw::
2050 f858dcae ths
* vnc_generate_cert::
2051 f858dcae ths
@end menu
2052 f858dcae ths
@node vnc_sec_none
2053 f858dcae ths
@subsection Without passwords
2054 f858dcae ths
2055 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
2056 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
2057 f858dcae ths
socket only. For example
2058 f858dcae ths
2059 f858dcae ths
@example
2060 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2061 f858dcae ths
@end example
2062 f858dcae ths
2063 f858dcae ths
This ensures that only users on local box with read/write access to that
2064 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
2065 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
2066 f858dcae ths
tunnel.
2067 f858dcae ths
2068 f858dcae ths
@node vnc_sec_password
2069 f858dcae ths
@subsection With passwords
2070 f858dcae ths
2071 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
2072 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
2073 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
2074 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
2075 f858dcae ths
authentication should be restricted to only listen on the loopback interface
2076 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
2077 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
2078 f858dcae ths
the monitor is used to set the password all clients will be rejected.
2079 f858dcae ths
2080 f858dcae ths
@example
2081 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2082 f858dcae ths
(qemu) change vnc password
2083 f858dcae ths
Password: ********
2084 f858dcae ths
(qemu)
2085 f858dcae ths
@end example
2086 f858dcae ths
2087 f858dcae ths
@node vnc_sec_certificate
2088 f858dcae ths
@subsection With x509 certificates
2089 f858dcae ths
2090 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
2091 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
2092 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
2093 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2094 f858dcae ths
support provides a secure session, but no authentication. This allows any
2095 f858dcae ths
client to connect, and provides an encrypted session.
2096 f858dcae ths
2097 f858dcae ths
@example
2098 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2099 f858dcae ths
@end example
2100 f858dcae ths
2101 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
2102 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2103 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2104 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
2105 f858dcae ths
only be readable by the user owning it.
2106 f858dcae ths
2107 f858dcae ths
@node vnc_sec_certificate_verify
2108 f858dcae ths
@subsection With x509 certificates and client verification
2109 f858dcae ths
2110 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
2111 f858dcae ths
The server will request that the client provide a certificate, which it will
2112 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
2113 f858dcae ths
in an environment with a private internal certificate authority.
2114 f858dcae ths
2115 f858dcae ths
@example
2116 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2117 f858dcae ths
@end example
2118 f858dcae ths
2119 f858dcae ths
2120 f858dcae ths
@node vnc_sec_certificate_pw
2121 f858dcae ths
@subsection With x509 certificates, client verification and passwords
2122 f858dcae ths
2123 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
2124 f858dcae ths
to provide two layers of authentication for clients.
2125 f858dcae ths
2126 f858dcae ths
@example
2127 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2128 f858dcae ths
(qemu) change vnc password
2129 f858dcae ths
Password: ********
2130 f858dcae ths
(qemu)
2131 f858dcae ths
@end example
2132 f858dcae ths
2133 f858dcae ths
@node vnc_generate_cert
2134 f858dcae ths
@subsection Generating certificates for VNC
2135 f858dcae ths
2136 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
2137 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
2138 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
2139 f858dcae ths
each server. If using certificates for authentication, then each client
2140 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
2141 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
2142 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
2143 f858dcae ths
2144 f858dcae ths
@menu
2145 f858dcae ths
* vnc_generate_ca::
2146 f858dcae ths
* vnc_generate_server::
2147 f858dcae ths
* vnc_generate_client::
2148 f858dcae ths
@end menu
2149 f858dcae ths
@node vnc_generate_ca
2150 f858dcae ths
@subsubsection Setup the Certificate Authority
2151 f858dcae ths
2152 f858dcae ths
This step only needs to be performed once per organization / organizational
2153 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
2154 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
2155 f858dcae ths
issued with it is lost.
2156 f858dcae ths
2157 f858dcae ths
@example
2158 f858dcae ths
# certtool --generate-privkey > ca-key.pem
2159 f858dcae ths
@end example
2160 f858dcae ths
2161 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
2162 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
2163 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
2164 f858dcae ths
name of the organization.
2165 f858dcae ths
2166 f858dcae ths
@example
2167 f858dcae ths
# cat > ca.info <<EOF
2168 f858dcae ths
cn = Name of your organization
2169 f858dcae ths
ca
2170 f858dcae ths
cert_signing_key
2171 f858dcae ths
EOF
2172 f858dcae ths
# certtool --generate-self-signed \
2173 f858dcae ths
           --load-privkey ca-key.pem
2174 f858dcae ths
           --template ca.info \
2175 f858dcae ths
           --outfile ca-cert.pem
2176 f858dcae ths
@end example
2177 f858dcae ths
2178 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2179 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2180 f858dcae ths
2181 f858dcae ths
@node vnc_generate_server
2182 f858dcae ths
@subsubsection Issuing server certificates
2183 f858dcae ths
2184 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
2185 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
2186 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
2187 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
2188 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
2189 f858dcae ths
secure CA private key:
2190 f858dcae ths
2191 f858dcae ths
@example
2192 f858dcae ths
# cat > server.info <<EOF
2193 f858dcae ths
organization = Name  of your organization
2194 f858dcae ths
cn = server.foo.example.com
2195 f858dcae ths
tls_www_server
2196 f858dcae ths
encryption_key
2197 f858dcae ths
signing_key
2198 f858dcae ths
EOF
2199 f858dcae ths
# certtool --generate-privkey > server-key.pem
2200 f858dcae ths
# certtool --generate-certificate \
2201 f858dcae ths
           --load-ca-certificate ca-cert.pem \
2202 f858dcae ths
           --load-ca-privkey ca-key.pem \
2203 f858dcae ths
           --load-privkey server server-key.pem \
2204 f858dcae ths
           --template server.info \
2205 f858dcae ths
           --outfile server-cert.pem
2206 f858dcae ths
@end example
2207 f858dcae ths
2208 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2209 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
2210 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2211 f858dcae ths
2212 f858dcae ths
@node vnc_generate_client
2213 f858dcae ths
@subsubsection Issuing client certificates
2214 f858dcae ths
2215 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2216 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
2217 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
2218 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
2219 f858dcae ths
the secure CA private key:
2220 f858dcae ths
2221 f858dcae ths
@example
2222 f858dcae ths
# cat > client.info <<EOF
2223 f858dcae ths
country = GB
2224 f858dcae ths
state = London
2225 f858dcae ths
locality = London
2226 f858dcae ths
organiazation = Name of your organization
2227 f858dcae ths
cn = client.foo.example.com
2228 f858dcae ths
tls_www_client
2229 f858dcae ths
encryption_key
2230 f858dcae ths
signing_key
2231 f858dcae ths
EOF
2232 f858dcae ths
# certtool --generate-privkey > client-key.pem
2233 f858dcae ths
# certtool --generate-certificate \
2234 f858dcae ths
           --load-ca-certificate ca-cert.pem \
2235 f858dcae ths
           --load-ca-privkey ca-key.pem \
2236 f858dcae ths
           --load-privkey client-key.pem \
2237 f858dcae ths
           --template client.info \
2238 f858dcae ths
           --outfile client-cert.pem
2239 f858dcae ths
@end example
2240 f858dcae ths
2241 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2242 f858dcae ths
copied to the client for which they were generated.
2243 f858dcae ths
2244 0806e3f6 bellard
@node gdb_usage
2245 da415d54 bellard
@section GDB usage
2246 da415d54 bellard
2247 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
2248 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
2249 da415d54 bellard
2250 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2251 da415d54 bellard
gdb connection:
2252 da415d54 bellard
@example
2253 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2254 debc7065 bellard
       -append "root=/dev/hda"
2255 da415d54 bellard
Connected to host network interface: tun0
2256 da415d54 bellard
Waiting gdb connection on port 1234
2257 da415d54 bellard
@end example
2258 da415d54 bellard
2259 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
2260 da415d54 bellard
@example
2261 da415d54 bellard
> gdb vmlinux
2262 da415d54 bellard
@end example
2263 da415d54 bellard
2264 da415d54 bellard
In gdb, connect to QEMU:
2265 da415d54 bellard
@example
2266 6c9bf893 bellard
(gdb) target remote localhost:1234
2267 da415d54 bellard
@end example
2268 da415d54 bellard
2269 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2270 da415d54 bellard
@example
2271 da415d54 bellard
(gdb) c
2272 da415d54 bellard
@end example
2273 da415d54 bellard
2274 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
2275 0806e3f6 bellard
2276 0806e3f6 bellard
@enumerate
2277 0806e3f6 bellard
@item
2278 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
2279 0806e3f6 bellard
@item
2280 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
2281 0806e3f6 bellard
@item
2282 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
2283 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2284 0806e3f6 bellard
@end enumerate
2285 0806e3f6 bellard
2286 60897d36 edgar_igl
Advanced debugging options:
2287 60897d36 edgar_igl
2288 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2289 94d45e44 edgar_igl
@table @code
2290 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
2291 60897d36 edgar_igl
2292 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
2293 60897d36 edgar_igl
@example
2294 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
2295 60897d36 edgar_igl
sending: "qqemu.sstepbits"
2296 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2297 60897d36 edgar_igl
@end example
2298 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
2299 60897d36 edgar_igl
2300 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
2301 60897d36 edgar_igl
@example
2302 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
2303 60897d36 edgar_igl
sending: "qqemu.sstep"
2304 60897d36 edgar_igl
received: "0x7"
2305 60897d36 edgar_igl
@end example
2306 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
2307 60897d36 edgar_igl
2308 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2309 60897d36 edgar_igl
@example
2310 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
2311 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
2312 60897d36 edgar_igl
received: "OK"
2313 60897d36 edgar_igl
@end example
2314 94d45e44 edgar_igl
@end table
2315 60897d36 edgar_igl
2316 debc7065 bellard
@node pcsys_os_specific
2317 1a084f3d bellard
@section Target OS specific information
2318 1a084f3d bellard
2319 1a084f3d bellard
@subsection Linux
2320 1a084f3d bellard
2321 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2322 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2323 15a34c63 bellard
color depth in the guest and the host OS.
2324 1a084f3d bellard
2325 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
2326 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
2327 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
2328 e3371e62 bellard
cannot simulate exactly.
2329 e3371e62 bellard
2330 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2331 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
2332 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
2333 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2334 7c3fc84d bellard
patch by default. Newer kernels don't have it.
2335 7c3fc84d bellard
2336 1a084f3d bellard
@subsection Windows
2337 1a084f3d bellard
2338 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
2339 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
2340 1a084f3d bellard
2341 e3371e62 bellard
@subsubsection SVGA graphic modes support
2342 e3371e62 bellard
2343 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
2344 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
2345 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
2346 15a34c63 bellard
depth in the guest and the host OS.
2347 1a084f3d bellard
2348 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
2349 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2350 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
2351 3cb0853a bellard
(option @option{-std-vga}).
2352 3cb0853a bellard
2353 e3371e62 bellard
@subsubsection CPU usage reduction
2354 e3371e62 bellard
2355 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
2356 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
2357 15a34c63 bellard
idle. You can install the utility from
2358 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2359 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
2360 1a084f3d bellard
2361 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
2362 e3371e62 bellard
2363 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
2364 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
2365 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
2366 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
2367 9d0a8e6f bellard
IDE transfers).
2368 e3371e62 bellard
2369 6cc721cf bellard
@subsubsection Windows 2000 shutdown
2370 6cc721cf bellard
2371 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2372 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
2373 6cc721cf bellard
use the APM driver provided by the BIOS.
2374 6cc721cf bellard
2375 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
2376 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2377 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
2378 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2379 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
2380 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
2381 6cc721cf bellard
2382 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
2383 6cc721cf bellard
2384 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
2385 6cc721cf bellard
2386 2192c332 bellard
@subsubsection Windows XP security problem
2387 e3371e62 bellard
2388 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
2389 e3371e62 bellard
error when booting:
2390 e3371e62 bellard
@example
2391 e3371e62 bellard
A problem is preventing Windows from accurately checking the
2392 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
2393 e3371e62 bellard
@end example
2394 e3371e62 bellard
2395 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
2396 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
2397 2192c332 bellard
network while in safe mode, its recommended to download the full
2398 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
2399 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2400 e3371e62 bellard
2401 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2402 a0a821a4 bellard
2403 a0a821a4 bellard
@subsubsection CPU usage reduction
2404 a0a821a4 bellard
2405 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2406 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2407 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2408 a0a821a4 bellard
problem.
2409 a0a821a4 bellard
2410 debc7065 bellard
@node QEMU System emulator for non PC targets
2411 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2412 3f9f3aa1 bellard
2413 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2414 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2415 4be456f1 ths
differences are mentioned in the following sections.
2416 3f9f3aa1 bellard
2417 debc7065 bellard
@menu
2418 debc7065 bellard
* QEMU PowerPC System emulator::
2419 24d4de45 ths
* Sparc32 System emulator::
2420 24d4de45 ths
* Sparc64 System emulator::
2421 24d4de45 ths
* MIPS System emulator::
2422 24d4de45 ths
* ARM System emulator::
2423 24d4de45 ths
* ColdFire System emulator::
2424 debc7065 bellard
@end menu
2425 debc7065 bellard
2426 debc7065 bellard
@node QEMU PowerPC System emulator
2427 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2428 1a084f3d bellard
2429 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2430 15a34c63 bellard
or PowerMac PowerPC system.
2431 1a084f3d bellard
2432 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2433 1a084f3d bellard
2434 15a34c63 bellard
@itemize @minus
2435 5fafdf24 ths
@item
2436 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
2437 15a34c63 bellard
@item
2438 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2439 5fafdf24 ths
@item
2440 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2441 5fafdf24 ths
@item
2442 15a34c63 bellard
NE2000 PCI adapters
2443 15a34c63 bellard
@item
2444 15a34c63 bellard
Non Volatile RAM
2445 15a34c63 bellard
@item
2446 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2447 1a084f3d bellard
@end itemize
2448 1a084f3d bellard
2449 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2450 52c00a5f bellard
2451 52c00a5f bellard
@itemize @minus
2452 5fafdf24 ths
@item
2453 15a34c63 bellard
PCI Bridge
2454 15a34c63 bellard
@item
2455 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2456 5fafdf24 ths
@item
2457 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2458 52c00a5f bellard
@item
2459 52c00a5f bellard
Floppy disk
2460 5fafdf24 ths
@item
2461 15a34c63 bellard
NE2000 network adapters
2462 52c00a5f bellard
@item
2463 52c00a5f bellard
Serial port
2464 52c00a5f bellard
@item
2465 52c00a5f bellard
PREP Non Volatile RAM
2466 15a34c63 bellard
@item
2467 15a34c63 bellard
PC compatible keyboard and mouse.
2468 52c00a5f bellard
@end itemize
2469 52c00a5f bellard
2470 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2471 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2472 52c00a5f bellard
2473 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2474 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2475 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
2476 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2477 992e5acd blueswir1
2478 15a34c63 bellard
@c man begin OPTIONS
2479 15a34c63 bellard
2480 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2481 15a34c63 bellard
2482 15a34c63 bellard
@table @option
2483 15a34c63 bellard
2484 3b46e624 ths
@item -g WxH[xDEPTH]
2485 15a34c63 bellard
2486 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2487 15a34c63 bellard
2488 95efd11c blueswir1
@item -prom-env string
2489 95efd11c blueswir1
2490 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
2491 95efd11c blueswir1
2492 95efd11c blueswir1
@example
2493 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
2494 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
2495 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2496 95efd11c blueswir1
@end example
2497 95efd11c blueswir1
2498 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
2499 95efd11c blueswir1
2500 15a34c63 bellard
@end table
2501 15a34c63 bellard
2502 5fafdf24 ths
@c man end
2503 15a34c63 bellard
2504 15a34c63 bellard
2505 52c00a5f bellard
More information is available at
2506 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2507 52c00a5f bellard
2508 24d4de45 ths
@node Sparc32 System emulator
2509 24d4de45 ths
@section Sparc32 System emulator
2510 e80cfcfc bellard
2511 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
2512 34a3d239 blueswir1
Sun4m architecture machines:
2513 34a3d239 blueswir1
@itemize @minus
2514 34a3d239 blueswir1
@item
2515 34a3d239 blueswir1
SPARCstation 4
2516 34a3d239 blueswir1
@item
2517 34a3d239 blueswir1
SPARCstation 5
2518 34a3d239 blueswir1
@item
2519 34a3d239 blueswir1
SPARCstation 10
2520 34a3d239 blueswir1
@item
2521 34a3d239 blueswir1
SPARCstation 20
2522 34a3d239 blueswir1
@item
2523 34a3d239 blueswir1
SPARCserver 600MP
2524 34a3d239 blueswir1
@item
2525 34a3d239 blueswir1
SPARCstation LX
2526 34a3d239 blueswir1
@item
2527 34a3d239 blueswir1
SPARCstation Voyager
2528 34a3d239 blueswir1
@item
2529 34a3d239 blueswir1
SPARCclassic
2530 34a3d239 blueswir1
@item
2531 34a3d239 blueswir1
SPARCbook
2532 34a3d239 blueswir1
@end itemize
2533 34a3d239 blueswir1
2534 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2535 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
2536 e80cfcfc bellard
2537 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2538 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2539 34a3d239 blueswir1
emulators are not usable yet.
2540 34a3d239 blueswir1
2541 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2542 e80cfcfc bellard
2543 e80cfcfc bellard
@itemize @minus
2544 3475187d bellard
@item
2545 7d85892b blueswir1
IOMMU or IO-UNITs
2546 e80cfcfc bellard
@item
2547 e80cfcfc bellard
TCX Frame buffer
2548 5fafdf24 ths
@item
2549 e80cfcfc bellard
Lance (Am7990) Ethernet
2550 e80cfcfc bellard
@item
2551 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
2552 e80cfcfc bellard
@item
2553 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2554 3475187d bellard
and power/reset logic
2555 3475187d bellard
@item
2556 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2557 3475187d bellard
@item
2558 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2559 a2502b58 blueswir1
@item
2560 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2561 e80cfcfc bellard
@end itemize
2562 e80cfcfc bellard
2563 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2564 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2565 7d85892b blueswir1
others 2047MB.
2566 3475187d bellard
2567 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2568 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2569 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2570 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2571 3475187d bellard
2572 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2573 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2574 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
2575 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
2576 34a3d239 blueswir1
Solaris.
2577 3475187d bellard
2578 3475187d bellard
@c man begin OPTIONS
2579 3475187d bellard
2580 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2581 3475187d bellard
2582 3475187d bellard
@table @option
2583 3475187d bellard
2584 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2585 3475187d bellard
2586 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2587 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2588 3475187d bellard
2589 66508601 blueswir1
@item -prom-env string
2590 66508601 blueswir1
2591 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2592 66508601 blueswir1
2593 66508601 blueswir1
@example
2594 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2595 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2596 66508601 blueswir1
@end example
2597 66508601 blueswir1
2598 34a3d239 blueswir1
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2599 a2502b58 blueswir1
2600 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2601 a2502b58 blueswir1
2602 3475187d bellard
@end table
2603 3475187d bellard
2604 5fafdf24 ths
@c man end
2605 3475187d bellard
2606 24d4de45 ths
@node Sparc64 System emulator
2607 24d4de45 ths
@section Sparc64 System emulator
2608 e80cfcfc bellard
2609 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2610 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2611 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
2612 34a3d239 blueswir1
it can launch some kernels.
2613 b756921a bellard
2614 c7ba218d blueswir1
QEMU emulates the following peripherals:
2615 83469015 bellard
2616 83469015 bellard
@itemize @minus
2617 83469015 bellard
@item
2618 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2619 83469015 bellard
@item
2620 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2621 83469015 bellard
@item
2622 34a3d239 blueswir1
PS/2 mouse and keyboard
2623 34a3d239 blueswir1
@item
2624 83469015 bellard
Non Volatile RAM M48T59
2625 83469015 bellard
@item
2626 83469015 bellard
PC-compatible serial ports
2627 c7ba218d blueswir1
@item
2628 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
2629 34a3d239 blueswir1
@item
2630 34a3d239 blueswir1
Floppy disk
2631 83469015 bellard
@end itemize
2632 83469015 bellard
2633 c7ba218d blueswir1
@c man begin OPTIONS
2634 c7ba218d blueswir1
2635 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
2636 c7ba218d blueswir1
2637 c7ba218d blueswir1
@table @option
2638 c7ba218d blueswir1
2639 34a3d239 blueswir1
@item -prom-env string
2640 34a3d239 blueswir1
2641 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2642 34a3d239 blueswir1
2643 34a3d239 blueswir1
@example
2644 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2645 34a3d239 blueswir1
@end example
2646 34a3d239 blueswir1
2647 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
2648 c7ba218d blueswir1
2649 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
2650 c7ba218d blueswir1
2651 c7ba218d blueswir1
@end table
2652 c7ba218d blueswir1
2653 c7ba218d blueswir1
@c man end
2654 c7ba218d blueswir1
2655 24d4de45 ths
@node MIPS System emulator
2656 24d4de45 ths
@section MIPS System emulator
2657 9d0a8e6f bellard
2658 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2659 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2660 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2661 88cb0a02 aurel32
Five different machine types are emulated:
2662 24d4de45 ths
2663 24d4de45 ths
@itemize @minus
2664 24d4de45 ths
@item
2665 24d4de45 ths
A generic ISA PC-like machine "mips"
2666 24d4de45 ths
@item
2667 24d4de45 ths
The MIPS Malta prototype board "malta"
2668 24d4de45 ths
@item
2669 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2670 6bf5b4e8 ths
@item
2671 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2672 88cb0a02 aurel32
@item
2673 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2674 24d4de45 ths
@end itemize
2675 24d4de45 ths
2676 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2677 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2678 24d4de45 ths
emulated:
2679 3f9f3aa1 bellard
2680 3f9f3aa1 bellard
@itemize @minus
2681 5fafdf24 ths
@item
2682 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2683 3f9f3aa1 bellard
@item
2684 3f9f3aa1 bellard
PC style serial port
2685 3f9f3aa1 bellard
@item
2686 24d4de45 ths
PC style IDE disk
2687 24d4de45 ths
@item
2688 3f9f3aa1 bellard
NE2000 network card
2689 3f9f3aa1 bellard
@end itemize
2690 3f9f3aa1 bellard
2691 24d4de45 ths
The Malta emulation supports the following devices:
2692 24d4de45 ths
2693 24d4de45 ths
@itemize @minus
2694 24d4de45 ths
@item
2695 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2696 24d4de45 ths
@item
2697 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2698 24d4de45 ths
@item
2699 24d4de45 ths
The Multi-I/O chip's serial device
2700 24d4de45 ths
@item
2701 24d4de45 ths
PCnet32 PCI network card
2702 24d4de45 ths
@item
2703 24d4de45 ths
Malta FPGA serial device
2704 24d4de45 ths
@item
2705 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
2706 24d4de45 ths
@end itemize
2707 24d4de45 ths
2708 24d4de45 ths
The ACER Pica emulation supports:
2709 24d4de45 ths
2710 24d4de45 ths
@itemize @minus
2711 24d4de45 ths
@item
2712 24d4de45 ths
MIPS R4000 CPU
2713 24d4de45 ths
@item
2714 24d4de45 ths
PC-style IRQ and DMA controllers
2715 24d4de45 ths
@item
2716 24d4de45 ths
PC Keyboard
2717 24d4de45 ths
@item
2718 24d4de45 ths
IDE controller
2719 24d4de45 ths
@end itemize
2720 3f9f3aa1 bellard
2721 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2722 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2723 f0fc6f8f ths
It supports:
2724 6bf5b4e8 ths
2725 6bf5b4e8 ths
@itemize @minus
2726 6bf5b4e8 ths
@item
2727 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2728 6bf5b4e8 ths
@item
2729 6bf5b4e8 ths
PC style serial port
2730 6bf5b4e8 ths
@item
2731 6bf5b4e8 ths
MIPSnet network emulation
2732 6bf5b4e8 ths
@end itemize
2733 6bf5b4e8 ths
2734 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
2735 88cb0a02 aurel32
2736 88cb0a02 aurel32
@itemize @minus
2737 88cb0a02 aurel32
@item
2738 88cb0a02 aurel32
MIPS R4000 CPU
2739 88cb0a02 aurel32
@item
2740 88cb0a02 aurel32
PC-style IRQ controller
2741 88cb0a02 aurel32
@item
2742 88cb0a02 aurel32
PC Keyboard
2743 88cb0a02 aurel32
@item
2744 88cb0a02 aurel32
SCSI controller
2745 88cb0a02 aurel32
@item
2746 88cb0a02 aurel32
G364 framebuffer
2747 88cb0a02 aurel32
@end itemize
2748 88cb0a02 aurel32
2749 88cb0a02 aurel32
2750 24d4de45 ths
@node ARM System emulator
2751 24d4de45 ths
@section ARM System emulator
2752 3f9f3aa1 bellard
2753 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2754 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2755 3f9f3aa1 bellard
devices:
2756 3f9f3aa1 bellard
2757 3f9f3aa1 bellard
@itemize @minus
2758 3f9f3aa1 bellard
@item
2759 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2760 3f9f3aa1 bellard
@item
2761 3f9f3aa1 bellard
Two PL011 UARTs
2762 5fafdf24 ths
@item
2763 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2764 00a9bf19 pbrook
@item
2765 00a9bf19 pbrook
PL110 LCD controller
2766 00a9bf19 pbrook
@item
2767 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2768 a1bb27b1 pbrook
@item
2769 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2770 00a9bf19 pbrook
@end itemize
2771 00a9bf19 pbrook
2772 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2773 00a9bf19 pbrook
2774 00a9bf19 pbrook
@itemize @minus
2775 00a9bf19 pbrook
@item
2776 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2777 00a9bf19 pbrook
@item
2778 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2779 00a9bf19 pbrook
@item
2780 00a9bf19 pbrook
Four PL011 UARTs
2781 5fafdf24 ths
@item
2782 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2783 00a9bf19 pbrook
@item
2784 00a9bf19 pbrook
PL110 LCD controller
2785 00a9bf19 pbrook
@item
2786 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2787 00a9bf19 pbrook
@item
2788 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2789 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2790 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2791 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2792 00a9bf19 pbrook
mapped control registers.
2793 e6de1bad pbrook
@item
2794 e6de1bad pbrook
PCI OHCI USB controller.
2795 e6de1bad pbrook
@item
2796 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2797 a1bb27b1 pbrook
@item
2798 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2799 3f9f3aa1 bellard
@end itemize
2800 3f9f3aa1 bellard
2801 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2802 d7739d75 pbrook
2803 d7739d75 pbrook
@itemize @minus
2804 d7739d75 pbrook
@item
2805 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2806 d7739d75 pbrook
@item
2807 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2808 d7739d75 pbrook
@item
2809 d7739d75 pbrook
Four PL011 UARTs
2810 5fafdf24 ths
@item
2811 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2812 d7739d75 pbrook
@item
2813 d7739d75 pbrook
PL110 LCD controller
2814 d7739d75 pbrook
@item
2815 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2816 d7739d75 pbrook
@item
2817 d7739d75 pbrook
PCI host bridge
2818 d7739d75 pbrook
@item
2819 d7739d75 pbrook
PCI OHCI USB controller
2820 d7739d75 pbrook
@item
2821 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2822 a1bb27b1 pbrook
@item
2823 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2824 d7739d75 pbrook
@end itemize
2825 d7739d75 pbrook
2826 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2827 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2828 b00052e4 balrog
2829 b00052e4 balrog
@itemize @minus
2830 b00052e4 balrog
@item
2831 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2832 b00052e4 balrog
@item
2833 b00052e4 balrog
NAND Flash memory
2834 b00052e4 balrog
@item
2835 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2836 b00052e4 balrog
@item
2837 b00052e4 balrog
On-chip OHCI USB controller
2838 b00052e4 balrog
@item
2839 b00052e4 balrog
On-chip LCD controller
2840 b00052e4 balrog
@item
2841 b00052e4 balrog
On-chip Real Time Clock
2842 b00052e4 balrog
@item
2843 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2844 b00052e4 balrog
@item
2845 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2846 b00052e4 balrog
@item
2847 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2848 b00052e4 balrog
@item
2849 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2850 b00052e4 balrog
@item
2851 b00052e4 balrog
Three on-chip UARTs
2852 b00052e4 balrog
@item
2853 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2854 b00052e4 balrog
@end itemize
2855 b00052e4 balrog
2856 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2857 02645926 balrog
following elements:
2858 02645926 balrog
2859 02645926 balrog
@itemize @minus
2860 02645926 balrog
@item
2861 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2862 02645926 balrog
@item
2863 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2864 02645926 balrog
@item
2865 02645926 balrog
On-chip LCD controller
2866 02645926 balrog
@item
2867 02645926 balrog
On-chip Real Time Clock
2868 02645926 balrog
@item
2869 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2870 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2871 02645926 balrog
@item
2872 02645926 balrog
GPIO-connected matrix keypad
2873 02645926 balrog
@item
2874 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2875 02645926 balrog
@item
2876 02645926 balrog
Three on-chip UARTs
2877 02645926 balrog
@end itemize
2878 02645926 balrog
2879 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2880 c30bb264 balrog
emulation supports the following elements:
2881 c30bb264 balrog
2882 c30bb264 balrog
@itemize @minus
2883 c30bb264 balrog
@item
2884 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2885 c30bb264 balrog
@item
2886 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2887 c30bb264 balrog
@item
2888 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2889 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2890 c30bb264 balrog
@item
2891 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2892 c30bb264 balrog
driven through SPI bus
2893 c30bb264 balrog
@item
2894 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2895 c30bb264 balrog
through I@math{^2}C bus
2896 c30bb264 balrog
@item
2897 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2898 c30bb264 balrog
@item
2899 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2900 c30bb264 balrog
@item
2901 2d564691 balrog
A Bluetooth(R) transciever and HCI connected to an UART
2902 2d564691 balrog
@item
2903 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2904 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2905 c30bb264 balrog
@item
2906 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2907 c30bb264 balrog
@item
2908 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2909 c30bb264 balrog
@item
2910 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2911 c30bb264 balrog
through CBUS
2912 c30bb264 balrog
@end itemize
2913 c30bb264 balrog
2914 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2915 9ee6e8bb pbrook
devices:
2916 9ee6e8bb pbrook
2917 9ee6e8bb pbrook
@itemize @minus
2918 9ee6e8bb pbrook
@item
2919 9ee6e8bb pbrook
Cortex-M3 CPU core.
2920 9ee6e8bb pbrook
@item
2921 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2922 9ee6e8bb pbrook
@item
2923 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2924 9ee6e8bb pbrook
@item
2925 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2926 9ee6e8bb pbrook
@end itemize
2927 9ee6e8bb pbrook
2928 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2929 9ee6e8bb pbrook
devices:
2930 9ee6e8bb pbrook
2931 9ee6e8bb pbrook
@itemize @minus
2932 9ee6e8bb pbrook
@item
2933 9ee6e8bb pbrook
Cortex-M3 CPU core.
2934 9ee6e8bb pbrook
@item
2935 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2936 9ee6e8bb pbrook
@item
2937 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2938 9ee6e8bb pbrook
@item
2939 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2940 9ee6e8bb pbrook
@end itemize
2941 9ee6e8bb pbrook
2942 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2943 57cd6e97 balrog
elements:
2944 57cd6e97 balrog
2945 57cd6e97 balrog
@itemize @minus
2946 57cd6e97 balrog
@item
2947 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2948 57cd6e97 balrog
@item
2949 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2950 57cd6e97 balrog
@item
2951 57cd6e97 balrog
Up to 2 16550 UARTs
2952 57cd6e97 balrog
@item
2953 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2954 57cd6e97 balrog
@item
2955 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2956 57cd6e97 balrog
@item
2957 57cd6e97 balrog
128?64 display with brightness control
2958 57cd6e97 balrog
@item
2959 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2960 57cd6e97 balrog
@end itemize
2961 57cd6e97 balrog
2962 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
2963 997641a8 balrog
The emulaton includes the following elements:
2964 997641a8 balrog
2965 997641a8 balrog
@itemize @minus
2966 997641a8 balrog
@item
2967 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2968 997641a8 balrog
@item
2969 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2970 997641a8 balrog
V1
2971 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2972 997641a8 balrog
V2
2973 997641a8 balrog
1 Flash of 32MB
2974 997641a8 balrog
@item
2975 997641a8 balrog
On-chip LCD controller
2976 997641a8 balrog
@item
2977 997641a8 balrog
On-chip Real Time Clock
2978 997641a8 balrog
@item
2979 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2980 997641a8 balrog
@item
2981 997641a8 balrog
Three on-chip UARTs
2982 997641a8 balrog
@end itemize
2983 997641a8 balrog
2984 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2985 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2986 9d0a8e6f bellard
2987 d2c639d6 blueswir1
@c man begin OPTIONS
2988 d2c639d6 blueswir1
2989 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
2990 d2c639d6 blueswir1
2991 d2c639d6 blueswir1
@table @option
2992 d2c639d6 blueswir1
2993 d2c639d6 blueswir1
@item -semihosting
2994 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2995 d2c639d6 blueswir1
2996 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
2997 d2c639d6 blueswir1
2998 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2999 d2c639d6 blueswir1
so should only be used with trusted guest OS.
3000 d2c639d6 blueswir1
3001 d2c639d6 blueswir1
@end table
3002 d2c639d6 blueswir1
3003 24d4de45 ths
@node ColdFire System emulator
3004 24d4de45 ths
@section ColdFire System emulator
3005 209a4e69 pbrook
3006 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
3007 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
3008 707e011b pbrook
3009 707e011b pbrook
The M5208EVB emulation includes the following devices:
3010 707e011b pbrook
3011 707e011b pbrook
@itemize @minus
3012 5fafdf24 ths
@item
3013 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
3014 707e011b pbrook
@item
3015 707e011b pbrook
Three Two on-chip UARTs.
3016 707e011b pbrook
@item
3017 707e011b pbrook
Fast Ethernet Controller (FEC)
3018 707e011b pbrook
@end itemize
3019 707e011b pbrook
3020 707e011b pbrook
The AN5206 emulation includes the following devices:
3021 209a4e69 pbrook
3022 209a4e69 pbrook
@itemize @minus
3023 5fafdf24 ths
@item
3024 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
3025 209a4e69 pbrook
@item
3026 209a4e69 pbrook
Two on-chip UARTs.
3027 209a4e69 pbrook
@end itemize
3028 209a4e69 pbrook
3029 d2c639d6 blueswir1
@c man begin OPTIONS
3030 d2c639d6 blueswir1
3031 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
3032 d2c639d6 blueswir1
3033 d2c639d6 blueswir1
@table @option
3034 d2c639d6 blueswir1
3035 d2c639d6 blueswir1
@item -semihosting
3036 d2c639d6 blueswir1
Enable semihosting syscall emulation.
3037 d2c639d6 blueswir1
3038 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
3039 d2c639d6 blueswir1
3040 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
3041 d2c639d6 blueswir1
so should only be used with trusted guest OS.
3042 d2c639d6 blueswir1
3043 d2c639d6 blueswir1
@end table
3044 d2c639d6 blueswir1
3045 5fafdf24 ths
@node QEMU User space emulator
3046 5fafdf24 ths
@chapter QEMU User space emulator
3047 83195237 bellard
3048 83195237 bellard
@menu
3049 83195237 bellard
* Supported Operating Systems ::
3050 83195237 bellard
* Linux User space emulator::
3051 83195237 bellard
* Mac OS X/Darwin User space emulator ::
3052 84778508 blueswir1
* BSD User space emulator ::
3053 83195237 bellard
@end menu
3054 83195237 bellard
3055 83195237 bellard
@node Supported Operating Systems
3056 83195237 bellard
@section Supported Operating Systems
3057 83195237 bellard
3058 83195237 bellard
The following OS are supported in user space emulation:
3059 83195237 bellard
3060 83195237 bellard
@itemize @minus
3061 83195237 bellard
@item
3062 4be456f1 ths
Linux (referred as qemu-linux-user)
3063 83195237 bellard
@item
3064 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
3065 84778508 blueswir1
@item
3066 84778508 blueswir1
BSD (referred as qemu-bsd-user)
3067 83195237 bellard
@end itemize
3068 83195237 bellard
3069 83195237 bellard
@node Linux User space emulator
3070 83195237 bellard
@section Linux User space emulator
3071 386405f7 bellard
3072 debc7065 bellard
@menu
3073 debc7065 bellard
* Quick Start::
3074 debc7065 bellard
* Wine launch::
3075 debc7065 bellard
* Command line options::
3076 79737e4a pbrook
* Other binaries::
3077 debc7065 bellard
@end menu
3078 debc7065 bellard
3079 debc7065 bellard
@node Quick Start
3080 83195237 bellard
@subsection Quick Start
3081 df0f11a0 bellard
3082 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
3083 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
3084 386405f7 bellard
3085 1f673135 bellard
@itemize
3086 386405f7 bellard
3087 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
3088 1f673135 bellard
libraries:
3089 386405f7 bellard
3090 5fafdf24 ths
@example
3091 1f673135 bellard
qemu-i386 -L / /bin/ls
3092 1f673135 bellard
@end example
3093 386405f7 bellard
3094 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
3095 1f673135 bellard
@file{/} prefix.
3096 386405f7 bellard
3097 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
3098 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
3099 386405f7 bellard
3100 5fafdf24 ths
@example
3101 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
3102 1f673135 bellard
@end example
3103 386405f7 bellard
3104 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
3105 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
3106 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
3107 df0f11a0 bellard
3108 1f673135 bellard
@example
3109 5fafdf24 ths
unset LD_LIBRARY_PATH
3110 1f673135 bellard
@end example
3111 1eb87257 bellard
3112 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
3113 1eb87257 bellard
3114 1f673135 bellard
@example
3115 1f673135 bellard
qemu-i386 tests/i386/ls
3116 1f673135 bellard
@end example
3117 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
3118 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
3119 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
3120 1f673135 bellard
Linux kernel.
3121 1eb87257 bellard
3122 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
3123 1f673135 bellard
@example
3124 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
3125 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
3126 1f673135 bellard
@end example
3127 1eb20527 bellard
3128 1f673135 bellard
@end itemize
3129 1eb20527 bellard
3130 debc7065 bellard
@node Wine launch
3131 83195237 bellard
@subsection Wine launch
3132 1eb20527 bellard
3133 1f673135 bellard
@itemize
3134 386405f7 bellard
3135 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
3136 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
3137 1f673135 bellard
able to do:
3138 386405f7 bellard
3139 1f673135 bellard
@example
3140 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
3141 1f673135 bellard
@end example
3142 386405f7 bellard
3143 1f673135 bellard
@item Download the binary x86 Wine install
3144 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
3145 386405f7 bellard
3146 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
3147 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
3148 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
3149 386405f7 bellard
3150 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
3151 386405f7 bellard
3152 1f673135 bellard
@example
3153 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
3154 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
3155 1f673135 bellard
@end example
3156 386405f7 bellard
3157 1f673135 bellard
@end itemize
3158 fd429f2f bellard
3159 debc7065 bellard
@node Command line options
3160 83195237 bellard
@subsection Command line options
3161 1eb20527 bellard
3162 1f673135 bellard
@example
3163 34a3d239 blueswir1
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
3164 1f673135 bellard
@end example
3165 1eb20527 bellard
3166 1f673135 bellard
@table @option
3167 1f673135 bellard
@item -h
3168 1f673135 bellard
Print the help
3169 3b46e624 ths
@item -L path
3170 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
3171 1f673135 bellard
@item -s size
3172 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
3173 34a3d239 blueswir1
@item -cpu model
3174 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
3175 386405f7 bellard
@end table
3176 386405f7 bellard
3177 1f673135 bellard
Debug options:
3178 386405f7 bellard
3179 1f673135 bellard
@table @option
3180 1f673135 bellard
@item -d
3181 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
3182 1f673135 bellard
@item -p pagesize
3183 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
3184 34a3d239 blueswir1
@item -g port
3185 34a3d239 blueswir1
Wait gdb connection to port
3186 1f673135 bellard
@end table
3187 386405f7 bellard
3188 b01bcae6 balrog
Environment variables:
3189 b01bcae6 balrog
3190 b01bcae6 balrog
@table @env
3191 b01bcae6 balrog
@item QEMU_STRACE
3192 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
3193 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
3194 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
3195 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
3196 b01bcae6 balrog
format are printed with information for six arguments.  Many
3197 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
3198 5cfdf930 ths
@end table
3199 b01bcae6 balrog
3200 79737e4a pbrook
@node Other binaries
3201 83195237 bellard
@subsection Other binaries
3202 79737e4a pbrook
3203 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3204 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3205 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
3206 79737e4a pbrook
3207 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3208 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3209 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
3210 e6e5906b pbrook
3211 79737e4a pbrook
The binary format is detected automatically.
3212 79737e4a pbrook
3213 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3214 34a3d239 blueswir1
3215 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3216 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
3217 a785e42e blueswir1
3218 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3219 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3220 a785e42e blueswir1
3221 83195237 bellard
@node Mac OS X/Darwin User space emulator
3222 83195237 bellard
@section Mac OS X/Darwin User space emulator
3223 83195237 bellard
3224 83195237 bellard
@menu
3225 83195237 bellard
* Mac OS X/Darwin Status::
3226 83195237 bellard
* Mac OS X/Darwin Quick Start::
3227 83195237 bellard
* Mac OS X/Darwin Command line options::
3228 83195237 bellard
@end menu
3229 83195237 bellard
3230 83195237 bellard
@node Mac OS X/Darwin Status
3231 83195237 bellard
@subsection Mac OS X/Darwin Status
3232 83195237 bellard
3233 83195237 bellard
@itemize @minus
3234 83195237 bellard
@item
3235 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3236 83195237 bellard
@item
3237 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3238 83195237 bellard
@item
3239 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3240 83195237 bellard
@item
3241 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3242 83195237 bellard
@end itemize
3243 83195237 bellard
3244 83195237 bellard
[1] If you're host commpage can be executed by qemu.
3245 83195237 bellard
3246 83195237 bellard
@node Mac OS X/Darwin Quick Start
3247 83195237 bellard
@subsection Quick Start
3248 83195237 bellard
3249 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3250 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
3251 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3252 83195237 bellard
CD or compile them by hand.
3253 83195237 bellard
3254 83195237 bellard
@itemize
3255 83195237 bellard
3256 83195237 bellard
@item On x86, you can just try to launch any process by using the native
3257 83195237 bellard
libraries:
3258 83195237 bellard
3259 5fafdf24 ths
@example
3260 dbcf5e82 ths
qemu-i386 /bin/ls
3261 83195237 bellard
@end example
3262 83195237 bellard
3263 83195237 bellard
or to run the ppc version of the executable:
3264 83195237 bellard
3265 5fafdf24 ths
@example
3266 dbcf5e82 ths
qemu-ppc /bin/ls
3267 83195237 bellard
@end example
3268 83195237 bellard
3269 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3270 83195237 bellard
are installed:
3271 83195237 bellard
3272 5fafdf24 ths
@example
3273 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
3274 83195237 bellard
@end example
3275 83195237 bellard
3276 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3277 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
3278 83195237 bellard
3279 83195237 bellard
@end itemize
3280 83195237 bellard
3281 83195237 bellard
@node Mac OS X/Darwin Command line options
3282 83195237 bellard
@subsection Command line options
3283 83195237 bellard
3284 83195237 bellard
@example
3285 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3286 83195237 bellard
@end example
3287 83195237 bellard
3288 83195237 bellard
@table @option
3289 83195237 bellard
@item -h
3290 83195237 bellard
Print the help
3291 3b46e624 ths
@item -L path
3292 83195237 bellard
Set the library root path (default=/)
3293 83195237 bellard
@item -s size
3294 83195237 bellard
Set the stack size in bytes (default=524288)
3295 83195237 bellard
@end table
3296 83195237 bellard
3297 83195237 bellard
Debug options:
3298 83195237 bellard
3299 83195237 bellard
@table @option
3300 83195237 bellard
@item -d
3301 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
3302 83195237 bellard
@item -p pagesize
3303 83195237 bellard
Act as if the host page size was 'pagesize' bytes
3304 83195237 bellard
@end table
3305 83195237 bellard
3306 84778508 blueswir1
@node BSD User space emulator
3307 84778508 blueswir1
@section BSD User space emulator
3308 84778508 blueswir1
3309 84778508 blueswir1
@menu
3310 84778508 blueswir1
* BSD Status::
3311 84778508 blueswir1
* BSD Quick Start::
3312 84778508 blueswir1
* BSD Command line options::
3313 84778508 blueswir1
@end menu
3314 84778508 blueswir1
3315 84778508 blueswir1
@node BSD Status
3316 84778508 blueswir1
@subsection BSD Status
3317 84778508 blueswir1
3318 84778508 blueswir1
@itemize @minus
3319 84778508 blueswir1
@item
3320 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
3321 84778508 blueswir1
@end itemize
3322 84778508 blueswir1
3323 84778508 blueswir1
@node BSD Quick Start
3324 84778508 blueswir1
@subsection Quick Start
3325 84778508 blueswir1
3326 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
3327 84778508 blueswir1
itself and all the target dynamic libraries used by it.
3328 84778508 blueswir1
3329 84778508 blueswir1
@itemize
3330 84778508 blueswir1
3331 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
3332 84778508 blueswir1
libraries:
3333 84778508 blueswir1
3334 84778508 blueswir1
@example
3335 84778508 blueswir1
qemu-sparc64 /bin/ls
3336 84778508 blueswir1
@end example
3337 84778508 blueswir1
3338 84778508 blueswir1
@end itemize
3339 84778508 blueswir1
3340 84778508 blueswir1
@node BSD Command line options
3341 84778508 blueswir1
@subsection Command line options
3342 84778508 blueswir1
3343 84778508 blueswir1
@example
3344 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3345 84778508 blueswir1
@end example
3346 84778508 blueswir1
3347 84778508 blueswir1
@table @option
3348 84778508 blueswir1
@item -h
3349 84778508 blueswir1
Print the help
3350 84778508 blueswir1
@item -L path
3351 84778508 blueswir1
Set the library root path (default=/)
3352 84778508 blueswir1
@item -s size
3353 84778508 blueswir1
Set the stack size in bytes (default=524288)
3354 84778508 blueswir1
@item -bsd type
3355 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
3356 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
3357 84778508 blueswir1
@end table
3358 84778508 blueswir1
3359 84778508 blueswir1
Debug options:
3360 84778508 blueswir1
3361 84778508 blueswir1
@table @option
3362 84778508 blueswir1
@item -d
3363 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
3364 84778508 blueswir1
@item -p pagesize
3365 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
3366 84778508 blueswir1
@end table
3367 84778508 blueswir1
3368 15a34c63 bellard
@node compilation
3369 15a34c63 bellard
@chapter Compilation from the sources
3370 15a34c63 bellard
3371 debc7065 bellard
@menu
3372 debc7065 bellard
* Linux/Unix::
3373 debc7065 bellard
* Windows::
3374 debc7065 bellard
* Cross compilation for Windows with Linux::
3375 debc7065 bellard
* Mac OS X::
3376 debc7065 bellard
@end menu
3377 debc7065 bellard
3378 debc7065 bellard
@node Linux/Unix
3379 7c3fc84d bellard
@section Linux/Unix
3380 7c3fc84d bellard
3381 7c3fc84d bellard
@subsection Compilation
3382 7c3fc84d bellard
3383 7c3fc84d bellard
First you must decompress the sources:
3384 7c3fc84d bellard
@example
3385 7c3fc84d bellard
cd /tmp
3386 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
3387 7c3fc84d bellard
cd qemu-x.y.z
3388 7c3fc84d bellard
@end example
3389 7c3fc84d bellard
3390 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
3391 7c3fc84d bellard
@example
3392 7c3fc84d bellard
./configure
3393 7c3fc84d bellard
make
3394 7c3fc84d bellard
@end example
3395 7c3fc84d bellard
3396 7c3fc84d bellard
Then type as root user:
3397 7c3fc84d bellard
@example
3398 7c3fc84d bellard
make install
3399 7c3fc84d bellard
@end example
3400 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
3401 7c3fc84d bellard
3402 4fe8b87a bellard
@subsection GCC version
3403 7c3fc84d bellard
3404 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
3405 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
3406 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3407 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
3408 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
3409 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
3410 4be456f1 ths
these older versions so that usually you don't have to do anything.
3411 15a34c63 bellard
3412 debc7065 bellard
@node Windows
3413 15a34c63 bellard
@section Windows
3414 15a34c63 bellard
3415 15a34c63 bellard
@itemize
3416 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
3417 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
3418 15a34c63 bellard
instructions in the download section and the FAQ.
3419 15a34c63 bellard
3420 5fafdf24 ths
@item Download
3421 15a34c63 bellard
the MinGW development library of SDL 1.2.x
3422 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3423 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3424 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3425 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
3426 15a34c63 bellard
correct SDL directory when invoked.
3427 15a34c63 bellard
3428 15a34c63 bellard
@item Extract the current version of QEMU.
3429 5fafdf24 ths
3430 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
3431 15a34c63 bellard
3432 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
3433 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
3434 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
3435 15a34c63 bellard
3436 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
3437 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
3438 15a34c63 bellard
@file{Program Files/Qemu}.
3439 15a34c63 bellard
3440 15a34c63 bellard
@end itemize
3441 15a34c63 bellard
3442 debc7065 bellard
@node Cross compilation for Windows with Linux
3443 15a34c63 bellard
@section Cross compilation for Windows with Linux
3444 15a34c63 bellard
3445 15a34c63 bellard
@itemize
3446 15a34c63 bellard
@item
3447 15a34c63 bellard
Install the MinGW cross compilation tools available at
3448 15a34c63 bellard
@url{http://www.mingw.org/}.
3449 15a34c63 bellard
3450 5fafdf24 ths
@item
3451 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3452 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3453 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3454 15a34c63 bellard
the QEMU configuration script.
3455 15a34c63 bellard
3456 5fafdf24 ths
@item
3457 15a34c63 bellard
Configure QEMU for Windows cross compilation:
3458 15a34c63 bellard
@example
3459 15a34c63 bellard
./configure --enable-mingw32
3460 15a34c63 bellard
@end example
3461 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
3462 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
3463 15a34c63 bellard
--prefix to set the Win32 install path.
3464 15a34c63 bellard
3465 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
3466 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3467 5fafdf24 ths
installation directory.
3468 15a34c63 bellard
3469 15a34c63 bellard
@end itemize
3470 15a34c63 bellard
3471 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
3472 15a34c63 bellard
QEMU for Win32.
3473 15a34c63 bellard
3474 debc7065 bellard
@node Mac OS X
3475 15a34c63 bellard
@section Mac OS X
3476 15a34c63 bellard
3477 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
3478 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
3479 15a34c63 bellard
information.
3480 15a34c63 bellard
3481 debc7065 bellard
@node Index
3482 debc7065 bellard
@chapter Index
3483 debc7065 bellard
@printindex cp
3484 debc7065 bellard
3485 debc7065 bellard
@bye