Statistics
| Branch: | Revision:

root / kvm-all.c @ 491d6e80

History | View | Annotate | Download (52.7 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu/atomic.h"
25
#include "qemu/option.h"
26
#include "qemu/config-file.h"
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/pci/msi.h"
30
#include "exec/gdbstub.h"
31
#include "sysemu/kvm.h"
32
#include "qemu/bswap.h"
33
#include "exec/memory.h"
34
#include "exec/address-spaces.h"
35
#include "qemu/event_notifier.h"
36
#include "trace.h"
37

    
38
/* This check must be after config-host.h is included */
39
#ifdef CONFIG_EVENTFD
40
#include <sys/eventfd.h>
41
#endif
42

    
43
#ifdef CONFIG_VALGRIND_H
44
#include <valgrind/memcheck.h>
45
#endif
46

    
47
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48
#define PAGE_SIZE TARGET_PAGE_SIZE
49

    
50
//#define DEBUG_KVM
51

    
52
#ifdef DEBUG_KVM
53
#define DPRINTF(fmt, ...) \
54
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55
#else
56
#define DPRINTF(fmt, ...) \
57
    do { } while (0)
58
#endif
59

    
60
#define KVM_MSI_HASHTAB_SIZE    256
61

    
62
typedef struct KVMSlot
63
{
64
    hwaddr start_addr;
65
    ram_addr_t memory_size;
66
    void *ram;
67
    int slot;
68
    int flags;
69
} KVMSlot;
70

    
71
typedef struct kvm_dirty_log KVMDirtyLog;
72

    
73
struct KVMState
74
{
75
    KVMSlot slots[32];
76
    int fd;
77
    int vmfd;
78
    int coalesced_mmio;
79
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80
    bool coalesced_flush_in_progress;
81
    int broken_set_mem_region;
82
    int migration_log;
83
    int vcpu_events;
84
    int robust_singlestep;
85
    int debugregs;
86
#ifdef KVM_CAP_SET_GUEST_DEBUG
87
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88
#endif
89
    int pit_state2;
90
    int xsave, xcrs;
91
    int many_ioeventfds;
92
    int intx_set_mask;
93
    /* The man page (and posix) say ioctl numbers are signed int, but
94
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
95
     * unsigned, and treating them as signed here can break things */
96
    unsigned irq_set_ioctl;
97
#ifdef KVM_CAP_IRQ_ROUTING
98
    struct kvm_irq_routing *irq_routes;
99
    int nr_allocated_irq_routes;
100
    uint32_t *used_gsi_bitmap;
101
    unsigned int gsi_count;
102
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103
    bool direct_msi;
104
#endif
105
};
106

    
107
KVMState *kvm_state;
108
bool kvm_kernel_irqchip;
109
bool kvm_async_interrupts_allowed;
110
bool kvm_irqfds_allowed;
111
bool kvm_msi_via_irqfd_allowed;
112
bool kvm_gsi_routing_allowed;
113
bool kvm_allowed;
114
bool kvm_readonly_mem_allowed;
115

    
116
static const KVMCapabilityInfo kvm_required_capabilites[] = {
117
    KVM_CAP_INFO(USER_MEMORY),
118
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
119
    KVM_CAP_LAST_INFO
120
};
121

    
122
static KVMSlot *kvm_alloc_slot(KVMState *s)
123
{
124
    int i;
125

    
126
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
127
        if (s->slots[i].memory_size == 0) {
128
            return &s->slots[i];
129
        }
130
    }
131

    
132
    fprintf(stderr, "%s: no free slot available\n", __func__);
133
    abort();
134
}
135

    
136
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
137
                                         hwaddr start_addr,
138
                                         hwaddr end_addr)
139
{
140
    int i;
141

    
142
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143
        KVMSlot *mem = &s->slots[i];
144

    
145
        if (start_addr == mem->start_addr &&
146
            end_addr == mem->start_addr + mem->memory_size) {
147
            return mem;
148
        }
149
    }
150

    
151
    return NULL;
152
}
153

    
154
/*
155
 * Find overlapping slot with lowest start address
156
 */
157
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
158
                                            hwaddr start_addr,
159
                                            hwaddr end_addr)
160
{
161
    KVMSlot *found = NULL;
162
    int i;
163

    
164
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165
        KVMSlot *mem = &s->slots[i];
166

    
167
        if (mem->memory_size == 0 ||
168
            (found && found->start_addr < mem->start_addr)) {
169
            continue;
170
        }
171

    
172
        if (end_addr > mem->start_addr &&
173
            start_addr < mem->start_addr + mem->memory_size) {
174
            found = mem;
175
        }
176
    }
177

    
178
    return found;
179
}
180

    
181
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
182
                                       hwaddr *phys_addr)
183
{
184
    int i;
185

    
186
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
187
        KVMSlot *mem = &s->slots[i];
188

    
189
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
190
            *phys_addr = mem->start_addr + (ram - mem->ram);
191
            return 1;
192
        }
193
    }
194

    
195
    return 0;
196
}
197

    
198
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
199
{
200
    struct kvm_userspace_memory_region mem;
201

    
202
    mem.slot = slot->slot;
203
    mem.guest_phys_addr = slot->start_addr;
204
    mem.userspace_addr = (unsigned long)slot->ram;
205
    mem.flags = slot->flags;
206
    if (s->migration_log) {
207
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
208
    }
209

    
210
    if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
211
        /* Set the slot size to 0 before setting the slot to the desired
212
         * value. This is needed based on KVM commit 75d61fbc. */
213
        mem.memory_size = 0;
214
        kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
215
    }
216
    mem.memory_size = slot->memory_size;
217
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
218
}
219

    
220
static void kvm_reset_vcpu(void *opaque)
221
{
222
    CPUState *cpu = opaque;
223

    
224
    kvm_arch_reset_vcpu(cpu);
225
}
226

    
227
int kvm_init_vcpu(CPUState *cpu)
228
{
229
    KVMState *s = kvm_state;
230
    long mmap_size;
231
    int ret;
232

    
233
    DPRINTF("kvm_init_vcpu\n");
234

    
235
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
236
    if (ret < 0) {
237
        DPRINTF("kvm_create_vcpu failed\n");
238
        goto err;
239
    }
240

    
241
    cpu->kvm_fd = ret;
242
    cpu->kvm_state = s;
243
    cpu->kvm_vcpu_dirty = true;
244

    
245
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
246
    if (mmap_size < 0) {
247
        ret = mmap_size;
248
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
249
        goto err;
250
    }
251

    
252
    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
253
                        cpu->kvm_fd, 0);
254
    if (cpu->kvm_run == MAP_FAILED) {
255
        ret = -errno;
256
        DPRINTF("mmap'ing vcpu state failed\n");
257
        goto err;
258
    }
259

    
260
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
261
        s->coalesced_mmio_ring =
262
            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
263
    }
264

    
265
    ret = kvm_arch_init_vcpu(cpu);
266
    if (ret == 0) {
267
        qemu_register_reset(kvm_reset_vcpu, cpu);
268
        kvm_arch_reset_vcpu(cpu);
269
    }
270
err:
271
    return ret;
272
}
273

    
274
/*
275
 * dirty pages logging control
276
 */
277

    
278
static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
279
{
280
    int flags = 0;
281
    flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
282
    if (readonly && kvm_readonly_mem_allowed) {
283
        flags |= KVM_MEM_READONLY;
284
    }
285
    return flags;
286
}
287

    
288
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
289
{
290
    KVMState *s = kvm_state;
291
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
292
    int old_flags;
293

    
294
    old_flags = mem->flags;
295

    
296
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
297
    mem->flags = flags;
298

    
299
    /* If nothing changed effectively, no need to issue ioctl */
300
    if (s->migration_log) {
301
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
302
    }
303

    
304
    if (flags == old_flags) {
305
        return 0;
306
    }
307

    
308
    return kvm_set_user_memory_region(s, mem);
309
}
310

    
311
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
312
                                      ram_addr_t size, bool log_dirty)
313
{
314
    KVMState *s = kvm_state;
315
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
316

    
317
    if (mem == NULL)  {
318
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
319
                TARGET_FMT_plx "\n", __func__, phys_addr,
320
                (hwaddr)(phys_addr + size - 1));
321
        return -EINVAL;
322
    }
323
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
324
}
325

    
326
static void kvm_log_start(MemoryListener *listener,
327
                          MemoryRegionSection *section)
328
{
329
    int r;
330

    
331
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
332
                                   int128_get64(section->size), true);
333
    if (r < 0) {
334
        abort();
335
    }
336
}
337

    
338
static void kvm_log_stop(MemoryListener *listener,
339
                          MemoryRegionSection *section)
340
{
341
    int r;
342

    
343
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
344
                                   int128_get64(section->size), false);
345
    if (r < 0) {
346
        abort();
347
    }
348
}
349

    
350
static int kvm_set_migration_log(int enable)
351
{
352
    KVMState *s = kvm_state;
353
    KVMSlot *mem;
354
    int i, err;
355

    
356
    s->migration_log = enable;
357

    
358
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
359
        mem = &s->slots[i];
360

    
361
        if (!mem->memory_size) {
362
            continue;
363
        }
364
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
365
            continue;
366
        }
367
        err = kvm_set_user_memory_region(s, mem);
368
        if (err) {
369
            return err;
370
        }
371
    }
372
    return 0;
373
}
374

    
375
/* get kvm's dirty pages bitmap and update qemu's */
376
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
377
                                         unsigned long *bitmap)
378
{
379
    unsigned int i, j;
380
    unsigned long page_number, c;
381
    hwaddr addr, addr1;
382
    unsigned int pages = int128_get64(section->size) / getpagesize();
383
    unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
384
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
385

    
386
    /*
387
     * bitmap-traveling is faster than memory-traveling (for addr...)
388
     * especially when most of the memory is not dirty.
389
     */
390
    for (i = 0; i < len; i++) {
391
        if (bitmap[i] != 0) {
392
            c = leul_to_cpu(bitmap[i]);
393
            do {
394
                j = ffsl(c) - 1;
395
                c &= ~(1ul << j);
396
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
397
                addr1 = page_number * TARGET_PAGE_SIZE;
398
                addr = section->offset_within_region + addr1;
399
                memory_region_set_dirty(section->mr, addr,
400
                                        TARGET_PAGE_SIZE * hpratio);
401
            } while (c != 0);
402
        }
403
    }
404
    return 0;
405
}
406

    
407
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
408

    
409
/**
410
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
411
 * This function updates qemu's dirty bitmap using
412
 * memory_region_set_dirty().  This means all bits are set
413
 * to dirty.
414
 *
415
 * @start_add: start of logged region.
416
 * @end_addr: end of logged region.
417
 */
418
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
419
{
420
    KVMState *s = kvm_state;
421
    unsigned long size, allocated_size = 0;
422
    KVMDirtyLog d;
423
    KVMSlot *mem;
424
    int ret = 0;
425
    hwaddr start_addr = section->offset_within_address_space;
426
    hwaddr end_addr = start_addr + int128_get64(section->size);
427

    
428
    d.dirty_bitmap = NULL;
429
    while (start_addr < end_addr) {
430
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
431
        if (mem == NULL) {
432
            break;
433
        }
434

    
435
        /* XXX bad kernel interface alert
436
         * For dirty bitmap, kernel allocates array of size aligned to
437
         * bits-per-long.  But for case when the kernel is 64bits and
438
         * the userspace is 32bits, userspace can't align to the same
439
         * bits-per-long, since sizeof(long) is different between kernel
440
         * and user space.  This way, userspace will provide buffer which
441
         * may be 4 bytes less than the kernel will use, resulting in
442
         * userspace memory corruption (which is not detectable by valgrind
443
         * too, in most cases).
444
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
445
         * a hope that sizeof(long) wont become >8 any time soon.
446
         */
447
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
448
                     /*HOST_LONG_BITS*/ 64) / 8;
449
        if (!d.dirty_bitmap) {
450
            d.dirty_bitmap = g_malloc(size);
451
        } else if (size > allocated_size) {
452
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
453
        }
454
        allocated_size = size;
455
        memset(d.dirty_bitmap, 0, allocated_size);
456

    
457
        d.slot = mem->slot;
458

    
459
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
460
            DPRINTF("ioctl failed %d\n", errno);
461
            ret = -1;
462
            break;
463
        }
464

    
465
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
466
        start_addr = mem->start_addr + mem->memory_size;
467
    }
468
    g_free(d.dirty_bitmap);
469

    
470
    return ret;
471
}
472

    
473
static void kvm_coalesce_mmio_region(MemoryListener *listener,
474
                                     MemoryRegionSection *secion,
475
                                     hwaddr start, hwaddr size)
476
{
477
    KVMState *s = kvm_state;
478

    
479
    if (s->coalesced_mmio) {
480
        struct kvm_coalesced_mmio_zone zone;
481

    
482
        zone.addr = start;
483
        zone.size = size;
484
        zone.pad = 0;
485

    
486
        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
487
    }
488
}
489

    
490
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
491
                                       MemoryRegionSection *secion,
492
                                       hwaddr start, hwaddr size)
493
{
494
    KVMState *s = kvm_state;
495

    
496
    if (s->coalesced_mmio) {
497
        struct kvm_coalesced_mmio_zone zone;
498

    
499
        zone.addr = start;
500
        zone.size = size;
501
        zone.pad = 0;
502

    
503
        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
504
    }
505
}
506

    
507
int kvm_check_extension(KVMState *s, unsigned int extension)
508
{
509
    int ret;
510

    
511
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
512
    if (ret < 0) {
513
        ret = 0;
514
    }
515

    
516
    return ret;
517
}
518

    
519
static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
520
                                  bool assign, uint32_t size, bool datamatch)
521
{
522
    int ret;
523
    struct kvm_ioeventfd iofd;
524

    
525
    iofd.datamatch = datamatch ? val : 0;
526
    iofd.addr = addr;
527
    iofd.len = size;
528
    iofd.flags = 0;
529
    iofd.fd = fd;
530

    
531
    if (!kvm_enabled()) {
532
        return -ENOSYS;
533
    }
534

    
535
    if (datamatch) {
536
        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
537
    }
538
    if (!assign) {
539
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
540
    }
541

    
542
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
543

    
544
    if (ret < 0) {
545
        return -errno;
546
    }
547

    
548
    return 0;
549
}
550

    
551
static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
552
                                 bool assign, uint32_t size, bool datamatch)
553
{
554
    struct kvm_ioeventfd kick = {
555
        .datamatch = datamatch ? val : 0,
556
        .addr = addr,
557
        .flags = KVM_IOEVENTFD_FLAG_PIO,
558
        .len = size,
559
        .fd = fd,
560
    };
561
    int r;
562
    if (!kvm_enabled()) {
563
        return -ENOSYS;
564
    }
565
    if (datamatch) {
566
        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
567
    }
568
    if (!assign) {
569
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
570
    }
571
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
572
    if (r < 0) {
573
        return r;
574
    }
575
    return 0;
576
}
577

    
578

    
579
static int kvm_check_many_ioeventfds(void)
580
{
581
    /* Userspace can use ioeventfd for io notification.  This requires a host
582
     * that supports eventfd(2) and an I/O thread; since eventfd does not
583
     * support SIGIO it cannot interrupt the vcpu.
584
     *
585
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
586
     * can avoid creating too many ioeventfds.
587
     */
588
#if defined(CONFIG_EVENTFD)
589
    int ioeventfds[7];
590
    int i, ret = 0;
591
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
592
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
593
        if (ioeventfds[i] < 0) {
594
            break;
595
        }
596
        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
597
        if (ret < 0) {
598
            close(ioeventfds[i]);
599
            break;
600
        }
601
    }
602

    
603
    /* Decide whether many devices are supported or not */
604
    ret = i == ARRAY_SIZE(ioeventfds);
605

    
606
    while (i-- > 0) {
607
        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
608
        close(ioeventfds[i]);
609
    }
610
    return ret;
611
#else
612
    return 0;
613
#endif
614
}
615

    
616
static const KVMCapabilityInfo *
617
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
618
{
619
    while (list->name) {
620
        if (!kvm_check_extension(s, list->value)) {
621
            return list;
622
        }
623
        list++;
624
    }
625
    return NULL;
626
}
627

    
628
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
629
{
630
    KVMState *s = kvm_state;
631
    KVMSlot *mem, old;
632
    int err;
633
    MemoryRegion *mr = section->mr;
634
    bool log_dirty = memory_region_is_logging(mr);
635
    bool writeable = !mr->readonly && !mr->rom_device;
636
    bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
637
    hwaddr start_addr = section->offset_within_address_space;
638
    ram_addr_t size = int128_get64(section->size);
639
    void *ram = NULL;
640
    unsigned delta;
641

    
642
    /* kvm works in page size chunks, but the function may be called
643
       with sub-page size and unaligned start address. */
644
    delta = TARGET_PAGE_ALIGN(size) - size;
645
    if (delta > size) {
646
        return;
647
    }
648
    start_addr += delta;
649
    size -= delta;
650
    size &= TARGET_PAGE_MASK;
651
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
652
        return;
653
    }
654

    
655
    if (!memory_region_is_ram(mr)) {
656
        if (writeable || !kvm_readonly_mem_allowed) {
657
            return;
658
        } else if (!mr->romd_mode) {
659
            /* If the memory device is not in romd_mode, then we actually want
660
             * to remove the kvm memory slot so all accesses will trap. */
661
            add = false;
662
        }
663
    }
664

    
665
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
666

    
667
    while (1) {
668
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
669
        if (!mem) {
670
            break;
671
        }
672

    
673
        if (add && start_addr >= mem->start_addr &&
674
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
675
            (ram - start_addr == mem->ram - mem->start_addr)) {
676
            /* The new slot fits into the existing one and comes with
677
             * identical parameters - update flags and done. */
678
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
679
            return;
680
        }
681

    
682
        old = *mem;
683

    
684
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
685
            kvm_physical_sync_dirty_bitmap(section);
686
        }
687

    
688
        /* unregister the overlapping slot */
689
        mem->memory_size = 0;
690
        err = kvm_set_user_memory_region(s, mem);
691
        if (err) {
692
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
693
                    __func__, strerror(-err));
694
            abort();
695
        }
696

    
697
        /* Workaround for older KVM versions: we can't join slots, even not by
698
         * unregistering the previous ones and then registering the larger
699
         * slot. We have to maintain the existing fragmentation. Sigh.
700
         *
701
         * This workaround assumes that the new slot starts at the same
702
         * address as the first existing one. If not or if some overlapping
703
         * slot comes around later, we will fail (not seen in practice so far)
704
         * - and actually require a recent KVM version. */
705
        if (s->broken_set_mem_region &&
706
            old.start_addr == start_addr && old.memory_size < size && add) {
707
            mem = kvm_alloc_slot(s);
708
            mem->memory_size = old.memory_size;
709
            mem->start_addr = old.start_addr;
710
            mem->ram = old.ram;
711
            mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
712

    
713
            err = kvm_set_user_memory_region(s, mem);
714
            if (err) {
715
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
716
                        strerror(-err));
717
                abort();
718
            }
719

    
720
            start_addr += old.memory_size;
721
            ram += old.memory_size;
722
            size -= old.memory_size;
723
            continue;
724
        }
725

    
726
        /* register prefix slot */
727
        if (old.start_addr < start_addr) {
728
            mem = kvm_alloc_slot(s);
729
            mem->memory_size = start_addr - old.start_addr;
730
            mem->start_addr = old.start_addr;
731
            mem->ram = old.ram;
732
            mem->flags =  kvm_mem_flags(s, log_dirty, readonly_flag);
733

    
734
            err = kvm_set_user_memory_region(s, mem);
735
            if (err) {
736
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
737
                        __func__, strerror(-err));
738
#ifdef TARGET_PPC
739
                fprintf(stderr, "%s: This is probably because your kernel's " \
740
                                "PAGE_SIZE is too big. Please try to use 4k " \
741
                                "PAGE_SIZE!\n", __func__);
742
#endif
743
                abort();
744
            }
745
        }
746

    
747
        /* register suffix slot */
748
        if (old.start_addr + old.memory_size > start_addr + size) {
749
            ram_addr_t size_delta;
750

    
751
            mem = kvm_alloc_slot(s);
752
            mem->start_addr = start_addr + size;
753
            size_delta = mem->start_addr - old.start_addr;
754
            mem->memory_size = old.memory_size - size_delta;
755
            mem->ram = old.ram + size_delta;
756
            mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
757

    
758
            err = kvm_set_user_memory_region(s, mem);
759
            if (err) {
760
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
761
                        __func__, strerror(-err));
762
                abort();
763
            }
764
        }
765
    }
766

    
767
    /* in case the KVM bug workaround already "consumed" the new slot */
768
    if (!size) {
769
        return;
770
    }
771
    if (!add) {
772
        return;
773
    }
774
    mem = kvm_alloc_slot(s);
775
    mem->memory_size = size;
776
    mem->start_addr = start_addr;
777
    mem->ram = ram;
778
    mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
779

    
780
    err = kvm_set_user_memory_region(s, mem);
781
    if (err) {
782
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
783
                strerror(-err));
784
        abort();
785
    }
786
}
787

    
788
static void kvm_region_add(MemoryListener *listener,
789
                           MemoryRegionSection *section)
790
{
791
    kvm_set_phys_mem(section, true);
792
}
793

    
794
static void kvm_region_del(MemoryListener *listener,
795
                           MemoryRegionSection *section)
796
{
797
    kvm_set_phys_mem(section, false);
798
}
799

    
800
static void kvm_log_sync(MemoryListener *listener,
801
                         MemoryRegionSection *section)
802
{
803
    int r;
804

    
805
    r = kvm_physical_sync_dirty_bitmap(section);
806
    if (r < 0) {
807
        abort();
808
    }
809
}
810

    
811
static void kvm_log_global_start(struct MemoryListener *listener)
812
{
813
    int r;
814

    
815
    r = kvm_set_migration_log(1);
816
    assert(r >= 0);
817
}
818

    
819
static void kvm_log_global_stop(struct MemoryListener *listener)
820
{
821
    int r;
822

    
823
    r = kvm_set_migration_log(0);
824
    assert(r >= 0);
825
}
826

    
827
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
828
                                  MemoryRegionSection *section,
829
                                  bool match_data, uint64_t data,
830
                                  EventNotifier *e)
831
{
832
    int fd = event_notifier_get_fd(e);
833
    int r;
834

    
835
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
836
                               data, true, int128_get64(section->size),
837
                               match_data);
838
    if (r < 0) {
839
        abort();
840
    }
841
}
842

    
843
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
844
                                  MemoryRegionSection *section,
845
                                  bool match_data, uint64_t data,
846
                                  EventNotifier *e)
847
{
848
    int fd = event_notifier_get_fd(e);
849
    int r;
850

    
851
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
852
                               data, false, int128_get64(section->size),
853
                               match_data);
854
    if (r < 0) {
855
        abort();
856
    }
857
}
858

    
859
static void kvm_io_ioeventfd_add(MemoryListener *listener,
860
                                 MemoryRegionSection *section,
861
                                 bool match_data, uint64_t data,
862
                                 EventNotifier *e)
863
{
864
    int fd = event_notifier_get_fd(e);
865
    int r;
866

    
867
    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
868
                              data, true, int128_get64(section->size),
869
                              match_data);
870
    if (r < 0) {
871
        abort();
872
    }
873
}
874

    
875
static void kvm_io_ioeventfd_del(MemoryListener *listener,
876
                                 MemoryRegionSection *section,
877
                                 bool match_data, uint64_t data,
878
                                 EventNotifier *e)
879

    
880
{
881
    int fd = event_notifier_get_fd(e);
882
    int r;
883

    
884
    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
885
                              data, false, int128_get64(section->size),
886
                              match_data);
887
    if (r < 0) {
888
        abort();
889
    }
890
}
891

    
892
static MemoryListener kvm_memory_listener = {
893
    .region_add = kvm_region_add,
894
    .region_del = kvm_region_del,
895
    .log_start = kvm_log_start,
896
    .log_stop = kvm_log_stop,
897
    .log_sync = kvm_log_sync,
898
    .log_global_start = kvm_log_global_start,
899
    .log_global_stop = kvm_log_global_stop,
900
    .eventfd_add = kvm_mem_ioeventfd_add,
901
    .eventfd_del = kvm_mem_ioeventfd_del,
902
    .coalesced_mmio_add = kvm_coalesce_mmio_region,
903
    .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
904
    .priority = 10,
905
};
906

    
907
static MemoryListener kvm_io_listener = {
908
    .eventfd_add = kvm_io_ioeventfd_add,
909
    .eventfd_del = kvm_io_ioeventfd_del,
910
    .priority = 10,
911
};
912

    
913
static void kvm_handle_interrupt(CPUState *cpu, int mask)
914
{
915
    cpu->interrupt_request |= mask;
916

    
917
    if (!qemu_cpu_is_self(cpu)) {
918
        qemu_cpu_kick(cpu);
919
    }
920
}
921

    
922
int kvm_set_irq(KVMState *s, int irq, int level)
923
{
924
    struct kvm_irq_level event;
925
    int ret;
926

    
927
    assert(kvm_async_interrupts_enabled());
928

    
929
    event.level = level;
930
    event.irq = irq;
931
    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
932
    if (ret < 0) {
933
        perror("kvm_set_irq");
934
        abort();
935
    }
936

    
937
    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
938
}
939

    
940
#ifdef KVM_CAP_IRQ_ROUTING
941
typedef struct KVMMSIRoute {
942
    struct kvm_irq_routing_entry kroute;
943
    QTAILQ_ENTRY(KVMMSIRoute) entry;
944
} KVMMSIRoute;
945

    
946
static void set_gsi(KVMState *s, unsigned int gsi)
947
{
948
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
949
}
950

    
951
static void clear_gsi(KVMState *s, unsigned int gsi)
952
{
953
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
954
}
955

    
956
static void kvm_init_irq_routing(KVMState *s)
957
{
958
    int gsi_count, i;
959

    
960
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
961
    if (gsi_count > 0) {
962
        unsigned int gsi_bits, i;
963

    
964
        /* Round up so we can search ints using ffs */
965
        gsi_bits = ALIGN(gsi_count, 32);
966
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
967
        s->gsi_count = gsi_count;
968

    
969
        /* Mark any over-allocated bits as already in use */
970
        for (i = gsi_count; i < gsi_bits; i++) {
971
            set_gsi(s, i);
972
        }
973
    }
974

    
975
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
976
    s->nr_allocated_irq_routes = 0;
977

    
978
    if (!s->direct_msi) {
979
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
980
            QTAILQ_INIT(&s->msi_hashtab[i]);
981
        }
982
    }
983

    
984
    kvm_arch_init_irq_routing(s);
985
}
986

    
987
static void kvm_irqchip_commit_routes(KVMState *s)
988
{
989
    int ret;
990

    
991
    s->irq_routes->flags = 0;
992
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
993
    assert(ret == 0);
994
}
995

    
996
static void kvm_add_routing_entry(KVMState *s,
997
                                  struct kvm_irq_routing_entry *entry)
998
{
999
    struct kvm_irq_routing_entry *new;
1000
    int n, size;
1001

    
1002
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1003
        n = s->nr_allocated_irq_routes * 2;
1004
        if (n < 64) {
1005
            n = 64;
1006
        }
1007
        size = sizeof(struct kvm_irq_routing);
1008
        size += n * sizeof(*new);
1009
        s->irq_routes = g_realloc(s->irq_routes, size);
1010
        s->nr_allocated_irq_routes = n;
1011
    }
1012
    n = s->irq_routes->nr++;
1013
    new = &s->irq_routes->entries[n];
1014
    memset(new, 0, sizeof(*new));
1015
    new->gsi = entry->gsi;
1016
    new->type = entry->type;
1017
    new->flags = entry->flags;
1018
    new->u = entry->u;
1019

    
1020
    set_gsi(s, entry->gsi);
1021

    
1022
    kvm_irqchip_commit_routes(s);
1023
}
1024

    
1025
static int kvm_update_routing_entry(KVMState *s,
1026
                                    struct kvm_irq_routing_entry *new_entry)
1027
{
1028
    struct kvm_irq_routing_entry *entry;
1029
    int n;
1030

    
1031
    for (n = 0; n < s->irq_routes->nr; n++) {
1032
        entry = &s->irq_routes->entries[n];
1033
        if (entry->gsi != new_entry->gsi) {
1034
            continue;
1035
        }
1036

    
1037
        entry->type = new_entry->type;
1038
        entry->flags = new_entry->flags;
1039
        entry->u = new_entry->u;
1040

    
1041
        kvm_irqchip_commit_routes(s);
1042

    
1043
        return 0;
1044
    }
1045

    
1046
    return -ESRCH;
1047
}
1048

    
1049
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1050
{
1051
    struct kvm_irq_routing_entry e;
1052

    
1053
    assert(pin < s->gsi_count);
1054

    
1055
    e.gsi = irq;
1056
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1057
    e.flags = 0;
1058
    e.u.irqchip.irqchip = irqchip;
1059
    e.u.irqchip.pin = pin;
1060
    kvm_add_routing_entry(s, &e);
1061
}
1062

    
1063
void kvm_irqchip_release_virq(KVMState *s, int virq)
1064
{
1065
    struct kvm_irq_routing_entry *e;
1066
    int i;
1067

    
1068
    for (i = 0; i < s->irq_routes->nr; i++) {
1069
        e = &s->irq_routes->entries[i];
1070
        if (e->gsi == virq) {
1071
            s->irq_routes->nr--;
1072
            *e = s->irq_routes->entries[s->irq_routes->nr];
1073
        }
1074
    }
1075
    clear_gsi(s, virq);
1076
}
1077

    
1078
static unsigned int kvm_hash_msi(uint32_t data)
1079
{
1080
    /* This is optimized for IA32 MSI layout. However, no other arch shall
1081
     * repeat the mistake of not providing a direct MSI injection API. */
1082
    return data & 0xff;
1083
}
1084

    
1085
static void kvm_flush_dynamic_msi_routes(KVMState *s)
1086
{
1087
    KVMMSIRoute *route, *next;
1088
    unsigned int hash;
1089

    
1090
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1091
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1092
            kvm_irqchip_release_virq(s, route->kroute.gsi);
1093
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1094
            g_free(route);
1095
        }
1096
    }
1097
}
1098

    
1099
static int kvm_irqchip_get_virq(KVMState *s)
1100
{
1101
    uint32_t *word = s->used_gsi_bitmap;
1102
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1103
    int i, bit;
1104
    bool retry = true;
1105

    
1106
again:
1107
    /* Return the lowest unused GSI in the bitmap */
1108
    for (i = 0; i < max_words; i++) {
1109
        bit = ffs(~word[i]);
1110
        if (!bit) {
1111
            continue;
1112
        }
1113

    
1114
        return bit - 1 + i * 32;
1115
    }
1116
    if (!s->direct_msi && retry) {
1117
        retry = false;
1118
        kvm_flush_dynamic_msi_routes(s);
1119
        goto again;
1120
    }
1121
    return -ENOSPC;
1122

    
1123
}
1124

    
1125
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1126
{
1127
    unsigned int hash = kvm_hash_msi(msg.data);
1128
    KVMMSIRoute *route;
1129

    
1130
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1131
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1132
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1133
            route->kroute.u.msi.data == msg.data) {
1134
            return route;
1135
        }
1136
    }
1137
    return NULL;
1138
}
1139

    
1140
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1141
{
1142
    struct kvm_msi msi;
1143
    KVMMSIRoute *route;
1144

    
1145
    if (s->direct_msi) {
1146
        msi.address_lo = (uint32_t)msg.address;
1147
        msi.address_hi = msg.address >> 32;
1148
        msi.data = msg.data;
1149
        msi.flags = 0;
1150
        memset(msi.pad, 0, sizeof(msi.pad));
1151

    
1152
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1153
    }
1154

    
1155
    route = kvm_lookup_msi_route(s, msg);
1156
    if (!route) {
1157
        int virq;
1158

    
1159
        virq = kvm_irqchip_get_virq(s);
1160
        if (virq < 0) {
1161
            return virq;
1162
        }
1163

    
1164
        route = g_malloc(sizeof(KVMMSIRoute));
1165
        route->kroute.gsi = virq;
1166
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1167
        route->kroute.flags = 0;
1168
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1169
        route->kroute.u.msi.address_hi = msg.address >> 32;
1170
        route->kroute.u.msi.data = msg.data;
1171

    
1172
        kvm_add_routing_entry(s, &route->kroute);
1173

    
1174
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1175
                           entry);
1176
    }
1177

    
1178
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1179

    
1180
    return kvm_set_irq(s, route->kroute.gsi, 1);
1181
}
1182

    
1183
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1184
{
1185
    struct kvm_irq_routing_entry kroute;
1186
    int virq;
1187

    
1188
    if (!kvm_gsi_routing_enabled()) {
1189
        return -ENOSYS;
1190
    }
1191

    
1192
    virq = kvm_irqchip_get_virq(s);
1193
    if (virq < 0) {
1194
        return virq;
1195
    }
1196

    
1197
    kroute.gsi = virq;
1198
    kroute.type = KVM_IRQ_ROUTING_MSI;
1199
    kroute.flags = 0;
1200
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1201
    kroute.u.msi.address_hi = msg.address >> 32;
1202
    kroute.u.msi.data = msg.data;
1203

    
1204
    kvm_add_routing_entry(s, &kroute);
1205

    
1206
    return virq;
1207
}
1208

    
1209
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1210
{
1211
    struct kvm_irq_routing_entry kroute;
1212

    
1213
    if (!kvm_irqchip_in_kernel()) {
1214
        return -ENOSYS;
1215
    }
1216

    
1217
    kroute.gsi = virq;
1218
    kroute.type = KVM_IRQ_ROUTING_MSI;
1219
    kroute.flags = 0;
1220
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1221
    kroute.u.msi.address_hi = msg.address >> 32;
1222
    kroute.u.msi.data = msg.data;
1223

    
1224
    return kvm_update_routing_entry(s, &kroute);
1225
}
1226

    
1227
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1228
{
1229
    struct kvm_irqfd irqfd = {
1230
        .fd = fd,
1231
        .gsi = virq,
1232
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1233
    };
1234

    
1235
    if (!kvm_irqfds_enabled()) {
1236
        return -ENOSYS;
1237
    }
1238

    
1239
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1240
}
1241

    
1242
#else /* !KVM_CAP_IRQ_ROUTING */
1243

    
1244
static void kvm_init_irq_routing(KVMState *s)
1245
{
1246
}
1247

    
1248
void kvm_irqchip_release_virq(KVMState *s, int virq)
1249
{
1250
}
1251

    
1252
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1253
{
1254
    abort();
1255
}
1256

    
1257
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1258
{
1259
    return -ENOSYS;
1260
}
1261

    
1262
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1263
{
1264
    abort();
1265
}
1266

    
1267
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1268
{
1269
    return -ENOSYS;
1270
}
1271
#endif /* !KVM_CAP_IRQ_ROUTING */
1272

    
1273
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1274
{
1275
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1276
}
1277

    
1278
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1279
{
1280
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1281
}
1282

    
1283
static int kvm_irqchip_create(KVMState *s)
1284
{
1285
    QemuOptsList *list = qemu_find_opts("machine");
1286
    int ret;
1287

    
1288
    if (QTAILQ_EMPTY(&list->head) ||
1289
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1290
                           "kernel_irqchip", true) ||
1291
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1292
        return 0;
1293
    }
1294

    
1295
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1296
    if (ret < 0) {
1297
        fprintf(stderr, "Create kernel irqchip failed\n");
1298
        return ret;
1299
    }
1300

    
1301
    kvm_kernel_irqchip = true;
1302
    /* If we have an in-kernel IRQ chip then we must have asynchronous
1303
     * interrupt delivery (though the reverse is not necessarily true)
1304
     */
1305
    kvm_async_interrupts_allowed = true;
1306

    
1307
    kvm_init_irq_routing(s);
1308

    
1309
    return 0;
1310
}
1311

    
1312
static int kvm_max_vcpus(KVMState *s)
1313
{
1314
    int ret;
1315

    
1316
    /* Find number of supported CPUs using the recommended
1317
     * procedure from the kernel API documentation to cope with
1318
     * older kernels that may be missing capabilities.
1319
     */
1320
    ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1321
    if (ret) {
1322
        return ret;
1323
    }
1324
    ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1325
    if (ret) {
1326
        return ret;
1327
    }
1328

    
1329
    return 4;
1330
}
1331

    
1332
int kvm_init(void)
1333
{
1334
    static const char upgrade_note[] =
1335
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1336
        "(see http://sourceforge.net/projects/kvm).\n";
1337
    KVMState *s;
1338
    const KVMCapabilityInfo *missing_cap;
1339
    int ret;
1340
    int i;
1341
    int max_vcpus;
1342

    
1343
    s = g_malloc0(sizeof(KVMState));
1344

    
1345
    /*
1346
     * On systems where the kernel can support different base page
1347
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1348
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1349
     * page size for the system though.
1350
     */
1351
    assert(TARGET_PAGE_SIZE <= getpagesize());
1352

    
1353
#ifdef KVM_CAP_SET_GUEST_DEBUG
1354
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1355
#endif
1356
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1357
        s->slots[i].slot = i;
1358
    }
1359
    s->vmfd = -1;
1360
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1361
    if (s->fd == -1) {
1362
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1363
        ret = -errno;
1364
        goto err;
1365
    }
1366

    
1367
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1368
    if (ret < KVM_API_VERSION) {
1369
        if (ret > 0) {
1370
            ret = -EINVAL;
1371
        }
1372
        fprintf(stderr, "kvm version too old\n");
1373
        goto err;
1374
    }
1375

    
1376
    if (ret > KVM_API_VERSION) {
1377
        ret = -EINVAL;
1378
        fprintf(stderr, "kvm version not supported\n");
1379
        goto err;
1380
    }
1381

    
1382
    max_vcpus = kvm_max_vcpus(s);
1383
    if (smp_cpus > max_vcpus) {
1384
        ret = -EINVAL;
1385
        fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1386
                "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1387
        goto err;
1388
    }
1389

    
1390
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1391
    if (s->vmfd < 0) {
1392
#ifdef TARGET_S390X
1393
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1394
                        "your host kernel command line\n");
1395
#endif
1396
        ret = s->vmfd;
1397
        goto err;
1398
    }
1399

    
1400
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1401
    if (!missing_cap) {
1402
        missing_cap =
1403
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1404
    }
1405
    if (missing_cap) {
1406
        ret = -EINVAL;
1407
        fprintf(stderr, "kvm does not support %s\n%s",
1408
                missing_cap->name, upgrade_note);
1409
        goto err;
1410
    }
1411

    
1412
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1413

    
1414
    s->broken_set_mem_region = 1;
1415
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1416
    if (ret > 0) {
1417
        s->broken_set_mem_region = 0;
1418
    }
1419

    
1420
#ifdef KVM_CAP_VCPU_EVENTS
1421
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1422
#endif
1423

    
1424
    s->robust_singlestep =
1425
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1426

    
1427
#ifdef KVM_CAP_DEBUGREGS
1428
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1429
#endif
1430

    
1431
#ifdef KVM_CAP_XSAVE
1432
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1433
#endif
1434

    
1435
#ifdef KVM_CAP_XCRS
1436
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1437
#endif
1438

    
1439
#ifdef KVM_CAP_PIT_STATE2
1440
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1441
#endif
1442

    
1443
#ifdef KVM_CAP_IRQ_ROUTING
1444
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1445
#endif
1446

    
1447
    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1448

    
1449
    s->irq_set_ioctl = KVM_IRQ_LINE;
1450
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1451
        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1452
    }
1453

    
1454
#ifdef KVM_CAP_READONLY_MEM
1455
    kvm_readonly_mem_allowed =
1456
        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1457
#endif
1458

    
1459
    ret = kvm_arch_init(s);
1460
    if (ret < 0) {
1461
        goto err;
1462
    }
1463

    
1464
    ret = kvm_irqchip_create(s);
1465
    if (ret < 0) {
1466
        goto err;
1467
    }
1468

    
1469
    kvm_state = s;
1470
    memory_listener_register(&kvm_memory_listener, &address_space_memory);
1471
    memory_listener_register(&kvm_io_listener, &address_space_io);
1472

    
1473
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1474

    
1475
    cpu_interrupt_handler = kvm_handle_interrupt;
1476

    
1477
    return 0;
1478

    
1479
err:
1480
    if (s->vmfd >= 0) {
1481
        close(s->vmfd);
1482
    }
1483
    if (s->fd != -1) {
1484
        close(s->fd);
1485
    }
1486
    g_free(s);
1487

    
1488
    return ret;
1489
}
1490

    
1491
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1492
                          uint32_t count)
1493
{
1494
    int i;
1495
    uint8_t *ptr = data;
1496

    
1497
    for (i = 0; i < count; i++) {
1498
        if (direction == KVM_EXIT_IO_IN) {
1499
            switch (size) {
1500
            case 1:
1501
                stb_p(ptr, cpu_inb(port));
1502
                break;
1503
            case 2:
1504
                stw_p(ptr, cpu_inw(port));
1505
                break;
1506
            case 4:
1507
                stl_p(ptr, cpu_inl(port));
1508
                break;
1509
            }
1510
        } else {
1511
            switch (size) {
1512
            case 1:
1513
                cpu_outb(port, ldub_p(ptr));
1514
                break;
1515
            case 2:
1516
                cpu_outw(port, lduw_p(ptr));
1517
                break;
1518
            case 4:
1519
                cpu_outl(port, ldl_p(ptr));
1520
                break;
1521
            }
1522
        }
1523

    
1524
        ptr += size;
1525
    }
1526
}
1527

    
1528
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1529
{
1530
    CPUState *cpu = ENV_GET_CPU(env);
1531

    
1532
    fprintf(stderr, "KVM internal error.");
1533
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1534
        int i;
1535

    
1536
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1537
        for (i = 0; i < run->internal.ndata; ++i) {
1538
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1539
                    i, (uint64_t)run->internal.data[i]);
1540
        }
1541
    } else {
1542
        fprintf(stderr, "\n");
1543
    }
1544
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1545
        fprintf(stderr, "emulation failure\n");
1546
        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1547
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1548
            return EXCP_INTERRUPT;
1549
        }
1550
    }
1551
    /* FIXME: Should trigger a qmp message to let management know
1552
     * something went wrong.
1553
     */
1554
    return -1;
1555
}
1556

    
1557
void kvm_flush_coalesced_mmio_buffer(void)
1558
{
1559
    KVMState *s = kvm_state;
1560

    
1561
    if (s->coalesced_flush_in_progress) {
1562
        return;
1563
    }
1564

    
1565
    s->coalesced_flush_in_progress = true;
1566

    
1567
    if (s->coalesced_mmio_ring) {
1568
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1569
        while (ring->first != ring->last) {
1570
            struct kvm_coalesced_mmio *ent;
1571

    
1572
            ent = &ring->coalesced_mmio[ring->first];
1573

    
1574
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1575
            smp_wmb();
1576
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1577
        }
1578
    }
1579

    
1580
    s->coalesced_flush_in_progress = false;
1581
}
1582

    
1583
static void do_kvm_cpu_synchronize_state(void *arg)
1584
{
1585
    CPUState *cpu = arg;
1586

    
1587
    if (!cpu->kvm_vcpu_dirty) {
1588
        kvm_arch_get_registers(cpu);
1589
        cpu->kvm_vcpu_dirty = true;
1590
    }
1591
}
1592

    
1593
void kvm_cpu_synchronize_state(CPUState *cpu)
1594
{
1595
    if (!cpu->kvm_vcpu_dirty) {
1596
        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1597
    }
1598
}
1599

    
1600
void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1601
{
1602
    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1603
    cpu->kvm_vcpu_dirty = false;
1604
}
1605

    
1606
void kvm_cpu_synchronize_post_init(CPUState *cpu)
1607
{
1608
    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1609
    cpu->kvm_vcpu_dirty = false;
1610
}
1611

    
1612
int kvm_cpu_exec(CPUArchState *env)
1613
{
1614
    CPUState *cpu = ENV_GET_CPU(env);
1615
    struct kvm_run *run = cpu->kvm_run;
1616
    int ret, run_ret;
1617

    
1618
    DPRINTF("kvm_cpu_exec()\n");
1619

    
1620
    if (kvm_arch_process_async_events(cpu)) {
1621
        cpu->exit_request = 0;
1622
        return EXCP_HLT;
1623
    }
1624

    
1625
    do {
1626
        if (cpu->kvm_vcpu_dirty) {
1627
            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1628
            cpu->kvm_vcpu_dirty = false;
1629
        }
1630

    
1631
        kvm_arch_pre_run(cpu, run);
1632
        if (cpu->exit_request) {
1633
            DPRINTF("interrupt exit requested\n");
1634
            /*
1635
             * KVM requires us to reenter the kernel after IO exits to complete
1636
             * instruction emulation. This self-signal will ensure that we
1637
             * leave ASAP again.
1638
             */
1639
            qemu_cpu_kick_self();
1640
        }
1641
        qemu_mutex_unlock_iothread();
1642

    
1643
        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1644

    
1645
        qemu_mutex_lock_iothread();
1646
        kvm_arch_post_run(cpu, run);
1647

    
1648
        if (run_ret < 0) {
1649
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1650
                DPRINTF("io window exit\n");
1651
                ret = EXCP_INTERRUPT;
1652
                break;
1653
            }
1654
            fprintf(stderr, "error: kvm run failed %s\n",
1655
                    strerror(-run_ret));
1656
            abort();
1657
        }
1658

    
1659
        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1660
        switch (run->exit_reason) {
1661
        case KVM_EXIT_IO:
1662
            DPRINTF("handle_io\n");
1663
            kvm_handle_io(run->io.port,
1664
                          (uint8_t *)run + run->io.data_offset,
1665
                          run->io.direction,
1666
                          run->io.size,
1667
                          run->io.count);
1668
            ret = 0;
1669
            break;
1670
        case KVM_EXIT_MMIO:
1671
            DPRINTF("handle_mmio\n");
1672
            cpu_physical_memory_rw(run->mmio.phys_addr,
1673
                                   run->mmio.data,
1674
                                   run->mmio.len,
1675
                                   run->mmio.is_write);
1676
            ret = 0;
1677
            break;
1678
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1679
            DPRINTF("irq_window_open\n");
1680
            ret = EXCP_INTERRUPT;
1681
            break;
1682
        case KVM_EXIT_SHUTDOWN:
1683
            DPRINTF("shutdown\n");
1684
            qemu_system_reset_request();
1685
            ret = EXCP_INTERRUPT;
1686
            break;
1687
        case KVM_EXIT_UNKNOWN:
1688
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1689
                    (uint64_t)run->hw.hardware_exit_reason);
1690
            ret = -1;
1691
            break;
1692
        case KVM_EXIT_INTERNAL_ERROR:
1693
            ret = kvm_handle_internal_error(env, run);
1694
            break;
1695
        default:
1696
            DPRINTF("kvm_arch_handle_exit\n");
1697
            ret = kvm_arch_handle_exit(cpu, run);
1698
            break;
1699
        }
1700
    } while (ret == 0);
1701

    
1702
    if (ret < 0) {
1703
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1704
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1705
    }
1706

    
1707
    cpu->exit_request = 0;
1708
    return ret;
1709
}
1710

    
1711
int kvm_ioctl(KVMState *s, int type, ...)
1712
{
1713
    int ret;
1714
    void *arg;
1715
    va_list ap;
1716

    
1717
    va_start(ap, type);
1718
    arg = va_arg(ap, void *);
1719
    va_end(ap);
1720

    
1721
    trace_kvm_ioctl(type, arg);
1722
    ret = ioctl(s->fd, type, arg);
1723
    if (ret == -1) {
1724
        ret = -errno;
1725
    }
1726
    return ret;
1727
}
1728

    
1729
int kvm_vm_ioctl(KVMState *s, int type, ...)
1730
{
1731
    int ret;
1732
    void *arg;
1733
    va_list ap;
1734

    
1735
    va_start(ap, type);
1736
    arg = va_arg(ap, void *);
1737
    va_end(ap);
1738

    
1739
    trace_kvm_vm_ioctl(type, arg);
1740
    ret = ioctl(s->vmfd, type, arg);
1741
    if (ret == -1) {
1742
        ret = -errno;
1743
    }
1744
    return ret;
1745
}
1746

    
1747
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1748
{
1749
    int ret;
1750
    void *arg;
1751
    va_list ap;
1752

    
1753
    va_start(ap, type);
1754
    arg = va_arg(ap, void *);
1755
    va_end(ap);
1756

    
1757
    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1758
    ret = ioctl(cpu->kvm_fd, type, arg);
1759
    if (ret == -1) {
1760
        ret = -errno;
1761
    }
1762
    return ret;
1763
}
1764

    
1765
int kvm_has_sync_mmu(void)
1766
{
1767
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1768
}
1769

    
1770
int kvm_has_vcpu_events(void)
1771
{
1772
    return kvm_state->vcpu_events;
1773
}
1774

    
1775
int kvm_has_robust_singlestep(void)
1776
{
1777
    return kvm_state->robust_singlestep;
1778
}
1779

    
1780
int kvm_has_debugregs(void)
1781
{
1782
    return kvm_state->debugregs;
1783
}
1784

    
1785
int kvm_has_xsave(void)
1786
{
1787
    return kvm_state->xsave;
1788
}
1789

    
1790
int kvm_has_xcrs(void)
1791
{
1792
    return kvm_state->xcrs;
1793
}
1794

    
1795
int kvm_has_pit_state2(void)
1796
{
1797
    return kvm_state->pit_state2;
1798
}
1799

    
1800
int kvm_has_many_ioeventfds(void)
1801
{
1802
    if (!kvm_enabled()) {
1803
        return 0;
1804
    }
1805
    return kvm_state->many_ioeventfds;
1806
}
1807

    
1808
int kvm_has_gsi_routing(void)
1809
{
1810
#ifdef KVM_CAP_IRQ_ROUTING
1811
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1812
#else
1813
    return false;
1814
#endif
1815
}
1816

    
1817
int kvm_has_intx_set_mask(void)
1818
{
1819
    return kvm_state->intx_set_mask;
1820
}
1821

    
1822
void *kvm_ram_alloc(ram_addr_t size)
1823
{
1824
#ifdef TARGET_S390X
1825
    void *mem;
1826

    
1827
    mem = kvm_arch_ram_alloc(size);
1828
    if (mem) {
1829
        return mem;
1830
    }
1831
#endif
1832
    return qemu_anon_ram_alloc(size);
1833
}
1834

    
1835
void kvm_setup_guest_memory(void *start, size_t size)
1836
{
1837
#ifdef CONFIG_VALGRIND_H
1838
    VALGRIND_MAKE_MEM_DEFINED(start, size);
1839
#endif
1840
    if (!kvm_has_sync_mmu()) {
1841
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1842

    
1843
        if (ret) {
1844
            perror("qemu_madvise");
1845
            fprintf(stderr,
1846
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1847
            exit(1);
1848
        }
1849
    }
1850
}
1851

    
1852
#ifdef KVM_CAP_SET_GUEST_DEBUG
1853
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1854
                                                 target_ulong pc)
1855
{
1856
    struct kvm_sw_breakpoint *bp;
1857

    
1858
    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1859
        if (bp->pc == pc) {
1860
            return bp;
1861
        }
1862
    }
1863
    return NULL;
1864
}
1865

    
1866
int kvm_sw_breakpoints_active(CPUState *cpu)
1867
{
1868
    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1869
}
1870

    
1871
struct kvm_set_guest_debug_data {
1872
    struct kvm_guest_debug dbg;
1873
    CPUState *cpu;
1874
    int err;
1875
};
1876

    
1877
static void kvm_invoke_set_guest_debug(void *data)
1878
{
1879
    struct kvm_set_guest_debug_data *dbg_data = data;
1880

    
1881
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1882
                                   &dbg_data->dbg);
1883
}
1884

    
1885
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1886
{
1887
    CPUState *cpu = ENV_GET_CPU(env);
1888
    struct kvm_set_guest_debug_data data;
1889

    
1890
    data.dbg.control = reinject_trap;
1891

    
1892
    if (env->singlestep_enabled) {
1893
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1894
    }
1895
    kvm_arch_update_guest_debug(cpu, &data.dbg);
1896
    data.cpu = cpu;
1897

    
1898
    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1899
    return data.err;
1900
}
1901

    
1902
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1903
                          target_ulong len, int type)
1904
{
1905
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1906
    struct kvm_sw_breakpoint *bp;
1907
    CPUArchState *env;
1908
    int err;
1909

    
1910
    if (type == GDB_BREAKPOINT_SW) {
1911
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1912
        if (bp) {
1913
            bp->use_count++;
1914
            return 0;
1915
        }
1916

    
1917
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1918
        if (!bp) {
1919
            return -ENOMEM;
1920
        }
1921

    
1922
        bp->pc = addr;
1923
        bp->use_count = 1;
1924
        err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1925
        if (err) {
1926
            g_free(bp);
1927
            return err;
1928
        }
1929

    
1930
        QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1931
                          bp, entry);
1932
    } else {
1933
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1934
        if (err) {
1935
            return err;
1936
        }
1937
    }
1938

    
1939
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1940
        err = kvm_update_guest_debug(env, 0);
1941
        if (err) {
1942
            return err;
1943
        }
1944
    }
1945
    return 0;
1946
}
1947

    
1948
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1949
                          target_ulong len, int type)
1950
{
1951
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1952
    struct kvm_sw_breakpoint *bp;
1953
    CPUArchState *env;
1954
    int err;
1955

    
1956
    if (type == GDB_BREAKPOINT_SW) {
1957
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1958
        if (!bp) {
1959
            return -ENOENT;
1960
        }
1961

    
1962
        if (bp->use_count > 1) {
1963
            bp->use_count--;
1964
            return 0;
1965
        }
1966

    
1967
        err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1968
        if (err) {
1969
            return err;
1970
        }
1971

    
1972
        QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1973
        g_free(bp);
1974
    } else {
1975
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1976
        if (err) {
1977
            return err;
1978
        }
1979
    }
1980

    
1981
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1982
        err = kvm_update_guest_debug(env, 0);
1983
        if (err) {
1984
            return err;
1985
        }
1986
    }
1987
    return 0;
1988
}
1989

    
1990
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1991
{
1992
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1993
    struct kvm_sw_breakpoint *bp, *next;
1994
    KVMState *s = current_cpu->kvm_state;
1995
    CPUArchState *env;
1996
    CPUState *cpu;
1997

    
1998
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1999
        if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
2000
            /* Try harder to find a CPU that currently sees the breakpoint. */
2001
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
2002
                cpu = ENV_GET_CPU(env);
2003
                if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2004
                    break;
2005
                }
2006
            }
2007
        }
2008
        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2009
        g_free(bp);
2010
    }
2011
    kvm_arch_remove_all_hw_breakpoints();
2012

    
2013
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
2014
        kvm_update_guest_debug(env, 0);
2015
    }
2016
}
2017

    
2018
#else /* !KVM_CAP_SET_GUEST_DEBUG */
2019

    
2020
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
2021
{
2022
    return -EINVAL;
2023
}
2024

    
2025
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
2026
                          target_ulong len, int type)
2027
{
2028
    return -EINVAL;
2029
}
2030

    
2031
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2032
                          target_ulong len, int type)
2033
{
2034
    return -EINVAL;
2035
}
2036

    
2037
void kvm_remove_all_breakpoints(CPUArchState *current_env)
2038
{
2039
}
2040
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2041

    
2042
int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2043
{
2044
    struct kvm_signal_mask *sigmask;
2045
    int r;
2046

    
2047
    if (!sigset) {
2048
        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2049
    }
2050

    
2051
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2052

    
2053
    sigmask->len = 8;
2054
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2055
    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2056
    g_free(sigmask);
2057

    
2058
    return r;
2059
}
2060
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2061
{
2062
    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2063
}
2064

    
2065
int kvm_on_sigbus(int code, void *addr)
2066
{
2067
    return kvm_arch_on_sigbus(code, addr);
2068
}