Statistics
| Branch: | Revision:

root / vl.c @ 4870852c

History | View | Annotate | Download (145 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <unistd.h>
25
#include <fcntl.h>
26
#include <signal.h>
27
#include <time.h>
28
#include <errno.h>
29
#include <sys/time.h>
30
#include <zlib.h>
31

    
32
/* Needed early for HOST_BSD etc. */
33
#include "config-host.h"
34

    
35
#ifndef _WIN32
36
#include <pwd.h>
37
#include <sys/times.h>
38
#include <sys/wait.h>
39
#include <termios.h>
40
#include <sys/mman.h>
41
#include <sys/ioctl.h>
42
#include <sys/resource.h>
43
#include <sys/socket.h>
44
#include <netinet/in.h>
45
#include <net/if.h>
46
#if defined(__NetBSD__)
47
#include <net/if_tap.h>
48
#endif
49
#ifdef __linux__
50
#include <linux/if_tun.h>
51
#endif
52
#include <arpa/inet.h>
53
#include <dirent.h>
54
#include <netdb.h>
55
#include <sys/select.h>
56
#ifdef HOST_BSD
57
#include <sys/stat.h>
58
#if defined(__FreeBSD__) || defined(__DragonFly__)
59
#include <libutil.h>
60
#else
61
#include <util.h>
62
#endif
63
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64
#include <freebsd/stdlib.h>
65
#else
66
#ifdef __linux__
67
#include <pty.h>
68
#include <malloc.h>
69
#include <linux/rtc.h>
70

    
71
/* For the benefit of older linux systems which don't supply it,
72
   we use a local copy of hpet.h. */
73
/* #include <linux/hpet.h> */
74
#include "hpet.h"
75

    
76
#include <linux/ppdev.h>
77
#include <linux/parport.h>
78
#endif
79
#ifdef __sun__
80
#include <sys/stat.h>
81
#include <sys/ethernet.h>
82
#include <sys/sockio.h>
83
#include <netinet/arp.h>
84
#include <netinet/in.h>
85
#include <netinet/in_systm.h>
86
#include <netinet/ip.h>
87
#include <netinet/ip_icmp.h> // must come after ip.h
88
#include <netinet/udp.h>
89
#include <netinet/tcp.h>
90
#include <net/if.h>
91
#include <syslog.h>
92
#include <stropts.h>
93
#endif
94
#endif
95
#endif
96

    
97
#if defined(__OpenBSD__)
98
#include <util.h>
99
#endif
100

    
101
#if defined(CONFIG_VDE)
102
#include <libvdeplug.h>
103
#endif
104

    
105
#ifdef _WIN32
106
#include <windows.h>
107
#include <malloc.h>
108
#include <sys/timeb.h>
109
#include <mmsystem.h>
110
#define getopt_long_only getopt_long
111
#define memalign(align, size) malloc(size)
112
#endif
113

    
114
#ifdef CONFIG_SDL
115
#ifdef __APPLE__
116
#include <SDL/SDL.h>
117
int qemu_main(int argc, char **argv, char **envp);
118
int main(int argc, char **argv)
119
{
120
    qemu_main(argc, argv, NULL);
121
}
122
#undef main
123
#define main qemu_main
124
#endif
125
#endif /* CONFIG_SDL */
126

    
127
#ifdef CONFIG_COCOA
128
#undef main
129
#define main qemu_main
130
#endif /* CONFIG_COCOA */
131

    
132
#include "hw/hw.h"
133
#include "hw/boards.h"
134
#include "hw/usb.h"
135
#include "hw/pcmcia.h"
136
#include "hw/pc.h"
137
#include "hw/audiodev.h"
138
#include "hw/isa.h"
139
#include "hw/baum.h"
140
#include "hw/bt.h"
141
#include "hw/smbios.h"
142
#include "hw/xen.h"
143
#include "bt-host.h"
144
#include "net.h"
145
#include "monitor.h"
146
#include "console.h"
147
#include "sysemu.h"
148
#include "gdbstub.h"
149
#include "qemu-timer.h"
150
#include "qemu-char.h"
151
#include "cache-utils.h"
152
#include "block.h"
153
#include "dma.h"
154
#include "audio/audio.h"
155
#include "migration.h"
156
#include "kvm.h"
157
#include "balloon.h"
158

    
159
#include "disas.h"
160

    
161
#include "exec-all.h"
162

    
163
#include "qemu_socket.h"
164

    
165
#if defined(CONFIG_SLIRP)
166
#include "libslirp.h"
167
#endif
168

    
169
//#define DEBUG_UNUSED_IOPORT
170
//#define DEBUG_IOPORT
171
//#define DEBUG_NET
172
//#define DEBUG_SLIRP
173

    
174

    
175
#ifdef DEBUG_IOPORT
176
#  define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177
#else
178
#  define LOG_IOPORT(...) do { } while (0)
179
#endif
180

    
181
#define DEFAULT_RAM_SIZE 128
182

    
183
/* Max number of USB devices that can be specified on the commandline.  */
184
#define MAX_USB_CMDLINE 8
185

    
186
/* Max number of bluetooth switches on the commandline.  */
187
#define MAX_BT_CMDLINE 10
188

    
189
/* XXX: use a two level table to limit memory usage */
190
#define MAX_IOPORTS 65536
191

    
192
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193
const char *bios_name = NULL;
194
static void *ioport_opaque[MAX_IOPORTS];
195
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
196
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
198
   to store the VM snapshots */
199
DriveInfo drives_table[MAX_DRIVES+1];
200
int nb_drives;
201
static int vga_ram_size;
202
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203
static DisplayState *display_state;
204
int nographic;
205
static int curses;
206
static int sdl;
207
const char* keyboard_layout = NULL;
208
int64_t ticks_per_sec;
209
ram_addr_t ram_size;
210
int nb_nics;
211
NICInfo nd_table[MAX_NICS];
212
int vm_running;
213
static int autostart;
214
static int rtc_utc = 1;
215
static int rtc_date_offset = -1; /* -1 means no change */
216
int cirrus_vga_enabled = 1;
217
int std_vga_enabled = 0;
218
int vmsvga_enabled = 0;
219
int xenfb_enabled = 0;
220
#ifdef TARGET_SPARC
221
int graphic_width = 1024;
222
int graphic_height = 768;
223
int graphic_depth = 8;
224
#else
225
int graphic_width = 800;
226
int graphic_height = 600;
227
int graphic_depth = 15;
228
#endif
229
static int full_screen = 0;
230
#ifdef CONFIG_SDL
231
static int no_frame = 0;
232
#endif
233
int no_quit = 0;
234
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237
#ifdef TARGET_I386
238
int win2k_install_hack = 0;
239
int rtc_td_hack = 0;
240
#endif
241
int usb_enabled = 0;
242
int singlestep = 0;
243
int smp_cpus = 1;
244
const char *vnc_display;
245
int acpi_enabled = 1;
246
int no_hpet = 0;
247
int fd_bootchk = 1;
248
int no_reboot = 0;
249
int no_shutdown = 0;
250
int cursor_hide = 1;
251
int graphic_rotate = 0;
252
#ifndef _WIN32
253
int daemonize = 0;
254
#endif
255
const char *option_rom[MAX_OPTION_ROMS];
256
int nb_option_roms;
257
int semihosting_enabled = 0;
258
#ifdef TARGET_ARM
259
int old_param = 0;
260
#endif
261
const char *qemu_name;
262
int alt_grab = 0;
263
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
264
unsigned int nb_prom_envs = 0;
265
const char *prom_envs[MAX_PROM_ENVS];
266
#endif
267
int nb_drives_opt;
268
struct drive_opt drives_opt[MAX_DRIVES];
269

    
270
int nb_numa_nodes;
271
uint64_t node_mem[MAX_NODES];
272
uint64_t node_cpumask[MAX_NODES];
273

    
274
static CPUState *cur_cpu;
275
static CPUState *next_cpu;
276
static int timer_alarm_pending = 1;
277
/* Conversion factor from emulated instructions to virtual clock ticks.  */
278
static int icount_time_shift;
279
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
280
#define MAX_ICOUNT_SHIFT 10
281
/* Compensate for varying guest execution speed.  */
282
static int64_t qemu_icount_bias;
283
static QEMUTimer *icount_rt_timer;
284
static QEMUTimer *icount_vm_timer;
285
static QEMUTimer *nographic_timer;
286

    
287
uint8_t qemu_uuid[16];
288

    
289
/***********************************************************/
290
/* x86 ISA bus support */
291

    
292
target_phys_addr_t isa_mem_base = 0;
293
PicState2 *isa_pic;
294

    
295
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
297

    
298
static uint32_t ioport_read(int index, uint32_t address)
299
{
300
    static IOPortReadFunc *default_func[3] = {
301
        default_ioport_readb,
302
        default_ioport_readw,
303
        default_ioport_readl
304
    };
305
    IOPortReadFunc *func = ioport_read_table[index][address];
306
    if (!func)
307
        func = default_func[index];
308
    return func(ioport_opaque[address], address);
309
}
310

    
311
static void ioport_write(int index, uint32_t address, uint32_t data)
312
{
313
    static IOPortWriteFunc *default_func[3] = {
314
        default_ioport_writeb,
315
        default_ioport_writew,
316
        default_ioport_writel
317
    };
318
    IOPortWriteFunc *func = ioport_write_table[index][address];
319
    if (!func)
320
        func = default_func[index];
321
    func(ioport_opaque[address], address, data);
322
}
323

    
324
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
325
{
326
#ifdef DEBUG_UNUSED_IOPORT
327
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
328
#endif
329
    return 0xff;
330
}
331

    
332
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
333
{
334
#ifdef DEBUG_UNUSED_IOPORT
335
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336
#endif
337
}
338

    
339
/* default is to make two byte accesses */
340
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
341
{
342
    uint32_t data;
343
    data = ioport_read(0, address);
344
    address = (address + 1) & (MAX_IOPORTS - 1);
345
    data |= ioport_read(0, address) << 8;
346
    return data;
347
}
348

    
349
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
350
{
351
    ioport_write(0, address, data & 0xff);
352
    address = (address + 1) & (MAX_IOPORTS - 1);
353
    ioport_write(0, address, (data >> 8) & 0xff);
354
}
355

    
356
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
357
{
358
#ifdef DEBUG_UNUSED_IOPORT
359
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
360
#endif
361
    return 0xffffffff;
362
}
363

    
364
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
365
{
366
#ifdef DEBUG_UNUSED_IOPORT
367
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368
#endif
369
}
370

    
371
/* size is the word size in byte */
372
int register_ioport_read(int start, int length, int size,
373
                         IOPortReadFunc *func, void *opaque)
374
{
375
    int i, bsize;
376

    
377
    if (size == 1) {
378
        bsize = 0;
379
    } else if (size == 2) {
380
        bsize = 1;
381
    } else if (size == 4) {
382
        bsize = 2;
383
    } else {
384
        hw_error("register_ioport_read: invalid size");
385
        return -1;
386
    }
387
    for(i = start; i < start + length; i += size) {
388
        ioport_read_table[bsize][i] = func;
389
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390
            hw_error("register_ioport_read: invalid opaque");
391
        ioport_opaque[i] = opaque;
392
    }
393
    return 0;
394
}
395

    
396
/* size is the word size in byte */
397
int register_ioport_write(int start, int length, int size,
398
                          IOPortWriteFunc *func, void *opaque)
399
{
400
    int i, bsize;
401

    
402
    if (size == 1) {
403
        bsize = 0;
404
    } else if (size == 2) {
405
        bsize = 1;
406
    } else if (size == 4) {
407
        bsize = 2;
408
    } else {
409
        hw_error("register_ioport_write: invalid size");
410
        return -1;
411
    }
412
    for(i = start; i < start + length; i += size) {
413
        ioport_write_table[bsize][i] = func;
414
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415
            hw_error("register_ioport_write: invalid opaque");
416
        ioport_opaque[i] = opaque;
417
    }
418
    return 0;
419
}
420

    
421
void isa_unassign_ioport(int start, int length)
422
{
423
    int i;
424

    
425
    for(i = start; i < start + length; i++) {
426
        ioport_read_table[0][i] = default_ioport_readb;
427
        ioport_read_table[1][i] = default_ioport_readw;
428
        ioport_read_table[2][i] = default_ioport_readl;
429

    
430
        ioport_write_table[0][i] = default_ioport_writeb;
431
        ioport_write_table[1][i] = default_ioport_writew;
432
        ioport_write_table[2][i] = default_ioport_writel;
433

    
434
        ioport_opaque[i] = NULL;
435
    }
436
}
437

    
438
/***********************************************************/
439

    
440
void cpu_outb(CPUState *env, int addr, int val)
441
{
442
    LOG_IOPORT("outb: %04x %02x\n", addr, val);
443
    ioport_write(0, addr, val);
444
#ifdef CONFIG_KQEMU
445
    if (env)
446
        env->last_io_time = cpu_get_time_fast();
447
#endif
448
}
449

    
450
void cpu_outw(CPUState *env, int addr, int val)
451
{
452
    LOG_IOPORT("outw: %04x %04x\n", addr, val);
453
    ioport_write(1, addr, val);
454
#ifdef CONFIG_KQEMU
455
    if (env)
456
        env->last_io_time = cpu_get_time_fast();
457
#endif
458
}
459

    
460
void cpu_outl(CPUState *env, int addr, int val)
461
{
462
    LOG_IOPORT("outl: %04x %08x\n", addr, val);
463
    ioport_write(2, addr, val);
464
#ifdef CONFIG_KQEMU
465
    if (env)
466
        env->last_io_time = cpu_get_time_fast();
467
#endif
468
}
469

    
470
int cpu_inb(CPUState *env, int addr)
471
{
472
    int val;
473
    val = ioport_read(0, addr);
474
    LOG_IOPORT("inb : %04x %02x\n", addr, val);
475
#ifdef CONFIG_KQEMU
476
    if (env)
477
        env->last_io_time = cpu_get_time_fast();
478
#endif
479
    return val;
480
}
481

    
482
int cpu_inw(CPUState *env, int addr)
483
{
484
    int val;
485
    val = ioport_read(1, addr);
486
    LOG_IOPORT("inw : %04x %04x\n", addr, val);
487
#ifdef CONFIG_KQEMU
488
    if (env)
489
        env->last_io_time = cpu_get_time_fast();
490
#endif
491
    return val;
492
}
493

    
494
int cpu_inl(CPUState *env, int addr)
495
{
496
    int val;
497
    val = ioport_read(2, addr);
498
    LOG_IOPORT("inl : %04x %08x\n", addr, val);
499
#ifdef CONFIG_KQEMU
500
    if (env)
501
        env->last_io_time = cpu_get_time_fast();
502
#endif
503
    return val;
504
}
505

    
506
/***********************************************************/
507
void hw_error(const char *fmt, ...)
508
{
509
    va_list ap;
510
    CPUState *env;
511

    
512
    va_start(ap, fmt);
513
    fprintf(stderr, "qemu: hardware error: ");
514
    vfprintf(stderr, fmt, ap);
515
    fprintf(stderr, "\n");
516
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
517
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518
#ifdef TARGET_I386
519
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520
#else
521
        cpu_dump_state(env, stderr, fprintf, 0);
522
#endif
523
    }
524
    va_end(ap);
525
    abort();
526
}
527
 
528
/***************/
529
/* ballooning */
530

    
531
static QEMUBalloonEvent *qemu_balloon_event;
532
void *qemu_balloon_event_opaque;
533

    
534
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
535
{
536
    qemu_balloon_event = func;
537
    qemu_balloon_event_opaque = opaque;
538
}
539

    
540
void qemu_balloon(ram_addr_t target)
541
{
542
    if (qemu_balloon_event)
543
        qemu_balloon_event(qemu_balloon_event_opaque, target);
544
}
545

    
546
ram_addr_t qemu_balloon_status(void)
547
{
548
    if (qemu_balloon_event)
549
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550
    return 0;
551
}
552

    
553
/***********************************************************/
554
/* keyboard/mouse */
555

    
556
static QEMUPutKBDEvent *qemu_put_kbd_event;
557
static void *qemu_put_kbd_event_opaque;
558
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
560

    
561
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
562
{
563
    qemu_put_kbd_event_opaque = opaque;
564
    qemu_put_kbd_event = func;
565
}
566

    
567
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568
                                                void *opaque, int absolute,
569
                                                const char *name)
570
{
571
    QEMUPutMouseEntry *s, *cursor;
572

    
573
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
574

    
575
    s->qemu_put_mouse_event = func;
576
    s->qemu_put_mouse_event_opaque = opaque;
577
    s->qemu_put_mouse_event_absolute = absolute;
578
    s->qemu_put_mouse_event_name = qemu_strdup(name);
579
    s->next = NULL;
580

    
581
    if (!qemu_put_mouse_event_head) {
582
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583
        return s;
584
    }
585

    
586
    cursor = qemu_put_mouse_event_head;
587
    while (cursor->next != NULL)
588
        cursor = cursor->next;
589

    
590
    cursor->next = s;
591
    qemu_put_mouse_event_current = s;
592

    
593
    return s;
594
}
595

    
596
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
597
{
598
    QEMUPutMouseEntry *prev = NULL, *cursor;
599

    
600
    if (!qemu_put_mouse_event_head || entry == NULL)
601
        return;
602

    
603
    cursor = qemu_put_mouse_event_head;
604
    while (cursor != NULL && cursor != entry) {
605
        prev = cursor;
606
        cursor = cursor->next;
607
    }
608

    
609
    if (cursor == NULL) // does not exist or list empty
610
        return;
611
    else if (prev == NULL) { // entry is head
612
        qemu_put_mouse_event_head = cursor->next;
613
        if (qemu_put_mouse_event_current == entry)
614
            qemu_put_mouse_event_current = cursor->next;
615
        qemu_free(entry->qemu_put_mouse_event_name);
616
        qemu_free(entry);
617
        return;
618
    }
619

    
620
    prev->next = entry->next;
621

    
622
    if (qemu_put_mouse_event_current == entry)
623
        qemu_put_mouse_event_current = prev;
624

    
625
    qemu_free(entry->qemu_put_mouse_event_name);
626
    qemu_free(entry);
627
}
628

    
629
void kbd_put_keycode(int keycode)
630
{
631
    if (qemu_put_kbd_event) {
632
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
633
    }
634
}
635

    
636
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
637
{
638
    QEMUPutMouseEvent *mouse_event;
639
    void *mouse_event_opaque;
640
    int width;
641

    
642
    if (!qemu_put_mouse_event_current) {
643
        return;
644
    }
645

    
646
    mouse_event =
647
        qemu_put_mouse_event_current->qemu_put_mouse_event;
648
    mouse_event_opaque =
649
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
650

    
651
    if (mouse_event) {
652
        if (graphic_rotate) {
653
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654
                width = 0x7fff;
655
            else
656
                width = graphic_width - 1;
657
            mouse_event(mouse_event_opaque,
658
                                 width - dy, dx, dz, buttons_state);
659
        } else
660
            mouse_event(mouse_event_opaque,
661
                                 dx, dy, dz, buttons_state);
662
    }
663
}
664

    
665
int kbd_mouse_is_absolute(void)
666
{
667
    if (!qemu_put_mouse_event_current)
668
        return 0;
669

    
670
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
671
}
672

    
673
void do_info_mice(Monitor *mon)
674
{
675
    QEMUPutMouseEntry *cursor;
676
    int index = 0;
677

    
678
    if (!qemu_put_mouse_event_head) {
679
        monitor_printf(mon, "No mouse devices connected\n");
680
        return;
681
    }
682

    
683
    monitor_printf(mon, "Mouse devices available:\n");
684
    cursor = qemu_put_mouse_event_head;
685
    while (cursor != NULL) {
686
        monitor_printf(mon, "%c Mouse #%d: %s\n",
687
                       (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688
                       index, cursor->qemu_put_mouse_event_name);
689
        index++;
690
        cursor = cursor->next;
691
    }
692
}
693

    
694
void do_mouse_set(Monitor *mon, int index)
695
{
696
    QEMUPutMouseEntry *cursor;
697
    int i = 0;
698

    
699
    if (!qemu_put_mouse_event_head) {
700
        monitor_printf(mon, "No mouse devices connected\n");
701
        return;
702
    }
703

    
704
    cursor = qemu_put_mouse_event_head;
705
    while (cursor != NULL && index != i) {
706
        i++;
707
        cursor = cursor->next;
708
    }
709

    
710
    if (cursor != NULL)
711
        qemu_put_mouse_event_current = cursor;
712
    else
713
        monitor_printf(mon, "Mouse at given index not found\n");
714
}
715

    
716
/* compute with 96 bit intermediate result: (a*b)/c */
717
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
718
{
719
    union {
720
        uint64_t ll;
721
        struct {
722
#ifdef WORDS_BIGENDIAN
723
            uint32_t high, low;
724
#else
725
            uint32_t low, high;
726
#endif
727
        } l;
728
    } u, res;
729
    uint64_t rl, rh;
730

    
731
    u.ll = a;
732
    rl = (uint64_t)u.l.low * (uint64_t)b;
733
    rh = (uint64_t)u.l.high * (uint64_t)b;
734
    rh += (rl >> 32);
735
    res.l.high = rh / c;
736
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737
    return res.ll;
738
}
739

    
740
/***********************************************************/
741
/* real time host monotonic timer */
742

    
743
#define QEMU_TIMER_BASE 1000000000LL
744

    
745
#ifdef WIN32
746

    
747
static int64_t clock_freq;
748

    
749
static void init_get_clock(void)
750
{
751
    LARGE_INTEGER freq;
752
    int ret;
753
    ret = QueryPerformanceFrequency(&freq);
754
    if (ret == 0) {
755
        fprintf(stderr, "Could not calibrate ticks\n");
756
        exit(1);
757
    }
758
    clock_freq = freq.QuadPart;
759
}
760

    
761
static int64_t get_clock(void)
762
{
763
    LARGE_INTEGER ti;
764
    QueryPerformanceCounter(&ti);
765
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
766
}
767

    
768
#else
769

    
770
static int use_rt_clock;
771

    
772
static void init_get_clock(void)
773
{
774
    use_rt_clock = 0;
775
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776
    || defined(__DragonFly__)
777
    {
778
        struct timespec ts;
779
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780
            use_rt_clock = 1;
781
        }
782
    }
783
#endif
784
}
785

    
786
static int64_t get_clock(void)
787
{
788
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789
        || defined(__DragonFly__)
790
    if (use_rt_clock) {
791
        struct timespec ts;
792
        clock_gettime(CLOCK_MONOTONIC, &ts);
793
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794
    } else
795
#endif
796
    {
797
        /* XXX: using gettimeofday leads to problems if the date
798
           changes, so it should be avoided. */
799
        struct timeval tv;
800
        gettimeofday(&tv, NULL);
801
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
802
    }
803
}
804
#endif
805

    
806
/* Return the virtual CPU time, based on the instruction counter.  */
807
static int64_t cpu_get_icount(void)
808
{
809
    int64_t icount;
810
    CPUState *env = cpu_single_env;;
811
    icount = qemu_icount;
812
    if (env) {
813
        if (!can_do_io(env))
814
            fprintf(stderr, "Bad clock read\n");
815
        icount -= (env->icount_decr.u16.low + env->icount_extra);
816
    }
817
    return qemu_icount_bias + (icount << icount_time_shift);
818
}
819

    
820
/***********************************************************/
821
/* guest cycle counter */
822

    
823
static int64_t cpu_ticks_prev;
824
static int64_t cpu_ticks_offset;
825
static int64_t cpu_clock_offset;
826
static int cpu_ticks_enabled;
827

    
828
/* return the host CPU cycle counter and handle stop/restart */
829
int64_t cpu_get_ticks(void)
830
{
831
    if (use_icount) {
832
        return cpu_get_icount();
833
    }
834
    if (!cpu_ticks_enabled) {
835
        return cpu_ticks_offset;
836
    } else {
837
        int64_t ticks;
838
        ticks = cpu_get_real_ticks();
839
        if (cpu_ticks_prev > ticks) {
840
            /* Note: non increasing ticks may happen if the host uses
841
               software suspend */
842
            cpu_ticks_offset += cpu_ticks_prev - ticks;
843
        }
844
        cpu_ticks_prev = ticks;
845
        return ticks + cpu_ticks_offset;
846
    }
847
}
848

    
849
/* return the host CPU monotonic timer and handle stop/restart */
850
static int64_t cpu_get_clock(void)
851
{
852
    int64_t ti;
853
    if (!cpu_ticks_enabled) {
854
        return cpu_clock_offset;
855
    } else {
856
        ti = get_clock();
857
        return ti + cpu_clock_offset;
858
    }
859
}
860

    
861
/* enable cpu_get_ticks() */
862
void cpu_enable_ticks(void)
863
{
864
    if (!cpu_ticks_enabled) {
865
        cpu_ticks_offset -= cpu_get_real_ticks();
866
        cpu_clock_offset -= get_clock();
867
        cpu_ticks_enabled = 1;
868
    }
869
}
870

    
871
/* disable cpu_get_ticks() : the clock is stopped. You must not call
872
   cpu_get_ticks() after that.  */
873
void cpu_disable_ticks(void)
874
{
875
    if (cpu_ticks_enabled) {
876
        cpu_ticks_offset = cpu_get_ticks();
877
        cpu_clock_offset = cpu_get_clock();
878
        cpu_ticks_enabled = 0;
879
    }
880
}
881

    
882
/***********************************************************/
883
/* timers */
884

    
885
#define QEMU_TIMER_REALTIME 0
886
#define QEMU_TIMER_VIRTUAL  1
887

    
888
struct QEMUClock {
889
    int type;
890
    /* XXX: add frequency */
891
};
892

    
893
struct QEMUTimer {
894
    QEMUClock *clock;
895
    int64_t expire_time;
896
    QEMUTimerCB *cb;
897
    void *opaque;
898
    struct QEMUTimer *next;
899
};
900

    
901
struct qemu_alarm_timer {
902
    char const *name;
903
    unsigned int flags;
904

    
905
    int (*start)(struct qemu_alarm_timer *t);
906
    void (*stop)(struct qemu_alarm_timer *t);
907
    void (*rearm)(struct qemu_alarm_timer *t);
908
    void *priv;
909
};
910

    
911
#define ALARM_FLAG_DYNTICKS  0x1
912
#define ALARM_FLAG_EXPIRED   0x2
913

    
914
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
915
{
916
    return t->flags & ALARM_FLAG_DYNTICKS;
917
}
918

    
919
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
920
{
921
    if (!alarm_has_dynticks(t))
922
        return;
923

    
924
    t->rearm(t);
925
}
926

    
927
/* TODO: MIN_TIMER_REARM_US should be optimized */
928
#define MIN_TIMER_REARM_US 250
929

    
930
static struct qemu_alarm_timer *alarm_timer;
931

    
932
#ifdef _WIN32
933

    
934
struct qemu_alarm_win32 {
935
    MMRESULT timerId;
936
    unsigned int period;
937
} alarm_win32_data = {0, NULL, -1};
938

    
939
static int win32_start_timer(struct qemu_alarm_timer *t);
940
static void win32_stop_timer(struct qemu_alarm_timer *t);
941
static void win32_rearm_timer(struct qemu_alarm_timer *t);
942

    
943
#else
944

    
945
static int unix_start_timer(struct qemu_alarm_timer *t);
946
static void unix_stop_timer(struct qemu_alarm_timer *t);
947

    
948
#ifdef __linux__
949

    
950
static int dynticks_start_timer(struct qemu_alarm_timer *t);
951
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
953

    
954
static int hpet_start_timer(struct qemu_alarm_timer *t);
955
static void hpet_stop_timer(struct qemu_alarm_timer *t);
956

    
957
static int rtc_start_timer(struct qemu_alarm_timer *t);
958
static void rtc_stop_timer(struct qemu_alarm_timer *t);
959

    
960
#endif /* __linux__ */
961

    
962
#endif /* _WIN32 */
963

    
964
/* Correlation between real and virtual time is always going to be
965
   fairly approximate, so ignore small variation.
966
   When the guest is idle real and virtual time will be aligned in
967
   the IO wait loop.  */
968
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
969

    
970
static void icount_adjust(void)
971
{
972
    int64_t cur_time;
973
    int64_t cur_icount;
974
    int64_t delta;
975
    static int64_t last_delta;
976
    /* If the VM is not running, then do nothing.  */
977
    if (!vm_running)
978
        return;
979

    
980
    cur_time = cpu_get_clock();
981
    cur_icount = qemu_get_clock(vm_clock);
982
    delta = cur_icount - cur_time;
983
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
984
    if (delta > 0
985
        && last_delta + ICOUNT_WOBBLE < delta * 2
986
        && icount_time_shift > 0) {
987
        /* The guest is getting too far ahead.  Slow time down.  */
988
        icount_time_shift--;
989
    }
990
    if (delta < 0
991
        && last_delta - ICOUNT_WOBBLE > delta * 2
992
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
993
        /* The guest is getting too far behind.  Speed time up.  */
994
        icount_time_shift++;
995
    }
996
    last_delta = delta;
997
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
998
}
999

    
1000
static void icount_adjust_rt(void * opaque)
1001
{
1002
    qemu_mod_timer(icount_rt_timer,
1003
                   qemu_get_clock(rt_clock) + 1000);
1004
    icount_adjust();
1005
}
1006

    
1007
static void icount_adjust_vm(void * opaque)
1008
{
1009
    qemu_mod_timer(icount_vm_timer,
1010
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011
    icount_adjust();
1012
}
1013

    
1014
static void init_icount_adjust(void)
1015
{
1016
    /* Have both realtime and virtual time triggers for speed adjustment.
1017
       The realtime trigger catches emulated time passing too slowly,
1018
       the virtual time trigger catches emulated time passing too fast.
1019
       Realtime triggers occur even when idle, so use them less frequently
1020
       than VM triggers.  */
1021
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022
    qemu_mod_timer(icount_rt_timer,
1023
                   qemu_get_clock(rt_clock) + 1000);
1024
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025
    qemu_mod_timer(icount_vm_timer,
1026
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1027
}
1028

    
1029
static struct qemu_alarm_timer alarm_timers[] = {
1030
#ifndef _WIN32
1031
#ifdef __linux__
1032
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034
    /* HPET - if available - is preferred */
1035
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036
    /* ...otherwise try RTC */
1037
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038
#endif
1039
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040
#else
1041
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043
    {"win32", 0, win32_start_timer,
1044
     win32_stop_timer, NULL, &alarm_win32_data},
1045
#endif
1046
    {NULL, }
1047
};
1048

    
1049
static void show_available_alarms(void)
1050
{
1051
    int i;
1052

    
1053
    printf("Available alarm timers, in order of precedence:\n");
1054
    for (i = 0; alarm_timers[i].name; i++)
1055
        printf("%s\n", alarm_timers[i].name);
1056
}
1057

    
1058
static void configure_alarms(char const *opt)
1059
{
1060
    int i;
1061
    int cur = 0;
1062
    int count = ARRAY_SIZE(alarm_timers) - 1;
1063
    char *arg;
1064
    char *name;
1065
    struct qemu_alarm_timer tmp;
1066

    
1067
    if (!strcmp(opt, "?")) {
1068
        show_available_alarms();
1069
        exit(0);
1070
    }
1071

    
1072
    arg = strdup(opt);
1073

    
1074
    /* Reorder the array */
1075
    name = strtok(arg, ",");
1076
    while (name) {
1077
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1078
            if (!strcmp(alarm_timers[i].name, name))
1079
                break;
1080
        }
1081

    
1082
        if (i == count) {
1083
            fprintf(stderr, "Unknown clock %s\n", name);
1084
            goto next;
1085
        }
1086

    
1087
        if (i < cur)
1088
            /* Ignore */
1089
            goto next;
1090

    
1091
        /* Swap */
1092
        tmp = alarm_timers[i];
1093
        alarm_timers[i] = alarm_timers[cur];
1094
        alarm_timers[cur] = tmp;
1095

    
1096
        cur++;
1097
next:
1098
        name = strtok(NULL, ",");
1099
    }
1100

    
1101
    free(arg);
1102

    
1103
    if (cur) {
1104
        /* Disable remaining timers */
1105
        for (i = cur; i < count; i++)
1106
            alarm_timers[i].name = NULL;
1107
    } else {
1108
        show_available_alarms();
1109
        exit(1);
1110
    }
1111
}
1112

    
1113
QEMUClock *rt_clock;
1114
QEMUClock *vm_clock;
1115

    
1116
static QEMUTimer *active_timers[2];
1117

    
1118
static QEMUClock *qemu_new_clock(int type)
1119
{
1120
    QEMUClock *clock;
1121
    clock = qemu_mallocz(sizeof(QEMUClock));
1122
    clock->type = type;
1123
    return clock;
1124
}
1125

    
1126
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1127
{
1128
    QEMUTimer *ts;
1129

    
1130
    ts = qemu_mallocz(sizeof(QEMUTimer));
1131
    ts->clock = clock;
1132
    ts->cb = cb;
1133
    ts->opaque = opaque;
1134
    return ts;
1135
}
1136

    
1137
void qemu_free_timer(QEMUTimer *ts)
1138
{
1139
    qemu_free(ts);
1140
}
1141

    
1142
/* stop a timer, but do not dealloc it */
1143
void qemu_del_timer(QEMUTimer *ts)
1144
{
1145
    QEMUTimer **pt, *t;
1146

    
1147
    /* NOTE: this code must be signal safe because
1148
       qemu_timer_expired() can be called from a signal. */
1149
    pt = &active_timers[ts->clock->type];
1150
    for(;;) {
1151
        t = *pt;
1152
        if (!t)
1153
            break;
1154
        if (t == ts) {
1155
            *pt = t->next;
1156
            break;
1157
        }
1158
        pt = &t->next;
1159
    }
1160
}
1161

    
1162
/* modify the current timer so that it will be fired when current_time
1163
   >= expire_time. The corresponding callback will be called. */
1164
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1165
{
1166
    QEMUTimer **pt, *t;
1167

    
1168
    qemu_del_timer(ts);
1169

    
1170
    /* add the timer in the sorted list */
1171
    /* NOTE: this code must be signal safe because
1172
       qemu_timer_expired() can be called from a signal. */
1173
    pt = &active_timers[ts->clock->type];
1174
    for(;;) {
1175
        t = *pt;
1176
        if (!t)
1177
            break;
1178
        if (t->expire_time > expire_time)
1179
            break;
1180
        pt = &t->next;
1181
    }
1182
    ts->expire_time = expire_time;
1183
    ts->next = *pt;
1184
    *pt = ts;
1185

    
1186
    /* Rearm if necessary  */
1187
    if (pt == &active_timers[ts->clock->type]) {
1188
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189
            qemu_rearm_alarm_timer(alarm_timer);
1190
        }
1191
        /* Interrupt execution to force deadline recalculation.  */
1192
        if (use_icount)
1193
            qemu_notify_event();
1194
    }
1195
}
1196

    
1197
int qemu_timer_pending(QEMUTimer *ts)
1198
{
1199
    QEMUTimer *t;
1200
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201
        if (t == ts)
1202
            return 1;
1203
    }
1204
    return 0;
1205
}
1206

    
1207
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1208
{
1209
    if (!timer_head)
1210
        return 0;
1211
    return (timer_head->expire_time <= current_time);
1212
}
1213

    
1214
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1215
{
1216
    QEMUTimer *ts;
1217

    
1218
    for(;;) {
1219
        ts = *ptimer_head;
1220
        if (!ts || ts->expire_time > current_time)
1221
            break;
1222
        /* remove timer from the list before calling the callback */
1223
        *ptimer_head = ts->next;
1224
        ts->next = NULL;
1225

    
1226
        /* run the callback (the timer list can be modified) */
1227
        ts->cb(ts->opaque);
1228
    }
1229
}
1230

    
1231
int64_t qemu_get_clock(QEMUClock *clock)
1232
{
1233
    switch(clock->type) {
1234
    case QEMU_TIMER_REALTIME:
1235
        return get_clock() / 1000000;
1236
    default:
1237
    case QEMU_TIMER_VIRTUAL:
1238
        if (use_icount) {
1239
            return cpu_get_icount();
1240
        } else {
1241
            return cpu_get_clock();
1242
        }
1243
    }
1244
}
1245

    
1246
static void init_timers(void)
1247
{
1248
    init_get_clock();
1249
    ticks_per_sec = QEMU_TIMER_BASE;
1250
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1252
}
1253

    
1254
/* save a timer */
1255
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1256
{
1257
    uint64_t expire_time;
1258

    
1259
    if (qemu_timer_pending(ts)) {
1260
        expire_time = ts->expire_time;
1261
    } else {
1262
        expire_time = -1;
1263
    }
1264
    qemu_put_be64(f, expire_time);
1265
}
1266

    
1267
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1268
{
1269
    uint64_t expire_time;
1270

    
1271
    expire_time = qemu_get_be64(f);
1272
    if (expire_time != -1) {
1273
        qemu_mod_timer(ts, expire_time);
1274
    } else {
1275
        qemu_del_timer(ts);
1276
    }
1277
}
1278

    
1279
static void timer_save(QEMUFile *f, void *opaque)
1280
{
1281
    if (cpu_ticks_enabled) {
1282
        hw_error("cannot save state if virtual timers are running");
1283
    }
1284
    qemu_put_be64(f, cpu_ticks_offset);
1285
    qemu_put_be64(f, ticks_per_sec);
1286
    qemu_put_be64(f, cpu_clock_offset);
1287
}
1288

    
1289
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1290
{
1291
    if (version_id != 1 && version_id != 2)
1292
        return -EINVAL;
1293
    if (cpu_ticks_enabled) {
1294
        return -EINVAL;
1295
    }
1296
    cpu_ticks_offset=qemu_get_be64(f);
1297
    ticks_per_sec=qemu_get_be64(f);
1298
    if (version_id == 2) {
1299
        cpu_clock_offset=qemu_get_be64(f);
1300
    }
1301
    return 0;
1302
}
1303

    
1304
static void qemu_event_increment(void);
1305

    
1306
#ifdef _WIN32
1307
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308
                                        DWORD_PTR dwUser, DWORD_PTR dw1,
1309
                                        DWORD_PTR dw2)
1310
#else
1311
static void host_alarm_handler(int host_signum)
1312
#endif
1313
{
1314
#if 0
1315
#define DISP_FREQ 1000
1316
    {
1317
        static int64_t delta_min = INT64_MAX;
1318
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319
        static int count;
1320
        ti = qemu_get_clock(vm_clock);
1321
        if (last_clock != 0) {
1322
            delta = ti - last_clock;
1323
            if (delta < delta_min)
1324
                delta_min = delta;
1325
            if (delta > delta_max)
1326
                delta_max = delta;
1327
            delta_cum += delta;
1328
            if (++count == DISP_FREQ) {
1329
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1331
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1332
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334
                count = 0;
1335
                delta_min = INT64_MAX;
1336
                delta_max = 0;
1337
                delta_cum = 0;
1338
            }
1339
        }
1340
        last_clock = ti;
1341
    }
1342
#endif
1343
    if (alarm_has_dynticks(alarm_timer) ||
1344
        (!use_icount &&
1345
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346
                               qemu_get_clock(vm_clock))) ||
1347
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348
                           qemu_get_clock(rt_clock))) {
1349
        CPUState *env = next_cpu;
1350

    
1351
        qemu_event_increment();
1352
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1353

    
1354
        if (env) {
1355
            /* stop the currently executing cpu because a timer occured */
1356
            cpu_exit(env);
1357
#ifdef CONFIG_KQEMU
1358
            if (env->kqemu_enabled) {
1359
                kqemu_cpu_interrupt(env);
1360
            }
1361
#endif
1362
        }
1363
        timer_alarm_pending = 1;
1364
        qemu_notify_event();
1365
    }
1366
}
1367

    
1368
static int64_t qemu_next_deadline(void)
1369
{
1370
    int64_t delta;
1371

    
1372
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374
                     qemu_get_clock(vm_clock);
1375
    } else {
1376
        /* To avoid problems with overflow limit this to 2^32.  */
1377
        delta = INT32_MAX;
1378
    }
1379

    
1380
    if (delta < 0)
1381
        delta = 0;
1382

    
1383
    return delta;
1384
}
1385

    
1386
#if defined(__linux__) || defined(_WIN32)
1387
static uint64_t qemu_next_deadline_dyntick(void)
1388
{
1389
    int64_t delta;
1390
    int64_t rtdelta;
1391

    
1392
    if (use_icount)
1393
        delta = INT32_MAX;
1394
    else
1395
        delta = (qemu_next_deadline() + 999) / 1000;
1396

    
1397
    if (active_timers[QEMU_TIMER_REALTIME]) {
1398
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399
                 qemu_get_clock(rt_clock))*1000;
1400
        if (rtdelta < delta)
1401
            delta = rtdelta;
1402
    }
1403

    
1404
    if (delta < MIN_TIMER_REARM_US)
1405
        delta = MIN_TIMER_REARM_US;
1406

    
1407
    return delta;
1408
}
1409
#endif
1410

    
1411
#ifndef _WIN32
1412

    
1413
/* Sets a specific flag */
1414
static int fcntl_setfl(int fd, int flag)
1415
{
1416
    int flags;
1417

    
1418
    flags = fcntl(fd, F_GETFL);
1419
    if (flags == -1)
1420
        return -errno;
1421

    
1422
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423
        return -errno;
1424

    
1425
    return 0;
1426
}
1427

    
1428
#if defined(__linux__)
1429

    
1430
#define RTC_FREQ 1024
1431

    
1432
static void enable_sigio_timer(int fd)
1433
{
1434
    struct sigaction act;
1435

    
1436
    /* timer signal */
1437
    sigfillset(&act.sa_mask);
1438
    act.sa_flags = 0;
1439
    act.sa_handler = host_alarm_handler;
1440

    
1441
    sigaction(SIGIO, &act, NULL);
1442
    fcntl_setfl(fd, O_ASYNC);
1443
    fcntl(fd, F_SETOWN, getpid());
1444
}
1445

    
1446
static int hpet_start_timer(struct qemu_alarm_timer *t)
1447
{
1448
    struct hpet_info info;
1449
    int r, fd;
1450

    
1451
    fd = open("/dev/hpet", O_RDONLY);
1452
    if (fd < 0)
1453
        return -1;
1454

    
1455
    /* Set frequency */
1456
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457
    if (r < 0) {
1458
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459
                "error, but for better emulation accuracy type:\n"
1460
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461
        goto fail;
1462
    }
1463

    
1464
    /* Check capabilities */
1465
    r = ioctl(fd, HPET_INFO, &info);
1466
    if (r < 0)
1467
        goto fail;
1468

    
1469
    /* Enable periodic mode */
1470
    r = ioctl(fd, HPET_EPI, 0);
1471
    if (info.hi_flags && (r < 0))
1472
        goto fail;
1473

    
1474
    /* Enable interrupt */
1475
    r = ioctl(fd, HPET_IE_ON, 0);
1476
    if (r < 0)
1477
        goto fail;
1478

    
1479
    enable_sigio_timer(fd);
1480
    t->priv = (void *)(long)fd;
1481

    
1482
    return 0;
1483
fail:
1484
    close(fd);
1485
    return -1;
1486
}
1487

    
1488
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1489
{
1490
    int fd = (long)t->priv;
1491

    
1492
    close(fd);
1493
}
1494

    
1495
static int rtc_start_timer(struct qemu_alarm_timer *t)
1496
{
1497
    int rtc_fd;
1498
    unsigned long current_rtc_freq = 0;
1499

    
1500
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501
    if (rtc_fd < 0)
1502
        return -1;
1503
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504
    if (current_rtc_freq != RTC_FREQ &&
1505
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509
        goto fail;
1510
    }
1511
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512
    fail:
1513
        close(rtc_fd);
1514
        return -1;
1515
    }
1516

    
1517
    enable_sigio_timer(rtc_fd);
1518

    
1519
    t->priv = (void *)(long)rtc_fd;
1520

    
1521
    return 0;
1522
}
1523

    
1524
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1525
{
1526
    int rtc_fd = (long)t->priv;
1527

    
1528
    close(rtc_fd);
1529
}
1530

    
1531
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1532
{
1533
    struct sigevent ev;
1534
    timer_t host_timer;
1535
    struct sigaction act;
1536

    
1537
    sigfillset(&act.sa_mask);
1538
    act.sa_flags = 0;
1539
    act.sa_handler = host_alarm_handler;
1540

    
1541
    sigaction(SIGALRM, &act, NULL);
1542

    
1543
    ev.sigev_value.sival_int = 0;
1544
    ev.sigev_notify = SIGEV_SIGNAL;
1545
    ev.sigev_signo = SIGALRM;
1546

    
1547
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1548
        perror("timer_create");
1549

    
1550
        /* disable dynticks */
1551
        fprintf(stderr, "Dynamic Ticks disabled\n");
1552

    
1553
        return -1;
1554
    }
1555

    
1556
    t->priv = (void *)(long)host_timer;
1557

    
1558
    return 0;
1559
}
1560

    
1561
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1562
{
1563
    timer_t host_timer = (timer_t)(long)t->priv;
1564

    
1565
    timer_delete(host_timer);
1566
}
1567

    
1568
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1569
{
1570
    timer_t host_timer = (timer_t)(long)t->priv;
1571
    struct itimerspec timeout;
1572
    int64_t nearest_delta_us = INT64_MAX;
1573
    int64_t current_us;
1574

    
1575
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1576
                !active_timers[QEMU_TIMER_VIRTUAL])
1577
        return;
1578

    
1579
    nearest_delta_us = qemu_next_deadline_dyntick();
1580

    
1581
    /* check whether a timer is already running */
1582
    if (timer_gettime(host_timer, &timeout)) {
1583
        perror("gettime");
1584
        fprintf(stderr, "Internal timer error: aborting\n");
1585
        exit(1);
1586
    }
1587
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1588
    if (current_us && current_us <= nearest_delta_us)
1589
        return;
1590

    
1591
    timeout.it_interval.tv_sec = 0;
1592
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1593
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1594
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1595
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1596
        perror("settime");
1597
        fprintf(stderr, "Internal timer error: aborting\n");
1598
        exit(1);
1599
    }
1600
}
1601

    
1602
#endif /* defined(__linux__) */
1603

    
1604
static int unix_start_timer(struct qemu_alarm_timer *t)
1605
{
1606
    struct sigaction act;
1607
    struct itimerval itv;
1608
    int err;
1609

    
1610
    /* timer signal */
1611
    sigfillset(&act.sa_mask);
1612
    act.sa_flags = 0;
1613
    act.sa_handler = host_alarm_handler;
1614

    
1615
    sigaction(SIGALRM, &act, NULL);
1616

    
1617
    itv.it_interval.tv_sec = 0;
1618
    /* for i386 kernel 2.6 to get 1 ms */
1619
    itv.it_interval.tv_usec = 999;
1620
    itv.it_value.tv_sec = 0;
1621
    itv.it_value.tv_usec = 10 * 1000;
1622

    
1623
    err = setitimer(ITIMER_REAL, &itv, NULL);
1624
    if (err)
1625
        return -1;
1626

    
1627
    return 0;
1628
}
1629

    
1630
static void unix_stop_timer(struct qemu_alarm_timer *t)
1631
{
1632
    struct itimerval itv;
1633

    
1634
    memset(&itv, 0, sizeof(itv));
1635
    setitimer(ITIMER_REAL, &itv, NULL);
1636
}
1637

    
1638
#endif /* !defined(_WIN32) */
1639

    
1640

    
1641
#ifdef _WIN32
1642

    
1643
static int win32_start_timer(struct qemu_alarm_timer *t)
1644
{
1645
    TIMECAPS tc;
1646
    struct qemu_alarm_win32 *data = t->priv;
1647
    UINT flags;
1648

    
1649
    memset(&tc, 0, sizeof(tc));
1650
    timeGetDevCaps(&tc, sizeof(tc));
1651

    
1652
    if (data->period < tc.wPeriodMin)
1653
        data->period = tc.wPeriodMin;
1654

    
1655
    timeBeginPeriod(data->period);
1656

    
1657
    flags = TIME_CALLBACK_FUNCTION;
1658
    if (alarm_has_dynticks(t))
1659
        flags |= TIME_ONESHOT;
1660
    else
1661
        flags |= TIME_PERIODIC;
1662

    
1663
    data->timerId = timeSetEvent(1,         // interval (ms)
1664
                        data->period,       // resolution
1665
                        host_alarm_handler, // function
1666
                        (DWORD)t,           // parameter
1667
                        flags);
1668

    
1669
    if (!data->timerId) {
1670
        perror("Failed to initialize win32 alarm timer");
1671
        timeEndPeriod(data->period);
1672
        return -1;
1673
    }
1674

    
1675
    return 0;
1676
}
1677

    
1678
static void win32_stop_timer(struct qemu_alarm_timer *t)
1679
{
1680
    struct qemu_alarm_win32 *data = t->priv;
1681

    
1682
    timeKillEvent(data->timerId);
1683
    timeEndPeriod(data->period);
1684
}
1685

    
1686
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1687
{
1688
    struct qemu_alarm_win32 *data = t->priv;
1689
    uint64_t nearest_delta_us;
1690

    
1691
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1692
                !active_timers[QEMU_TIMER_VIRTUAL])
1693
        return;
1694

    
1695
    nearest_delta_us = qemu_next_deadline_dyntick();
1696
    nearest_delta_us /= 1000;
1697

    
1698
    timeKillEvent(data->timerId);
1699

    
1700
    data->timerId = timeSetEvent(1,
1701
                        data->period,
1702
                        host_alarm_handler,
1703
                        (DWORD)t,
1704
                        TIME_ONESHOT | TIME_PERIODIC);
1705

    
1706
    if (!data->timerId) {
1707
        perror("Failed to re-arm win32 alarm timer");
1708

    
1709
        timeEndPeriod(data->period);
1710
        exit(1);
1711
    }
1712
}
1713

    
1714
#endif /* _WIN32 */
1715

    
1716
static int init_timer_alarm(void)
1717
{
1718
    struct qemu_alarm_timer *t = NULL;
1719
    int i, err = -1;
1720

    
1721
    for (i = 0; alarm_timers[i].name; i++) {
1722
        t = &alarm_timers[i];
1723

    
1724
        err = t->start(t);
1725
        if (!err)
1726
            break;
1727
    }
1728

    
1729
    if (err) {
1730
        err = -ENOENT;
1731
        goto fail;
1732
    }
1733

    
1734
    alarm_timer = t;
1735

    
1736
    return 0;
1737

    
1738
fail:
1739
    return err;
1740
}
1741

    
1742
static void quit_timers(void)
1743
{
1744
    alarm_timer->stop(alarm_timer);
1745
    alarm_timer = NULL;
1746
}
1747

    
1748
/***********************************************************/
1749
/* host time/date access */
1750
void qemu_get_timedate(struct tm *tm, int offset)
1751
{
1752
    time_t ti;
1753
    struct tm *ret;
1754

    
1755
    time(&ti);
1756
    ti += offset;
1757
    if (rtc_date_offset == -1) {
1758
        if (rtc_utc)
1759
            ret = gmtime(&ti);
1760
        else
1761
            ret = localtime(&ti);
1762
    } else {
1763
        ti -= rtc_date_offset;
1764
        ret = gmtime(&ti);
1765
    }
1766

    
1767
    memcpy(tm, ret, sizeof(struct tm));
1768
}
1769

    
1770
int qemu_timedate_diff(struct tm *tm)
1771
{
1772
    time_t seconds;
1773

    
1774
    if (rtc_date_offset == -1)
1775
        if (rtc_utc)
1776
            seconds = mktimegm(tm);
1777
        else
1778
            seconds = mktime(tm);
1779
    else
1780
        seconds = mktimegm(tm) + rtc_date_offset;
1781

    
1782
    return seconds - time(NULL);
1783
}
1784

    
1785
#ifdef _WIN32
1786
static void socket_cleanup(void)
1787
{
1788
    WSACleanup();
1789
}
1790

    
1791
static int socket_init(void)
1792
{
1793
    WSADATA Data;
1794
    int ret, err;
1795

    
1796
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1797
    if (ret != 0) {
1798
        err = WSAGetLastError();
1799
        fprintf(stderr, "WSAStartup: %d\n", err);
1800
        return -1;
1801
    }
1802
    atexit(socket_cleanup);
1803
    return 0;
1804
}
1805
#endif
1806

    
1807
const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1808
{
1809
    char *q;
1810

    
1811
    q = buf;
1812
    while (*p != '\0' && *p != delim) {
1813
        if (q && (q - buf) < buf_size - 1)
1814
            *q++ = *p;
1815
        p++;
1816
    }
1817
    if (q)
1818
        *q = '\0';
1819

    
1820
    return p;
1821
}
1822

    
1823
const char *get_opt_value(char *buf, int buf_size, const char *p)
1824
{
1825
    char *q;
1826

    
1827
    q = buf;
1828
    while (*p != '\0') {
1829
        if (*p == ',') {
1830
            if (*(p + 1) != ',')
1831
                break;
1832
            p++;
1833
        }
1834
        if (q && (q - buf) < buf_size - 1)
1835
            *q++ = *p;
1836
        p++;
1837
    }
1838
    if (q)
1839
        *q = '\0';
1840

    
1841
    return p;
1842
}
1843

    
1844
int get_param_value(char *buf, int buf_size,
1845
                    const char *tag, const char *str)
1846
{
1847
    const char *p;
1848
    char option[128];
1849

    
1850
    p = str;
1851
    for(;;) {
1852
        p = get_opt_name(option, sizeof(option), p, '=');
1853
        if (*p != '=')
1854
            break;
1855
        p++;
1856
        if (!strcmp(tag, option)) {
1857
            (void)get_opt_value(buf, buf_size, p);
1858
            return strlen(buf);
1859
        } else {
1860
            p = get_opt_value(NULL, 0, p);
1861
        }
1862
        if (*p != ',')
1863
            break;
1864
        p++;
1865
    }
1866
    return 0;
1867
}
1868

    
1869
int check_params(char *buf, int buf_size,
1870
                 const char * const *params, const char *str)
1871
{
1872
    const char *p;
1873
    int i;
1874

    
1875
    p = str;
1876
    while (*p != '\0') {
1877
        p = get_opt_name(buf, buf_size, p, '=');
1878
        if (*p != '=')
1879
            return -1;
1880
        p++;
1881
        for(i = 0; params[i] != NULL; i++)
1882
            if (!strcmp(params[i], buf))
1883
                break;
1884
        if (params[i] == NULL)
1885
            return -1;
1886
        p = get_opt_value(NULL, 0, p);
1887
        if (*p != ',')
1888
            break;
1889
        p++;
1890
    }
1891
    return 0;
1892
}
1893

    
1894
/***********************************************************/
1895
/* Bluetooth support */
1896
static int nb_hcis;
1897
static int cur_hci;
1898
static struct HCIInfo *hci_table[MAX_NICS];
1899

    
1900
static struct bt_vlan_s {
1901
    struct bt_scatternet_s net;
1902
    int id;
1903
    struct bt_vlan_s *next;
1904
} *first_bt_vlan;
1905

    
1906
/* find or alloc a new bluetooth "VLAN" */
1907
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1908
{
1909
    struct bt_vlan_s **pvlan, *vlan;
1910
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1911
        if (vlan->id == id)
1912
            return &vlan->net;
1913
    }
1914
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1915
    vlan->id = id;
1916
    pvlan = &first_bt_vlan;
1917
    while (*pvlan != NULL)
1918
        pvlan = &(*pvlan)->next;
1919
    *pvlan = vlan;
1920
    return &vlan->net;
1921
}
1922

    
1923
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1924
{
1925
}
1926

    
1927
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1928
{
1929
    return -ENOTSUP;
1930
}
1931

    
1932
static struct HCIInfo null_hci = {
1933
    .cmd_send = null_hci_send,
1934
    .sco_send = null_hci_send,
1935
    .acl_send = null_hci_send,
1936
    .bdaddr_set = null_hci_addr_set,
1937
};
1938

    
1939
struct HCIInfo *qemu_next_hci(void)
1940
{
1941
    if (cur_hci == nb_hcis)
1942
        return &null_hci;
1943

    
1944
    return hci_table[cur_hci++];
1945
}
1946

    
1947
static struct HCIInfo *hci_init(const char *str)
1948
{
1949
    char *endp;
1950
    struct bt_scatternet_s *vlan = 0;
1951

    
1952
    if (!strcmp(str, "null"))
1953
        /* null */
1954
        return &null_hci;
1955
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1956
        /* host[:hciN] */
1957
        return bt_host_hci(str[4] ? str + 5 : "hci0");
1958
    else if (!strncmp(str, "hci", 3)) {
1959
        /* hci[,vlan=n] */
1960
        if (str[3]) {
1961
            if (!strncmp(str + 3, ",vlan=", 6)) {
1962
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1963
                if (*endp)
1964
                    vlan = 0;
1965
            }
1966
        } else
1967
            vlan = qemu_find_bt_vlan(0);
1968
        if (vlan)
1969
           return bt_new_hci(vlan);
1970
    }
1971

    
1972
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1973

    
1974
    return 0;
1975
}
1976

    
1977
static int bt_hci_parse(const char *str)
1978
{
1979
    struct HCIInfo *hci;
1980
    bdaddr_t bdaddr;
1981

    
1982
    if (nb_hcis >= MAX_NICS) {
1983
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1984
        return -1;
1985
    }
1986

    
1987
    hci = hci_init(str);
1988
    if (!hci)
1989
        return -1;
1990

    
1991
    bdaddr.b[0] = 0x52;
1992
    bdaddr.b[1] = 0x54;
1993
    bdaddr.b[2] = 0x00;
1994
    bdaddr.b[3] = 0x12;
1995
    bdaddr.b[4] = 0x34;
1996
    bdaddr.b[5] = 0x56 + nb_hcis;
1997
    hci->bdaddr_set(hci, bdaddr.b);
1998

    
1999
    hci_table[nb_hcis++] = hci;
2000

    
2001
    return 0;
2002
}
2003

    
2004
static void bt_vhci_add(int vlan_id)
2005
{
2006
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2007

    
2008
    if (!vlan->slave)
2009
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2010
                        "an empty scatternet %i\n", vlan_id);
2011

    
2012
    bt_vhci_init(bt_new_hci(vlan));
2013
}
2014

    
2015
static struct bt_device_s *bt_device_add(const char *opt)
2016
{
2017
    struct bt_scatternet_s *vlan;
2018
    int vlan_id = 0;
2019
    char *endp = strstr(opt, ",vlan=");
2020
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2021
    char devname[10];
2022

    
2023
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2024

    
2025
    if (endp) {
2026
        vlan_id = strtol(endp + 6, &endp, 0);
2027
        if (*endp) {
2028
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2029
            return 0;
2030
        }
2031
    }
2032

    
2033
    vlan = qemu_find_bt_vlan(vlan_id);
2034

    
2035
    if (!vlan->slave)
2036
        fprintf(stderr, "qemu: warning: adding a slave device to "
2037
                        "an empty scatternet %i\n", vlan_id);
2038

    
2039
    if (!strcmp(devname, "keyboard"))
2040
        return bt_keyboard_init(vlan);
2041

    
2042
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2043
    return 0;
2044
}
2045

    
2046
static int bt_parse(const char *opt)
2047
{
2048
    const char *endp, *p;
2049
    int vlan;
2050

    
2051
    if (strstart(opt, "hci", &endp)) {
2052
        if (!*endp || *endp == ',') {
2053
            if (*endp)
2054
                if (!strstart(endp, ",vlan=", 0))
2055
                    opt = endp + 1;
2056

    
2057
            return bt_hci_parse(opt);
2058
       }
2059
    } else if (strstart(opt, "vhci", &endp)) {
2060
        if (!*endp || *endp == ',') {
2061
            if (*endp) {
2062
                if (strstart(endp, ",vlan=", &p)) {
2063
                    vlan = strtol(p, (char **) &endp, 0);
2064
                    if (*endp) {
2065
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2066
                        return 1;
2067
                    }
2068
                } else {
2069
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2070
                    return 1;
2071
                }
2072
            } else
2073
                vlan = 0;
2074

    
2075
            bt_vhci_add(vlan);
2076
            return 0;
2077
        }
2078
    } else if (strstart(opt, "device:", &endp))
2079
        return !bt_device_add(endp);
2080

    
2081
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2082
    return 1;
2083
}
2084

    
2085
/***********************************************************/
2086
/* QEMU Block devices */
2087

    
2088
#define HD_ALIAS "index=%d,media=disk"
2089
#define CDROM_ALIAS "index=2,media=cdrom"
2090
#define FD_ALIAS "index=%d,if=floppy"
2091
#define PFLASH_ALIAS "if=pflash"
2092
#define MTD_ALIAS "if=mtd"
2093
#define SD_ALIAS "index=0,if=sd"
2094

    
2095
static int drive_opt_get_free_idx(void)
2096
{
2097
    int index;
2098

    
2099
    for (index = 0; index < MAX_DRIVES; index++)
2100
        if (!drives_opt[index].used) {
2101
            drives_opt[index].used = 1;
2102
            return index;
2103
        }
2104

    
2105
    return -1;
2106
}
2107

    
2108
static int drive_get_free_idx(void)
2109
{
2110
    int index;
2111

    
2112
    for (index = 0; index < MAX_DRIVES; index++)
2113
        if (!drives_table[index].used) {
2114
            drives_table[index].used = 1;
2115
            return index;
2116
        }
2117

    
2118
    return -1;
2119
}
2120

    
2121
int drive_add(const char *file, const char *fmt, ...)
2122
{
2123
    va_list ap;
2124
    int index = drive_opt_get_free_idx();
2125

    
2126
    if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2127
        fprintf(stderr, "qemu: too many drives\n");
2128
        return -1;
2129
    }
2130

    
2131
    drives_opt[index].file = file;
2132
    va_start(ap, fmt);
2133
    vsnprintf(drives_opt[index].opt,
2134
              sizeof(drives_opt[0].opt), fmt, ap);
2135
    va_end(ap);
2136

    
2137
    nb_drives_opt++;
2138
    return index;
2139
}
2140

    
2141
void drive_remove(int index)
2142
{
2143
    drives_opt[index].used = 0;
2144
    nb_drives_opt--;
2145
}
2146

    
2147
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2148
{
2149
    int index;
2150

    
2151
    /* seek interface, bus and unit */
2152

    
2153
    for (index = 0; index < MAX_DRIVES; index++)
2154
        if (drives_table[index].type == type &&
2155
            drives_table[index].bus == bus &&
2156
            drives_table[index].unit == unit &&
2157
            drives_table[index].used)
2158
        return index;
2159

    
2160
    return -1;
2161
}
2162

    
2163
int drive_get_max_bus(BlockInterfaceType type)
2164
{
2165
    int max_bus;
2166
    int index;
2167

    
2168
    max_bus = -1;
2169
    for (index = 0; index < nb_drives; index++) {
2170
        if(drives_table[index].type == type &&
2171
           drives_table[index].bus > max_bus)
2172
            max_bus = drives_table[index].bus;
2173
    }
2174
    return max_bus;
2175
}
2176

    
2177
const char *drive_get_serial(BlockDriverState *bdrv)
2178
{
2179
    int index;
2180

    
2181
    for (index = 0; index < nb_drives; index++)
2182
        if (drives_table[index].bdrv == bdrv)
2183
            return drives_table[index].serial;
2184

    
2185
    return "\0";
2186
}
2187

    
2188
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2189
{
2190
    int index;
2191

    
2192
    for (index = 0; index < nb_drives; index++)
2193
        if (drives_table[index].bdrv == bdrv)
2194
            return drives_table[index].onerror;
2195

    
2196
    return BLOCK_ERR_STOP_ENOSPC;
2197
}
2198

    
2199
static void bdrv_format_print(void *opaque, const char *name)
2200
{
2201
    fprintf(stderr, " %s", name);
2202
}
2203

    
2204
void drive_uninit(BlockDriverState *bdrv)
2205
{
2206
    int i;
2207

    
2208
    for (i = 0; i < MAX_DRIVES; i++)
2209
        if (drives_table[i].bdrv == bdrv) {
2210
            drives_table[i].bdrv = NULL;
2211
            drives_table[i].used = 0;
2212
            drive_remove(drives_table[i].drive_opt_idx);
2213
            nb_drives--;
2214
            break;
2215
        }
2216
}
2217

    
2218
int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2219
{
2220
    char buf[128];
2221
    char file[1024];
2222
    char devname[128];
2223
    char serial[21];
2224
    const char *mediastr = "";
2225
    BlockInterfaceType type;
2226
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2227
    int bus_id, unit_id;
2228
    int cyls, heads, secs, translation;
2229
    BlockDriverState *bdrv;
2230
    BlockDriver *drv = NULL;
2231
    QEMUMachine *machine = opaque;
2232
    int max_devs;
2233
    int index;
2234
    int cache;
2235
    int bdrv_flags, onerror;
2236
    int drives_table_idx;
2237
    char *str = arg->opt;
2238
    static const char * const params[] = { "bus", "unit", "if", "index",
2239
                                           "cyls", "heads", "secs", "trans",
2240
                                           "media", "snapshot", "file",
2241
                                           "cache", "format", "serial", "werror",
2242
                                           NULL };
2243

    
2244
    if (check_params(buf, sizeof(buf), params, str) < 0) {
2245
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2246
                         buf, str);
2247
         return -1;
2248
    }
2249

    
2250
    file[0] = 0;
2251
    cyls = heads = secs = 0;
2252
    bus_id = 0;
2253
    unit_id = -1;
2254
    translation = BIOS_ATA_TRANSLATION_AUTO;
2255
    index = -1;
2256
    cache = 3;
2257

    
2258
    if (machine->use_scsi) {
2259
        type = IF_SCSI;
2260
        max_devs = MAX_SCSI_DEVS;
2261
        pstrcpy(devname, sizeof(devname), "scsi");
2262
    } else {
2263
        type = IF_IDE;
2264
        max_devs = MAX_IDE_DEVS;
2265
        pstrcpy(devname, sizeof(devname), "ide");
2266
    }
2267
    media = MEDIA_DISK;
2268

    
2269
    /* extract parameters */
2270

    
2271
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2272
        bus_id = strtol(buf, NULL, 0);
2273
        if (bus_id < 0) {
2274
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2275
            return -1;
2276
        }
2277
    }
2278

    
2279
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2280
        unit_id = strtol(buf, NULL, 0);
2281
        if (unit_id < 0) {
2282
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2283
            return -1;
2284
        }
2285
    }
2286

    
2287
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2288
        pstrcpy(devname, sizeof(devname), buf);
2289
        if (!strcmp(buf, "ide")) {
2290
            type = IF_IDE;
2291
            max_devs = MAX_IDE_DEVS;
2292
        } else if (!strcmp(buf, "scsi")) {
2293
            type = IF_SCSI;
2294
            max_devs = MAX_SCSI_DEVS;
2295
        } else if (!strcmp(buf, "floppy")) {
2296
            type = IF_FLOPPY;
2297
            max_devs = 0;
2298
        } else if (!strcmp(buf, "pflash")) {
2299
            type = IF_PFLASH;
2300
            max_devs = 0;
2301
        } else if (!strcmp(buf, "mtd")) {
2302
            type = IF_MTD;
2303
            max_devs = 0;
2304
        } else if (!strcmp(buf, "sd")) {
2305
            type = IF_SD;
2306
            max_devs = 0;
2307
        } else if (!strcmp(buf, "virtio")) {
2308
            type = IF_VIRTIO;
2309
            max_devs = 0;
2310
        } else if (!strcmp(buf, "xen")) {
2311
            type = IF_XEN;
2312
            max_devs = 0;
2313
        } else {
2314
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2315
            return -1;
2316
        }
2317
    }
2318

    
2319
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2320
        index = strtol(buf, NULL, 0);
2321
        if (index < 0) {
2322
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2323
            return -1;
2324
        }
2325
    }
2326

    
2327
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2328
        cyls = strtol(buf, NULL, 0);
2329
    }
2330

    
2331
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2332
        heads = strtol(buf, NULL, 0);
2333
    }
2334

    
2335
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2336
        secs = strtol(buf, NULL, 0);
2337
    }
2338

    
2339
    if (cyls || heads || secs) {
2340
        if (cyls < 1 || cyls > 16383) {
2341
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2342
            return -1;
2343
        }
2344
        if (heads < 1 || heads > 16) {
2345
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2346
            return -1;
2347
        }
2348
        if (secs < 1 || secs > 63) {
2349
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2350
            return -1;
2351
        }
2352
    }
2353

    
2354
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2355
        if (!cyls) {
2356
            fprintf(stderr,
2357
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2358
                    str);
2359
            return -1;
2360
        }
2361
        if (!strcmp(buf, "none"))
2362
            translation = BIOS_ATA_TRANSLATION_NONE;
2363
        else if (!strcmp(buf, "lba"))
2364
            translation = BIOS_ATA_TRANSLATION_LBA;
2365
        else if (!strcmp(buf, "auto"))
2366
            translation = BIOS_ATA_TRANSLATION_AUTO;
2367
        else {
2368
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2369
            return -1;
2370
        }
2371
    }
2372

    
2373
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2374
        if (!strcmp(buf, "disk")) {
2375
            media = MEDIA_DISK;
2376
        } else if (!strcmp(buf, "cdrom")) {
2377
            if (cyls || secs || heads) {
2378
                fprintf(stderr,
2379
                        "qemu: '%s' invalid physical CHS format\n", str);
2380
                return -1;
2381
            }
2382
            media = MEDIA_CDROM;
2383
        } else {
2384
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2385
            return -1;
2386
        }
2387
    }
2388

    
2389
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2390
        if (!strcmp(buf, "on"))
2391
            snapshot = 1;
2392
        else if (!strcmp(buf, "off"))
2393
            snapshot = 0;
2394
        else {
2395
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2396
            return -1;
2397
        }
2398
    }
2399

    
2400
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2401
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2402
            cache = 0;
2403
        else if (!strcmp(buf, "writethrough"))
2404
            cache = 1;
2405
        else if (!strcmp(buf, "writeback"))
2406
            cache = 2;
2407
        else {
2408
           fprintf(stderr, "qemu: invalid cache option\n");
2409
           return -1;
2410
        }
2411
    }
2412

    
2413
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2414
       if (strcmp(buf, "?") == 0) {
2415
            fprintf(stderr, "qemu: Supported formats:");
2416
            bdrv_iterate_format(bdrv_format_print, NULL);
2417
            fprintf(stderr, "\n");
2418
            return -1;
2419
        }
2420
        drv = bdrv_find_format(buf);
2421
        if (!drv) {
2422
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2423
            return -1;
2424
        }
2425
    }
2426

    
2427
    if (arg->file == NULL)
2428
        get_param_value(file, sizeof(file), "file", str);
2429
    else
2430
        pstrcpy(file, sizeof(file), arg->file);
2431

    
2432
    if (!get_param_value(serial, sizeof(serial), "serial", str))
2433
            memset(serial, 0,  sizeof(serial));
2434

    
2435
    onerror = BLOCK_ERR_STOP_ENOSPC;
2436
    if (get_param_value(buf, sizeof(serial), "werror", str)) {
2437
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2438
            fprintf(stderr, "werror is no supported by this format\n");
2439
            return -1;
2440
        }
2441
        if (!strcmp(buf, "ignore"))
2442
            onerror = BLOCK_ERR_IGNORE;
2443
        else if (!strcmp(buf, "enospc"))
2444
            onerror = BLOCK_ERR_STOP_ENOSPC;
2445
        else if (!strcmp(buf, "stop"))
2446
            onerror = BLOCK_ERR_STOP_ANY;
2447
        else if (!strcmp(buf, "report"))
2448
            onerror = BLOCK_ERR_REPORT;
2449
        else {
2450
            fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2451
            return -1;
2452
        }
2453
    }
2454

    
2455
    /* compute bus and unit according index */
2456

    
2457
    if (index != -1) {
2458
        if (bus_id != 0 || unit_id != -1) {
2459
            fprintf(stderr,
2460
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2461
            return -1;
2462
        }
2463
        if (max_devs == 0)
2464
        {
2465
            unit_id = index;
2466
            bus_id = 0;
2467
        } else {
2468
            unit_id = index % max_devs;
2469
            bus_id = index / max_devs;
2470
        }
2471
    }
2472

    
2473
    /* if user doesn't specify a unit_id,
2474
     * try to find the first free
2475
     */
2476

    
2477
    if (unit_id == -1) {
2478
       unit_id = 0;
2479
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2480
           unit_id++;
2481
           if (max_devs && unit_id >= max_devs) {
2482
               unit_id -= max_devs;
2483
               bus_id++;
2484
           }
2485
       }
2486
    }
2487

    
2488
    /* check unit id */
2489

    
2490
    if (max_devs && unit_id >= max_devs) {
2491
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2492
                        str, unit_id, max_devs - 1);
2493
        return -1;
2494
    }
2495

    
2496
    /*
2497
     * ignore multiple definitions
2498
     */
2499

    
2500
    if (drive_get_index(type, bus_id, unit_id) != -1)
2501
        return -2;
2502

    
2503
    /* init */
2504

    
2505
    if (type == IF_IDE || type == IF_SCSI)
2506
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2507
    if (max_devs)
2508
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2509
                 devname, bus_id, mediastr, unit_id);
2510
    else
2511
        snprintf(buf, sizeof(buf), "%s%s%i",
2512
                 devname, mediastr, unit_id);
2513
    bdrv = bdrv_new(buf);
2514
    drives_table_idx = drive_get_free_idx();
2515
    drives_table[drives_table_idx].bdrv = bdrv;
2516
    drives_table[drives_table_idx].type = type;
2517
    drives_table[drives_table_idx].bus = bus_id;
2518
    drives_table[drives_table_idx].unit = unit_id;
2519
    drives_table[drives_table_idx].onerror = onerror;
2520
    drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2521
    strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2522
    nb_drives++;
2523

    
2524
    switch(type) {
2525
    case IF_IDE:
2526
    case IF_SCSI:
2527
    case IF_XEN:
2528
        switch(media) {
2529
        case MEDIA_DISK:
2530
            if (cyls != 0) {
2531
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2532
                bdrv_set_translation_hint(bdrv, translation);
2533
            }
2534
            break;
2535
        case MEDIA_CDROM:
2536
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2537
            break;
2538
        }
2539
        break;
2540
    case IF_SD:
2541
        /* FIXME: This isn't really a floppy, but it's a reasonable
2542
           approximation.  */
2543
    case IF_FLOPPY:
2544
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2545
        break;
2546
    case IF_PFLASH:
2547
    case IF_MTD:
2548
    case IF_VIRTIO:
2549
        break;
2550
    }
2551
    if (!file[0])
2552
        return -2;
2553
    bdrv_flags = 0;
2554
    if (snapshot) {
2555
        bdrv_flags |= BDRV_O_SNAPSHOT;
2556
        cache = 2; /* always use write-back with snapshot */
2557
    }
2558
    if (cache == 0) /* no caching */
2559
        bdrv_flags |= BDRV_O_NOCACHE;
2560
    else if (cache == 2) /* write-back */
2561
        bdrv_flags |= BDRV_O_CACHE_WB;
2562
    else if (cache == 3) /* not specified */
2563
        bdrv_flags |= BDRV_O_CACHE_DEF;
2564
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2565
        fprintf(stderr, "qemu: could not open disk image %s\n",
2566
                        file);
2567
        return -1;
2568
    }
2569
    if (bdrv_key_required(bdrv))
2570
        autostart = 0;
2571
    return drives_table_idx;
2572
}
2573

    
2574
static void numa_add(const char *optarg)
2575
{
2576
    char option[128];
2577
    char *endptr;
2578
    unsigned long long value, endvalue;
2579
    int nodenr;
2580

    
2581
    optarg = get_opt_name(option, 128, optarg, ',') + 1;
2582
    if (!strcmp(option, "node")) {
2583
        if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2584
            nodenr = nb_numa_nodes;
2585
        } else {
2586
            nodenr = strtoull(option, NULL, 10);
2587
        }
2588

    
2589
        if (get_param_value(option, 128, "mem", optarg) == 0) {
2590
            node_mem[nodenr] = 0;
2591
        } else {
2592
            value = strtoull(option, &endptr, 0);
2593
            switch (*endptr) {
2594
            case 0: case 'M': case 'm':
2595
                value <<= 20;
2596
                break;
2597
            case 'G': case 'g':
2598
                value <<= 30;
2599
                break;
2600
            }
2601
            node_mem[nodenr] = value;
2602
        }
2603
        if (get_param_value(option, 128, "cpus", optarg) == 0) {
2604
            node_cpumask[nodenr] = 0;
2605
        } else {
2606
            value = strtoull(option, &endptr, 10);
2607
            if (value >= 64) {
2608
                value = 63;
2609
                fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2610
            } else {
2611
                if (*endptr == '-') {
2612
                    endvalue = strtoull(endptr+1, &endptr, 10);
2613
                    if (endvalue >= 63) {
2614
                        endvalue = 62;
2615
                        fprintf(stderr,
2616
                            "only 63 CPUs in NUMA mode supported.\n");
2617
                    }
2618
                    value = (1 << (endvalue + 1)) - (1 << value);
2619
                } else {
2620
                    value = 1 << value;
2621
                }
2622
            }
2623
            node_cpumask[nodenr] = value;
2624
        }
2625
        nb_numa_nodes++;
2626
    }
2627
    return;
2628
}
2629

    
2630
/***********************************************************/
2631
/* USB devices */
2632

    
2633
static USBPort *used_usb_ports;
2634
static USBPort *free_usb_ports;
2635

    
2636
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2637
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638
                            usb_attachfn attach)
2639
{
2640
    port->opaque = opaque;
2641
    port->index = index;
2642
    port->attach = attach;
2643
    port->next = free_usb_ports;
2644
    free_usb_ports = port;
2645
}
2646

    
2647
int usb_device_add_dev(USBDevice *dev)
2648
{
2649
    USBPort *port;
2650

    
2651
    /* Find a USB port to add the device to.  */
2652
    port = free_usb_ports;
2653
    if (!port->next) {
2654
        USBDevice *hub;
2655

    
2656
        /* Create a new hub and chain it on.  */
2657
        free_usb_ports = NULL;
2658
        port->next = used_usb_ports;
2659
        used_usb_ports = port;
2660

    
2661
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2662
        usb_attach(port, hub);
2663
        port = free_usb_ports;
2664
    }
2665

    
2666
    free_usb_ports = port->next;
2667
    port->next = used_usb_ports;
2668
    used_usb_ports = port;
2669
    usb_attach(port, dev);
2670
    return 0;
2671
}
2672

    
2673
static void usb_msd_password_cb(void *opaque, int err)
2674
{
2675
    USBDevice *dev = opaque;
2676

    
2677
    if (!err)
2678
        usb_device_add_dev(dev);
2679
    else
2680
        dev->handle_destroy(dev);
2681
}
2682

    
2683
static int usb_device_add(const char *devname, int is_hotplug)
2684
{
2685
    const char *p;
2686
    USBDevice *dev;
2687

    
2688
    if (!free_usb_ports)
2689
        return -1;
2690

    
2691
    if (strstart(devname, "host:", &p)) {
2692
        dev = usb_host_device_open(p);
2693
    } else if (!strcmp(devname, "mouse")) {
2694
        dev = usb_mouse_init();
2695
    } else if (!strcmp(devname, "tablet")) {
2696
        dev = usb_tablet_init();
2697
    } else if (!strcmp(devname, "keyboard")) {
2698
        dev = usb_keyboard_init();
2699
    } else if (strstart(devname, "disk:", &p)) {
2700
        BlockDriverState *bs;
2701

    
2702
        dev = usb_msd_init(p);
2703
        if (!dev)
2704
            return -1;
2705
        bs = usb_msd_get_bdrv(dev);
2706
        if (bdrv_key_required(bs)) {
2707
            autostart = 0;
2708
            if (is_hotplug) {
2709
                monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710
                                            dev);
2711
                return 0;
2712
            }
2713
        }
2714
    } else if (!strcmp(devname, "wacom-tablet")) {
2715
        dev = usb_wacom_init();
2716
    } else if (strstart(devname, "serial:", &p)) {
2717
        dev = usb_serial_init(p);
2718
#ifdef CONFIG_BRLAPI
2719
    } else if (!strcmp(devname, "braille")) {
2720
        dev = usb_baum_init();
2721
#endif
2722
    } else if (strstart(devname, "net:", &p)) {
2723
        int nic = nb_nics;
2724

    
2725
        if (net_client_init("nic", p) < 0)
2726
            return -1;
2727
        nd_table[nic].model = "usb";
2728
        dev = usb_net_init(&nd_table[nic]);
2729
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2731
                        bt_new_hci(qemu_find_bt_vlan(0)));
2732
    } else {
2733
        return -1;
2734
    }
2735
    if (!dev)
2736
        return -1;
2737

    
2738
    return usb_device_add_dev(dev);
2739
}
2740

    
2741
int usb_device_del_addr(int bus_num, int addr)
2742
{
2743
    USBPort *port;
2744
    USBPort **lastp;
2745
    USBDevice *dev;
2746

    
2747
    if (!used_usb_ports)
2748
        return -1;
2749

    
2750
    if (bus_num != 0)
2751
        return -1;
2752

    
2753
    lastp = &used_usb_ports;
2754
    port = used_usb_ports;
2755
    while (port && port->dev->addr != addr) {
2756
        lastp = &port->next;
2757
        port = port->next;
2758
    }
2759

    
2760
    if (!port)
2761
        return -1;
2762

    
2763
    dev = port->dev;
2764
    *lastp = port->next;
2765
    usb_attach(port, NULL);
2766
    dev->handle_destroy(dev);
2767
    port->next = free_usb_ports;
2768
    free_usb_ports = port;
2769
    return 0;
2770
}
2771

    
2772
static int usb_device_del(const char *devname)
2773
{
2774
    int bus_num, addr;
2775
    const char *p;
2776

    
2777
    if (strstart(devname, "host:", &p))
2778
        return usb_host_device_close(p);
2779

    
2780
    if (!used_usb_ports)
2781
        return -1;
2782

    
2783
    p = strchr(devname, '.');
2784
    if (!p)
2785
        return -1;
2786
    bus_num = strtoul(devname, NULL, 0);
2787
    addr = strtoul(p + 1, NULL, 0);
2788

    
2789
    return usb_device_del_addr(bus_num, addr);
2790
}
2791

    
2792
void do_usb_add(Monitor *mon, const char *devname)
2793
{
2794
    usb_device_add(devname, 1);
2795
}
2796

    
2797
void do_usb_del(Monitor *mon, const char *devname)
2798
{
2799
    usb_device_del(devname);
2800
}
2801

    
2802
void usb_info(Monitor *mon)
2803
{
2804
    USBDevice *dev;
2805
    USBPort *port;
2806
    const char *speed_str;
2807

    
2808
    if (!usb_enabled) {
2809
        monitor_printf(mon, "USB support not enabled\n");
2810
        return;
2811
    }
2812

    
2813
    for (port = used_usb_ports; port; port = port->next) {
2814
        dev = port->dev;
2815
        if (!dev)
2816
            continue;
2817
        switch(dev->speed) {
2818
        case USB_SPEED_LOW:
2819
            speed_str = "1.5";
2820
            break;
2821
        case USB_SPEED_FULL:
2822
            speed_str = "12";
2823
            break;
2824
        case USB_SPEED_HIGH:
2825
            speed_str = "480";
2826
            break;
2827
        default:
2828
            speed_str = "?";
2829
            break;
2830
        }
2831
        monitor_printf(mon, "  Device %d.%d, Speed %s Mb/s, Product %s\n",
2832
                       0, dev->addr, speed_str, dev->devname);
2833
    }
2834
}
2835

    
2836
/***********************************************************/
2837
/* PCMCIA/Cardbus */
2838

    
2839
static struct pcmcia_socket_entry_s {
2840
    struct pcmcia_socket_s *socket;
2841
    struct pcmcia_socket_entry_s *next;
2842
} *pcmcia_sockets = 0;
2843

    
2844
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2845
{
2846
    struct pcmcia_socket_entry_s *entry;
2847

    
2848
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849
    entry->socket = socket;
2850
    entry->next = pcmcia_sockets;
2851
    pcmcia_sockets = entry;
2852
}
2853

    
2854
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2855
{
2856
    struct pcmcia_socket_entry_s *entry, **ptr;
2857

    
2858
    ptr = &pcmcia_sockets;
2859
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860
        if (entry->socket == socket) {
2861
            *ptr = entry->next;
2862
            qemu_free(entry);
2863
        }
2864
}
2865

    
2866
void pcmcia_info(Monitor *mon)
2867
{
2868
    struct pcmcia_socket_entry_s *iter;
2869

    
2870
    if (!pcmcia_sockets)
2871
        monitor_printf(mon, "No PCMCIA sockets\n");
2872

    
2873
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2874
        monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875
                       iter->socket->attached ? iter->socket->card_string :
2876
                       "Empty");
2877
}
2878

    
2879
/***********************************************************/
2880
/* register display */
2881

    
2882
struct DisplayAllocator default_allocator = {
2883
    defaultallocator_create_displaysurface,
2884
    defaultallocator_resize_displaysurface,
2885
    defaultallocator_free_displaysurface
2886
};
2887

    
2888
void register_displaystate(DisplayState *ds)
2889
{
2890
    DisplayState **s;
2891
    s = &display_state;
2892
    while (*s != NULL)
2893
        s = &(*s)->next;
2894
    ds->next = NULL;
2895
    *s = ds;
2896
}
2897

    
2898
DisplayState *get_displaystate(void)
2899
{
2900
    return display_state;
2901
}
2902

    
2903
DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2904
{
2905
    if(ds->allocator ==  &default_allocator) ds->allocator = da;
2906
    return ds->allocator;
2907
}
2908

    
2909
/* dumb display */
2910

    
2911
static void dumb_display_init(void)
2912
{
2913
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914
    ds->allocator = &default_allocator;
2915
    ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916
    register_displaystate(ds);
2917
}
2918

    
2919
/***********************************************************/
2920
/* I/O handling */
2921

    
2922
typedef struct IOHandlerRecord {
2923
    int fd;
2924
    IOCanRWHandler *fd_read_poll;
2925
    IOHandler *fd_read;
2926
    IOHandler *fd_write;
2927
    int deleted;
2928
    void *opaque;
2929
    /* temporary data */
2930
    struct pollfd *ufd;
2931
    struct IOHandlerRecord *next;
2932
} IOHandlerRecord;
2933

    
2934
static IOHandlerRecord *first_io_handler;
2935

    
2936
/* XXX: fd_read_poll should be suppressed, but an API change is
2937
   necessary in the character devices to suppress fd_can_read(). */
2938
int qemu_set_fd_handler2(int fd,
2939
                         IOCanRWHandler *fd_read_poll,
2940
                         IOHandler *fd_read,
2941
                         IOHandler *fd_write,
2942
                         void *opaque)
2943
{
2944
    IOHandlerRecord **pioh, *ioh;
2945

    
2946
    if (!fd_read && !fd_write) {
2947
        pioh = &first_io_handler;
2948
        for(;;) {
2949
            ioh = *pioh;
2950
            if (ioh == NULL)
2951
                break;
2952
            if (ioh->fd == fd) {
2953
                ioh->deleted = 1;
2954
                break;
2955
            }
2956
            pioh = &ioh->next;
2957
        }
2958
    } else {
2959
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960
            if (ioh->fd == fd)
2961
                goto found;
2962
        }
2963
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964
        ioh->next = first_io_handler;
2965
        first_io_handler = ioh;
2966
    found:
2967
        ioh->fd = fd;
2968
        ioh->fd_read_poll = fd_read_poll;
2969
        ioh->fd_read = fd_read;
2970
        ioh->fd_write = fd_write;
2971
        ioh->opaque = opaque;
2972
        ioh->deleted = 0;
2973
    }
2974
    return 0;
2975
}
2976

    
2977
int qemu_set_fd_handler(int fd,
2978
                        IOHandler *fd_read,
2979
                        IOHandler *fd_write,
2980
                        void *opaque)
2981
{
2982
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2983
}
2984

    
2985
#ifdef _WIN32
2986
/***********************************************************/
2987
/* Polling handling */
2988

    
2989
typedef struct PollingEntry {
2990
    PollingFunc *func;
2991
    void *opaque;
2992
    struct PollingEntry *next;
2993
} PollingEntry;
2994

    
2995
static PollingEntry *first_polling_entry;
2996

    
2997
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2998
{
2999
    PollingEntry **ppe, *pe;
3000
    pe = qemu_mallocz(sizeof(PollingEntry));
3001
    pe->func = func;
3002
    pe->opaque = opaque;
3003
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004
    *ppe = pe;
3005
    return 0;
3006
}
3007

    
3008
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3009
{
3010
    PollingEntry **ppe, *pe;
3011
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012
        pe = *ppe;
3013
        if (pe->func == func && pe->opaque == opaque) {
3014
            *ppe = pe->next;
3015
            qemu_free(pe);
3016
            break;
3017
        }
3018
    }
3019
}
3020

    
3021
/***********************************************************/
3022
/* Wait objects support */
3023
typedef struct WaitObjects {
3024
    int num;
3025
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028
} WaitObjects;
3029

    
3030
static WaitObjects wait_objects = {0};
3031

    
3032
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033
{
3034
    WaitObjects *w = &wait_objects;
3035

    
3036
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037
        return -1;
3038
    w->events[w->num] = handle;
3039
    w->func[w->num] = func;
3040
    w->opaque[w->num] = opaque;
3041
    w->num++;
3042
    return 0;
3043
}
3044

    
3045
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3046
{
3047
    int i, found;
3048
    WaitObjects *w = &wait_objects;
3049

    
3050
    found = 0;
3051
    for (i = 0; i < w->num; i++) {
3052
        if (w->events[i] == handle)
3053
            found = 1;
3054
        if (found) {
3055
            w->events[i] = w->events[i + 1];
3056
            w->func[i] = w->func[i + 1];
3057
            w->opaque[i] = w->opaque[i + 1];
3058
        }
3059
    }
3060
    if (found)
3061
        w->num--;
3062
}
3063
#endif
3064

    
3065
/***********************************************************/
3066
/* ram save/restore */
3067

    
3068
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3069
{
3070
    int v;
3071

    
3072
    v = qemu_get_byte(f);
3073
    switch(v) {
3074
    case 0:
3075
        if (qemu_get_buffer(f, buf, len) != len)
3076
            return -EIO;
3077
        break;
3078
    case 1:
3079
        v = qemu_get_byte(f);
3080
        memset(buf, v, len);
3081
        break;
3082
    default:
3083
        return -EINVAL;
3084
    }
3085

    
3086
    if (qemu_file_has_error(f))
3087
        return -EIO;
3088

    
3089
    return 0;
3090
}
3091

    
3092
static int ram_load_v1(QEMUFile *f, void *opaque)
3093
{
3094
    int ret;
3095
    ram_addr_t i;
3096

    
3097
    if (qemu_get_be32(f) != last_ram_offset)
3098
        return -EINVAL;
3099
    for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3100
        ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3101
        if (ret)
3102
            return ret;
3103
    }
3104
    return 0;
3105
}
3106

    
3107
#define BDRV_HASH_BLOCK_SIZE 1024
3108
#define IOBUF_SIZE 4096
3109
#define RAM_CBLOCK_MAGIC 0xfabe
3110

    
3111
typedef struct RamDecompressState {
3112
    z_stream zstream;
3113
    QEMUFile *f;
3114
    uint8_t buf[IOBUF_SIZE];
3115
} RamDecompressState;
3116

    
3117
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3118
{
3119
    int ret;
3120
    memset(s, 0, sizeof(*s));
3121
    s->f = f;
3122
    ret = inflateInit(&s->zstream);
3123
    if (ret != Z_OK)
3124
        return -1;
3125
    return 0;
3126
}
3127

    
3128
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3129
{
3130
    int ret, clen;
3131

    
3132
    s->zstream.avail_out = len;
3133
    s->zstream.next_out = buf;
3134
    while (s->zstream.avail_out > 0) {
3135
        if (s->zstream.avail_in == 0) {
3136
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137
                return -1;
3138
            clen = qemu_get_be16(s->f);
3139
            if (clen > IOBUF_SIZE)
3140
                return -1;
3141
            qemu_get_buffer(s->f, s->buf, clen);
3142
            s->zstream.avail_in = clen;
3143
            s->zstream.next_in = s->buf;
3144
        }
3145
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146
        if (ret != Z_OK && ret != Z_STREAM_END) {
3147
            return -1;
3148
        }
3149
    }
3150
    return 0;
3151
}
3152

    
3153
static void ram_decompress_close(RamDecompressState *s)
3154
{
3155
    inflateEnd(&s->zstream);
3156
}
3157

    
3158
#define RAM_SAVE_FLAG_FULL        0x01
3159
#define RAM_SAVE_FLAG_COMPRESS        0x02
3160
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3161
#define RAM_SAVE_FLAG_PAGE        0x08
3162
#define RAM_SAVE_FLAG_EOS        0x10
3163

    
3164
static int is_dup_page(uint8_t *page, uint8_t ch)
3165
{
3166
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167
    uint32_t *array = (uint32_t *)page;
3168
    int i;
3169

    
3170
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171
        if (array[i] != val)
3172
            return 0;
3173
    }
3174

    
3175
    return 1;
3176
}
3177

    
3178
static int ram_save_block(QEMUFile *f)
3179
{
3180
    static ram_addr_t current_addr = 0;
3181
    ram_addr_t saved_addr = current_addr;
3182
    ram_addr_t addr = 0;
3183
    int found = 0;
3184

    
3185
    while (addr < last_ram_offset) {
3186
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187
            uint8_t *p;
3188

    
3189
            cpu_physical_memory_reset_dirty(current_addr,
3190
                                            current_addr + TARGET_PAGE_SIZE,
3191
                                            MIGRATION_DIRTY_FLAG);
3192

    
3193
            p = qemu_get_ram_ptr(current_addr);
3194

    
3195
            if (is_dup_page(p, *p)) {
3196
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197
                qemu_put_byte(f, *p);
3198
            } else {
3199
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200
                qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3201
            }
3202

    
3203
            found = 1;
3204
            break;
3205
        }
3206
        addr += TARGET_PAGE_SIZE;
3207
        current_addr = (saved_addr + addr) % last_ram_offset;
3208
    }
3209

    
3210
    return found;
3211
}
3212

    
3213
static ram_addr_t ram_save_threshold = 10;
3214

    
3215
static ram_addr_t ram_save_remaining(void)
3216
{
3217
    ram_addr_t addr;
3218
    ram_addr_t count = 0;
3219

    
3220
    for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3221
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222
            count++;
3223
    }
3224

    
3225
    return count;
3226
}
3227

    
3228
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3229
{
3230
    ram_addr_t addr;
3231

    
3232
    if (stage == 1) {
3233
        /* Make sure all dirty bits are set */
3234
        for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3235
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236
                cpu_physical_memory_set_dirty(addr);
3237
        }
3238
        
3239
        /* Enable dirty memory tracking */
3240
        cpu_physical_memory_set_dirty_tracking(1);
3241

    
3242
        qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3243
    }
3244

    
3245
    while (!qemu_file_rate_limit(f)) {
3246
        int ret;
3247

    
3248
        ret = ram_save_block(f);
3249
        if (ret == 0) /* no more blocks */
3250
            break;
3251
    }
3252

    
3253
    /* try transferring iterative blocks of memory */
3254

    
3255
    if (stage == 3) {
3256

    
3257
        /* flush all remaining blocks regardless of rate limiting */
3258
        while (ram_save_block(f) != 0);
3259
        cpu_physical_memory_set_dirty_tracking(0);
3260
    }
3261

    
3262
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3263

    
3264
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3265
}
3266

    
3267
static int ram_load_dead(QEMUFile *f, void *opaque)
3268
{
3269
    RamDecompressState s1, *s = &s1;
3270
    uint8_t buf[10];
3271
    ram_addr_t i;
3272

    
3273
    if (ram_decompress_open(s, f) < 0)
3274
        return -EINVAL;
3275
    for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3276
        if (ram_decompress_buf(s, buf, 1) < 0) {
3277
            fprintf(stderr, "Error while reading ram block header\n");
3278
            goto error;
3279
        }
3280
        if (buf[0] == 0) {
3281
            if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3282
                                   BDRV_HASH_BLOCK_SIZE) < 0) {
3283
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3284
                goto error;
3285
            }
3286
        } else {
3287
        error:
3288
            printf("Error block header\n");
3289
            return -EINVAL;
3290
        }
3291
    }
3292
    ram_decompress_close(s);
3293

    
3294
    return 0;
3295
}
3296

    
3297
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3298
{
3299
    ram_addr_t addr;
3300
    int flags;
3301

    
3302
    if (version_id == 1)
3303
        return ram_load_v1(f, opaque);
3304

    
3305
    if (version_id == 2) {
3306
        if (qemu_get_be32(f) != last_ram_offset)
3307
            return -EINVAL;
3308
        return ram_load_dead(f, opaque);
3309
    }
3310

    
3311
    if (version_id != 3)
3312
        return -EINVAL;
3313

    
3314
    do {
3315
        addr = qemu_get_be64(f);
3316

    
3317
        flags = addr & ~TARGET_PAGE_MASK;
3318
        addr &= TARGET_PAGE_MASK;
3319

    
3320
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3321
            if (addr != last_ram_offset)
3322
                return -EINVAL;
3323
        }
3324

    
3325
        if (flags & RAM_SAVE_FLAG_FULL) {
3326
            if (ram_load_dead(f, opaque) < 0)
3327
                return -EINVAL;
3328
        }
3329
        
3330
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3331
            uint8_t ch = qemu_get_byte(f);
3332
            memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3333
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3334
            qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3335
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3336

    
3337
    return 0;
3338
}
3339

    
3340
void qemu_service_io(void)
3341
{
3342
    qemu_notify_event();
3343
}
3344

    
3345
/***********************************************************/
3346
/* bottom halves (can be seen as timers which expire ASAP) */
3347

    
3348
struct QEMUBH {
3349
    QEMUBHFunc *cb;
3350
    void *opaque;
3351
    int scheduled;
3352
    int idle;
3353
    int deleted;
3354
    QEMUBH *next;
3355
};
3356

    
3357
static QEMUBH *first_bh = NULL;
3358

    
3359
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3360
{
3361
    QEMUBH *bh;
3362
    bh = qemu_mallocz(sizeof(QEMUBH));
3363
    bh->cb = cb;
3364
    bh->opaque = opaque;
3365
    bh->next = first_bh;
3366
    first_bh = bh;
3367
    return bh;
3368
}
3369

    
3370
int qemu_bh_poll(void)
3371
{
3372
    QEMUBH *bh, **bhp;
3373
    int ret;
3374

    
3375
    ret = 0;
3376
    for (bh = first_bh; bh; bh = bh->next) {
3377
        if (!bh->deleted && bh->scheduled) {
3378
            bh->scheduled = 0;
3379
            if (!bh->idle)
3380
                ret = 1;
3381
            bh->idle = 0;
3382
            bh->cb(bh->opaque);
3383
        }
3384
    }
3385

    
3386
    /* remove deleted bhs */
3387
    bhp = &first_bh;
3388
    while (*bhp) {
3389
        bh = *bhp;
3390
        if (bh->deleted) {
3391
            *bhp = bh->next;
3392
            qemu_free(bh);
3393
        } else
3394
            bhp = &bh->next;
3395
    }
3396

    
3397
    return ret;
3398
}
3399

    
3400
void qemu_bh_schedule_idle(QEMUBH *bh)
3401
{
3402
    if (bh->scheduled)
3403
        return;
3404
    bh->scheduled = 1;
3405
    bh->idle = 1;
3406
}
3407

    
3408
void qemu_bh_schedule(QEMUBH *bh)
3409
{
3410
    if (bh->scheduled)
3411
        return;
3412
    bh->scheduled = 1;
3413
    bh->idle = 0;
3414
    /* stop the currently executing CPU to execute the BH ASAP */
3415
    qemu_notify_event();
3416
}
3417

    
3418
void qemu_bh_cancel(QEMUBH *bh)
3419
{
3420
    bh->scheduled = 0;
3421
}
3422

    
3423
void qemu_bh_delete(QEMUBH *bh)
3424
{
3425
    bh->scheduled = 0;
3426
    bh->deleted = 1;
3427
}
3428

    
3429
static void qemu_bh_update_timeout(int *timeout)
3430
{
3431
    QEMUBH *bh;
3432

    
3433
    for (bh = first_bh; bh; bh = bh->next) {
3434
        if (!bh->deleted && bh->scheduled) {
3435
            if (bh->idle) {
3436
                /* idle bottom halves will be polled at least
3437
                 * every 10ms */
3438
                *timeout = MIN(10, *timeout);
3439
            } else {
3440
                /* non-idle bottom halves will be executed
3441
                 * immediately */
3442
                *timeout = 0;
3443
                break;
3444
            }
3445
        }
3446
    }
3447
}
3448

    
3449
/***********************************************************/
3450
/* machine registration */
3451

    
3452
static QEMUMachine *first_machine = NULL;
3453
QEMUMachine *current_machine = NULL;
3454

    
3455
int qemu_register_machine(QEMUMachine *m)
3456
{
3457
    QEMUMachine **pm;
3458
    pm = &first_machine;
3459
    while (*pm != NULL)
3460
        pm = &(*pm)->next;
3461
    m->next = NULL;
3462
    *pm = m;
3463
    return 0;
3464
}
3465

    
3466
static QEMUMachine *find_machine(const char *name)
3467
{
3468
    QEMUMachine *m;
3469

    
3470
    for(m = first_machine; m != NULL; m = m->next) {
3471
        if (!strcmp(m->name, name))
3472
            return m;
3473
    }
3474
    return NULL;
3475
}
3476

    
3477
/***********************************************************/
3478
/* main execution loop */
3479

    
3480
static void gui_update(void *opaque)
3481
{
3482
    uint64_t interval = GUI_REFRESH_INTERVAL;
3483
    DisplayState *ds = opaque;
3484
    DisplayChangeListener *dcl = ds->listeners;
3485

    
3486
    dpy_refresh(ds);
3487

    
3488
    while (dcl != NULL) {
3489
        if (dcl->gui_timer_interval &&
3490
            dcl->gui_timer_interval < interval)
3491
            interval = dcl->gui_timer_interval;
3492
        dcl = dcl->next;
3493
    }
3494
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3495
}
3496

    
3497
static void nographic_update(void *opaque)
3498
{
3499
    uint64_t interval = GUI_REFRESH_INTERVAL;
3500

    
3501
    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3502
}
3503

    
3504
struct vm_change_state_entry {
3505
    VMChangeStateHandler *cb;
3506
    void *opaque;
3507
    LIST_ENTRY (vm_change_state_entry) entries;
3508
};
3509

    
3510
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3511

    
3512
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3513
                                                     void *opaque)
3514
{
3515
    VMChangeStateEntry *e;
3516

    
3517
    e = qemu_mallocz(sizeof (*e));
3518

    
3519
    e->cb = cb;
3520
    e->opaque = opaque;
3521
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3522
    return e;
3523
}
3524

    
3525
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3526
{
3527
    LIST_REMOVE (e, entries);
3528
    qemu_free (e);
3529
}
3530

    
3531
static void vm_state_notify(int running, int reason)
3532
{
3533
    VMChangeStateEntry *e;
3534

    
3535
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3536
        e->cb(e->opaque, running, reason);
3537
    }
3538
}
3539

    
3540
void vm_start(void)
3541
{
3542
    if (!vm_running) {
3543
        cpu_enable_ticks();
3544
        vm_running = 1;
3545
        vm_state_notify(1, 0);
3546
        qemu_rearm_alarm_timer(alarm_timer);
3547
    }
3548
}
3549

    
3550
void vm_stop(int reason)
3551
{
3552
    if (vm_running) {
3553
        cpu_disable_ticks();
3554
        vm_running = 0;
3555
        vm_state_notify(0, reason);
3556
    }
3557
}
3558

    
3559
/* reset/shutdown handler */
3560

    
3561
typedef struct QEMUResetEntry {
3562
    QEMUResetHandler *func;
3563
    void *opaque;
3564
    struct QEMUResetEntry *next;
3565
} QEMUResetEntry;
3566

    
3567
static QEMUResetEntry *first_reset_entry;
3568
static int reset_requested;
3569
static int shutdown_requested;
3570
static int powerdown_requested;
3571

    
3572
int qemu_shutdown_requested(void)
3573
{
3574
    int r = shutdown_requested;
3575
    shutdown_requested = 0;
3576
    return r;
3577
}
3578

    
3579
int qemu_reset_requested(void)
3580
{
3581
    int r = reset_requested;
3582
    reset_requested = 0;
3583
    return r;
3584
}
3585

    
3586
int qemu_powerdown_requested(void)
3587
{
3588
    int r = powerdown_requested;
3589
    powerdown_requested = 0;
3590
    return r;
3591
}
3592

    
3593
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3594
{
3595
    QEMUResetEntry **pre, *re;
3596

    
3597
    pre = &first_reset_entry;
3598
    while (*pre != NULL)
3599
        pre = &(*pre)->next;
3600
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3601
    re->func = func;
3602
    re->opaque = opaque;
3603
    re->next = NULL;
3604
    *pre = re;
3605
}
3606

    
3607
void qemu_system_reset(void)
3608
{
3609
    QEMUResetEntry *re;
3610

    
3611
    /* reset all devices */
3612
    for(re = first_reset_entry; re != NULL; re = re->next) {
3613
        re->func(re->opaque);
3614
    }
3615
    if (kvm_enabled())
3616
        kvm_sync_vcpus();
3617
}
3618

    
3619
void qemu_system_reset_request(void)
3620
{
3621
    if (no_reboot) {
3622
        shutdown_requested = 1;
3623
    } else {
3624
        reset_requested = 1;
3625
    }
3626
    qemu_notify_event();
3627
}
3628

    
3629
void qemu_system_shutdown_request(void)
3630
{
3631
    shutdown_requested = 1;
3632
    qemu_notify_event();
3633
}
3634

    
3635
void qemu_system_powerdown_request(void)
3636
{
3637
    powerdown_requested = 1;
3638
    qemu_notify_event();
3639
}
3640

    
3641
void qemu_notify_event(void)
3642
{
3643
    CPUState *env = cpu_single_env;
3644

    
3645
    if (env) {
3646
        cpu_exit(env);
3647
#ifdef USE_KQEMU
3648
        if (env->kqemu_enabled)
3649
            kqemu_cpu_interrupt(env);
3650
#endif
3651
     }
3652
}
3653

    
3654
#ifndef _WIN32
3655
static int io_thread_fd = -1;
3656

    
3657
static void qemu_event_increment(void)
3658
{
3659
    static const char byte = 0;
3660

    
3661
    if (io_thread_fd == -1)
3662
        return;
3663

    
3664
    write(io_thread_fd, &byte, sizeof(byte));
3665
}
3666

    
3667
static void qemu_event_read(void *opaque)
3668
{
3669
    int fd = (unsigned long)opaque;
3670
    ssize_t len;
3671

    
3672
    /* Drain the notify pipe */
3673
    do {
3674
        char buffer[512];
3675
        len = read(fd, buffer, sizeof(buffer));
3676
    } while ((len == -1 && errno == EINTR) || len > 0);
3677
}
3678

    
3679
static int qemu_event_init(void)
3680
{
3681
    int err;
3682
    int fds[2];
3683

    
3684
    err = pipe(fds);
3685
    if (err == -1)
3686
        return -errno;
3687

    
3688
    err = fcntl_setfl(fds[0], O_NONBLOCK);
3689
    if (err < 0)
3690
        goto fail;
3691

    
3692
    err = fcntl_setfl(fds[1], O_NONBLOCK);
3693
    if (err < 0)
3694
        goto fail;
3695

    
3696
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3697
                         (void *)(unsigned long)fds[0]);
3698

    
3699
    io_thread_fd = fds[1];
3700
fail:
3701
    close(fds[0]);
3702
    close(fds[1]);
3703
    return err;
3704
}
3705
#else
3706
HANDLE qemu_event_handle;
3707

    
3708
static void dummy_event_handler(void *opaque)
3709
{
3710
}
3711

    
3712
static int qemu_event_init(void)
3713
{
3714
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3715
    if (!qemu_event_handle) {
3716
        perror("Failed CreateEvent");
3717
        return -1;
3718
    }
3719
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3720
    return 0;
3721
}
3722

    
3723
static void qemu_event_increment(void)
3724
{
3725
    SetEvent(qemu_event_handle);
3726
}
3727
#endif
3728

    
3729
static int qemu_init_main_loop(void)
3730
{
3731
    return qemu_event_init();
3732
}
3733

    
3734
void qemu_init_vcpu(void *_env)
3735
{
3736
    CPUState *env = _env;
3737

    
3738
    if (kvm_enabled())
3739
        kvm_init_vcpu(env);
3740
    return;
3741
}
3742

    
3743
int qemu_cpu_self(void *env)
3744
{
3745
    return 1;
3746
}
3747

    
3748
void qemu_cpu_kick(void *env)
3749
{
3750
    return;
3751
}
3752

    
3753
#define qemu_mutex_lock_iothread() do { } while (0)
3754
#define qemu_mutex_unlock_iothread() do { } while (0)
3755

    
3756
#ifdef _WIN32
3757
static void host_main_loop_wait(int *timeout)
3758
{
3759
    int ret, ret2, i;
3760
    PollingEntry *pe;
3761

    
3762

    
3763
    /* XXX: need to suppress polling by better using win32 events */
3764
    ret = 0;
3765
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3766
        ret |= pe->func(pe->opaque);
3767
    }
3768
    if (ret == 0) {
3769
        int err;
3770
        WaitObjects *w = &wait_objects;
3771

    
3772
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3773
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3774
            if (w->func[ret - WAIT_OBJECT_0])
3775
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3776

    
3777
            /* Check for additional signaled events */
3778
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3779

    
3780
                /* Check if event is signaled */
3781
                ret2 = WaitForSingleObject(w->events[i], 0);
3782
                if(ret2 == WAIT_OBJECT_0) {
3783
                    if (w->func[i])
3784
                        w->func[i](w->opaque[i]);
3785
                } else if (ret2 == WAIT_TIMEOUT) {
3786
                } else {
3787
                    err = GetLastError();
3788
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3789
                }
3790
            }
3791
        } else if (ret == WAIT_TIMEOUT) {
3792
        } else {
3793
            err = GetLastError();
3794
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3795
        }
3796
    }
3797

    
3798
    *timeout = 0;
3799
}
3800
#else
3801
static void host_main_loop_wait(int *timeout)
3802
{
3803
}
3804
#endif
3805

    
3806
void main_loop_wait(int timeout)
3807
{
3808
    IOHandlerRecord *ioh;
3809
    fd_set rfds, wfds, xfds;
3810
    int ret, nfds;
3811
    struct timeval tv;
3812

    
3813
    qemu_bh_update_timeout(&timeout);
3814

    
3815
    host_main_loop_wait(&timeout);
3816

    
3817
    /* poll any events */
3818
    /* XXX: separate device handlers from system ones */
3819
    nfds = -1;
3820
    FD_ZERO(&rfds);
3821
    FD_ZERO(&wfds);
3822
    FD_ZERO(&xfds);
3823
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3824
        if (ioh->deleted)
3825
            continue;
3826
        if (ioh->fd_read &&
3827
            (!ioh->fd_read_poll ||
3828
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3829
            FD_SET(ioh->fd, &rfds);
3830
            if (ioh->fd > nfds)
3831
                nfds = ioh->fd;
3832
        }
3833
        if (ioh->fd_write) {
3834
            FD_SET(ioh->fd, &wfds);
3835
            if (ioh->fd > nfds)
3836
                nfds = ioh->fd;
3837
        }
3838
    }
3839

    
3840
    tv.tv_sec = timeout / 1000;
3841
    tv.tv_usec = (timeout % 1000) * 1000;
3842

    
3843
#if defined(CONFIG_SLIRP)
3844
    if (slirp_is_inited()) {
3845
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3846
    }
3847
#endif
3848
    qemu_mutex_unlock_iothread();
3849
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3850
    qemu_mutex_lock_iothread();
3851
    if (ret > 0) {
3852
        IOHandlerRecord **pioh;
3853

    
3854
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3855
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3856
                ioh->fd_read(ioh->opaque);
3857
            }
3858
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3859
                ioh->fd_write(ioh->opaque);
3860
            }
3861
        }
3862

    
3863
        /* remove deleted IO handlers */
3864
        pioh = &first_io_handler;
3865
        while (*pioh) {
3866
            ioh = *pioh;
3867
            if (ioh->deleted) {
3868
                *pioh = ioh->next;
3869
                qemu_free(ioh);
3870
            } else
3871
                pioh = &ioh->next;
3872
        }
3873
    }
3874
#if defined(CONFIG_SLIRP)
3875
    if (slirp_is_inited()) {
3876
        if (ret < 0) {
3877
            FD_ZERO(&rfds);
3878
            FD_ZERO(&wfds);
3879
            FD_ZERO(&xfds);
3880
        }
3881
        slirp_select_poll(&rfds, &wfds, &xfds);
3882
    }
3883
#endif
3884

    
3885
    /* rearm timer, if not periodic */
3886
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3887
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3888
        qemu_rearm_alarm_timer(alarm_timer);
3889
    }
3890

    
3891
    /* vm time timers */
3892
    if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3893
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3894
                        qemu_get_clock(vm_clock));
3895

    
3896
    /* real time timers */
3897
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3898
                    qemu_get_clock(rt_clock));
3899

    
3900
    /* Check bottom-halves last in case any of the earlier events triggered
3901
       them.  */
3902
    qemu_bh_poll();
3903

    
3904
}
3905

    
3906
static int qemu_cpu_exec(CPUState *env)
3907
{
3908
    int ret;
3909
#ifdef CONFIG_PROFILER
3910
    int64_t ti;
3911
#endif
3912

    
3913
#ifdef CONFIG_PROFILER
3914
    ti = profile_getclock();
3915
#endif
3916
    if (use_icount) {
3917
        int64_t count;
3918
        int decr;
3919
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3920
        env->icount_decr.u16.low = 0;
3921
        env->icount_extra = 0;
3922
        count = qemu_next_deadline();
3923
        count = (count + (1 << icount_time_shift) - 1)
3924
                >> icount_time_shift;
3925
        qemu_icount += count;
3926
        decr = (count > 0xffff) ? 0xffff : count;
3927
        count -= decr;
3928
        env->icount_decr.u16.low = decr;
3929
        env->icount_extra = count;
3930
    }
3931
    ret = cpu_exec(env);
3932
#ifdef CONFIG_PROFILER
3933
    qemu_time += profile_getclock() - ti;
3934
#endif
3935
    if (use_icount) {
3936
        /* Fold pending instructions back into the
3937
           instruction counter, and clear the interrupt flag.  */
3938
        qemu_icount -= (env->icount_decr.u16.low
3939
                        + env->icount_extra);
3940
        env->icount_decr.u32 = 0;
3941
        env->icount_extra = 0;
3942
    }
3943
    return ret;
3944
}
3945

    
3946
static int cpu_has_work(CPUState *env)
3947
{
3948
    if (!env->halted)
3949
        return 1;
3950
    if (qemu_cpu_has_work(env))
3951
        return 1;
3952
    return 0;
3953
}
3954

    
3955
static int tcg_has_work(void)
3956
{
3957
    CPUState *env;
3958

    
3959
    for (env = first_cpu; env != NULL; env = env->next_cpu)
3960
        if (cpu_has_work(env))
3961
            return 1;
3962
    return 0;
3963
}
3964

    
3965
static int qemu_calculate_timeout(void)
3966
{
3967
    int timeout;
3968

    
3969
    if (!vm_running)
3970
        timeout = 5000;
3971
    else if (tcg_has_work())
3972
        timeout = 0;
3973
    else if (!use_icount)
3974
        timeout = 5000;
3975
    else {
3976
     /* XXX: use timeout computed from timers */
3977
        int64_t add;
3978
        int64_t delta;
3979
        /* Advance virtual time to the next event.  */
3980
        if (use_icount == 1) {
3981
            /* When not using an adaptive execution frequency
3982
               we tend to get badly out of sync with real time,
3983
               so just delay for a reasonable amount of time.  */
3984
            delta = 0;
3985
        } else {
3986
            delta = cpu_get_icount() - cpu_get_clock();
3987
        }
3988
        if (delta > 0) {
3989
            /* If virtual time is ahead of real time then just
3990
               wait for IO.  */
3991
            timeout = (delta / 1000000) + 1;
3992
        } else {
3993
            /* Wait for either IO to occur or the next
3994
               timer event.  */
3995
            add = qemu_next_deadline();
3996
            /* We advance the timer before checking for IO.
3997
               Limit the amount we advance so that early IO
3998
               activity won't get the guest too far ahead.  */
3999
            if (add > 10000000)
4000
                add = 10000000;
4001
            delta += add;
4002
            add = (add + (1 << icount_time_shift) - 1)
4003
                  >> icount_time_shift;
4004
            qemu_icount += add;
4005
            timeout = delta / 1000000;
4006
            if (timeout < 0)
4007
                timeout = 0;
4008
        }
4009
    }
4010

    
4011
    return timeout;
4012
}
4013

    
4014
static int vm_can_run(void)
4015
{
4016
    if (powerdown_requested)
4017
        return 0;
4018
    if (reset_requested)
4019
        return 0;
4020
    if (shutdown_requested)
4021
        return 0;
4022
    return 1;
4023
}
4024

    
4025
static void main_loop(void)
4026
{
4027
    int ret = 0;
4028
#ifdef CONFIG_PROFILER
4029
    int64_t ti;
4030
#endif
4031

    
4032
    for (;;) {
4033
        do {
4034
            if (next_cpu == NULL)
4035
                next_cpu = first_cpu;
4036
            for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4037
                CPUState *env = cur_cpu = next_cpu;
4038

    
4039
                if (!vm_running)
4040
                    break;
4041
                if (timer_alarm_pending) {
4042
                    timer_alarm_pending = 0;
4043
                    break;
4044
                }
4045
                ret = qemu_cpu_exec(env);
4046
                if (ret == EXCP_DEBUG) {
4047
                    gdb_set_stop_cpu(env);
4048
                    break;
4049
                }
4050
            }
4051
#ifdef CONFIG_PROFILER
4052
            ti = profile_getclock();
4053
#endif
4054
            main_loop_wait(qemu_calculate_timeout());
4055
#ifdef CONFIG_PROFILER
4056
            dev_time += profile_getclock() - ti;
4057
#endif
4058
        } while (ret != EXCP_DEBUG && vm_can_run());
4059

    
4060
        if (ret == EXCP_DEBUG)
4061
            vm_stop(EXCP_DEBUG);
4062

    
4063
        if (qemu_shutdown_requested()) {
4064
            if (no_shutdown) {
4065
                vm_stop(0);
4066
                no_shutdown = 0;
4067
            } else
4068
                break;
4069
        }
4070
        if (qemu_reset_requested())
4071
            qemu_system_reset();
4072
        if (qemu_powerdown_requested())
4073
            qemu_system_powerdown();
4074
    }
4075
}
4076

    
4077
static void version(void)
4078
{
4079
    printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4080
}
4081

    
4082
static void help(int exitcode)
4083
{
4084
    version();
4085
    printf("usage: %s [options] [disk_image]\n"
4086
           "\n"
4087
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4088
           "\n"
4089
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4090
           opt_help
4091
#define DEFHEADING(text) stringify(text) "\n"
4092
#include "qemu-options.h"
4093
#undef DEF
4094
#undef DEFHEADING
4095
#undef GEN_DOCS
4096
           "\n"
4097
           "During emulation, the following keys are useful:\n"
4098
           "ctrl-alt-f      toggle full screen\n"
4099
           "ctrl-alt-n      switch to virtual console 'n'\n"
4100
           "ctrl-alt        toggle mouse and keyboard grab\n"
4101
           "\n"
4102
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
4103
           ,
4104
           "qemu",
4105
           DEFAULT_RAM_SIZE,
4106
#ifndef _WIN32
4107
           DEFAULT_NETWORK_SCRIPT,
4108
           DEFAULT_NETWORK_DOWN_SCRIPT,
4109
#endif
4110
           DEFAULT_GDBSTUB_PORT,
4111
           "/tmp/qemu.log");
4112
    exit(exitcode);
4113
}
4114

    
4115
#define HAS_ARG 0x0001
4116

    
4117
enum {
4118
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4119
    opt_enum,
4120
#define DEFHEADING(text)
4121
#include "qemu-options.h"
4122
#undef DEF
4123
#undef DEFHEADING
4124
#undef GEN_DOCS
4125
};
4126

    
4127
typedef struct QEMUOption {
4128
    const char *name;
4129
    int flags;
4130
    int index;
4131
} QEMUOption;
4132

    
4133
static const QEMUOption qemu_options[] = {
4134
    { "h", 0, QEMU_OPTION_h },
4135
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4136
    { option, opt_arg, opt_enum },
4137
#define DEFHEADING(text)
4138
#include "qemu-options.h"
4139
#undef DEF
4140
#undef DEFHEADING
4141
#undef GEN_DOCS
4142
    { NULL },
4143
};
4144

    
4145
#ifdef HAS_AUDIO
4146
struct soundhw soundhw[] = {
4147
#ifdef HAS_AUDIO_CHOICE
4148
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4149
    {
4150
        "pcspk",
4151
        "PC speaker",
4152
        0,
4153
        1,
4154
        { .init_isa = pcspk_audio_init }
4155
    },
4156
#endif
4157

    
4158
#ifdef CONFIG_SB16
4159
    {
4160
        "sb16",
4161
        "Creative Sound Blaster 16",
4162
        0,
4163
        1,
4164
        { .init_isa = SB16_init }
4165
    },
4166
#endif
4167

    
4168
#ifdef CONFIG_CS4231A
4169
    {
4170
        "cs4231a",
4171
        "CS4231A",
4172
        0,
4173
        1,
4174
        { .init_isa = cs4231a_init }
4175
    },
4176
#endif
4177

    
4178
#ifdef CONFIG_ADLIB
4179
    {
4180
        "adlib",
4181
#ifdef HAS_YMF262
4182
        "Yamaha YMF262 (OPL3)",
4183
#else
4184
        "Yamaha YM3812 (OPL2)",
4185
#endif
4186
        0,
4187
        1,
4188
        { .init_isa = Adlib_init }
4189
    },
4190
#endif
4191

    
4192
#ifdef CONFIG_GUS
4193
    {
4194
        "gus",
4195
        "Gravis Ultrasound GF1",
4196
        0,
4197
        1,
4198
        { .init_isa = GUS_init }
4199
    },
4200
#endif
4201

    
4202
#ifdef CONFIG_AC97
4203
    {
4204
        "ac97",
4205
        "Intel 82801AA AC97 Audio",
4206
        0,
4207
        0,
4208
        { .init_pci = ac97_init }
4209
    },
4210
#endif
4211

    
4212
#ifdef CONFIG_ES1370
4213
    {
4214
        "es1370",
4215
        "ENSONIQ AudioPCI ES1370",
4216
        0,
4217
        0,
4218
        { .init_pci = es1370_init }
4219
    },
4220
#endif
4221

    
4222
#endif /* HAS_AUDIO_CHOICE */
4223

    
4224
    { NULL, NULL, 0, 0, { NULL } }
4225
};
4226

    
4227
static void select_soundhw (const char *optarg)
4228
{
4229
    struct soundhw *c;
4230

    
4231
    if (*optarg == '?') {
4232
    show_valid_cards:
4233

    
4234
        printf ("Valid sound card names (comma separated):\n");
4235
        for (c = soundhw; c->name; ++c) {
4236
            printf ("%-11s %s\n", c->name, c->descr);
4237
        }
4238
        printf ("\n-soundhw all will enable all of the above\n");
4239
        exit (*optarg != '?');
4240
    }
4241
    else {
4242
        size_t l;
4243
        const char *p;
4244
        char *e;
4245
        int bad_card = 0;
4246

    
4247
        if (!strcmp (optarg, "all")) {
4248
            for (c = soundhw; c->name; ++c) {
4249
                c->enabled = 1;
4250
            }
4251
            return;
4252
        }
4253

    
4254
        p = optarg;
4255
        while (*p) {
4256
            e = strchr (p, ',');
4257
            l = !e ? strlen (p) : (size_t) (e - p);
4258

    
4259
            for (c = soundhw; c->name; ++c) {
4260
                if (!strncmp (c->name, p, l)) {
4261
                    c->enabled = 1;
4262
                    break;
4263
                }
4264
            }
4265

    
4266
            if (!c->name) {
4267
                if (l > 80) {
4268
                    fprintf (stderr,
4269
                             "Unknown sound card name (too big to show)\n");
4270
                }
4271
                else {
4272
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4273
                             (int) l, p);
4274
                }
4275
                bad_card = 1;
4276
            }
4277
            p += l + (e != NULL);
4278
        }
4279

    
4280
        if (bad_card)
4281
            goto show_valid_cards;
4282
    }
4283
}
4284
#endif
4285

    
4286
static void select_vgahw (const char *p)
4287
{
4288
    const char *opts;
4289

    
4290
    cirrus_vga_enabled = 0;
4291
    std_vga_enabled = 0;
4292
    vmsvga_enabled = 0;
4293
    xenfb_enabled = 0;
4294
    if (strstart(p, "std", &opts)) {
4295
        std_vga_enabled = 1;
4296
    } else if (strstart(p, "cirrus", &opts)) {
4297
        cirrus_vga_enabled = 1;
4298
    } else if (strstart(p, "vmware", &opts)) {
4299
        vmsvga_enabled = 1;
4300
    } else if (strstart(p, "xenfb", &opts)) {
4301
        xenfb_enabled = 1;
4302
    } else if (!strstart(p, "none", &opts)) {
4303
    invalid_vga:
4304
        fprintf(stderr, "Unknown vga type: %s\n", p);
4305
        exit(1);
4306
    }
4307
    while (*opts) {
4308
        const char *nextopt;
4309

    
4310
        if (strstart(opts, ",retrace=", &nextopt)) {
4311
            opts = nextopt;
4312
            if (strstart(opts, "dumb", &nextopt))
4313
                vga_retrace_method = VGA_RETRACE_DUMB;
4314
            else if (strstart(opts, "precise", &nextopt))
4315
                vga_retrace_method = VGA_RETRACE_PRECISE;
4316
            else goto invalid_vga;
4317
        } else goto invalid_vga;
4318
        opts = nextopt;
4319
    }
4320
}
4321

    
4322
#ifdef _WIN32
4323
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4324
{
4325
    exit(STATUS_CONTROL_C_EXIT);
4326
    return TRUE;
4327
}
4328
#endif
4329

    
4330
int qemu_uuid_parse(const char *str, uint8_t *uuid)
4331
{
4332
    int ret;
4333

    
4334
    if(strlen(str) != 36)
4335
        return -1;
4336

    
4337
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4338
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4339
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4340

    
4341
    if(ret != 16)
4342
        return -1;
4343

    
4344
#ifdef TARGET_I386
4345
    smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4346
#endif
4347

    
4348
    return 0;
4349
}
4350

    
4351
#define MAX_NET_CLIENTS 32
4352

    
4353
#ifndef _WIN32
4354

    
4355
static void termsig_handler(int signal)
4356
{
4357
    qemu_system_shutdown_request();
4358
}
4359

    
4360
static void termsig_setup(void)
4361
{
4362
    struct sigaction act;
4363

    
4364
    memset(&act, 0, sizeof(act));
4365
    act.sa_handler = termsig_handler;
4366
    sigaction(SIGINT,  &act, NULL);
4367
    sigaction(SIGHUP,  &act, NULL);
4368
    sigaction(SIGTERM, &act, NULL);
4369
}
4370

    
4371
#endif
4372

    
4373
int main(int argc, char **argv, char **envp)
4374
{
4375
#ifdef CONFIG_GDBSTUB
4376
    const char *gdbstub_dev = NULL;
4377
#endif
4378
    uint32_t boot_devices_bitmap = 0;
4379
    int i;
4380
    int snapshot, linux_boot, net_boot;
4381
    const char *initrd_filename;
4382
    const char *kernel_filename, *kernel_cmdline;
4383
    const char *boot_devices = "";
4384
    DisplayState *ds;
4385
    DisplayChangeListener *dcl;
4386
    int cyls, heads, secs, translation;
4387
    const char *net_clients[MAX_NET_CLIENTS];
4388
    int nb_net_clients;
4389
    const char *bt_opts[MAX_BT_CMDLINE];
4390
    int nb_bt_opts;
4391
    int hda_index;
4392
    int optind;
4393
    const char *r, *optarg;
4394
    CharDriverState *monitor_hd = NULL;
4395
    const char *monitor_device;
4396
    const char *serial_devices[MAX_SERIAL_PORTS];
4397
    int serial_device_index;
4398
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4399
    int parallel_device_index;
4400
    const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4401
    int virtio_console_index;
4402
    const char *loadvm = NULL;
4403
    QEMUMachine *machine;
4404
    const char *cpu_model;
4405
    const char *usb_devices[MAX_USB_CMDLINE];
4406
    int usb_devices_index;
4407
#ifndef _WIN32
4408
    int fds[2];
4409
#endif
4410
    int tb_size;
4411
    const char *pid_file = NULL;
4412
    const char *incoming = NULL;
4413
#ifndef _WIN32
4414
    int fd = 0;
4415
    struct passwd *pwd = NULL;
4416
    const char *chroot_dir = NULL;
4417
    const char *run_as = NULL;
4418
#endif
4419
    CPUState *env;
4420

    
4421
    qemu_cache_utils_init(envp);
4422

    
4423
    LIST_INIT (&vm_change_state_head);
4424
#ifndef _WIN32
4425
    {
4426
        struct sigaction act;
4427
        sigfillset(&act.sa_mask);
4428
        act.sa_flags = 0;
4429
        act.sa_handler = SIG_IGN;
4430
        sigaction(SIGPIPE, &act, NULL);
4431
    }
4432
#else
4433
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4434
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4435
       QEMU to run on a single CPU */
4436
    {
4437
        HANDLE h;
4438
        DWORD mask, smask;
4439
        int i;
4440
        h = GetCurrentProcess();
4441
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4442
            for(i = 0; i < 32; i++) {
4443
                if (mask & (1 << i))
4444
                    break;
4445
            }
4446
            if (i != 32) {
4447
                mask = 1 << i;
4448
                SetProcessAffinityMask(h, mask);
4449
            }
4450
        }
4451
    }
4452
#endif
4453

    
4454
    register_machines();
4455
    machine = first_machine;
4456
    cpu_model = NULL;
4457
    initrd_filename = NULL;
4458
    ram_size = 0;
4459
    vga_ram_size = VGA_RAM_SIZE;
4460
    snapshot = 0;
4461
    nographic = 0;
4462
    curses = 0;
4463
    kernel_filename = NULL;
4464
    kernel_cmdline = "";
4465
    cyls = heads = secs = 0;
4466
    translation = BIOS_ATA_TRANSLATION_AUTO;
4467
    monitor_device = "vc:80Cx24C";
4468

    
4469
    serial_devices[0] = "vc:80Cx24C";
4470
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4471
        serial_devices[i] = NULL;
4472
    serial_device_index = 0;
4473

    
4474
    parallel_devices[0] = "vc:80Cx24C";
4475
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4476
        parallel_devices[i] = NULL;
4477
    parallel_device_index = 0;
4478

    
4479
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4480
        virtio_consoles[i] = NULL;
4481
    virtio_console_index = 0;
4482

    
4483
    for (i = 0; i < MAX_NODES; i++) {
4484
        node_mem[i] = 0;
4485
        node_cpumask[i] = 0;
4486
    }
4487

    
4488
    usb_devices_index = 0;
4489

    
4490
    nb_net_clients = 0;
4491
    nb_bt_opts = 0;
4492
    nb_drives = 0;
4493
    nb_drives_opt = 0;
4494
    nb_numa_nodes = 0;
4495
    hda_index = -1;
4496

    
4497
    nb_nics = 0;
4498

    
4499
    tb_size = 0;
4500
    autostart= 1;
4501

    
4502
    optind = 1;
4503
    for(;;) {
4504
        if (optind >= argc)
4505
            break;
4506
        r = argv[optind];
4507
        if (r[0] != '-') {
4508
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4509
        } else {
4510
            const QEMUOption *popt;
4511

    
4512
            optind++;
4513
            /* Treat --foo the same as -foo.  */
4514
            if (r[1] == '-')
4515
                r++;
4516
            popt = qemu_options;
4517
            for(;;) {
4518
                if (!popt->name) {
4519
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4520
                            argv[0], r);
4521
                    exit(1);
4522
                }
4523
                if (!strcmp(popt->name, r + 1))
4524
                    break;
4525
                popt++;
4526
            }
4527
            if (popt->flags & HAS_ARG) {
4528
                if (optind >= argc) {
4529
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4530
                            argv[0], r);
4531
                    exit(1);
4532
                }
4533
                optarg = argv[optind++];
4534
            } else {
4535
                optarg = NULL;
4536
            }
4537

    
4538
            switch(popt->index) {
4539
            case QEMU_OPTION_M:
4540
                machine = find_machine(optarg);
4541
                if (!machine) {
4542
                    QEMUMachine *m;
4543
                    printf("Supported machines are:\n");
4544
                    for(m = first_machine; m != NULL; m = m->next) {
4545
                        printf("%-10s %s%s\n",
4546
                               m->name, m->desc,
4547
                               m == first_machine ? " (default)" : "");
4548
                    }
4549
                    exit(*optarg != '?');
4550
                }
4551
                break;
4552
            case QEMU_OPTION_cpu:
4553
                /* hw initialization will check this */
4554
                if (*optarg == '?') {
4555
/* XXX: implement xxx_cpu_list for targets that still miss it */
4556
#if defined(cpu_list)
4557
                    cpu_list(stdout, &fprintf);
4558
#endif
4559
                    exit(0);
4560
                } else {
4561
                    cpu_model = optarg;
4562
                }
4563
                break;
4564
            case QEMU_OPTION_initrd:
4565
                initrd_filename = optarg;
4566
                break;
4567
            case QEMU_OPTION_hda:
4568
                if (cyls == 0)
4569
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4570
                else
4571
                    hda_index = drive_add(optarg, HD_ALIAS
4572
                             ",cyls=%d,heads=%d,secs=%d%s",
4573
                             0, cyls, heads, secs,
4574
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4575
                                 ",trans=lba" :
4576
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4577
                                 ",trans=none" : "");
4578
                 break;
4579
            case QEMU_OPTION_hdb:
4580
            case QEMU_OPTION_hdc:
4581
            case QEMU_OPTION_hdd:
4582
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4583
                break;
4584
            case QEMU_OPTION_drive:
4585
                drive_add(NULL, "%s", optarg);
4586
                break;
4587
            case QEMU_OPTION_mtdblock:
4588
                drive_add(optarg, MTD_ALIAS);
4589
                break;
4590
            case QEMU_OPTION_sd:
4591
                drive_add(optarg, SD_ALIAS);
4592
                break;
4593
            case QEMU_OPTION_pflash:
4594
                drive_add(optarg, PFLASH_ALIAS);
4595
                break;
4596
            case QEMU_OPTION_snapshot:
4597
                snapshot = 1;
4598
                break;
4599
            case QEMU_OPTION_hdachs:
4600
                {
4601
                    const char *p;
4602
                    p = optarg;
4603
                    cyls = strtol(p, (char **)&p, 0);
4604
                    if (cyls < 1 || cyls > 16383)
4605
                        goto chs_fail;
4606
                    if (*p != ',')
4607
                        goto chs_fail;
4608
                    p++;
4609
                    heads = strtol(p, (char **)&p, 0);
4610
                    if (heads < 1 || heads > 16)
4611
                        goto chs_fail;
4612
                    if (*p != ',')
4613
                        goto chs_fail;
4614
                    p++;
4615
                    secs = strtol(p, (char **)&p, 0);
4616
                    if (secs < 1 || secs > 63)
4617
                        goto chs_fail;
4618
                    if (*p == ',') {
4619
                        p++;
4620
                        if (!strcmp(p, "none"))
4621
                            translation = BIOS_ATA_TRANSLATION_NONE;
4622
                        else if (!strcmp(p, "lba"))
4623
                            translation = BIOS_ATA_TRANSLATION_LBA;
4624
                        else if (!strcmp(p, "auto"))
4625
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4626
                        else
4627
                            goto chs_fail;
4628
                    } else if (*p != '\0') {
4629
                    chs_fail:
4630
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4631
                        exit(1);
4632
                    }
4633
                    if (hda_index != -1)
4634
                        snprintf(drives_opt[hda_index].opt,
4635
                                 sizeof(drives_opt[hda_index].opt),
4636
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4637
                                 0, cyls, heads, secs,
4638
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
4639
                                         ",trans=lba" :
4640
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
4641
                                     ",trans=none" : "");
4642
                }
4643
                break;
4644
            case QEMU_OPTION_numa:
4645
                if (nb_numa_nodes >= MAX_NODES) {
4646
                    fprintf(stderr, "qemu: too many NUMA nodes\n");
4647
                    exit(1);
4648
                }
4649
                numa_add(optarg);
4650
                break;
4651
            case QEMU_OPTION_nographic:
4652
                nographic = 1;
4653
                break;
4654
#ifdef CONFIG_CURSES
4655
            case QEMU_OPTION_curses:
4656
                curses = 1;
4657
                break;
4658
#endif
4659
            case QEMU_OPTION_portrait:
4660
                graphic_rotate = 1;
4661
                break;
4662
            case QEMU_OPTION_kernel:
4663
                kernel_filename = optarg;
4664
                break;
4665
            case QEMU_OPTION_append:
4666
                kernel_cmdline = optarg;
4667
                break;
4668
            case QEMU_OPTION_cdrom:
4669
                drive_add(optarg, CDROM_ALIAS);
4670
                break;
4671
            case QEMU_OPTION_boot:
4672
                boot_devices = optarg;
4673
                /* We just do some generic consistency checks */
4674
                {
4675
                    /* Could easily be extended to 64 devices if needed */
4676
                    const char *p;
4677
                    
4678
                    boot_devices_bitmap = 0;
4679
                    for (p = boot_devices; *p != '\0'; p++) {
4680
                        /* Allowed boot devices are:
4681
                         * a b     : floppy disk drives
4682
                         * c ... f : IDE disk drives
4683
                         * g ... m : machine implementation dependant drives
4684
                         * n ... p : network devices
4685
                         * It's up to each machine implementation to check
4686
                         * if the given boot devices match the actual hardware
4687
                         * implementation and firmware features.
4688
                         */
4689
                        if (*p < 'a' || *p > 'q') {
4690
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
4691
                            exit(1);
4692
                        }
4693
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4694
                            fprintf(stderr,
4695
                                    "Boot device '%c' was given twice\n",*p);
4696
                            exit(1);
4697
                        }
4698
                        boot_devices_bitmap |= 1 << (*p - 'a');
4699
                    }
4700
                }
4701
                break;
4702
            case QEMU_OPTION_fda:
4703
            case QEMU_OPTION_fdb:
4704
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4705
                break;
4706
#ifdef TARGET_I386
4707
            case QEMU_OPTION_no_fd_bootchk:
4708
                fd_bootchk = 0;
4709
                break;
4710
#endif
4711
            case QEMU_OPTION_net:
4712
                if (nb_net_clients >= MAX_NET_CLIENTS) {
4713
                    fprintf(stderr, "qemu: too many network clients\n");
4714
                    exit(1);
4715
                }
4716
                net_clients[nb_net_clients] = optarg;
4717
                nb_net_clients++;
4718
                break;
4719
#ifdef CONFIG_SLIRP
4720
            case QEMU_OPTION_tftp:
4721
                tftp_prefix = optarg;
4722
                break;
4723
            case QEMU_OPTION_bootp:
4724
                bootp_filename = optarg;
4725
                break;
4726
#ifndef _WIN32
4727
            case QEMU_OPTION_smb:
4728
                net_slirp_smb(optarg);
4729
                break;
4730
#endif
4731
            case QEMU_OPTION_redir:
4732
                net_slirp_redir(NULL, optarg);
4733
                break;
4734
#endif
4735
            case QEMU_OPTION_bt:
4736
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
4737
                    fprintf(stderr, "qemu: too many bluetooth options\n");
4738
                    exit(1);
4739
                }
4740
                bt_opts[nb_bt_opts++] = optarg;
4741
                break;
4742
#ifdef HAS_AUDIO
4743
            case QEMU_OPTION_audio_help:
4744
                AUD_help ();
4745
                exit (0);
4746
                break;
4747
            case QEMU_OPTION_soundhw:
4748
                select_soundhw (optarg);
4749
                break;
4750
#endif
4751
            case QEMU_OPTION_h:
4752
                help(0);
4753
                break;
4754
            case QEMU_OPTION_version:
4755
                version();
4756
                exit(0);
4757
                break;
4758
            case QEMU_OPTION_m: {
4759
                uint64_t value;
4760
                char *ptr;
4761

    
4762
                value = strtoul(optarg, &ptr, 10);
4763
                switch (*ptr) {
4764
                case 0: case 'M': case 'm':
4765
                    value <<= 20;
4766
                    break;
4767
                case 'G': case 'g':
4768
                    value <<= 30;
4769
                    break;
4770
                default:
4771
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4772
                    exit(1);
4773
                }
4774

    
4775
                /* On 32-bit hosts, QEMU is limited by virtual address space */
4776
                if (value > (2047 << 20)
4777
#ifndef CONFIG_KQEMU
4778
                    && HOST_LONG_BITS == 32
4779
#endif
4780
                    ) {
4781
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4782
                    exit(1);
4783
                }
4784
                if (value != (uint64_t)(ram_addr_t)value) {
4785
                    fprintf(stderr, "qemu: ram size too large\n");
4786
                    exit(1);
4787
                }
4788
                ram_size = value;
4789
                break;
4790
            }
4791
            case QEMU_OPTION_d:
4792
                {
4793
                    int mask;
4794
                    const CPULogItem *item;
4795

    
4796
                    mask = cpu_str_to_log_mask(optarg);
4797
                    if (!mask) {
4798
                        printf("Log items (comma separated):\n");
4799
                    for(item = cpu_log_items; item->mask != 0; item++) {
4800
                        printf("%-10s %s\n", item->name, item->help);
4801
                    }
4802
                    exit(1);
4803
                    }
4804
                    cpu_set_log(mask);
4805
                }
4806
                break;
4807
#ifdef CONFIG_GDBSTUB
4808
            case QEMU_OPTION_s:
4809
                gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
4810
                break;
4811
            case QEMU_OPTION_gdb:
4812
                gdbstub_dev = optarg;
4813
                break;
4814
#endif
4815
            case QEMU_OPTION_L:
4816
                bios_dir = optarg;
4817
                break;
4818
            case QEMU_OPTION_bios:
4819
                bios_name = optarg;
4820
                break;
4821
            case QEMU_OPTION_singlestep:
4822
                singlestep = 1;
4823
                break;
4824
            case QEMU_OPTION_S:
4825
                autostart = 0;
4826
                break;
4827
#ifndef _WIN32
4828
            case QEMU_OPTION_k:
4829
                keyboard_layout = optarg;
4830
                break;
4831
#endif
4832
            case QEMU_OPTION_localtime:
4833
                rtc_utc = 0;
4834
                break;
4835
            case QEMU_OPTION_vga:
4836
                select_vgahw (optarg);
4837
                break;
4838
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4839
            case QEMU_OPTION_g:
4840
                {
4841
                    const char *p;
4842
                    int w, h, depth;
4843
                    p = optarg;
4844
                    w = strtol(p, (char **)&p, 10);
4845
                    if (w <= 0) {
4846
                    graphic_error:
4847
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
4848
                        exit(1);
4849
                    }
4850
                    if (*p != 'x')
4851
                        goto graphic_error;
4852
                    p++;
4853
                    h = strtol(p, (char **)&p, 10);
4854
                    if (h <= 0)
4855
                        goto graphic_error;
4856
                    if (*p == 'x') {
4857
                        p++;
4858
                        depth = strtol(p, (char **)&p, 10);
4859
                        if (depth != 8 && depth != 15 && depth != 16 &&
4860
                            depth != 24 && depth != 32)
4861
                            goto graphic_error;
4862
                    } else if (*p == '\0') {
4863
                        depth = graphic_depth;
4864
                    } else {
4865
                        goto graphic_error;
4866
                    }
4867

    
4868
                    graphic_width = w;
4869
                    graphic_height = h;
4870
                    graphic_depth = depth;
4871
                }
4872
                break;
4873
#endif
4874
            case QEMU_OPTION_echr:
4875
                {
4876
                    char *r;
4877
                    term_escape_char = strtol(optarg, &r, 0);
4878
                    if (r == optarg)
4879
                        printf("Bad argument to echr\n");
4880
                    break;
4881
                }
4882
            case QEMU_OPTION_monitor:
4883
                monitor_device = optarg;
4884
                break;
4885
            case QEMU_OPTION_serial:
4886
                if (serial_device_index >= MAX_SERIAL_PORTS) {
4887
                    fprintf(stderr, "qemu: too many serial ports\n");
4888
                    exit(1);
4889
                }
4890
                serial_devices[serial_device_index] = optarg;
4891
                serial_device_index++;
4892
                break;
4893
            case QEMU_OPTION_virtiocon:
4894
                if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
4895
                    fprintf(stderr, "qemu: too many virtio consoles\n");
4896
                    exit(1);
4897
                }
4898
                virtio_consoles[virtio_console_index] = optarg;
4899
                virtio_console_index++;
4900
                break;
4901
            case QEMU_OPTION_parallel:
4902
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4903
                    fprintf(stderr, "qemu: too many parallel ports\n");
4904
                    exit(1);
4905
                }
4906
                parallel_devices[parallel_device_index] = optarg;
4907
                parallel_device_index++;
4908
                break;
4909
            case QEMU_OPTION_loadvm:
4910
                loadvm = optarg;
4911
                break;
4912
            case QEMU_OPTION_full_screen:
4913
                full_screen = 1;
4914
                break;
4915
#ifdef CONFIG_SDL
4916
            case QEMU_OPTION_no_frame:
4917
                no_frame = 1;
4918
                break;
4919
            case QEMU_OPTION_alt_grab:
4920
                alt_grab = 1;
4921
                break;
4922
            case QEMU_OPTION_no_quit:
4923
                no_quit = 1;
4924
                break;
4925
            case QEMU_OPTION_sdl:
4926
                sdl = 1;
4927
                break;
4928
#endif
4929
            case QEMU_OPTION_pidfile:
4930
                pid_file = optarg;
4931
                break;
4932
#ifdef TARGET_I386
4933
            case QEMU_OPTION_win2k_hack:
4934
                win2k_install_hack = 1;
4935
                break;
4936
            case QEMU_OPTION_rtc_td_hack:
4937
                rtc_td_hack = 1;
4938
                break;
4939
            case QEMU_OPTION_acpitable:
4940
                if(acpi_table_add(optarg) < 0) {
4941
                    fprintf(stderr, "Wrong acpi table provided\n");
4942
                    exit(1);
4943
                }
4944
                break;
4945
            case QEMU_OPTION_smbios:
4946
                if(smbios_entry_add(optarg) < 0) {
4947
                    fprintf(stderr, "Wrong smbios provided\n");
4948
                    exit(1);
4949
                }
4950
                break;
4951
#endif
4952
#ifdef CONFIG_KQEMU
4953
            case QEMU_OPTION_no_kqemu:
4954
                kqemu_allowed = 0;
4955
                break;
4956
            case QEMU_OPTION_kernel_kqemu:
4957
                kqemu_allowed = 2;
4958
                break;
4959
#endif
4960
#ifdef CONFIG_KVM
4961
            case QEMU_OPTION_enable_kvm:
4962
                kvm_allowed = 1;
4963
#ifdef CONFIG_KQEMU
4964
                kqemu_allowed = 0;
4965
#endif
4966
                break;
4967
#endif
4968
            case QEMU_OPTION_usb:
4969
                usb_enabled = 1;
4970
                break;
4971
            case QEMU_OPTION_usbdevice:
4972
                usb_enabled = 1;
4973
                if (usb_devices_index >= MAX_USB_CMDLINE) {
4974
                    fprintf(stderr, "Too many USB devices\n");
4975
                    exit(1);
4976
                }
4977
                usb_devices[usb_devices_index] = optarg;
4978
                usb_devices_index++;
4979
                break;
4980
            case QEMU_OPTION_smp:
4981
                smp_cpus = atoi(optarg);
4982
                if (smp_cpus < 1) {
4983
                    fprintf(stderr, "Invalid number of CPUs\n");
4984
                    exit(1);
4985
                }
4986
                break;
4987
            case QEMU_OPTION_vnc:
4988
                vnc_display = optarg;
4989
                break;
4990
#ifdef TARGET_I386
4991
            case QEMU_OPTION_no_acpi:
4992
                acpi_enabled = 0;
4993
                break;
4994
            case QEMU_OPTION_no_hpet:
4995
                no_hpet = 1;
4996
                break;
4997
#endif
4998
            case QEMU_OPTION_no_reboot:
4999
                no_reboot = 1;
5000
                break;
5001
            case QEMU_OPTION_no_shutdown:
5002
                no_shutdown = 1;
5003
                break;
5004
            case QEMU_OPTION_show_cursor:
5005
                cursor_hide = 0;
5006
                break;
5007
            case QEMU_OPTION_uuid:
5008
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5009
                    fprintf(stderr, "Fail to parse UUID string."
5010
                            " Wrong format.\n");
5011
                    exit(1);
5012
                }
5013
                break;
5014
#ifndef _WIN32
5015
            case QEMU_OPTION_daemonize:
5016
                daemonize = 1;
5017
                break;
5018
#endif
5019
            case QEMU_OPTION_option_rom:
5020
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5021
                    fprintf(stderr, "Too many option ROMs\n");
5022
                    exit(1);
5023
                }
5024
                option_rom[nb_option_roms] = optarg;
5025
                nb_option_roms++;
5026
                break;
5027
#if defined(TARGET_ARM) || defined(TARGET_M68K)
5028
            case QEMU_OPTION_semihosting:
5029
                semihosting_enabled = 1;
5030
                break;
5031
#endif
5032
            case QEMU_OPTION_name:
5033
                qemu_name = optarg;
5034
                break;
5035
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5036
            case QEMU_OPTION_prom_env:
5037
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5038
                    fprintf(stderr, "Too many prom variables\n");
5039
                    exit(1);
5040
                }
5041
                prom_envs[nb_prom_envs] = optarg;
5042
                nb_prom_envs++;
5043
                break;
5044
#endif
5045
#ifdef TARGET_ARM
5046
            case QEMU_OPTION_old_param:
5047
                old_param = 1;
5048
                break;
5049
#endif
5050
            case QEMU_OPTION_clock:
5051
                configure_alarms(optarg);
5052
                break;
5053
            case QEMU_OPTION_startdate:
5054
                {
5055
                    struct tm tm;
5056
                    time_t rtc_start_date;
5057
                    if (!strcmp(optarg, "now")) {
5058
                        rtc_date_offset = -1;
5059
                    } else {
5060
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5061
                               &tm.tm_year,
5062
                               &tm.tm_mon,
5063
                               &tm.tm_mday,
5064
                               &tm.tm_hour,
5065
                               &tm.tm_min,
5066
                               &tm.tm_sec) == 6) {
5067
                            /* OK */
5068
                        } else if (sscanf(optarg, "%d-%d-%d",
5069
                                          &tm.tm_year,
5070
                                          &tm.tm_mon,
5071
                                          &tm.tm_mday) == 3) {
5072
                            tm.tm_hour = 0;
5073
                            tm.tm_min = 0;
5074
                            tm.tm_sec = 0;
5075
                        } else {
5076
                            goto date_fail;
5077
                        }
5078
                        tm.tm_year -= 1900;
5079
                        tm.tm_mon--;
5080
                        rtc_start_date = mktimegm(&tm);
5081
                        if (rtc_start_date == -1) {
5082
                        date_fail:
5083
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5084
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5085
                            exit(1);
5086
                        }
5087
                        rtc_date_offset = time(NULL) - rtc_start_date;
5088
                    }
5089
                }
5090
                break;
5091
            case QEMU_OPTION_tb_size:
5092
                tb_size = strtol(optarg, NULL, 0);
5093
                if (tb_size < 0)
5094
                    tb_size = 0;
5095
                break;
5096
            case QEMU_OPTION_icount:
5097
                use_icount = 1;
5098
                if (strcmp(optarg, "auto") == 0) {
5099
                    icount_time_shift = -1;
5100
                } else {
5101
                    icount_time_shift = strtol(optarg, NULL, 0);
5102
                }
5103
                break;
5104
            case QEMU_OPTION_incoming:
5105
                incoming = optarg;
5106
                break;
5107
#ifndef _WIN32
5108
            case QEMU_OPTION_chroot:
5109
                chroot_dir = optarg;
5110
                break;
5111
            case QEMU_OPTION_runas:
5112
                run_as = optarg;
5113
                break;
5114
#endif
5115
#ifdef CONFIG_XEN
5116
            case QEMU_OPTION_xen_domid:
5117
                xen_domid = atoi(optarg);
5118
                break;
5119
            case QEMU_OPTION_xen_create:
5120
                xen_mode = XEN_CREATE;
5121
                break;
5122
            case QEMU_OPTION_xen_attach:
5123
                xen_mode = XEN_ATTACH;
5124
                break;
5125
#endif
5126
            }
5127
        }
5128
    }
5129

    
5130
#if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5131
    if (kvm_allowed && kqemu_allowed) {
5132
        fprintf(stderr,
5133
                "You can not enable both KVM and kqemu at the same time\n");
5134
        exit(1);
5135
    }
5136
#endif
5137

    
5138
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5139
    if (smp_cpus > machine->max_cpus) {
5140
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5141
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5142
                machine->max_cpus);
5143
        exit(1);
5144
    }
5145

    
5146
    if (nographic) {
5147
       if (serial_device_index == 0)
5148
           serial_devices[0] = "stdio";
5149
       if (parallel_device_index == 0)
5150
           parallel_devices[0] = "null";
5151
       if (strncmp(monitor_device, "vc", 2) == 0)
5152
           monitor_device = "stdio";
5153
    }
5154

    
5155
#ifndef _WIN32
5156
    if (daemonize) {
5157
        pid_t pid;
5158

    
5159
        if (pipe(fds) == -1)
5160
            exit(1);
5161

    
5162
        pid = fork();
5163
        if (pid > 0) {
5164
            uint8_t status;
5165
            ssize_t len;
5166

    
5167
            close(fds[1]);
5168

    
5169
        again:
5170
            len = read(fds[0], &status, 1);
5171
            if (len == -1 && (errno == EINTR))
5172
                goto again;
5173

    
5174
            if (len != 1)
5175
                exit(1);
5176
            else if (status == 1) {
5177
                fprintf(stderr, "Could not acquire pidfile\n");
5178
                exit(1);
5179
            } else
5180
                exit(0);
5181
        } else if (pid < 0)
5182
            exit(1);
5183

    
5184
        setsid();
5185

    
5186
        pid = fork();
5187
        if (pid > 0)
5188
            exit(0);
5189
        else if (pid < 0)
5190
            exit(1);
5191

    
5192
        umask(027);
5193

    
5194
        signal(SIGTSTP, SIG_IGN);
5195
        signal(SIGTTOU, SIG_IGN);
5196
        signal(SIGTTIN, SIG_IGN);
5197
    }
5198

    
5199
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5200
        if (daemonize) {
5201
            uint8_t status = 1;
5202
            write(fds[1], &status, 1);
5203
        } else
5204
            fprintf(stderr, "Could not acquire pid file\n");
5205
        exit(1);
5206
    }
5207
#endif
5208

    
5209
#ifdef CONFIG_KQEMU
5210
    if (smp_cpus > 1)
5211
        kqemu_allowed = 0;
5212
#endif
5213
    if (qemu_init_main_loop()) {
5214
        fprintf(stderr, "qemu_init_main_loop failed\n");
5215
        exit(1);
5216
    }
5217
    linux_boot = (kernel_filename != NULL);
5218
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5219

    
5220
    if (!linux_boot && *kernel_cmdline != '\0') {
5221
        fprintf(stderr, "-append only allowed with -kernel option\n");
5222
        exit(1);
5223
    }
5224

    
5225
    if (!linux_boot && initrd_filename != NULL) {
5226
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5227
        exit(1);
5228
    }
5229

    
5230
    /* boot to floppy or the default cd if no hard disk defined yet */
5231
    if (!boot_devices[0]) {
5232
        boot_devices = "cad";
5233
    }
5234
    setvbuf(stdout, NULL, _IOLBF, 0);
5235

    
5236
    init_timers();
5237
    if (init_timer_alarm() < 0) {
5238
        fprintf(stderr, "could not initialize alarm timer\n");
5239
        exit(1);
5240
    }
5241
    if (use_icount && icount_time_shift < 0) {
5242
        use_icount = 2;
5243
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5244
           It will be corrected fairly quickly anyway.  */
5245
        icount_time_shift = 3;
5246
        init_icount_adjust();
5247
    }
5248

    
5249
#ifdef _WIN32
5250
    socket_init();
5251
#endif
5252

    
5253
    /* init network clients */
5254
    if (nb_net_clients == 0) {
5255
        /* if no clients, we use a default config */
5256
        net_clients[nb_net_clients++] = "nic";
5257
#ifdef CONFIG_SLIRP
5258
        net_clients[nb_net_clients++] = "user";
5259
#endif
5260
    }
5261

    
5262
    for(i = 0;i < nb_net_clients; i++) {
5263
        if (net_client_parse(net_clients[i]) < 0)
5264
            exit(1);
5265
    }
5266
    net_client_check();
5267

    
5268
#ifdef TARGET_I386
5269
    /* XXX: this should be moved in the PC machine instantiation code */
5270
    if (net_boot != 0) {
5271
        int netroms = 0;
5272
        for (i = 0; i < nb_nics && i < 4; i++) {
5273
            const char *model = nd_table[i].model;
5274
            char buf[1024];
5275
            if (net_boot & (1 << i)) {
5276
                if (model == NULL)
5277
                    model = "ne2k_pci";
5278
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5279
                if (get_image_size(buf) > 0) {
5280
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5281
                        fprintf(stderr, "Too many option ROMs\n");
5282
                        exit(1);
5283
                    }
5284
                    option_rom[nb_option_roms] = strdup(buf);
5285
                    nb_option_roms++;
5286
                    netroms++;
5287
                }
5288
            }
5289
        }
5290
        if (netroms == 0) {
5291
            fprintf(stderr, "No valid PXE rom found for network device\n");
5292
            exit(1);
5293
        }
5294
    }
5295
#endif
5296

    
5297
    /* init the bluetooth world */
5298
    for (i = 0; i < nb_bt_opts; i++)
5299
        if (bt_parse(bt_opts[i]))
5300
            exit(1);
5301

    
5302
    /* init the memory */
5303
    if (ram_size == 0)
5304
        ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5305

    
5306
#ifdef CONFIG_KQEMU
5307
    /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5308
       guest ram allocation.  It needs to go away.  */
5309
    if (kqemu_allowed) {
5310
        kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5311
        kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5312
        if (!kqemu_phys_ram_base) {
5313
            fprintf(stderr, "Could not allocate physical memory\n");
5314
            exit(1);
5315
        }
5316
    }
5317
#endif
5318

    
5319
    /* init the dynamic translator */
5320
    cpu_exec_init_all(tb_size * 1024 * 1024);
5321

    
5322
    bdrv_init();
5323
    dma_helper_init();
5324

    
5325
    /* we always create the cdrom drive, even if no disk is there */
5326

    
5327
    if (nb_drives_opt < MAX_DRIVES)
5328
        drive_add(NULL, CDROM_ALIAS);
5329

    
5330
    /* we always create at least one floppy */
5331

    
5332
    if (nb_drives_opt < MAX_DRIVES)
5333
        drive_add(NULL, FD_ALIAS, 0);
5334

    
5335
    /* we always create one sd slot, even if no card is in it */
5336

    
5337
    if (nb_drives_opt < MAX_DRIVES)
5338
        drive_add(NULL, SD_ALIAS);
5339

    
5340
    /* open the virtual block devices */
5341

    
5342
    for(i = 0; i < nb_drives_opt; i++)
5343
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5344
            exit(1);
5345

    
5346
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5347
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5348

    
5349
#ifndef _WIN32
5350
    /* must be after terminal init, SDL library changes signal handlers */
5351
    termsig_setup();
5352
#endif
5353

    
5354
    /* Maintain compatibility with multiple stdio monitors */
5355
    if (!strcmp(monitor_device,"stdio")) {
5356
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5357
            const char *devname = serial_devices[i];
5358
            if (devname && !strcmp(devname,"mon:stdio")) {
5359
                monitor_device = NULL;
5360
                break;
5361
            } else if (devname && !strcmp(devname,"stdio")) {
5362
                monitor_device = NULL;
5363
                serial_devices[i] = "mon:stdio";
5364
                break;
5365
            }
5366
        }
5367
    }
5368

    
5369
    if (nb_numa_nodes > 0) {
5370
        int i;
5371

    
5372
        if (nb_numa_nodes > smp_cpus) {
5373
            nb_numa_nodes = smp_cpus;
5374
        }
5375

    
5376
        /* If no memory size if given for any node, assume the default case
5377
         * and distribute the available memory equally across all nodes
5378
         */
5379
        for (i = 0; i < nb_numa_nodes; i++) {
5380
            if (node_mem[i] != 0)
5381
                break;
5382
        }
5383
        if (i == nb_numa_nodes) {
5384
            uint64_t usedmem = 0;
5385

    
5386
            /* On Linux, the each node's border has to be 8MB aligned,
5387
             * the final node gets the rest.
5388
             */
5389
            for (i = 0; i < nb_numa_nodes - 1; i++) {
5390
                node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5391
                usedmem += node_mem[i];
5392
            }
5393
            node_mem[i] = ram_size - usedmem;
5394
        }
5395

    
5396
        for (i = 0; i < nb_numa_nodes; i++) {
5397
            if (node_cpumask[i] != 0)
5398
                break;
5399
        }
5400
        /* assigning the VCPUs round-robin is easier to implement, guest OSes
5401
         * must cope with this anyway, because there are BIOSes out there in
5402
         * real machines which also use this scheme.
5403
         */
5404
        if (i == nb_numa_nodes) {
5405
            for (i = 0; i < smp_cpus; i++) {
5406
                node_cpumask[i % nb_numa_nodes] |= 1 << i;
5407
            }
5408
        }
5409
    }
5410

    
5411
    if (kvm_enabled()) {
5412
        int ret;
5413

    
5414
        ret = kvm_init(smp_cpus);
5415
        if (ret < 0) {
5416
            fprintf(stderr, "failed to initialize KVM\n");
5417
            exit(1);
5418
        }
5419
    }
5420

    
5421
    if (monitor_device) {
5422
        monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5423
        if (!monitor_hd) {
5424
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5425
            exit(1);
5426
        }
5427
    }
5428

    
5429
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5430
        const char *devname = serial_devices[i];
5431
        if (devname && strcmp(devname, "none")) {
5432
            char label[32];
5433
            snprintf(label, sizeof(label), "serial%d", i);
5434
            serial_hds[i] = qemu_chr_open(label, devname, NULL);
5435
            if (!serial_hds[i]) {
5436
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5437
                        devname);
5438
                exit(1);
5439
            }
5440
        }
5441
    }
5442

    
5443
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5444
        const char *devname = parallel_devices[i];
5445
        if (devname && strcmp(devname, "none")) {
5446
            char label[32];
5447
            snprintf(label, sizeof(label), "parallel%d", i);
5448
            parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5449
            if (!parallel_hds[i]) {
5450
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5451
                        devname);
5452
                exit(1);
5453
            }
5454
        }
5455
    }
5456

    
5457
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5458
        const char *devname = virtio_consoles[i];
5459
        if (devname && strcmp(devname, "none")) {
5460
            char label[32];
5461
            snprintf(label, sizeof(label), "virtcon%d", i);
5462
            virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5463
            if (!virtcon_hds[i]) {
5464
                fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5465
                        devname);
5466
                exit(1);
5467
            }
5468
        }
5469
    }
5470

    
5471
    machine->init(ram_size, vga_ram_size, boot_devices,
5472
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5473

    
5474

    
5475
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
5476
        for (i = 0; i < nb_numa_nodes; i++) {
5477
            if (node_cpumask[i] & (1 << env->cpu_index)) {
5478
                env->numa_node = i;
5479
            }
5480
        }
5481
    }
5482

    
5483
    current_machine = machine;
5484

    
5485
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5486
    if (kvm_enabled()) {
5487
        int ret;
5488

    
5489
        ret = kvm_sync_vcpus();
5490
        if (ret < 0) {
5491
            fprintf(stderr, "failed to initialize vcpus\n");
5492
            exit(1);
5493
        }
5494
    }
5495

    
5496
    /* init USB devices */
5497
    if (usb_enabled) {
5498
        for(i = 0; i < usb_devices_index; i++) {
5499
            if (usb_device_add(usb_devices[i], 0) < 0) {
5500
                fprintf(stderr, "Warning: could not add USB device %s\n",
5501
                        usb_devices[i]);
5502
            }
5503
        }
5504
    }
5505

    
5506
    if (!display_state)
5507
        dumb_display_init();
5508
    /* just use the first displaystate for the moment */
5509
    ds = display_state;
5510
    /* terminal init */
5511
    if (nographic) {
5512
        if (curses) {
5513
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5514
            exit(1);
5515
        }
5516
    } else { 
5517
#if defined(CONFIG_CURSES)
5518
            if (curses) {
5519
                /* At the moment curses cannot be used with other displays */
5520
                curses_display_init(ds, full_screen);
5521
            } else
5522
#endif
5523
            {
5524
                if (vnc_display != NULL) {
5525
                    vnc_display_init(ds);
5526
                    if (vnc_display_open(ds, vnc_display) < 0)
5527
                        exit(1);
5528
                }
5529
#if defined(CONFIG_SDL)
5530
                if (sdl || !vnc_display)
5531
                    sdl_display_init(ds, full_screen, no_frame);
5532
#elif defined(CONFIG_COCOA)
5533
                if (sdl || !vnc_display)
5534
                    cocoa_display_init(ds, full_screen);
5535
#endif
5536
            }
5537
    }
5538
    dpy_resize(ds);
5539

    
5540
    dcl = ds->listeners;
5541
    while (dcl != NULL) {
5542
        if (dcl->dpy_refresh != NULL) {
5543
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5544
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5545
        }
5546
        dcl = dcl->next;
5547
    }
5548

    
5549
    if (nographic || (vnc_display && !sdl)) {
5550
        nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5551
        qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5552
    }
5553

    
5554
    text_consoles_set_display(display_state);
5555
    qemu_chr_initial_reset();
5556

    
5557
    if (monitor_device && monitor_hd)
5558
        monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5559

    
5560
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5561
        const char *devname = serial_devices[i];
5562
        if (devname && strcmp(devname, "none")) {
5563
            char label[32];
5564
            snprintf(label, sizeof(label), "serial%d", i);
5565
            if (strstart(devname, "vc", 0))
5566
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5567
        }
5568
    }
5569

    
5570
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5571
        const char *devname = parallel_devices[i];
5572
        if (devname && strcmp(devname, "none")) {
5573
            char label[32];
5574
            snprintf(label, sizeof(label), "parallel%d", i);
5575
            if (strstart(devname, "vc", 0))
5576
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5577
        }
5578
    }
5579

    
5580
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5581
        const char *devname = virtio_consoles[i];
5582
        if (virtcon_hds[i] && devname) {
5583
            char label[32];
5584
            snprintf(label, sizeof(label), "virtcon%d", i);
5585
            if (strstart(devname, "vc", 0))
5586
                qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5587
        }
5588
    }
5589

    
5590
#ifdef CONFIG_GDBSTUB
5591
    if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5592
        fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5593
                gdbstub_dev);
5594
        exit(1);
5595
    }
5596
#endif
5597

    
5598
    if (loadvm)
5599
        do_loadvm(cur_mon, loadvm);
5600

    
5601
    if (incoming) {
5602
        autostart = 0; /* fixme how to deal with -daemonize */
5603
        qemu_start_incoming_migration(incoming);
5604
    }
5605

    
5606
    if (autostart)
5607
        vm_start();
5608

    
5609
#ifndef _WIN32
5610
    if (daemonize) {
5611
        uint8_t status = 0;
5612
        ssize_t len;
5613

    
5614
    again1:
5615
        len = write(fds[1], &status, 1);
5616
        if (len == -1 && (errno == EINTR))
5617
            goto again1;
5618

    
5619
        if (len != 1)
5620
            exit(1);
5621

    
5622
        chdir("/");
5623
        TFR(fd = open("/dev/null", O_RDWR));
5624
        if (fd == -1)
5625
            exit(1);
5626
    }
5627

    
5628
    if (run_as) {
5629
        pwd = getpwnam(run_as);
5630
        if (!pwd) {
5631
            fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5632
            exit(1);
5633
        }
5634
    }
5635

    
5636
    if (chroot_dir) {
5637
        if (chroot(chroot_dir) < 0) {
5638
            fprintf(stderr, "chroot failed\n");
5639
            exit(1);
5640
        }
5641
        chdir("/");
5642
    }
5643

    
5644
    if (run_as) {
5645
        if (setgid(pwd->pw_gid) < 0) {
5646
            fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5647
            exit(1);
5648
        }
5649
        if (setuid(pwd->pw_uid) < 0) {
5650
            fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5651
            exit(1);
5652
        }
5653
        if (setuid(0) != -1) {
5654
            fprintf(stderr, "Dropping privileges failed\n");
5655
            exit(1);
5656
        }
5657
    }
5658

    
5659
    if (daemonize) {
5660
        dup2(fd, 0);
5661
        dup2(fd, 1);
5662
        dup2(fd, 2);
5663

    
5664
        close(fd);
5665
    }
5666
#endif
5667

    
5668
    main_loop();
5669
    quit_timers();
5670
    net_cleanup();
5671

    
5672
    return 0;
5673
}