Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 4c5b10b7

History | View | Annotate | Download (31.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28

    
29
#ifdef CONFIG_KVM_PARA
30
#include <linux/kvm_para.h>
31
#endif
32
//
33
//#define DEBUG_KVM
34

    
35
#ifdef DEBUG_KVM
36
#define dprintf(fmt, ...) \
37
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38
#else
39
#define dprintf(fmt, ...) \
40
    do { } while (0)
41
#endif
42

    
43
#define MSR_KVM_WALL_CLOCK  0x11
44
#define MSR_KVM_SYSTEM_TIME 0x12
45

    
46
#ifdef KVM_CAP_EXT_CPUID
47

    
48
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
49
{
50
    struct kvm_cpuid2 *cpuid;
51
    int r, size;
52

    
53
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
54
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
55
    cpuid->nent = max;
56
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
57
    if (r == 0 && cpuid->nent >= max) {
58
        r = -E2BIG;
59
    }
60
    if (r < 0) {
61
        if (r == -E2BIG) {
62
            qemu_free(cpuid);
63
            return NULL;
64
        } else {
65
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
66
                    strerror(-r));
67
            exit(1);
68
        }
69
    }
70
    return cpuid;
71
}
72

    
73
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
74
{
75
    struct kvm_cpuid2 *cpuid;
76
    int i, max;
77
    uint32_t ret = 0;
78
    uint32_t cpuid_1_edx;
79

    
80
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
81
        return -1U;
82
    }
83

    
84
    max = 1;
85
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
86
        max *= 2;
87
    }
88

    
89
    for (i = 0; i < cpuid->nent; ++i) {
90
        if (cpuid->entries[i].function == function) {
91
            switch (reg) {
92
            case R_EAX:
93
                ret = cpuid->entries[i].eax;
94
                break;
95
            case R_EBX:
96
                ret = cpuid->entries[i].ebx;
97
                break;
98
            case R_ECX:
99
                ret = cpuid->entries[i].ecx;
100
                break;
101
            case R_EDX:
102
                ret = cpuid->entries[i].edx;
103
                switch (function) {
104
                case 1:
105
                    /* KVM before 2.6.30 misreports the following features */
106
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
107
                    break;
108
                case 0x80000001:
109
                    /* On Intel, kvm returns cpuid according to the Intel spec,
110
                     * so add missing bits according to the AMD spec:
111
                     */
112
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
113
                    ret |= cpuid_1_edx & 0xdfeff7ff;
114
                    break;
115
                }
116
                break;
117
            }
118
        }
119
    }
120

    
121
    qemu_free(cpuid);
122

    
123
    return ret;
124
}
125

    
126
#else
127

    
128
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
129
{
130
    return -1U;
131
}
132

    
133
#endif
134

    
135
static void kvm_trim_features(uint32_t *features, uint32_t supported)
136
{
137
    int i;
138
    uint32_t mask;
139

    
140
    for (i = 0; i < 32; ++i) {
141
        mask = 1U << i;
142
        if ((*features & mask) && !(supported & mask)) {
143
            *features &= ~mask;
144
        }
145
    }
146
}
147

    
148
#ifdef CONFIG_KVM_PARA
149
struct kvm_para_features {
150
        int cap;
151
        int feature;
152
} para_features[] = {
153
#ifdef KVM_CAP_CLOCKSOURCE
154
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155
#endif
156
#ifdef KVM_CAP_NOP_IO_DELAY
157
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158
#endif
159
#ifdef KVM_CAP_PV_MMU
160
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
161
#endif
162
#ifdef KVM_CAP_CR3_CACHE
163
        { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
164
#endif
165
        { -1, -1 }
166
};
167

    
168
static int get_para_features(CPUState *env)
169
{
170
        int i, features = 0;
171

    
172
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
173
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
174
                        features |= (1 << para_features[i].feature);
175
        }
176

    
177
        return features;
178
}
179
#endif
180

    
181
int kvm_arch_init_vcpu(CPUState *env)
182
{
183
    struct {
184
        struct kvm_cpuid2 cpuid;
185
        struct kvm_cpuid_entry2 entries[100];
186
    } __attribute__((packed)) cpuid_data;
187
    uint32_t limit, i, j, cpuid_i;
188
    uint32_t unused;
189
    struct kvm_cpuid_entry2 *c;
190
#ifdef KVM_CPUID_SIGNATURE
191
    uint32_t signature[3];
192
#endif
193

    
194
    env->mp_state = KVM_MP_STATE_RUNNABLE;
195

    
196
    kvm_trim_features(&env->cpuid_features,
197
        kvm_arch_get_supported_cpuid(env, 1, R_EDX));
198

    
199
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
200
    kvm_trim_features(&env->cpuid_ext_features,
201
        kvm_arch_get_supported_cpuid(env, 1, R_ECX));
202
    env->cpuid_ext_features |= i;
203

    
204
    kvm_trim_features(&env->cpuid_ext2_features,
205
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
206
    kvm_trim_features(&env->cpuid_ext3_features,
207
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
208

    
209
    cpuid_i = 0;
210

    
211
#ifdef CONFIG_KVM_PARA
212
    /* Paravirtualization CPUIDs */
213
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
214
    c = &cpuid_data.entries[cpuid_i++];
215
    memset(c, 0, sizeof(*c));
216
    c->function = KVM_CPUID_SIGNATURE;
217
    c->eax = 0;
218
    c->ebx = signature[0];
219
    c->ecx = signature[1];
220
    c->edx = signature[2];
221

    
222
    c = &cpuid_data.entries[cpuid_i++];
223
    memset(c, 0, sizeof(*c));
224
    c->function = KVM_CPUID_FEATURES;
225
    c->eax = env->cpuid_kvm_features & get_para_features(env);
226
#endif
227

    
228
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
229

    
230
    for (i = 0; i <= limit; i++) {
231
        c = &cpuid_data.entries[cpuid_i++];
232

    
233
        switch (i) {
234
        case 2: {
235
            /* Keep reading function 2 till all the input is received */
236
            int times;
237

    
238
            c->function = i;
239
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
240
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
241
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
242
            times = c->eax & 0xff;
243

    
244
            for (j = 1; j < times; ++j) {
245
                c = &cpuid_data.entries[cpuid_i++];
246
                c->function = i;
247
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
248
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
249
            }
250
            break;
251
        }
252
        case 4:
253
        case 0xb:
254
        case 0xd:
255
            for (j = 0; ; j++) {
256
                c->function = i;
257
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
258
                c->index = j;
259
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
260

    
261
                if (i == 4 && c->eax == 0)
262
                    break;
263
                if (i == 0xb && !(c->ecx & 0xff00))
264
                    break;
265
                if (i == 0xd && c->eax == 0)
266
                    break;
267

    
268
                c = &cpuid_data.entries[cpuid_i++];
269
            }
270
            break;
271
        default:
272
            c->function = i;
273
            c->flags = 0;
274
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
275
            break;
276
        }
277
    }
278
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
279

    
280
    for (i = 0x80000000; i <= limit; i++) {
281
        c = &cpuid_data.entries[cpuid_i++];
282

    
283
        c->function = i;
284
        c->flags = 0;
285
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
286
    }
287

    
288
    cpuid_data.cpuid.nent = cpuid_i;
289

    
290
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
291
}
292

    
293
void kvm_arch_reset_vcpu(CPUState *env)
294
{
295
    env->exception_injected = -1;
296
    env->interrupt_injected = -1;
297
    env->nmi_injected = 0;
298
    env->nmi_pending = 0;
299
}
300

    
301
static int kvm_has_msr_star(CPUState *env)
302
{
303
    static int has_msr_star;
304
    int ret;
305

    
306
    /* first time */
307
    if (has_msr_star == 0) {        
308
        struct kvm_msr_list msr_list, *kvm_msr_list;
309

    
310
        has_msr_star = -1;
311

    
312
        /* Obtain MSR list from KVM.  These are the MSRs that we must
313
         * save/restore */
314
        msr_list.nmsrs = 0;
315
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
316
        if (ret < 0 && ret != -E2BIG) {
317
            return 0;
318
        }
319
        /* Old kernel modules had a bug and could write beyond the provided
320
           memory. Allocate at least a safe amount of 1K. */
321
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
322
                                              msr_list.nmsrs *
323
                                              sizeof(msr_list.indices[0])));
324

    
325
        kvm_msr_list->nmsrs = msr_list.nmsrs;
326
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
327
        if (ret >= 0) {
328
            int i;
329

    
330
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
331
                if (kvm_msr_list->indices[i] == MSR_STAR) {
332
                    has_msr_star = 1;
333
                    break;
334
                }
335
            }
336
        }
337

    
338
        free(kvm_msr_list);
339
    }
340

    
341
    if (has_msr_star == 1)
342
        return 1;
343
    return 0;
344
}
345

    
346
int kvm_arch_init(KVMState *s, int smp_cpus)
347
{
348
    int ret;
349

    
350
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
351
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
352
     * must be part of guest physical memory, we need to allocate it.  Older
353
     * versions of KVM just assumed that it would be at the end of physical
354
     * memory but that doesn't work with more than 4GB of memory.  We simply
355
     * refuse to work with those older versions of KVM. */
356
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
357
    if (ret <= 0) {
358
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
359
        return ret;
360
    }
361

    
362
    /* this address is 3 pages before the bios, and the bios should present
363
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
364
     * this?
365
     */
366
    /*
367
     * Tell fw_cfg to notify the BIOS to reserve the range.
368
     */
369
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
370
        perror("e820_add_entry() table is full");
371
        exit(1);
372
    }
373
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
374
}
375
                    
376
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
377
{
378
    lhs->selector = rhs->selector;
379
    lhs->base = rhs->base;
380
    lhs->limit = rhs->limit;
381
    lhs->type = 3;
382
    lhs->present = 1;
383
    lhs->dpl = 3;
384
    lhs->db = 0;
385
    lhs->s = 1;
386
    lhs->l = 0;
387
    lhs->g = 0;
388
    lhs->avl = 0;
389
    lhs->unusable = 0;
390
}
391

    
392
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
393
{
394
    unsigned flags = rhs->flags;
395
    lhs->selector = rhs->selector;
396
    lhs->base = rhs->base;
397
    lhs->limit = rhs->limit;
398
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
399
    lhs->present = (flags & DESC_P_MASK) != 0;
400
    lhs->dpl = rhs->selector & 3;
401
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
402
    lhs->s = (flags & DESC_S_MASK) != 0;
403
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
404
    lhs->g = (flags & DESC_G_MASK) != 0;
405
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
406
    lhs->unusable = 0;
407
}
408

    
409
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
410
{
411
    lhs->selector = rhs->selector;
412
    lhs->base = rhs->base;
413
    lhs->limit = rhs->limit;
414
    lhs->flags =
415
        (rhs->type << DESC_TYPE_SHIFT)
416
        | (rhs->present * DESC_P_MASK)
417
        | (rhs->dpl << DESC_DPL_SHIFT)
418
        | (rhs->db << DESC_B_SHIFT)
419
        | (rhs->s * DESC_S_MASK)
420
        | (rhs->l << DESC_L_SHIFT)
421
        | (rhs->g * DESC_G_MASK)
422
        | (rhs->avl * DESC_AVL_MASK);
423
}
424

    
425
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
426
{
427
    if (set)
428
        *kvm_reg = *qemu_reg;
429
    else
430
        *qemu_reg = *kvm_reg;
431
}
432

    
433
static int kvm_getput_regs(CPUState *env, int set)
434
{
435
    struct kvm_regs regs;
436
    int ret = 0;
437

    
438
    if (!set) {
439
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
440
        if (ret < 0)
441
            return ret;
442
    }
443

    
444
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
445
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
446
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
447
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
448
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
449
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
450
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
451
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
452
#ifdef TARGET_X86_64
453
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
454
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
455
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
456
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
457
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
458
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
459
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
460
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
461
#endif
462

    
463
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
464
    kvm_getput_reg(&regs.rip, &env->eip, set);
465

    
466
    if (set)
467
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
468

    
469
    return ret;
470
}
471

    
472
static int kvm_put_fpu(CPUState *env)
473
{
474
    struct kvm_fpu fpu;
475
    int i;
476

    
477
    memset(&fpu, 0, sizeof fpu);
478
    fpu.fsw = env->fpus & ~(7 << 11);
479
    fpu.fsw |= (env->fpstt & 7) << 11;
480
    fpu.fcw = env->fpuc;
481
    for (i = 0; i < 8; ++i)
482
        fpu.ftwx |= (!env->fptags[i]) << i;
483
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
484
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
485
    fpu.mxcsr = env->mxcsr;
486

    
487
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
488
}
489

    
490
static int kvm_put_sregs(CPUState *env)
491
{
492
    struct kvm_sregs sregs;
493

    
494
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
495
    if (env->interrupt_injected >= 0) {
496
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
497
                (uint64_t)1 << (env->interrupt_injected % 64);
498
    }
499

    
500
    if ((env->eflags & VM_MASK)) {
501
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
502
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
503
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
504
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
505
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
506
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
507
    } else {
508
            set_seg(&sregs.cs, &env->segs[R_CS]);
509
            set_seg(&sregs.ds, &env->segs[R_DS]);
510
            set_seg(&sregs.es, &env->segs[R_ES]);
511
            set_seg(&sregs.fs, &env->segs[R_FS]);
512
            set_seg(&sregs.gs, &env->segs[R_GS]);
513
            set_seg(&sregs.ss, &env->segs[R_SS]);
514

    
515
            if (env->cr[0] & CR0_PE_MASK) {
516
                /* force ss cpl to cs cpl */
517
                sregs.ss.selector = (sregs.ss.selector & ~3) |
518
                        (sregs.cs.selector & 3);
519
                sregs.ss.dpl = sregs.ss.selector & 3;
520
            }
521
    }
522

    
523
    set_seg(&sregs.tr, &env->tr);
524
    set_seg(&sregs.ldt, &env->ldt);
525

    
526
    sregs.idt.limit = env->idt.limit;
527
    sregs.idt.base = env->idt.base;
528
    sregs.gdt.limit = env->gdt.limit;
529
    sregs.gdt.base = env->gdt.base;
530

    
531
    sregs.cr0 = env->cr[0];
532
    sregs.cr2 = env->cr[2];
533
    sregs.cr3 = env->cr[3];
534
    sregs.cr4 = env->cr[4];
535

    
536
    sregs.cr8 = cpu_get_apic_tpr(env);
537
    sregs.apic_base = cpu_get_apic_base(env);
538

    
539
    sregs.efer = env->efer;
540

    
541
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
542
}
543

    
544
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
545
                              uint32_t index, uint64_t value)
546
{
547
    entry->index = index;
548
    entry->data = value;
549
}
550

    
551
static int kvm_put_msrs(CPUState *env)
552
{
553
    struct {
554
        struct kvm_msrs info;
555
        struct kvm_msr_entry entries[100];
556
    } msr_data;
557
    struct kvm_msr_entry *msrs = msr_data.entries;
558
    int n = 0;
559

    
560
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
561
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
562
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
563
    if (kvm_has_msr_star(env))
564
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
565
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
566
#ifdef TARGET_X86_64
567
    /* FIXME if lm capable */
568
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
569
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
570
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
571
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
572
#endif
573
    kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,  env->system_time_msr);
574
    kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK,  env->wall_clock_msr);
575

    
576
    msr_data.info.nmsrs = n;
577

    
578
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
579

    
580
}
581

    
582

    
583
static int kvm_get_fpu(CPUState *env)
584
{
585
    struct kvm_fpu fpu;
586
    int i, ret;
587

    
588
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
589
    if (ret < 0)
590
        return ret;
591

    
592
    env->fpstt = (fpu.fsw >> 11) & 7;
593
    env->fpus = fpu.fsw;
594
    env->fpuc = fpu.fcw;
595
    for (i = 0; i < 8; ++i)
596
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
597
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
598
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
599
    env->mxcsr = fpu.mxcsr;
600

    
601
    return 0;
602
}
603

    
604
static int kvm_get_sregs(CPUState *env)
605
{
606
    struct kvm_sregs sregs;
607
    uint32_t hflags;
608
    int bit, i, ret;
609

    
610
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
611
    if (ret < 0)
612
        return ret;
613

    
614
    /* There can only be one pending IRQ set in the bitmap at a time, so try
615
       to find it and save its number instead (-1 for none). */
616
    env->interrupt_injected = -1;
617
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
618
        if (sregs.interrupt_bitmap[i]) {
619
            bit = ctz64(sregs.interrupt_bitmap[i]);
620
            env->interrupt_injected = i * 64 + bit;
621
            break;
622
        }
623
    }
624

    
625
    get_seg(&env->segs[R_CS], &sregs.cs);
626
    get_seg(&env->segs[R_DS], &sregs.ds);
627
    get_seg(&env->segs[R_ES], &sregs.es);
628
    get_seg(&env->segs[R_FS], &sregs.fs);
629
    get_seg(&env->segs[R_GS], &sregs.gs);
630
    get_seg(&env->segs[R_SS], &sregs.ss);
631

    
632
    get_seg(&env->tr, &sregs.tr);
633
    get_seg(&env->ldt, &sregs.ldt);
634

    
635
    env->idt.limit = sregs.idt.limit;
636
    env->idt.base = sregs.idt.base;
637
    env->gdt.limit = sregs.gdt.limit;
638
    env->gdt.base = sregs.gdt.base;
639

    
640
    env->cr[0] = sregs.cr0;
641
    env->cr[2] = sregs.cr2;
642
    env->cr[3] = sregs.cr3;
643
    env->cr[4] = sregs.cr4;
644

    
645
    cpu_set_apic_base(env, sregs.apic_base);
646

    
647
    env->efer = sregs.efer;
648
    //cpu_set_apic_tpr(env, sregs.cr8);
649

    
650
#define HFLAG_COPY_MASK ~( \
651
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
652
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
653
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
654
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
655

    
656

    
657

    
658
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
659
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
660
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
661
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
662
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
663
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
664
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
665

    
666
    if (env->efer & MSR_EFER_LMA) {
667
        hflags |= HF_LMA_MASK;
668
    }
669

    
670
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
671
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
672
    } else {
673
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
674
                (DESC_B_SHIFT - HF_CS32_SHIFT);
675
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
676
                (DESC_B_SHIFT - HF_SS32_SHIFT);
677
        if (!(env->cr[0] & CR0_PE_MASK) ||
678
                   (env->eflags & VM_MASK) ||
679
                   !(hflags & HF_CS32_MASK)) {
680
                hflags |= HF_ADDSEG_MASK;
681
            } else {
682
                hflags |= ((env->segs[R_DS].base |
683
                                env->segs[R_ES].base |
684
                                env->segs[R_SS].base) != 0) <<
685
                    HF_ADDSEG_SHIFT;
686
            }
687
    }
688
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
689

    
690
    return 0;
691
}
692

    
693
static int kvm_get_msrs(CPUState *env)
694
{
695
    struct {
696
        struct kvm_msrs info;
697
        struct kvm_msr_entry entries[100];
698
    } msr_data;
699
    struct kvm_msr_entry *msrs = msr_data.entries;
700
    int ret, i, n;
701

    
702
    n = 0;
703
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
704
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
705
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
706
    if (kvm_has_msr_star(env))
707
        msrs[n++].index = MSR_STAR;
708
    msrs[n++].index = MSR_IA32_TSC;
709
#ifdef TARGET_X86_64
710
    /* FIXME lm_capable_kernel */
711
    msrs[n++].index = MSR_CSTAR;
712
    msrs[n++].index = MSR_KERNELGSBASE;
713
    msrs[n++].index = MSR_FMASK;
714
    msrs[n++].index = MSR_LSTAR;
715
#endif
716
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
717
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
718

    
719
    msr_data.info.nmsrs = n;
720
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
721
    if (ret < 0)
722
        return ret;
723

    
724
    for (i = 0; i < ret; i++) {
725
        switch (msrs[i].index) {
726
        case MSR_IA32_SYSENTER_CS:
727
            env->sysenter_cs = msrs[i].data;
728
            break;
729
        case MSR_IA32_SYSENTER_ESP:
730
            env->sysenter_esp = msrs[i].data;
731
            break;
732
        case MSR_IA32_SYSENTER_EIP:
733
            env->sysenter_eip = msrs[i].data;
734
            break;
735
        case MSR_STAR:
736
            env->star = msrs[i].data;
737
            break;
738
#ifdef TARGET_X86_64
739
        case MSR_CSTAR:
740
            env->cstar = msrs[i].data;
741
            break;
742
        case MSR_KERNELGSBASE:
743
            env->kernelgsbase = msrs[i].data;
744
            break;
745
        case MSR_FMASK:
746
            env->fmask = msrs[i].data;
747
            break;
748
        case MSR_LSTAR:
749
            env->lstar = msrs[i].data;
750
            break;
751
#endif
752
        case MSR_IA32_TSC:
753
            env->tsc = msrs[i].data;
754
            break;
755
        case MSR_KVM_SYSTEM_TIME:
756
            env->system_time_msr = msrs[i].data;
757
            break;
758
        case MSR_KVM_WALL_CLOCK:
759
            env->wall_clock_msr = msrs[i].data;
760
            break;
761
        }
762
    }
763

    
764
    return 0;
765
}
766

    
767
static int kvm_put_mp_state(CPUState *env)
768
{
769
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
770

    
771
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
772
}
773

    
774
static int kvm_get_mp_state(CPUState *env)
775
{
776
    struct kvm_mp_state mp_state;
777
    int ret;
778

    
779
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
780
    if (ret < 0) {
781
        return ret;
782
    }
783
    env->mp_state = mp_state.mp_state;
784
    return 0;
785
}
786

    
787
static int kvm_put_vcpu_events(CPUState *env)
788
{
789
#ifdef KVM_CAP_VCPU_EVENTS
790
    struct kvm_vcpu_events events;
791

    
792
    if (!kvm_has_vcpu_events()) {
793
        return 0;
794
    }
795

    
796
    events.exception.injected = (env->exception_injected >= 0);
797
    events.exception.nr = env->exception_injected;
798
    events.exception.has_error_code = env->has_error_code;
799
    events.exception.error_code = env->error_code;
800

    
801
    events.interrupt.injected = (env->interrupt_injected >= 0);
802
    events.interrupt.nr = env->interrupt_injected;
803
    events.interrupt.soft = env->soft_interrupt;
804

    
805
    events.nmi.injected = env->nmi_injected;
806
    events.nmi.pending = env->nmi_pending;
807
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
808

    
809
    events.sipi_vector = env->sipi_vector;
810

    
811
    events.flags =
812
        KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
813

    
814
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
815
#else
816
    return 0;
817
#endif
818
}
819

    
820
static int kvm_get_vcpu_events(CPUState *env)
821
{
822
#ifdef KVM_CAP_VCPU_EVENTS
823
    struct kvm_vcpu_events events;
824
    int ret;
825

    
826
    if (!kvm_has_vcpu_events()) {
827
        return 0;
828
    }
829

    
830
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
831
    if (ret < 0) {
832
       return ret;
833
    }
834
    env->exception_injected =
835
       events.exception.injected ? events.exception.nr : -1;
836
    env->has_error_code = events.exception.has_error_code;
837
    env->error_code = events.exception.error_code;
838

    
839
    env->interrupt_injected =
840
        events.interrupt.injected ? events.interrupt.nr : -1;
841
    env->soft_interrupt = events.interrupt.soft;
842

    
843
    env->nmi_injected = events.nmi.injected;
844
    env->nmi_pending = events.nmi.pending;
845
    if (events.nmi.masked) {
846
        env->hflags2 |= HF2_NMI_MASK;
847
    } else {
848
        env->hflags2 &= ~HF2_NMI_MASK;
849
    }
850

    
851
    env->sipi_vector = events.sipi_vector;
852
#endif
853

    
854
    return 0;
855
}
856

    
857
int kvm_arch_put_registers(CPUState *env)
858
{
859
    int ret;
860

    
861
    ret = kvm_getput_regs(env, 1);
862
    if (ret < 0)
863
        return ret;
864

    
865
    ret = kvm_put_fpu(env);
866
    if (ret < 0)
867
        return ret;
868

    
869
    ret = kvm_put_sregs(env);
870
    if (ret < 0)
871
        return ret;
872

    
873
    ret = kvm_put_msrs(env);
874
    if (ret < 0)
875
        return ret;
876

    
877
    ret = kvm_put_mp_state(env);
878
    if (ret < 0)
879
        return ret;
880

    
881
    ret = kvm_put_vcpu_events(env);
882
    if (ret < 0)
883
        return ret;
884

    
885
    return 0;
886
}
887

    
888
int kvm_arch_get_registers(CPUState *env)
889
{
890
    int ret;
891

    
892
    ret = kvm_getput_regs(env, 0);
893
    if (ret < 0)
894
        return ret;
895

    
896
    ret = kvm_get_fpu(env);
897
    if (ret < 0)
898
        return ret;
899

    
900
    ret = kvm_get_sregs(env);
901
    if (ret < 0)
902
        return ret;
903

    
904
    ret = kvm_get_msrs(env);
905
    if (ret < 0)
906
        return ret;
907

    
908
    ret = kvm_get_mp_state(env);
909
    if (ret < 0)
910
        return ret;
911

    
912
    ret = kvm_get_vcpu_events(env);
913
    if (ret < 0)
914
        return ret;
915

    
916
    return 0;
917
}
918

    
919
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
920
{
921
    /* Try to inject an interrupt if the guest can accept it */
922
    if (run->ready_for_interrupt_injection &&
923
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
924
        (env->eflags & IF_MASK)) {
925
        int irq;
926

    
927
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
928
        irq = cpu_get_pic_interrupt(env);
929
        if (irq >= 0) {
930
            struct kvm_interrupt intr;
931
            intr.irq = irq;
932
            /* FIXME: errors */
933
            dprintf("injected interrupt %d\n", irq);
934
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
935
        }
936
    }
937

    
938
    /* If we have an interrupt but the guest is not ready to receive an
939
     * interrupt, request an interrupt window exit.  This will
940
     * cause a return to userspace as soon as the guest is ready to
941
     * receive interrupts. */
942
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
943
        run->request_interrupt_window = 1;
944
    else
945
        run->request_interrupt_window = 0;
946

    
947
    dprintf("setting tpr\n");
948
    run->cr8 = cpu_get_apic_tpr(env);
949

    
950
    return 0;
951
}
952

    
953
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
954
{
955
    if (run->if_flag)
956
        env->eflags |= IF_MASK;
957
    else
958
        env->eflags &= ~IF_MASK;
959
    
960
    cpu_set_apic_tpr(env, run->cr8);
961
    cpu_set_apic_base(env, run->apic_base);
962

    
963
    return 0;
964
}
965

    
966
static int kvm_handle_halt(CPUState *env)
967
{
968
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
969
          (env->eflags & IF_MASK)) &&
970
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
971
        env->halted = 1;
972
        env->exception_index = EXCP_HLT;
973
        return 0;
974
    }
975

    
976
    return 1;
977
}
978

    
979
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
980
{
981
    int ret = 0;
982

    
983
    switch (run->exit_reason) {
984
    case KVM_EXIT_HLT:
985
        dprintf("handle_hlt\n");
986
        ret = kvm_handle_halt(env);
987
        break;
988
    }
989

    
990
    return ret;
991
}
992

    
993
#ifdef KVM_CAP_SET_GUEST_DEBUG
994
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
995
{
996
    static const uint8_t int3 = 0xcc;
997

    
998
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
999
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1000
        return -EINVAL;
1001
    return 0;
1002
}
1003

    
1004
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1005
{
1006
    uint8_t int3;
1007

    
1008
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1009
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1010
        return -EINVAL;
1011
    return 0;
1012
}
1013

    
1014
static struct {
1015
    target_ulong addr;
1016
    int len;
1017
    int type;
1018
} hw_breakpoint[4];
1019

    
1020
static int nb_hw_breakpoint;
1021

    
1022
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1023
{
1024
    int n;
1025

    
1026
    for (n = 0; n < nb_hw_breakpoint; n++)
1027
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1028
            (hw_breakpoint[n].len == len || len == -1))
1029
            return n;
1030
    return -1;
1031
}
1032

    
1033
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1034
                                  target_ulong len, int type)
1035
{
1036
    switch (type) {
1037
    case GDB_BREAKPOINT_HW:
1038
        len = 1;
1039
        break;
1040
    case GDB_WATCHPOINT_WRITE:
1041
    case GDB_WATCHPOINT_ACCESS:
1042
        switch (len) {
1043
        case 1:
1044
            break;
1045
        case 2:
1046
        case 4:
1047
        case 8:
1048
            if (addr & (len - 1))
1049
                return -EINVAL;
1050
            break;
1051
        default:
1052
            return -EINVAL;
1053
        }
1054
        break;
1055
    default:
1056
        return -ENOSYS;
1057
    }
1058

    
1059
    if (nb_hw_breakpoint == 4)
1060
        return -ENOBUFS;
1061

    
1062
    if (find_hw_breakpoint(addr, len, type) >= 0)
1063
        return -EEXIST;
1064

    
1065
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1066
    hw_breakpoint[nb_hw_breakpoint].len = len;
1067
    hw_breakpoint[nb_hw_breakpoint].type = type;
1068
    nb_hw_breakpoint++;
1069

    
1070
    return 0;
1071
}
1072

    
1073
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1074
                                  target_ulong len, int type)
1075
{
1076
    int n;
1077

    
1078
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1079
    if (n < 0)
1080
        return -ENOENT;
1081

    
1082
    nb_hw_breakpoint--;
1083
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1084

    
1085
    return 0;
1086
}
1087

    
1088
void kvm_arch_remove_all_hw_breakpoints(void)
1089
{
1090
    nb_hw_breakpoint = 0;
1091
}
1092

    
1093
static CPUWatchpoint hw_watchpoint;
1094

    
1095
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1096
{
1097
    int handle = 0;
1098
    int n;
1099

    
1100
    if (arch_info->exception == 1) {
1101
        if (arch_info->dr6 & (1 << 14)) {
1102
            if (cpu_single_env->singlestep_enabled)
1103
                handle = 1;
1104
        } else {
1105
            for (n = 0; n < 4; n++)
1106
                if (arch_info->dr6 & (1 << n))
1107
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1108
                    case 0x0:
1109
                        handle = 1;
1110
                        break;
1111
                    case 0x1:
1112
                        handle = 1;
1113
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1114
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1115
                        hw_watchpoint.flags = BP_MEM_WRITE;
1116
                        break;
1117
                    case 0x3:
1118
                        handle = 1;
1119
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1120
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1121
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1122
                        break;
1123
                    }
1124
        }
1125
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1126
        handle = 1;
1127

    
1128
    if (!handle)
1129
        kvm_update_guest_debug(cpu_single_env,
1130
                        (arch_info->exception == 1) ?
1131
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1132

    
1133
    return handle;
1134
}
1135

    
1136
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1137
{
1138
    const uint8_t type_code[] = {
1139
        [GDB_BREAKPOINT_HW] = 0x0,
1140
        [GDB_WATCHPOINT_WRITE] = 0x1,
1141
        [GDB_WATCHPOINT_ACCESS] = 0x3
1142
    };
1143
    const uint8_t len_code[] = {
1144
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1145
    };
1146
    int n;
1147

    
1148
    if (kvm_sw_breakpoints_active(env))
1149
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1150

    
1151
    if (nb_hw_breakpoint > 0) {
1152
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1153
        dbg->arch.debugreg[7] = 0x0600;
1154
        for (n = 0; n < nb_hw_breakpoint; n++) {
1155
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1156
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1157
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1158
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1159
        }
1160
    }
1161
}
1162
#endif /* KVM_CAP_SET_GUEST_DEBUG */