Statistics
| Branch: | Revision:

root / target-arm / cpu.h @ 4b6a83fb

History | View | Annotate | Download (27.3 kB)

1
/*
2
 * ARM virtual CPU header
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ARM_H
20
#define CPU_ARM_H
21

    
22
#define TARGET_LONG_BITS 32
23

    
24
#define ELF_MACHINE        EM_ARM
25

    
26
#define CPUArchState struct CPUARMState
27

    
28
#include "config.h"
29
#include "qemu-common.h"
30
#include "cpu-defs.h"
31

    
32
#include "softfloat.h"
33

    
34
#define TARGET_HAS_ICE 1
35

    
36
#define EXCP_UDEF            1   /* undefined instruction */
37
#define EXCP_SWI             2   /* software interrupt */
38
#define EXCP_PREFETCH_ABORT  3
39
#define EXCP_DATA_ABORT      4
40
#define EXCP_IRQ             5
41
#define EXCP_FIQ             6
42
#define EXCP_BKPT            7
43
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45
#define EXCP_STREX          10
46

    
47
#define ARMV7M_EXCP_RESET   1
48
#define ARMV7M_EXCP_NMI     2
49
#define ARMV7M_EXCP_HARD    3
50
#define ARMV7M_EXCP_MEM     4
51
#define ARMV7M_EXCP_BUS     5
52
#define ARMV7M_EXCP_USAGE   6
53
#define ARMV7M_EXCP_SVC     11
54
#define ARMV7M_EXCP_DEBUG   12
55
#define ARMV7M_EXCP_PENDSV  14
56
#define ARMV7M_EXCP_SYSTICK 15
57

    
58
/* ARM-specific interrupt pending bits.  */
59
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
60

    
61

    
62
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63
                            int srcreg, int operand, uint32_t value);
64
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65
                               int dstreg, int operand);
66

    
67
struct arm_boot_info;
68

    
69
#define NB_MMU_MODES 2
70

    
71
/* We currently assume float and double are IEEE single and double
72
   precision respectively.
73
   Doing runtime conversions is tricky because VFP registers may contain
74
   integer values (eg. as the result of a FTOSI instruction).
75
   s<2n> maps to the least significant half of d<n>
76
   s<2n+1> maps to the most significant half of d<n>
77
 */
78

    
79
typedef struct CPUARMState {
80
    /* Regs for current mode.  */
81
    uint32_t regs[16];
82
    /* Frequently accessed CPSR bits are stored separately for efficiently.
83
       This contains all the other bits.  Use cpsr_{read,write} to access
84
       the whole CPSR.  */
85
    uint32_t uncached_cpsr;
86
    uint32_t spsr;
87

    
88
    /* Banked registers.  */
89
    uint32_t banked_spsr[6];
90
    uint32_t banked_r13[6];
91
    uint32_t banked_r14[6];
92

    
93
    /* These hold r8-r12.  */
94
    uint32_t usr_regs[5];
95
    uint32_t fiq_regs[5];
96

    
97
    /* cpsr flag cache for faster execution */
98
    uint32_t CF; /* 0 or 1 */
99
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
100
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
101
    uint32_t ZF; /* Z set if zero.  */
102
    uint32_t QF; /* 0 or 1 */
103
    uint32_t GE; /* cpsr[19:16] */
104
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
106

    
107
    /* System control coprocessor (cp15) */
108
    struct {
109
        uint32_t c0_cpuid;
110
        uint32_t c0_cachetype;
111
        uint32_t c0_ccsid[16]; /* Cache size.  */
112
        uint32_t c0_clid; /* Cache level.  */
113
        uint32_t c0_cssel; /* Cache size selection.  */
114
        uint32_t c0_c1[8]; /* Feature registers.  */
115
        uint32_t c0_c2[8]; /* Instruction set registers.  */
116
        uint32_t c1_sys; /* System control register.  */
117
        uint32_t c1_coproc; /* Coprocessor access register.  */
118
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
119
        uint32_t c1_scr; /* secure config register.  */
120
        uint32_t c2_base0; /* MMU translation table base 0.  */
121
        uint32_t c2_base1; /* MMU translation table base 1.  */
122
        uint32_t c2_control; /* MMU translation table base control.  */
123
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
124
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
125
        uint32_t c2_data; /* MPU data cachable bits.  */
126
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
127
        uint32_t c3; /* MMU domain access control register
128
                        MPU write buffer control.  */
129
        uint32_t c5_insn; /* Fault status registers.  */
130
        uint32_t c5_data;
131
        uint32_t c6_region[8]; /* MPU base/size registers.  */
132
        uint32_t c6_insn; /* Fault address registers.  */
133
        uint32_t c6_data;
134
        uint32_t c7_par;  /* Translation result. */
135
        uint32_t c9_insn; /* Cache lockdown registers.  */
136
        uint32_t c9_data;
137
        uint32_t c9_pmcr; /* performance monitor control register */
138
        uint32_t c9_pmcnten; /* perf monitor counter enables */
139
        uint32_t c9_pmovsr; /* perf monitor overflow status */
140
        uint32_t c9_pmxevtyper; /* perf monitor event type */
141
        uint32_t c9_pmuserenr; /* perf monitor user enable */
142
        uint32_t c9_pminten; /* perf monitor interrupt enables */
143
        uint32_t c13_fcse; /* FCSE PID.  */
144
        uint32_t c13_context; /* Context ID.  */
145
        uint32_t c13_tls1; /* User RW Thread register.  */
146
        uint32_t c13_tls2; /* User RO Thread register.  */
147
        uint32_t c13_tls3; /* Privileged Thread register.  */
148
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
149
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
150
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
151
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
152
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
153
        uint32_t c15_config_base_address; /* SCU base address.  */
154
        uint32_t c15_diagnostic; /* diagnostic register */
155
        uint32_t c15_power_diagnostic;
156
        uint32_t c15_power_control; /* power control */
157
    } cp15;
158

    
159
    struct {
160
        uint32_t other_sp;
161
        uint32_t vecbase;
162
        uint32_t basepri;
163
        uint32_t control;
164
        int current_sp;
165
        int exception;
166
        int pending_exception;
167
    } v7m;
168

    
169
    /* Thumb-2 EE state.  */
170
    uint32_t teecr;
171
    uint32_t teehbr;
172

    
173
    /* VFP coprocessor state.  */
174
    struct {
175
        float64 regs[32];
176

    
177
        uint32_t xregs[16];
178
        /* We store these fpcsr fields separately for convenience.  */
179
        int vec_len;
180
        int vec_stride;
181

    
182
        /* scratch space when Tn are not sufficient.  */
183
        uint32_t scratch[8];
184

    
185
        /* fp_status is the "normal" fp status. standard_fp_status retains
186
         * values corresponding to the ARM "Standard FPSCR Value", ie
187
         * default-NaN, flush-to-zero, round-to-nearest and is used by
188
         * any operations (generally Neon) which the architecture defines
189
         * as controlled by the standard FPSCR value rather than the FPSCR.
190
         *
191
         * To avoid having to transfer exception bits around, we simply
192
         * say that the FPSCR cumulative exception flags are the logical
193
         * OR of the flags in the two fp statuses. This relies on the
194
         * only thing which needs to read the exception flags being
195
         * an explicit FPSCR read.
196
         */
197
        float_status fp_status;
198
        float_status standard_fp_status;
199
    } vfp;
200
    uint32_t exclusive_addr;
201
    uint32_t exclusive_val;
202
    uint32_t exclusive_high;
203
#if defined(CONFIG_USER_ONLY)
204
    uint32_t exclusive_test;
205
    uint32_t exclusive_info;
206
#endif
207

    
208
    /* iwMMXt coprocessor state.  */
209
    struct {
210
        uint64_t regs[16];
211
        uint64_t val;
212

    
213
        uint32_t cregs[16];
214
    } iwmmxt;
215

    
216
    /* For mixed endian mode.  */
217
    bool bswap_code;
218

    
219
#if defined(CONFIG_USER_ONLY)
220
    /* For usermode syscall translation.  */
221
    int eabi;
222
#endif
223

    
224
    CPU_COMMON
225

    
226
    /* These fields after the common ones so they are preserved on reset.  */
227

    
228
    /* Internal CPU feature flags.  */
229
    uint32_t features;
230

    
231
    /* Coprocessor IO used by peripherals */
232
    struct {
233
        ARMReadCPFunc *cp_read;
234
        ARMWriteCPFunc *cp_write;
235
        void *opaque;
236
    } cp[15];
237
    void *nvic;
238
    const struct arm_boot_info *boot_info;
239
} CPUARMState;
240

    
241
#include "cpu-qom.h"
242

    
243
ARMCPU *cpu_arm_init(const char *cpu_model);
244
void arm_translate_init(void);
245
int cpu_arm_exec(CPUARMState *s);
246
void do_interrupt(CPUARMState *);
247
void switch_mode(CPUARMState *, int);
248
uint32_t do_arm_semihosting(CPUARMState *env);
249

    
250
/* you can call this signal handler from your SIGBUS and SIGSEGV
251
   signal handlers to inform the virtual CPU of exceptions. non zero
252
   is returned if the signal was handled by the virtual CPU.  */
253
int cpu_arm_signal_handler(int host_signum, void *pinfo,
254
                           void *puc);
255
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
256
                              int mmu_idx);
257
#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
258

    
259
static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
260
{
261
  env->cp15.c13_tls2 = newtls;
262
}
263

    
264
#define CPSR_M (0x1f)
265
#define CPSR_T (1 << 5)
266
#define CPSR_F (1 << 6)
267
#define CPSR_I (1 << 7)
268
#define CPSR_A (1 << 8)
269
#define CPSR_E (1 << 9)
270
#define CPSR_IT_2_7 (0xfc00)
271
#define CPSR_GE (0xf << 16)
272
#define CPSR_RESERVED (0xf << 20)
273
#define CPSR_J (1 << 24)
274
#define CPSR_IT_0_1 (3 << 25)
275
#define CPSR_Q (1 << 27)
276
#define CPSR_V (1 << 28)
277
#define CPSR_C (1 << 29)
278
#define CPSR_Z (1 << 30)
279
#define CPSR_N (1 << 31)
280
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
281

    
282
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
283
#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
284
/* Bits writable in user mode.  */
285
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
286
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
287
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
288

    
289
/* Return the current CPSR value.  */
290
uint32_t cpsr_read(CPUARMState *env);
291
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
292
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
293

    
294
/* Return the current xPSR value.  */
295
static inline uint32_t xpsr_read(CPUARMState *env)
296
{
297
    int ZF;
298
    ZF = (env->ZF == 0);
299
    return (env->NF & 0x80000000) | (ZF << 30)
300
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
301
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
302
        | ((env->condexec_bits & 0xfc) << 8)
303
        | env->v7m.exception;
304
}
305

    
306
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
307
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
308
{
309
    if (mask & CPSR_NZCV) {
310
        env->ZF = (~val) & CPSR_Z;
311
        env->NF = val;
312
        env->CF = (val >> 29) & 1;
313
        env->VF = (val << 3) & 0x80000000;
314
    }
315
    if (mask & CPSR_Q)
316
        env->QF = ((val & CPSR_Q) != 0);
317
    if (mask & (1 << 24))
318
        env->thumb = ((val & (1 << 24)) != 0);
319
    if (mask & CPSR_IT_0_1) {
320
        env->condexec_bits &= ~3;
321
        env->condexec_bits |= (val >> 25) & 3;
322
    }
323
    if (mask & CPSR_IT_2_7) {
324
        env->condexec_bits &= 3;
325
        env->condexec_bits |= (val >> 8) & 0xfc;
326
    }
327
    if (mask & 0x1ff) {
328
        env->v7m.exception = val & 0x1ff;
329
    }
330
}
331

    
332
/* Return the current FPSCR value.  */
333
uint32_t vfp_get_fpscr(CPUARMState *env);
334
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
335

    
336
enum arm_cpu_mode {
337
  ARM_CPU_MODE_USR = 0x10,
338
  ARM_CPU_MODE_FIQ = 0x11,
339
  ARM_CPU_MODE_IRQ = 0x12,
340
  ARM_CPU_MODE_SVC = 0x13,
341
  ARM_CPU_MODE_ABT = 0x17,
342
  ARM_CPU_MODE_UND = 0x1b,
343
  ARM_CPU_MODE_SYS = 0x1f
344
};
345

    
346
/* VFP system registers.  */
347
#define ARM_VFP_FPSID   0
348
#define ARM_VFP_FPSCR   1
349
#define ARM_VFP_MVFR1   6
350
#define ARM_VFP_MVFR0   7
351
#define ARM_VFP_FPEXC   8
352
#define ARM_VFP_FPINST  9
353
#define ARM_VFP_FPINST2 10
354

    
355
/* iwMMXt coprocessor control registers.  */
356
#define ARM_IWMMXT_wCID                0
357
#define ARM_IWMMXT_wCon                1
358
#define ARM_IWMMXT_wCSSF        2
359
#define ARM_IWMMXT_wCASF        3
360
#define ARM_IWMMXT_wCGR0        8
361
#define ARM_IWMMXT_wCGR1        9
362
#define ARM_IWMMXT_wCGR2        10
363
#define ARM_IWMMXT_wCGR3        11
364

    
365
/* If adding a feature bit which corresponds to a Linux ELF
366
 * HWCAP bit, remember to update the feature-bit-to-hwcap
367
 * mapping in linux-user/elfload.c:get_elf_hwcap().
368
 */
369
enum arm_features {
370
    ARM_FEATURE_VFP,
371
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
372
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
373
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
374
    ARM_FEATURE_V6,
375
    ARM_FEATURE_V6K,
376
    ARM_FEATURE_V7,
377
    ARM_FEATURE_THUMB2,
378
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
379
    ARM_FEATURE_VFP3,
380
    ARM_FEATURE_VFP_FP16,
381
    ARM_FEATURE_NEON,
382
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
383
    ARM_FEATURE_M, /* Microcontroller profile.  */
384
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
385
    ARM_FEATURE_THUMB2EE,
386
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
387
    ARM_FEATURE_V4T,
388
    ARM_FEATURE_V5,
389
    ARM_FEATURE_STRONGARM,
390
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
391
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
392
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
393
    ARM_FEATURE_GENERIC_TIMER,
394
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
395
};
396

    
397
static inline int arm_feature(CPUARMState *env, int feature)
398
{
399
    return (env->features & (1u << feature)) != 0;
400
}
401

    
402
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
403

    
404
/* Interface between CPU and Interrupt controller.  */
405
void armv7m_nvic_set_pending(void *opaque, int irq);
406
int armv7m_nvic_acknowledge_irq(void *opaque);
407
void armv7m_nvic_complete_irq(void *opaque, int irq);
408

    
409
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
410
                       ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
411
                       void *opaque);
412

    
413
/* Interface for defining coprocessor registers.
414
 * Registers are defined in tables of arm_cp_reginfo structs
415
 * which are passed to define_arm_cp_regs().
416
 */
417

    
418
/* When looking up a coprocessor register we look for it
419
 * via an integer which encodes all of:
420
 *  coprocessor number
421
 *  Crn, Crm, opc1, opc2 fields
422
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
423
 *    or via MRRC/MCRR?)
424
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
425
 * (In this case crn and opc2 should be zero.)
426
 */
427
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
428
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
429
     ((crm) << 7) | ((opc1) << 3) | (opc2))
430

    
431
#define DECODE_CPREG_CRN(enc) (((enc) >> 7) & 0xf)
432

    
433
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
434
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
435
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
436
 * TCG can assume the value to be constant (ie load at translate time)
437
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
438
 * indicates that the TB should not be ended after a write to this register
439
 * (the default is that the TB ends after cp writes). OVERRIDE permits
440
 * a register definition to override a previous definition for the
441
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
442
 * old must have the OVERRIDE bit set.
443
 */
444
#define ARM_CP_SPECIAL 1
445
#define ARM_CP_CONST 2
446
#define ARM_CP_64BIT 4
447
#define ARM_CP_SUPPRESS_TB_END 8
448
#define ARM_CP_OVERRIDE 16
449
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
450
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
451
#define ARM_LAST_SPECIAL ARM_CP_WFI
452
/* Used only as a terminator for ARMCPRegInfo lists */
453
#define ARM_CP_SENTINEL 0xffff
454
/* Mask of only the flag bits in a type field */
455
#define ARM_CP_FLAG_MASK 0x1f
456

    
457
/* Return true if cptype is a valid type field. This is used to try to
458
 * catch errors where the sentinel has been accidentally left off the end
459
 * of a list of registers.
460
 */
461
static inline bool cptype_valid(int cptype)
462
{
463
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
464
        || ((cptype & ARM_CP_SPECIAL) &&
465
            (cptype <= ARM_LAST_SPECIAL));
466
}
467

    
468
/* Access rights:
469
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
470
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
471
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
472
 * (ie any of the privileged modes in Secure state, or Monitor mode).
473
 * If a register is accessible in one privilege level it's always accessible
474
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
475
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
476
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
477
 * terminology a little and call this PL3.
478
 *
479
 * If access permissions for a register are more complex than can be
480
 * described with these bits, then use a laxer set of restrictions, and
481
 * do the more restrictive/complex check inside a helper function.
482
 */
483
#define PL3_R 0x80
484
#define PL3_W 0x40
485
#define PL2_R (0x20 | PL3_R)
486
#define PL2_W (0x10 | PL3_W)
487
#define PL1_R (0x08 | PL2_R)
488
#define PL1_W (0x04 | PL2_W)
489
#define PL0_R (0x02 | PL1_R)
490
#define PL0_W (0x01 | PL1_W)
491

    
492
#define PL3_RW (PL3_R | PL3_W)
493
#define PL2_RW (PL2_R | PL2_W)
494
#define PL1_RW (PL1_R | PL1_W)
495
#define PL0_RW (PL0_R | PL0_W)
496

    
497
static inline int arm_current_pl(CPUARMState *env)
498
{
499
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
500
        return 0;
501
    }
502
    /* We don't currently implement the Virtualization or TrustZone
503
     * extensions, so PL2 and PL3 don't exist for us.
504
     */
505
    return 1;
506
}
507

    
508
typedef struct ARMCPRegInfo ARMCPRegInfo;
509

    
510
/* Access functions for coprocessor registers. These should return
511
 * 0 on success, or one of the EXCP_* constants if access should cause
512
 * an exception (in which case *value is not written).
513
 */
514
typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
515
                     uint64_t *value);
516
typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
517
                      uint64_t value);
518
/* Hook function for register reset */
519
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
520

    
521
#define CP_ANY 0xff
522

    
523
/* Definition of an ARM coprocessor register */
524
struct ARMCPRegInfo {
525
    /* Name of register (useful mainly for debugging, need not be unique) */
526
    const char *name;
527
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
528
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
529
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
530
     * will be decoded to this register. The register read and write
531
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
532
     * used by the program, so it is possible to register a wildcard and
533
     * then behave differently on read/write if necessary.
534
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
535
     * must both be zero.
536
     */
537
    uint8_t cp;
538
    uint8_t crn;
539
    uint8_t crm;
540
    uint8_t opc1;
541
    uint8_t opc2;
542
    /* Register type: ARM_CP_* bits/values */
543
    int type;
544
    /* Access rights: PL*_[RW] */
545
    int access;
546
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
547
     * this register was defined: can be used to hand data through to the
548
     * register read/write functions, since they are passed the ARMCPRegInfo*.
549
     */
550
    void *opaque;
551
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
552
     * fieldoffset is non-zero, the reset value of the register.
553
     */
554
    uint64_t resetvalue;
555
    /* Offset of the field in CPUARMState for this register. This is not
556
     * needed if either:
557
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
558
     *  2. both readfn and writefn are specified
559
     */
560
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
561
    /* Function for handling reads of this register. If NULL, then reads
562
     * will be done by loading from the offset into CPUARMState specified
563
     * by fieldoffset.
564
     */
565
    CPReadFn *readfn;
566
    /* Function for handling writes of this register. If NULL, then writes
567
     * will be done by writing to the offset into CPUARMState specified
568
     * by fieldoffset.
569
     */
570
    CPWriteFn *writefn;
571
    /* Function for resetting the register. If NULL, then reset will be done
572
     * by writing resetvalue to the field specified in fieldoffset. If
573
     * fieldoffset is 0 then no reset will be done.
574
     */
575
    CPResetFn *resetfn;
576
};
577

    
578
/* Macros which are lvalues for the field in CPUARMState for the
579
 * ARMCPRegInfo *ri.
580
 */
581
#define CPREG_FIELD32(env, ri) \
582
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
583
#define CPREG_FIELD64(env, ri) \
584
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
585

    
586
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
587

    
588
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
589
                                    const ARMCPRegInfo *regs, void *opaque);
590
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
591
                                       const ARMCPRegInfo *regs, void *opaque);
592
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
593
{
594
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
595
}
596
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
597
{
598
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
599
}
600
const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
601

    
602
/* CPWriteFn that can be used to implement writes-ignored behaviour */
603
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
604
                        uint64_t value);
605
/* CPReadFn that can be used for read-as-zero behaviour */
606
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
607

    
608
static inline bool cp_access_ok(CPUARMState *env,
609
                                const ARMCPRegInfo *ri, int isread)
610
{
611
    return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
612
}
613

    
614
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
615
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
616
   conventional cores (ie. Application or Realtime profile).  */
617

    
618
#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
619
#define ARM_CPUID(env) (env->cp15.c0_cpuid)
620

    
621
#define ARM_CPUID_ARM1026     0x4106a262
622
#define ARM_CPUID_ARM926      0x41069265
623
#define ARM_CPUID_ARM946      0x41059461
624
#define ARM_CPUID_TI915T      0x54029152
625
#define ARM_CPUID_TI925T      0x54029252
626
#define ARM_CPUID_SA1100      0x4401A11B
627
#define ARM_CPUID_SA1110      0x6901B119
628
#define ARM_CPUID_PXA250      0x69052100
629
#define ARM_CPUID_PXA255      0x69052d00
630
#define ARM_CPUID_PXA260      0x69052903
631
#define ARM_CPUID_PXA261      0x69052d05
632
#define ARM_CPUID_PXA262      0x69052d06
633
#define ARM_CPUID_PXA270      0x69054110
634
#define ARM_CPUID_PXA270_A0   0x69054110
635
#define ARM_CPUID_PXA270_A1   0x69054111
636
#define ARM_CPUID_PXA270_B0   0x69054112
637
#define ARM_CPUID_PXA270_B1   0x69054113
638
#define ARM_CPUID_PXA270_C0   0x69054114
639
#define ARM_CPUID_PXA270_C5   0x69054117
640
#define ARM_CPUID_ARM1136     0x4117b363
641
#define ARM_CPUID_ARM1136_R2  0x4107b362
642
#define ARM_CPUID_ARM1176     0x410fb767
643
#define ARM_CPUID_ARM11MPCORE 0x410fb022
644
#define ARM_CPUID_CORTEXA8    0x410fc080
645
#define ARM_CPUID_CORTEXA9    0x410fc090
646
#define ARM_CPUID_CORTEXA15   0x412fc0f1
647
#define ARM_CPUID_CORTEXM3    0x410fc231
648
#define ARM_CPUID_ANY         0xffffffff
649

    
650
#if defined(CONFIG_USER_ONLY)
651
#define TARGET_PAGE_BITS 12
652
#else
653
/* The ARM MMU allows 1k pages.  */
654
/* ??? Linux doesn't actually use these, and they're deprecated in recent
655
   architecture revisions.  Maybe a configure option to disable them.  */
656
#define TARGET_PAGE_BITS 10
657
#endif
658

    
659
#define TARGET_PHYS_ADDR_SPACE_BITS 32
660
#define TARGET_VIRT_ADDR_SPACE_BITS 32
661

    
662
static inline CPUARMState *cpu_init(const char *cpu_model)
663
{
664
    ARMCPU *cpu = cpu_arm_init(cpu_model);
665
    if (cpu) {
666
        return &cpu->env;
667
    }
668
    return NULL;
669
}
670

    
671
#define cpu_exec cpu_arm_exec
672
#define cpu_gen_code cpu_arm_gen_code
673
#define cpu_signal_handler cpu_arm_signal_handler
674
#define cpu_list arm_cpu_list
675

    
676
#define CPU_SAVE_VERSION 6
677

    
678
/* MMU modes definitions */
679
#define MMU_MODE0_SUFFIX _kernel
680
#define MMU_MODE1_SUFFIX _user
681
#define MMU_USER_IDX 1
682
static inline int cpu_mmu_index (CPUARMState *env)
683
{
684
    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
685
}
686

    
687
#if defined(CONFIG_USER_ONLY)
688
static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
689
{
690
    if (newsp)
691
        env->regs[13] = newsp;
692
    env->regs[0] = 0;
693
}
694
#endif
695

    
696
#include "cpu-all.h"
697

    
698
/* Bit usage in the TB flags field: */
699
#define ARM_TBFLAG_THUMB_SHIFT      0
700
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
701
#define ARM_TBFLAG_VECLEN_SHIFT     1
702
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
703
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
704
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
705
#define ARM_TBFLAG_PRIV_SHIFT       6
706
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
707
#define ARM_TBFLAG_VFPEN_SHIFT      7
708
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
709
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
710
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
711
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
712
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
713
/* Bits 31..17 are currently unused. */
714

    
715
/* some convenience accessor macros */
716
#define ARM_TBFLAG_THUMB(F) \
717
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
718
#define ARM_TBFLAG_VECLEN(F) \
719
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
720
#define ARM_TBFLAG_VECSTRIDE(F) \
721
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
722
#define ARM_TBFLAG_PRIV(F) \
723
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
724
#define ARM_TBFLAG_VFPEN(F) \
725
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
726
#define ARM_TBFLAG_CONDEXEC(F) \
727
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
728
#define ARM_TBFLAG_BSWAP_CODE(F) \
729
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
730

    
731
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
732
                                        target_ulong *cs_base, int *flags)
733
{
734
    int privmode;
735
    *pc = env->regs[15];
736
    *cs_base = 0;
737
    *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
738
        | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
739
        | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
740
        | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
741
        | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
742
    if (arm_feature(env, ARM_FEATURE_M)) {
743
        privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
744
    } else {
745
        privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
746
    }
747
    if (privmode) {
748
        *flags |= ARM_TBFLAG_PRIV_MASK;
749
    }
750
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
751
        *flags |= ARM_TBFLAG_VFPEN_MASK;
752
    }
753
}
754

    
755
static inline bool cpu_has_work(CPUARMState *env)
756
{
757
    return env->interrupt_request &
758
        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
759
}
760

    
761
#include "exec-all.h"
762

    
763
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
764
{
765
    env->regs[15] = tb->pc;
766
}
767

    
768
/* Load an instruction and return it in the standard little-endian order */
769
static inline uint32_t arm_ldl_code(uint32_t addr, bool do_swap)
770
{
771
    uint32_t insn = ldl_code(addr);
772
    if (do_swap) {
773
        return bswap32(insn);
774
    }
775
    return insn;
776
}
777

    
778
/* Ditto, for a halfword (Thumb) instruction */
779
static inline uint16_t arm_lduw_code(uint32_t addr, bool do_swap)
780
{
781
    uint16_t insn = lduw_code(addr);
782
    if (do_swap) {
783
        return bswap16(insn);
784
    }
785
    return insn;
786
}
787

    
788
#endif