Statistics
| Branch: | Revision:

root / hw / lm32_boards.c @ 4c9e975d

History | View | Annotate | Download (10.3 kB)

1
/*
2
 *  QEMU models for LatticeMico32 uclinux and evr32 boards.
3
 *
4
 *  Copyright (c) 2010 Michael Walle <michael@walle.cc>
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "sysbus.h"
21
#include "hw.h"
22
#include "net.h"
23
#include "flash.h"
24
#include "devices.h"
25
#include "boards.h"
26
#include "loader.h"
27
#include "blockdev.h"
28
#include "elf.h"
29
#include "lm32_hwsetup.h"
30
#include "lm32.h"
31
#include "exec-memory.h"
32

    
33
typedef struct {
34
    CPUState *env;
35
    target_phys_addr_t bootstrap_pc;
36
    target_phys_addr_t flash_base;
37
    target_phys_addr_t hwsetup_base;
38
    target_phys_addr_t initrd_base;
39
    size_t initrd_size;
40
    target_phys_addr_t cmdline_base;
41
} ResetInfo;
42

    
43
static void cpu_irq_handler(void *opaque, int irq, int level)
44
{
45
    CPUState *env = opaque;
46

    
47
    if (level) {
48
        cpu_interrupt(env, CPU_INTERRUPT_HARD);
49
    } else {
50
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
51
    }
52
}
53

    
54
static void main_cpu_reset(void *opaque)
55
{
56
    ResetInfo *reset_info = opaque;
57
    CPUState *env = reset_info->env;
58

    
59
    cpu_reset(env);
60

    
61
    /* init defaults */
62
    env->pc = (uint32_t)reset_info->bootstrap_pc;
63
    env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
64
    env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
65
    env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
66
    env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
67
        reset_info->initrd_size);
68
    env->eba = reset_info->flash_base;
69
    env->deba = reset_info->flash_base;
70
}
71

    
72
static void lm32_evr_init(ram_addr_t ram_size_not_used,
73
                          const char *boot_device,
74
                          const char *kernel_filename,
75
                          const char *kernel_cmdline,
76
                          const char *initrd_filename, const char *cpu_model)
77
{
78
    CPUState *env;
79
    DriveInfo *dinfo;
80
    MemoryRegion *address_space_mem =  get_system_memory();
81
    MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
82
    MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
83
    qemu_irq *cpu_irq, irq[32];
84
    ResetInfo *reset_info;
85
    int i;
86

    
87
    /* memory map */
88
    target_phys_addr_t flash_base  = 0x04000000;
89
    size_t flash_sector_size       = 256 * 1024;
90
    size_t flash_size              = 32 * 1024 * 1024;
91
    target_phys_addr_t ram_base    = 0x08000000;
92
    size_t ram_size                = 64 * 1024 * 1024;
93
    target_phys_addr_t timer0_base = 0x80002000;
94
    target_phys_addr_t uart0_base  = 0x80006000;
95
    target_phys_addr_t timer1_base = 0x8000a000;
96
    int uart0_irq                  = 0;
97
    int timer0_irq                 = 1;
98
    int timer1_irq                 = 3;
99

    
100
    reset_info = g_malloc0(sizeof(ResetInfo));
101

    
102
    if (cpu_model == NULL) {
103
        cpu_model = "lm32-full";
104
    }
105
    env = cpu_init(cpu_model);
106
    reset_info->env = env;
107

    
108
    reset_info->flash_base = flash_base;
109

    
110
    memory_region_init_ram(phys_ram, NULL, "lm32_evr.sdram", ram_size);
111
    memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
112

    
113
    memory_region_init_rom_device(phys_flash, &pflash_cfi02_ops_be,
114
                                  NULL, "lm32_evr.flash", flash_size);
115
    dinfo = drive_get(IF_PFLASH, 0, 0);
116
    /* Spansion S29NS128P */
117
    pflash_cfi02_register(flash_base, phys_flash,
118
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
119
                          flash_size / flash_sector_size, 1, 2,
120
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa);
121

    
122
    /* create irq lines */
123
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
124
    env->pic_state = lm32_pic_init(*cpu_irq);
125
    for (i = 0; i < 32; i++) {
126
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
127
    }
128

    
129
    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
130
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
131
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
132

    
133
    /* make sure juart isn't the first chardev */
134
    env->juart_state = lm32_juart_init();
135

    
136
    reset_info->bootstrap_pc = flash_base;
137

    
138
    if (kernel_filename) {
139
        uint64_t entry;
140
        int kernel_size;
141

    
142
        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
143
                               1, ELF_MACHINE, 0);
144
        reset_info->bootstrap_pc = entry;
145

    
146
        if (kernel_size < 0) {
147
            kernel_size = load_image_targphys(kernel_filename, ram_base,
148
                                              ram_size);
149
            reset_info->bootstrap_pc = ram_base;
150
        }
151

    
152
        if (kernel_size < 0) {
153
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
154
                    kernel_filename);
155
            exit(1);
156
        }
157
    }
158

    
159
    qemu_register_reset(main_cpu_reset, reset_info);
160
}
161

    
162
static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
163
                          const char *boot_device,
164
                          const char *kernel_filename,
165
                          const char *kernel_cmdline,
166
                          const char *initrd_filename, const char *cpu_model)
167
{
168
    CPUState *env;
169
    DriveInfo *dinfo;
170
    MemoryRegion *address_space_mem =  get_system_memory();
171
    MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
172
    MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
173
    qemu_irq *cpu_irq, irq[32];
174
    HWSetup *hw;
175
    ResetInfo *reset_info;
176
    int i;
177

    
178
    /* memory map */
179
    target_phys_addr_t flash_base   = 0x04000000;
180
    size_t flash_sector_size        = 256 * 1024;
181
    size_t flash_size               = 32 * 1024 * 1024;
182
    target_phys_addr_t ram_base     = 0x08000000;
183
    size_t ram_size                 = 64 * 1024 * 1024;
184
    target_phys_addr_t uart0_base   = 0x80000000;
185
    target_phys_addr_t timer0_base  = 0x80002000;
186
    target_phys_addr_t timer1_base  = 0x80010000;
187
    target_phys_addr_t timer2_base  = 0x80012000;
188
    int uart0_irq                   = 0;
189
    int timer0_irq                  = 1;
190
    int timer1_irq                  = 20;
191
    int timer2_irq                  = 21;
192
    target_phys_addr_t hwsetup_base = 0x0bffe000;
193
    target_phys_addr_t cmdline_base = 0x0bfff000;
194
    target_phys_addr_t initrd_base  = 0x08400000;
195
    size_t initrd_max               = 0x01000000;
196

    
197
    reset_info = g_malloc0(sizeof(ResetInfo));
198

    
199
    if (cpu_model == NULL) {
200
        cpu_model = "lm32-full";
201
    }
202
    env = cpu_init(cpu_model);
203
    reset_info->env = env;
204

    
205
    reset_info->flash_base = flash_base;
206

    
207
    memory_region_init_ram(phys_ram, NULL, "lm32_uclinux.sdram", ram_size);
208
    memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
209

    
210
    memory_region_init_rom_device(phys_flash, &pflash_cfi01_ops_be,
211
                                  NULL, "lm32_uclinux.flash", flash_size);
212
    dinfo = drive_get(IF_PFLASH, 0, 0);
213
    /* Spansion S29NS128P */
214
    pflash_cfi02_register(flash_base, phys_flash,
215
                          dinfo ? dinfo->bdrv : NULL, flash_sector_size,
216
                          flash_size / flash_sector_size, 1, 2,
217
                          0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa);
218

    
219
    /* create irq lines */
220
    cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
221
    env->pic_state = lm32_pic_init(*cpu_irq);
222
    for (i = 0; i < 32; i++) {
223
        irq[i] = qdev_get_gpio_in(env->pic_state, i);
224
    }
225

    
226
    sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
227
    sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
228
    sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
229
    sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
230

    
231
    /* make sure juart isn't the first chardev */
232
    env->juart_state = lm32_juart_init();
233

    
234
    reset_info->bootstrap_pc = flash_base;
235

    
236
    if (kernel_filename) {
237
        uint64_t entry;
238
        int kernel_size;
239

    
240
        kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
241
                               1, ELF_MACHINE, 0);
242
        reset_info->bootstrap_pc = entry;
243

    
244
        if (kernel_size < 0) {
245
            kernel_size = load_image_targphys(kernel_filename, ram_base,
246
                                              ram_size);
247
            reset_info->bootstrap_pc = ram_base;
248
        }
249

    
250
        if (kernel_size < 0) {
251
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
252
                    kernel_filename);
253
            exit(1);
254
        }
255
    }
256

    
257
    /* generate a rom with the hardware description */
258
    hw = hwsetup_init();
259
    hwsetup_add_cpu(hw, "LM32", 75000000);
260
    hwsetup_add_flash(hw, "flash", flash_base, flash_size);
261
    hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
262
    hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
263
    hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
264
    hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
265
    hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
266
    hwsetup_add_trailer(hw);
267
    hwsetup_create_rom(hw, hwsetup_base);
268
    hwsetup_free(hw);
269

    
270
    reset_info->hwsetup_base = hwsetup_base;
271

    
272
    if (kernel_cmdline && strlen(kernel_cmdline)) {
273
        pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
274
                kernel_cmdline);
275
        reset_info->cmdline_base = cmdline_base;
276
    }
277

    
278
    if (initrd_filename) {
279
        size_t initrd_size;
280
        initrd_size = load_image_targphys(initrd_filename, initrd_base,
281
                initrd_max);
282
        reset_info->initrd_base = initrd_base;
283
        reset_info->initrd_size = initrd_size;
284
    }
285

    
286
    qemu_register_reset(main_cpu_reset, reset_info);
287
}
288

    
289
static QEMUMachine lm32_evr_machine = {
290
    .name = "lm32-evr",
291
    .desc = "LatticeMico32 EVR32 eval system",
292
    .init = lm32_evr_init,
293
    .is_default = 1
294
};
295

    
296
static QEMUMachine lm32_uclinux_machine = {
297
    .name = "lm32-uclinux",
298
    .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
299
    .init = lm32_uclinux_init,
300
    .is_default = 0
301
};
302

    
303
static void lm32_machine_init(void)
304
{
305
    qemu_register_machine(&lm32_uclinux_machine);
306
    qemu_register_machine(&lm32_evr_machine);
307
}
308

    
309
machine_init(lm32_machine_init);