Statistics
| Branch: | Revision:

root / vl.c @ 4f01035f

History | View | Annotate | Download (206.6 kB)

1
/*
2
 * QEMU System Emulator
3
 * 
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32
#include <zlib.h>
33

    
34
#ifndef _WIN32
35
#include <sys/times.h>
36
#include <sys/wait.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <sys/mman.h>
40
#include <sys/ioctl.h>
41
#include <sys/socket.h>
42
#include <netinet/in.h>
43
#include <dirent.h>
44
#include <netdb.h>
45
#ifdef _BSD
46
#include <sys/stat.h>
47
#ifndef __APPLE__
48
#include <libutil.h>
49
#endif
50
#else
51
#ifndef __sun__
52
#include <linux/if.h>
53
#include <linux/if_tun.h>
54
#include <pty.h>
55
#include <malloc.h>
56
#include <linux/rtc.h>
57
#include <linux/ppdev.h>
58
#include <linux/parport.h>
59
#else
60
#include <sys/stat.h>
61
#include <sys/ethernet.h>
62
#include <sys/sockio.h>
63
#include <arpa/inet.h>
64
#include <netinet/arp.h>
65
#include <netinet/in.h>
66
#include <netinet/in_systm.h>
67
#include <netinet/ip.h>
68
#include <netinet/ip_icmp.h> // must come after ip.h
69
#include <netinet/udp.h>
70
#include <netinet/tcp.h>
71
#include <net/if.h>
72
#include <syslog.h>
73
#include <stropts.h>
74
#endif
75
#endif
76
#endif
77

    
78
#if defined(CONFIG_SLIRP)
79
#include "libslirp.h"
80
#endif
81

    
82
#ifdef _WIN32
83
#include <malloc.h>
84
#include <sys/timeb.h>
85
#include <windows.h>
86
#define getopt_long_only getopt_long
87
#define memalign(align, size) malloc(size)
88
#endif
89

    
90
#include "qemu_socket.h"
91

    
92
#ifdef CONFIG_SDL
93
#ifdef __APPLE__
94
#include <SDL/SDL.h>
95
#endif
96
#endif /* CONFIG_SDL */
97

    
98
#ifdef CONFIG_COCOA
99
#undef main
100
#define main qemu_main
101
#endif /* CONFIG_COCOA */
102

    
103
#include "disas.h"
104

    
105
#include "exec-all.h"
106

    
107
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108
#ifdef __sun__
109
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110
#else
111
#define SMBD_COMMAND "/usr/sbin/smbd"
112
#endif
113

    
114
//#define DEBUG_UNUSED_IOPORT
115
//#define DEBUG_IOPORT
116

    
117
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
118

    
119
#ifdef TARGET_PPC
120
#define DEFAULT_RAM_SIZE 144
121
#else
122
#define DEFAULT_RAM_SIZE 128
123
#endif
124
/* in ms */
125
#define GUI_REFRESH_INTERVAL 30
126

    
127
/* Max number of USB devices that can be specified on the commandline.  */
128
#define MAX_USB_CMDLINE 8
129

    
130
/* XXX: use a two level table to limit memory usage */
131
#define MAX_IOPORTS 65536
132

    
133
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134
char phys_ram_file[1024];
135
void *ioport_opaque[MAX_IOPORTS];
136
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139
   to store the VM snapshots */
140
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141
BlockDriverState *pflash_table[MAX_PFLASH];
142
BlockDriverState *sd_bdrv;
143
BlockDriverState *mtd_bdrv;
144
/* point to the block driver where the snapshots are managed */
145
BlockDriverState *bs_snapshots;
146
int vga_ram_size;
147
static DisplayState display_state;
148
int nographic;
149
const char* keyboard_layout = NULL;
150
int64_t ticks_per_sec;
151
int boot_device = 'c';
152
int ram_size;
153
int pit_min_timer_count = 0;
154
int nb_nics;
155
NICInfo nd_table[MAX_NICS];
156
QEMUTimer *gui_timer;
157
int vm_running;
158
int rtc_utc = 1;
159
int cirrus_vga_enabled = 1;
160
int vmsvga_enabled = 0;
161
#ifdef TARGET_SPARC
162
int graphic_width = 1024;
163
int graphic_height = 768;
164
int graphic_depth = 8;
165
#else
166
int graphic_width = 800;
167
int graphic_height = 600;
168
int graphic_depth = 15;
169
#endif
170
int full_screen = 0;
171
int no_frame = 0;
172
int no_quit = 0;
173
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
174
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
175
#ifdef TARGET_I386
176
int win2k_install_hack = 0;
177
#endif
178
int usb_enabled = 0;
179
static VLANState *first_vlan;
180
int smp_cpus = 1;
181
const char *vnc_display;
182
#if defined(TARGET_SPARC)
183
#define MAX_CPUS 16
184
#elif defined(TARGET_I386)
185
#define MAX_CPUS 255
186
#else
187
#define MAX_CPUS 1
188
#endif
189
int acpi_enabled = 1;
190
int fd_bootchk = 1;
191
int no_reboot = 0;
192
int cursor_hide = 1;
193
int graphic_rotate = 0;
194
int daemonize = 0;
195
const char *option_rom[MAX_OPTION_ROMS];
196
int nb_option_roms;
197
int semihosting_enabled = 0;
198
int autostart = 1;
199
const char *qemu_name;
200
#ifdef TARGET_SPARC
201
unsigned int nb_prom_envs = 0;
202
const char *prom_envs[MAX_PROM_ENVS];
203
#endif
204

    
205
/***********************************************************/
206
/* x86 ISA bus support */
207

    
208
target_phys_addr_t isa_mem_base = 0;
209
PicState2 *isa_pic;
210

    
211
uint32_t default_ioport_readb(void *opaque, uint32_t address)
212
{
213
#ifdef DEBUG_UNUSED_IOPORT
214
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
215
#endif
216
    return 0xff;
217
}
218

    
219
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
220
{
221
#ifdef DEBUG_UNUSED_IOPORT
222
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
223
#endif
224
}
225

    
226
/* default is to make two byte accesses */
227
uint32_t default_ioport_readw(void *opaque, uint32_t address)
228
{
229
    uint32_t data;
230
    data = ioport_read_table[0][address](ioport_opaque[address], address);
231
    address = (address + 1) & (MAX_IOPORTS - 1);
232
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
233
    return data;
234
}
235

    
236
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
237
{
238
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
239
    address = (address + 1) & (MAX_IOPORTS - 1);
240
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
241
}
242

    
243
uint32_t default_ioport_readl(void *opaque, uint32_t address)
244
{
245
#ifdef DEBUG_UNUSED_IOPORT
246
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
247
#endif
248
    return 0xffffffff;
249
}
250

    
251
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
252
{
253
#ifdef DEBUG_UNUSED_IOPORT
254
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
255
#endif
256
}
257

    
258
void init_ioports(void)
259
{
260
    int i;
261

    
262
    for(i = 0; i < MAX_IOPORTS; i++) {
263
        ioport_read_table[0][i] = default_ioport_readb;
264
        ioport_write_table[0][i] = default_ioport_writeb;
265
        ioport_read_table[1][i] = default_ioport_readw;
266
        ioport_write_table[1][i] = default_ioport_writew;
267
        ioport_read_table[2][i] = default_ioport_readl;
268
        ioport_write_table[2][i] = default_ioport_writel;
269
    }
270
}
271

    
272
/* size is the word size in byte */
273
int register_ioport_read(int start, int length, int size, 
274
                         IOPortReadFunc *func, void *opaque)
275
{
276
    int i, bsize;
277

    
278
    if (size == 1) {
279
        bsize = 0;
280
    } else if (size == 2) {
281
        bsize = 1;
282
    } else if (size == 4) {
283
        bsize = 2;
284
    } else {
285
        hw_error("register_ioport_read: invalid size");
286
        return -1;
287
    }
288
    for(i = start; i < start + length; i += size) {
289
        ioport_read_table[bsize][i] = func;
290
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
291
            hw_error("register_ioport_read: invalid opaque");
292
        ioport_opaque[i] = opaque;
293
    }
294
    return 0;
295
}
296

    
297
/* size is the word size in byte */
298
int register_ioport_write(int start, int length, int size, 
299
                          IOPortWriteFunc *func, void *opaque)
300
{
301
    int i, bsize;
302

    
303
    if (size == 1) {
304
        bsize = 0;
305
    } else if (size == 2) {
306
        bsize = 1;
307
    } else if (size == 4) {
308
        bsize = 2;
309
    } else {
310
        hw_error("register_ioport_write: invalid size");
311
        return -1;
312
    }
313
    for(i = start; i < start + length; i += size) {
314
        ioport_write_table[bsize][i] = func;
315
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
316
            hw_error("register_ioport_write: invalid opaque");
317
        ioport_opaque[i] = opaque;
318
    }
319
    return 0;
320
}
321

    
322
void isa_unassign_ioport(int start, int length)
323
{
324
    int i;
325

    
326
    for(i = start; i < start + length; i++) {
327
        ioport_read_table[0][i] = default_ioport_readb;
328
        ioport_read_table[1][i] = default_ioport_readw;
329
        ioport_read_table[2][i] = default_ioport_readl;
330

    
331
        ioport_write_table[0][i] = default_ioport_writeb;
332
        ioport_write_table[1][i] = default_ioport_writew;
333
        ioport_write_table[2][i] = default_ioport_writel;
334
    }
335
}
336

    
337
/***********************************************************/
338

    
339
void cpu_outb(CPUState *env, int addr, int val)
340
{
341
#ifdef DEBUG_IOPORT
342
    if (loglevel & CPU_LOG_IOPORT)
343
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
344
#endif    
345
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
346
#ifdef USE_KQEMU
347
    if (env)
348
        env->last_io_time = cpu_get_time_fast();
349
#endif
350
}
351

    
352
void cpu_outw(CPUState *env, int addr, int val)
353
{
354
#ifdef DEBUG_IOPORT
355
    if (loglevel & CPU_LOG_IOPORT)
356
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
357
#endif    
358
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
359
#ifdef USE_KQEMU
360
    if (env)
361
        env->last_io_time = cpu_get_time_fast();
362
#endif
363
}
364

    
365
void cpu_outl(CPUState *env, int addr, int val)
366
{
367
#ifdef DEBUG_IOPORT
368
    if (loglevel & CPU_LOG_IOPORT)
369
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
370
#endif
371
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
372
#ifdef USE_KQEMU
373
    if (env)
374
        env->last_io_time = cpu_get_time_fast();
375
#endif
376
}
377

    
378
int cpu_inb(CPUState *env, int addr)
379
{
380
    int val;
381
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
382
#ifdef DEBUG_IOPORT
383
    if (loglevel & CPU_LOG_IOPORT)
384
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
385
#endif
386
#ifdef USE_KQEMU
387
    if (env)
388
        env->last_io_time = cpu_get_time_fast();
389
#endif
390
    return val;
391
}
392

    
393
int cpu_inw(CPUState *env, int addr)
394
{
395
    int val;
396
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
397
#ifdef DEBUG_IOPORT
398
    if (loglevel & CPU_LOG_IOPORT)
399
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
400
#endif
401
#ifdef USE_KQEMU
402
    if (env)
403
        env->last_io_time = cpu_get_time_fast();
404
#endif
405
    return val;
406
}
407

    
408
int cpu_inl(CPUState *env, int addr)
409
{
410
    int val;
411
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
412
#ifdef DEBUG_IOPORT
413
    if (loglevel & CPU_LOG_IOPORT)
414
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
415
#endif
416
#ifdef USE_KQEMU
417
    if (env)
418
        env->last_io_time = cpu_get_time_fast();
419
#endif
420
    return val;
421
}
422

    
423
/***********************************************************/
424
void hw_error(const char *fmt, ...)
425
{
426
    va_list ap;
427
    CPUState *env;
428

    
429
    va_start(ap, fmt);
430
    fprintf(stderr, "qemu: hardware error: ");
431
    vfprintf(stderr, fmt, ap);
432
    fprintf(stderr, "\n");
433
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
434
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
435
#ifdef TARGET_I386
436
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
437
#else
438
        cpu_dump_state(env, stderr, fprintf, 0);
439
#endif
440
    }
441
    va_end(ap);
442
    abort();
443
}
444

    
445
/***********************************************************/
446
/* keyboard/mouse */
447

    
448
static QEMUPutKBDEvent *qemu_put_kbd_event;
449
static void *qemu_put_kbd_event_opaque;
450
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
451
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
452

    
453
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
454
{
455
    qemu_put_kbd_event_opaque = opaque;
456
    qemu_put_kbd_event = func;
457
}
458

    
459
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
460
                                                void *opaque, int absolute,
461
                                                const char *name)
462
{
463
    QEMUPutMouseEntry *s, *cursor;
464

    
465
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
466
    if (!s)
467
        return NULL;
468

    
469
    s->qemu_put_mouse_event = func;
470
    s->qemu_put_mouse_event_opaque = opaque;
471
    s->qemu_put_mouse_event_absolute = absolute;
472
    s->qemu_put_mouse_event_name = qemu_strdup(name);
473
    s->next = NULL;
474

    
475
    if (!qemu_put_mouse_event_head) {
476
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
477
        return s;
478
    }
479

    
480
    cursor = qemu_put_mouse_event_head;
481
    while (cursor->next != NULL)
482
        cursor = cursor->next;
483

    
484
    cursor->next = s;
485
    qemu_put_mouse_event_current = s;
486

    
487
    return s;
488
}
489

    
490
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
491
{
492
    QEMUPutMouseEntry *prev = NULL, *cursor;
493

    
494
    if (!qemu_put_mouse_event_head || entry == NULL)
495
        return;
496

    
497
    cursor = qemu_put_mouse_event_head;
498
    while (cursor != NULL && cursor != entry) {
499
        prev = cursor;
500
        cursor = cursor->next;
501
    }
502

    
503
    if (cursor == NULL) // does not exist or list empty
504
        return;
505
    else if (prev == NULL) { // entry is head
506
        qemu_put_mouse_event_head = cursor->next;
507
        if (qemu_put_mouse_event_current == entry)
508
            qemu_put_mouse_event_current = cursor->next;
509
        qemu_free(entry->qemu_put_mouse_event_name);
510
        qemu_free(entry);
511
        return;
512
    }
513

    
514
    prev->next = entry->next;
515

    
516
    if (qemu_put_mouse_event_current == entry)
517
        qemu_put_mouse_event_current = prev;
518

    
519
    qemu_free(entry->qemu_put_mouse_event_name);
520
    qemu_free(entry);
521
}
522

    
523
void kbd_put_keycode(int keycode)
524
{
525
    if (qemu_put_kbd_event) {
526
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
527
    }
528
}
529

    
530
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
531
{
532
    QEMUPutMouseEvent *mouse_event;
533
    void *mouse_event_opaque;
534
    int width;
535

    
536
    if (!qemu_put_mouse_event_current) {
537
        return;
538
    }
539

    
540
    mouse_event =
541
        qemu_put_mouse_event_current->qemu_put_mouse_event;
542
    mouse_event_opaque =
543
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
544

    
545
    if (mouse_event) {
546
        if (graphic_rotate) {
547
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
548
                width = 0x7fff;
549
            else
550
                width = graphic_width;
551
            mouse_event(mouse_event_opaque,
552
                                 width - dy, dx, dz, buttons_state);
553
        } else
554
            mouse_event(mouse_event_opaque,
555
                                 dx, dy, dz, buttons_state);
556
    }
557
}
558

    
559
int kbd_mouse_is_absolute(void)
560
{
561
    if (!qemu_put_mouse_event_current)
562
        return 0;
563

    
564
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
565
}
566

    
567
void do_info_mice(void)
568
{
569
    QEMUPutMouseEntry *cursor;
570
    int index = 0;
571

    
572
    if (!qemu_put_mouse_event_head) {
573
        term_printf("No mouse devices connected\n");
574
        return;
575
    }
576

    
577
    term_printf("Mouse devices available:\n");
578
    cursor = qemu_put_mouse_event_head;
579
    while (cursor != NULL) {
580
        term_printf("%c Mouse #%d: %s\n",
581
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
582
                    index, cursor->qemu_put_mouse_event_name);
583
        index++;
584
        cursor = cursor->next;
585
    }
586
}
587

    
588
void do_mouse_set(int index)
589
{
590
    QEMUPutMouseEntry *cursor;
591
    int i = 0;
592

    
593
    if (!qemu_put_mouse_event_head) {
594
        term_printf("No mouse devices connected\n");
595
        return;
596
    }
597

    
598
    cursor = qemu_put_mouse_event_head;
599
    while (cursor != NULL && index != i) {
600
        i++;
601
        cursor = cursor->next;
602
    }
603

    
604
    if (cursor != NULL)
605
        qemu_put_mouse_event_current = cursor;
606
    else
607
        term_printf("Mouse at given index not found\n");
608
}
609

    
610
/* compute with 96 bit intermediate result: (a*b)/c */
611
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
612
{
613
    union {
614
        uint64_t ll;
615
        struct {
616
#ifdef WORDS_BIGENDIAN
617
            uint32_t high, low;
618
#else
619
            uint32_t low, high;
620
#endif            
621
        } l;
622
    } u, res;
623
    uint64_t rl, rh;
624

    
625
    u.ll = a;
626
    rl = (uint64_t)u.l.low * (uint64_t)b;
627
    rh = (uint64_t)u.l.high * (uint64_t)b;
628
    rh += (rl >> 32);
629
    res.l.high = rh / c;
630
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
631
    return res.ll;
632
}
633

    
634
/***********************************************************/
635
/* real time host monotonic timer */
636

    
637
#define QEMU_TIMER_BASE 1000000000LL
638

    
639
#ifdef WIN32
640

    
641
static int64_t clock_freq;
642

    
643
static void init_get_clock(void)
644
{
645
    LARGE_INTEGER freq;
646
    int ret;
647
    ret = QueryPerformanceFrequency(&freq);
648
    if (ret == 0) {
649
        fprintf(stderr, "Could not calibrate ticks\n");
650
        exit(1);
651
    }
652
    clock_freq = freq.QuadPart;
653
}
654

    
655
static int64_t get_clock(void)
656
{
657
    LARGE_INTEGER ti;
658
    QueryPerformanceCounter(&ti);
659
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
660
}
661

    
662
#else
663

    
664
static int use_rt_clock;
665

    
666
static void init_get_clock(void)
667
{
668
    use_rt_clock = 0;
669
#if defined(__linux__)
670
    {
671
        struct timespec ts;
672
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
673
            use_rt_clock = 1;
674
        }
675
    }
676
#endif
677
}
678

    
679
static int64_t get_clock(void)
680
{
681
#if defined(__linux__)
682
    if (use_rt_clock) {
683
        struct timespec ts;
684
        clock_gettime(CLOCK_MONOTONIC, &ts);
685
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
686
    } else 
687
#endif
688
    {
689
        /* XXX: using gettimeofday leads to problems if the date
690
           changes, so it should be avoided. */
691
        struct timeval tv;
692
        gettimeofday(&tv, NULL);
693
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
694
    }
695
}
696

    
697
#endif
698

    
699
/***********************************************************/
700
/* guest cycle counter */
701

    
702
static int64_t cpu_ticks_prev;
703
static int64_t cpu_ticks_offset;
704
static int64_t cpu_clock_offset;
705
static int cpu_ticks_enabled;
706

    
707
/* return the host CPU cycle counter and handle stop/restart */
708
int64_t cpu_get_ticks(void)
709
{
710
    if (!cpu_ticks_enabled) {
711
        return cpu_ticks_offset;
712
    } else {
713
        int64_t ticks;
714
        ticks = cpu_get_real_ticks();
715
        if (cpu_ticks_prev > ticks) {
716
            /* Note: non increasing ticks may happen if the host uses
717
               software suspend */
718
            cpu_ticks_offset += cpu_ticks_prev - ticks;
719
        }
720
        cpu_ticks_prev = ticks;
721
        return ticks + cpu_ticks_offset;
722
    }
723
}
724

    
725
/* return the host CPU monotonic timer and handle stop/restart */
726
static int64_t cpu_get_clock(void)
727
{
728
    int64_t ti;
729
    if (!cpu_ticks_enabled) {
730
        return cpu_clock_offset;
731
    } else {
732
        ti = get_clock();
733
        return ti + cpu_clock_offset;
734
    }
735
}
736

    
737
/* enable cpu_get_ticks() */
738
void cpu_enable_ticks(void)
739
{
740
    if (!cpu_ticks_enabled) {
741
        cpu_ticks_offset -= cpu_get_real_ticks();
742
        cpu_clock_offset -= get_clock();
743
        cpu_ticks_enabled = 1;
744
    }
745
}
746

    
747
/* disable cpu_get_ticks() : the clock is stopped. You must not call
748
   cpu_get_ticks() after that.  */
749
void cpu_disable_ticks(void)
750
{
751
    if (cpu_ticks_enabled) {
752
        cpu_ticks_offset = cpu_get_ticks();
753
        cpu_clock_offset = cpu_get_clock();
754
        cpu_ticks_enabled = 0;
755
    }
756
}
757

    
758
/***********************************************************/
759
/* timers */
760
 
761
#define QEMU_TIMER_REALTIME 0
762
#define QEMU_TIMER_VIRTUAL  1
763

    
764
struct QEMUClock {
765
    int type;
766
    /* XXX: add frequency */
767
};
768

    
769
struct QEMUTimer {
770
    QEMUClock *clock;
771
    int64_t expire_time;
772
    QEMUTimerCB *cb;
773
    void *opaque;
774
    struct QEMUTimer *next;
775
};
776

    
777
QEMUClock *rt_clock;
778
QEMUClock *vm_clock;
779

    
780
static QEMUTimer *active_timers[2];
781
#ifdef _WIN32
782
static MMRESULT timerID;
783
static HANDLE host_alarm = NULL;
784
static unsigned int period = 1;
785
#else
786
/* frequency of the times() clock tick */
787
static int timer_freq;
788
#endif
789

    
790
QEMUClock *qemu_new_clock(int type)
791
{
792
    QEMUClock *clock;
793
    clock = qemu_mallocz(sizeof(QEMUClock));
794
    if (!clock)
795
        return NULL;
796
    clock->type = type;
797
    return clock;
798
}
799

    
800
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
801
{
802
    QEMUTimer *ts;
803

    
804
    ts = qemu_mallocz(sizeof(QEMUTimer));
805
    ts->clock = clock;
806
    ts->cb = cb;
807
    ts->opaque = opaque;
808
    return ts;
809
}
810

    
811
void qemu_free_timer(QEMUTimer *ts)
812
{
813
    qemu_free(ts);
814
}
815

    
816
/* stop a timer, but do not dealloc it */
817
void qemu_del_timer(QEMUTimer *ts)
818
{
819
    QEMUTimer **pt, *t;
820

    
821
    /* NOTE: this code must be signal safe because
822
       qemu_timer_expired() can be called from a signal. */
823
    pt = &active_timers[ts->clock->type];
824
    for(;;) {
825
        t = *pt;
826
        if (!t)
827
            break;
828
        if (t == ts) {
829
            *pt = t->next;
830
            break;
831
        }
832
        pt = &t->next;
833
    }
834
}
835

    
836
/* modify the current timer so that it will be fired when current_time
837
   >= expire_time. The corresponding callback will be called. */
838
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
839
{
840
    QEMUTimer **pt, *t;
841

    
842
    qemu_del_timer(ts);
843

    
844
    /* add the timer in the sorted list */
845
    /* NOTE: this code must be signal safe because
846
       qemu_timer_expired() can be called from a signal. */
847
    pt = &active_timers[ts->clock->type];
848
    for(;;) {
849
        t = *pt;
850
        if (!t)
851
            break;
852
        if (t->expire_time > expire_time) 
853
            break;
854
        pt = &t->next;
855
    }
856
    ts->expire_time = expire_time;
857
    ts->next = *pt;
858
    *pt = ts;
859
}
860

    
861
int qemu_timer_pending(QEMUTimer *ts)
862
{
863
    QEMUTimer *t;
864
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
865
        if (t == ts)
866
            return 1;
867
    }
868
    return 0;
869
}
870

    
871
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
872
{
873
    if (!timer_head)
874
        return 0;
875
    return (timer_head->expire_time <= current_time);
876
}
877

    
878
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
879
{
880
    QEMUTimer *ts;
881
    
882
    for(;;) {
883
        ts = *ptimer_head;
884
        if (!ts || ts->expire_time > current_time)
885
            break;
886
        /* remove timer from the list before calling the callback */
887
        *ptimer_head = ts->next;
888
        ts->next = NULL;
889
        
890
        /* run the callback (the timer list can be modified) */
891
        ts->cb(ts->opaque);
892
    }
893
}
894

    
895
int64_t qemu_get_clock(QEMUClock *clock)
896
{
897
    switch(clock->type) {
898
    case QEMU_TIMER_REALTIME:
899
        return get_clock() / 1000000;
900
    default:
901
    case QEMU_TIMER_VIRTUAL:
902
        return cpu_get_clock();
903
    }
904
}
905

    
906
static void init_timers(void)
907
{
908
    init_get_clock();
909
    ticks_per_sec = QEMU_TIMER_BASE;
910
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
911
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
912
}
913

    
914
/* save a timer */
915
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
916
{
917
    uint64_t expire_time;
918

    
919
    if (qemu_timer_pending(ts)) {
920
        expire_time = ts->expire_time;
921
    } else {
922
        expire_time = -1;
923
    }
924
    qemu_put_be64(f, expire_time);
925
}
926

    
927
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
928
{
929
    uint64_t expire_time;
930

    
931
    expire_time = qemu_get_be64(f);
932
    if (expire_time != -1) {
933
        qemu_mod_timer(ts, expire_time);
934
    } else {
935
        qemu_del_timer(ts);
936
    }
937
}
938

    
939
static void timer_save(QEMUFile *f, void *opaque)
940
{
941
    if (cpu_ticks_enabled) {
942
        hw_error("cannot save state if virtual timers are running");
943
    }
944
    qemu_put_be64s(f, &cpu_ticks_offset);
945
    qemu_put_be64s(f, &ticks_per_sec);
946
    qemu_put_be64s(f, &cpu_clock_offset);
947
}
948

    
949
static int timer_load(QEMUFile *f, void *opaque, int version_id)
950
{
951
    if (version_id != 1 && version_id != 2)
952
        return -EINVAL;
953
    if (cpu_ticks_enabled) {
954
        return -EINVAL;
955
    }
956
    qemu_get_be64s(f, &cpu_ticks_offset);
957
    qemu_get_be64s(f, &ticks_per_sec);
958
    if (version_id == 2) {
959
        qemu_get_be64s(f, &cpu_clock_offset);
960
    }
961
    return 0;
962
}
963

    
964
#ifdef _WIN32
965
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, 
966
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
967
#else
968
static void host_alarm_handler(int host_signum)
969
#endif
970
{
971
#if 0
972
#define DISP_FREQ 1000
973
    {
974
        static int64_t delta_min = INT64_MAX;
975
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
976
        static int count;
977
        ti = qemu_get_clock(vm_clock);
978
        if (last_clock != 0) {
979
            delta = ti - last_clock;
980
            if (delta < delta_min)
981
                delta_min = delta;
982
            if (delta > delta_max)
983
                delta_max = delta;
984
            delta_cum += delta;
985
            if (++count == DISP_FREQ) {
986
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
987
                       muldiv64(delta_min, 1000000, ticks_per_sec),
988
                       muldiv64(delta_max, 1000000, ticks_per_sec),
989
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
990
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
991
                count = 0;
992
                delta_min = INT64_MAX;
993
                delta_max = 0;
994
                delta_cum = 0;
995
            }
996
        }
997
        last_clock = ti;
998
    }
999
#endif
1000
    if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1001
                           qemu_get_clock(vm_clock)) ||
1002
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1003
                           qemu_get_clock(rt_clock))) {
1004
#ifdef _WIN32
1005
        SetEvent(host_alarm);
1006
#endif
1007
        CPUState *env = cpu_single_env;
1008
        if (env) {
1009
            /* stop the currently executing cpu because a timer occured */
1010
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1011
#ifdef USE_KQEMU
1012
            if (env->kqemu_enabled) {
1013
                kqemu_cpu_interrupt(env);
1014
            }
1015
#endif
1016
        }
1017
    }
1018
}
1019

    
1020
#ifndef _WIN32
1021

    
1022
#if defined(__linux__)
1023

    
1024
#define RTC_FREQ 1024
1025

    
1026
static int rtc_fd;
1027

    
1028
static int start_rtc_timer(void)
1029
{
1030
    rtc_fd = open("/dev/rtc", O_RDONLY);
1031
    if (rtc_fd < 0)
1032
        return -1;
1033
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1034
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1035
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1036
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1037
        goto fail;
1038
    }
1039
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1040
    fail:
1041
        close(rtc_fd);
1042
        return -1;
1043
    }
1044
    pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1045
    return 0;
1046
}
1047

    
1048
#else
1049

    
1050
static int start_rtc_timer(void)
1051
{
1052
    return -1;
1053
}
1054

    
1055
#endif /* !defined(__linux__) */
1056

    
1057
#endif /* !defined(_WIN32) */
1058

    
1059
static void init_timer_alarm(void)
1060
{
1061
#ifdef _WIN32
1062
    {
1063
        int count=0;
1064
        TIMECAPS tc;
1065

    
1066
        ZeroMemory(&tc, sizeof(TIMECAPS));
1067
        timeGetDevCaps(&tc, sizeof(TIMECAPS));
1068
        if (period < tc.wPeriodMin)
1069
            period = tc.wPeriodMin;
1070
        timeBeginPeriod(period);
1071
        timerID = timeSetEvent(1,     // interval (ms)
1072
                               period,     // resolution
1073
                               host_alarm_handler, // function
1074
                               (DWORD)&count,  // user parameter
1075
                               TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1076
         if( !timerID ) {
1077
            perror("failed timer alarm");
1078
            exit(1);
1079
         }
1080
        host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1081
        if (!host_alarm) {
1082
            perror("failed CreateEvent");
1083
            exit(1);
1084
        }
1085
        qemu_add_wait_object(host_alarm, NULL, NULL);
1086
    }
1087
    pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1088
#else
1089
    {
1090
        struct sigaction act;
1091
        struct itimerval itv;
1092
        
1093
        /* get times() syscall frequency */
1094
        timer_freq = sysconf(_SC_CLK_TCK);
1095
        
1096
        /* timer signal */
1097
        sigfillset(&act.sa_mask);
1098
       act.sa_flags = 0;
1099
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1100
        act.sa_flags |= SA_ONSTACK;
1101
#endif
1102
        act.sa_handler = host_alarm_handler;
1103
        sigaction(SIGALRM, &act, NULL);
1104

    
1105
        itv.it_interval.tv_sec = 0;
1106
        itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1107
        itv.it_value.tv_sec = 0;
1108
        itv.it_value.tv_usec = 10 * 1000;
1109
        setitimer(ITIMER_REAL, &itv, NULL);
1110
        /* we probe the tick duration of the kernel to inform the user if
1111
           the emulated kernel requested a too high timer frequency */
1112
        getitimer(ITIMER_REAL, &itv);
1113

    
1114
#if defined(__linux__)
1115
        /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1116
           have timers with 1 ms resolution. The correct solution will
1117
           be to use the POSIX real time timers available in recent
1118
           2.6 kernels */
1119
        if (itv.it_interval.tv_usec > 1000 || 1) {
1120
            /* try to use /dev/rtc to have a faster timer */
1121
            if (start_rtc_timer() < 0)
1122
                goto use_itimer;
1123
            /* disable itimer */
1124
            itv.it_interval.tv_sec = 0;
1125
            itv.it_interval.tv_usec = 0;
1126
            itv.it_value.tv_sec = 0;
1127
            itv.it_value.tv_usec = 0;
1128
            setitimer(ITIMER_REAL, &itv, NULL);
1129

    
1130
            /* use the RTC */
1131
            sigaction(SIGIO, &act, NULL);
1132
            fcntl(rtc_fd, F_SETFL, O_ASYNC);
1133
            fcntl(rtc_fd, F_SETOWN, getpid());
1134
        } else 
1135
#endif /* defined(__linux__) */
1136
        {
1137
        use_itimer:
1138
            pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * 
1139
                                   PIT_FREQ) / 1000000;
1140
        }
1141
    }
1142
#endif
1143
}
1144

    
1145
void quit_timers(void)
1146
{
1147
#ifdef _WIN32
1148
    timeKillEvent(timerID);
1149
    timeEndPeriod(period);
1150
    if (host_alarm) {
1151
        CloseHandle(host_alarm);
1152
        host_alarm = NULL;
1153
    }
1154
#endif
1155
}
1156

    
1157
/***********************************************************/
1158
/* character device */
1159

    
1160
static void qemu_chr_event(CharDriverState *s, int event)
1161
{
1162
    if (!s->chr_event)
1163
        return;
1164
    s->chr_event(s->handler_opaque, event);
1165
}
1166

    
1167
static void qemu_chr_reset_bh(void *opaque)
1168
{
1169
    CharDriverState *s = opaque;
1170
    qemu_chr_event(s, CHR_EVENT_RESET);
1171
    qemu_bh_delete(s->bh);
1172
    s->bh = NULL;
1173
}
1174

    
1175
void qemu_chr_reset(CharDriverState *s)
1176
{
1177
    if (s->bh == NULL) {
1178
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1179
        qemu_bh_schedule(s->bh);
1180
    }
1181
}
1182

    
1183
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1184
{
1185
    return s->chr_write(s, buf, len);
1186
}
1187

    
1188
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1189
{
1190
    if (!s->chr_ioctl)
1191
        return -ENOTSUP;
1192
    return s->chr_ioctl(s, cmd, arg);
1193
}
1194

    
1195
int qemu_chr_can_read(CharDriverState *s)
1196
{
1197
    if (!s->chr_can_read)
1198
        return 0;
1199
    return s->chr_can_read(s->handler_opaque);
1200
}
1201

    
1202
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1203
{
1204
    s->chr_read(s->handler_opaque, buf, len);
1205
}
1206

    
1207

    
1208
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1209
{
1210
    char buf[4096];
1211
    va_list ap;
1212
    va_start(ap, fmt);
1213
    vsnprintf(buf, sizeof(buf), fmt, ap);
1214
    qemu_chr_write(s, buf, strlen(buf));
1215
    va_end(ap);
1216
}
1217

    
1218
void qemu_chr_send_event(CharDriverState *s, int event)
1219
{
1220
    if (s->chr_send_event)
1221
        s->chr_send_event(s, event);
1222
}
1223

    
1224
void qemu_chr_add_handlers(CharDriverState *s, 
1225
                           IOCanRWHandler *fd_can_read, 
1226
                           IOReadHandler *fd_read,
1227
                           IOEventHandler *fd_event,
1228
                           void *opaque)
1229
{
1230
    s->chr_can_read = fd_can_read;
1231
    s->chr_read = fd_read;
1232
    s->chr_event = fd_event;
1233
    s->handler_opaque = opaque;
1234
    if (s->chr_update_read_handler)
1235
        s->chr_update_read_handler(s);
1236
}
1237
             
1238
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1239
{
1240
    return len;
1241
}
1242

    
1243
static CharDriverState *qemu_chr_open_null(void)
1244
{
1245
    CharDriverState *chr;
1246

    
1247
    chr = qemu_mallocz(sizeof(CharDriverState));
1248
    if (!chr)
1249
        return NULL;
1250
    chr->chr_write = null_chr_write;
1251
    return chr;
1252
}
1253

    
1254
/* MUX driver for serial I/O splitting */
1255
static int term_timestamps;
1256
static int64_t term_timestamps_start;
1257
#define MAX_MUX 4
1258
typedef struct {
1259
    IOCanRWHandler *chr_can_read[MAX_MUX];
1260
    IOReadHandler *chr_read[MAX_MUX];
1261
    IOEventHandler *chr_event[MAX_MUX];
1262
    void *ext_opaque[MAX_MUX];
1263
    CharDriverState *drv;
1264
    int mux_cnt;
1265
    int term_got_escape;
1266
    int max_size;
1267
} MuxDriver;
1268

    
1269

    
1270
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1271
{
1272
    MuxDriver *d = chr->opaque;
1273
    int ret;
1274
    if (!term_timestamps) {
1275
        ret = d->drv->chr_write(d->drv, buf, len);
1276
    } else {
1277
        int i;
1278

    
1279
        ret = 0;
1280
        for(i = 0; i < len; i++) {
1281
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1282
            if (buf[i] == '\n') {
1283
                char buf1[64];
1284
                int64_t ti;
1285
                int secs;
1286

    
1287
                ti = get_clock();
1288
                if (term_timestamps_start == -1)
1289
                    term_timestamps_start = ti;
1290
                ti -= term_timestamps_start;
1291
                secs = ti / 1000000000;
1292
                snprintf(buf1, sizeof(buf1),
1293
                         "[%02d:%02d:%02d.%03d] ",
1294
                         secs / 3600,
1295
                         (secs / 60) % 60,
1296
                         secs % 60,
1297
                         (int)((ti / 1000000) % 1000));
1298
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1299
            }
1300
        }
1301
    }
1302
    return ret;
1303
}
1304

    
1305
static char *mux_help[] = {
1306
    "% h    print this help\n\r",
1307
    "% x    exit emulator\n\r",
1308
    "% s    save disk data back to file (if -snapshot)\n\r",
1309
    "% t    toggle console timestamps\n\r"
1310
    "% b    send break (magic sysrq)\n\r",
1311
    "% c    switch between console and monitor\n\r",
1312
    "% %  sends %\n\r",
1313
    NULL
1314
};
1315

    
1316
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1317
static void mux_print_help(CharDriverState *chr)
1318
{
1319
    int i, j;
1320
    char ebuf[15] = "Escape-Char";
1321
    char cbuf[50] = "\n\r";
1322

    
1323
    if (term_escape_char > 0 && term_escape_char < 26) {
1324
        sprintf(cbuf,"\n\r");
1325
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1326
    } else {
1327
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1328
    }
1329
    chr->chr_write(chr, cbuf, strlen(cbuf));
1330
    for (i = 0; mux_help[i] != NULL; i++) {
1331
        for (j=0; mux_help[i][j] != '\0'; j++) {
1332
            if (mux_help[i][j] == '%')
1333
                chr->chr_write(chr, ebuf, strlen(ebuf));
1334
            else
1335
                chr->chr_write(chr, &mux_help[i][j], 1);
1336
        }
1337
    }
1338
}
1339

    
1340
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1341
{
1342
    if (d->term_got_escape) {
1343
        d->term_got_escape = 0;
1344
        if (ch == term_escape_char)
1345
            goto send_char;
1346
        switch(ch) {
1347
        case '?':
1348
        case 'h':
1349
            mux_print_help(chr);
1350
            break;
1351
        case 'x':
1352
            {
1353
                 char *term =  "QEMU: Terminated\n\r";
1354
                 chr->chr_write(chr,term,strlen(term));
1355
                 exit(0);
1356
                 break;
1357
            }
1358
        case 's':
1359
            {
1360
                int i;
1361
                for (i = 0; i < MAX_DISKS; i++) {
1362
                    if (bs_table[i])
1363
                        bdrv_commit(bs_table[i]);
1364
                }
1365
                if (mtd_bdrv)
1366
                    bdrv_commit(mtd_bdrv);
1367
            }
1368
            break;
1369
        case 'b':
1370
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1371
            break;
1372
        case 'c':
1373
            /* Switch to the next registered device */
1374
            chr->focus++;
1375
            if (chr->focus >= d->mux_cnt)
1376
                chr->focus = 0;
1377
            break;
1378
       case 't':
1379
           term_timestamps = !term_timestamps;
1380
           term_timestamps_start = -1;
1381
           break;
1382
        }
1383
    } else if (ch == term_escape_char) {
1384
        d->term_got_escape = 1;
1385
    } else {
1386
    send_char:
1387
        return 1;
1388
    }
1389
    return 0;
1390
}
1391

    
1392
static int mux_chr_can_read(void *opaque)
1393
{
1394
    CharDriverState *chr = opaque;
1395
    MuxDriver *d = chr->opaque;
1396
    if (d->chr_can_read[chr->focus])
1397
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1398
    return 0;
1399
}
1400

    
1401
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1402
{
1403
    CharDriverState *chr = opaque;
1404
    MuxDriver *d = chr->opaque;
1405
    int i;
1406
    for(i = 0; i < size; i++)
1407
        if (mux_proc_byte(chr, d, buf[i]))
1408
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1409
}
1410

    
1411
static void mux_chr_event(void *opaque, int event)
1412
{
1413
    CharDriverState *chr = opaque;
1414
    MuxDriver *d = chr->opaque;
1415
    int i;
1416

    
1417
    /* Send the event to all registered listeners */
1418
    for (i = 0; i < d->mux_cnt; i++)
1419
        if (d->chr_event[i])
1420
            d->chr_event[i](d->ext_opaque[i], event);
1421
}
1422

    
1423
static void mux_chr_update_read_handler(CharDriverState *chr)
1424
{
1425
    MuxDriver *d = chr->opaque;
1426

    
1427
    if (d->mux_cnt >= MAX_MUX) {
1428
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1429
        return;
1430
    }
1431
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1432
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1433
    d->chr_read[d->mux_cnt] = chr->chr_read;
1434
    d->chr_event[d->mux_cnt] = chr->chr_event;
1435
    /* Fix up the real driver with mux routines */
1436
    if (d->mux_cnt == 0) {
1437
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1438
                              mux_chr_event, chr);
1439
    }
1440
    chr->focus = d->mux_cnt;
1441
    d->mux_cnt++;
1442
}
1443

    
1444
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1445
{
1446
    CharDriverState *chr;
1447
    MuxDriver *d;
1448

    
1449
    chr = qemu_mallocz(sizeof(CharDriverState));
1450
    if (!chr)
1451
        return NULL;
1452
    d = qemu_mallocz(sizeof(MuxDriver));
1453
    if (!d) {
1454
        free(chr);
1455
        return NULL;
1456
    }
1457

    
1458
    chr->opaque = d;
1459
    d->drv = drv;
1460
    chr->focus = -1;
1461
    chr->chr_write = mux_chr_write;
1462
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1463
    return chr;
1464
}
1465

    
1466

    
1467
#ifdef _WIN32
1468

    
1469
static void socket_cleanup(void)
1470
{
1471
    WSACleanup();
1472
}
1473

    
1474
static int socket_init(void)
1475
{
1476
    WSADATA Data;
1477
    int ret, err;
1478

    
1479
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1480
    if (ret != 0) {
1481
        err = WSAGetLastError();
1482
        fprintf(stderr, "WSAStartup: %d\n", err);
1483
        return -1;
1484
    }
1485
    atexit(socket_cleanup);
1486
    return 0;
1487
}
1488

    
1489
static int send_all(int fd, const uint8_t *buf, int len1)
1490
{
1491
    int ret, len;
1492
    
1493
    len = len1;
1494
    while (len > 0) {
1495
        ret = send(fd, buf, len, 0);
1496
        if (ret < 0) {
1497
            int errno;
1498
            errno = WSAGetLastError();
1499
            if (errno != WSAEWOULDBLOCK) {
1500
                return -1;
1501
            }
1502
        } else if (ret == 0) {
1503
            break;
1504
        } else {
1505
            buf += ret;
1506
            len -= ret;
1507
        }
1508
    }
1509
    return len1 - len;
1510
}
1511

    
1512
void socket_set_nonblock(int fd)
1513
{
1514
    unsigned long opt = 1;
1515
    ioctlsocket(fd, FIONBIO, &opt);
1516
}
1517

    
1518
#else
1519

    
1520
static int unix_write(int fd, const uint8_t *buf, int len1)
1521
{
1522
    int ret, len;
1523

    
1524
    len = len1;
1525
    while (len > 0) {
1526
        ret = write(fd, buf, len);
1527
        if (ret < 0) {
1528
            if (errno != EINTR && errno != EAGAIN)
1529
                return -1;
1530
        } else if (ret == 0) {
1531
            break;
1532
        } else {
1533
            buf += ret;
1534
            len -= ret;
1535
        }
1536
    }
1537
    return len1 - len;
1538
}
1539

    
1540
static inline int send_all(int fd, const uint8_t *buf, int len1)
1541
{
1542
    return unix_write(fd, buf, len1);
1543
}
1544

    
1545
void socket_set_nonblock(int fd)
1546
{
1547
    fcntl(fd, F_SETFL, O_NONBLOCK);
1548
}
1549
#endif /* !_WIN32 */
1550

    
1551
#ifndef _WIN32
1552

    
1553
typedef struct {
1554
    int fd_in, fd_out;
1555
    int max_size;
1556
} FDCharDriver;
1557

    
1558
#define STDIO_MAX_CLIENTS 1
1559
static int stdio_nb_clients = 0;
1560

    
1561
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1562
{
1563
    FDCharDriver *s = chr->opaque;
1564
    return unix_write(s->fd_out, buf, len);
1565
}
1566

    
1567
static int fd_chr_read_poll(void *opaque)
1568
{
1569
    CharDriverState *chr = opaque;
1570
    FDCharDriver *s = chr->opaque;
1571

    
1572
    s->max_size = qemu_chr_can_read(chr);
1573
    return s->max_size;
1574
}
1575

    
1576
static void fd_chr_read(void *opaque)
1577
{
1578
    CharDriverState *chr = opaque;
1579
    FDCharDriver *s = chr->opaque;
1580
    int size, len;
1581
    uint8_t buf[1024];
1582
    
1583
    len = sizeof(buf);
1584
    if (len > s->max_size)
1585
        len = s->max_size;
1586
    if (len == 0)
1587
        return;
1588
    size = read(s->fd_in, buf, len);
1589
    if (size == 0) {
1590
        /* FD has been closed. Remove it from the active list.  */
1591
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1592
        return;
1593
    }
1594
    if (size > 0) {
1595
        qemu_chr_read(chr, buf, size);
1596
    }
1597
}
1598

    
1599
static void fd_chr_update_read_handler(CharDriverState *chr)
1600
{
1601
    FDCharDriver *s = chr->opaque;
1602

    
1603
    if (s->fd_in >= 0) {
1604
        if (nographic && s->fd_in == 0) {
1605
        } else {
1606
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll, 
1607
                                 fd_chr_read, NULL, chr);
1608
        }
1609
    }
1610
}
1611

    
1612
/* open a character device to a unix fd */
1613
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1614
{
1615
    CharDriverState *chr;
1616
    FDCharDriver *s;
1617

    
1618
    chr = qemu_mallocz(sizeof(CharDriverState));
1619
    if (!chr)
1620
        return NULL;
1621
    s = qemu_mallocz(sizeof(FDCharDriver));
1622
    if (!s) {
1623
        free(chr);
1624
        return NULL;
1625
    }
1626
    s->fd_in = fd_in;
1627
    s->fd_out = fd_out;
1628
    chr->opaque = s;
1629
    chr->chr_write = fd_chr_write;
1630
    chr->chr_update_read_handler = fd_chr_update_read_handler;
1631

    
1632
    qemu_chr_reset(chr);
1633

    
1634
    return chr;
1635
}
1636

    
1637
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1638
{
1639
    int fd_out;
1640

    
1641
    fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1642
    if (fd_out < 0)
1643
        return NULL;
1644
    return qemu_chr_open_fd(-1, fd_out);
1645
}
1646

    
1647
static CharDriverState *qemu_chr_open_pipe(const char *filename)
1648
{
1649
    int fd_in, fd_out;
1650
    char filename_in[256], filename_out[256];
1651

    
1652
    snprintf(filename_in, 256, "%s.in", filename);
1653
    snprintf(filename_out, 256, "%s.out", filename);
1654
    fd_in = open(filename_in, O_RDWR | O_BINARY);
1655
    fd_out = open(filename_out, O_RDWR | O_BINARY);
1656
    if (fd_in < 0 || fd_out < 0) {
1657
        if (fd_in >= 0)
1658
            close(fd_in);
1659
        if (fd_out >= 0)
1660
            close(fd_out);
1661
        fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1662
        if (fd_in < 0)
1663
            return NULL;
1664
    }
1665
    return qemu_chr_open_fd(fd_in, fd_out);
1666
}
1667

    
1668

    
1669
/* for STDIO, we handle the case where several clients use it
1670
   (nographic mode) */
1671

    
1672
#define TERM_FIFO_MAX_SIZE 1
1673

    
1674
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1675
static int term_fifo_size;
1676

    
1677
static int stdio_read_poll(void *opaque)
1678
{
1679
    CharDriverState *chr = opaque;
1680

    
1681
    /* try to flush the queue if needed */
1682
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1683
        qemu_chr_read(chr, term_fifo, 1);
1684
        term_fifo_size = 0;
1685
    }
1686
    /* see if we can absorb more chars */
1687
    if (term_fifo_size == 0)
1688
        return 1;
1689
    else
1690
        return 0;
1691
}
1692

    
1693
static void stdio_read(void *opaque)
1694
{
1695
    int size;
1696
    uint8_t buf[1];
1697
    CharDriverState *chr = opaque;
1698

    
1699
    size = read(0, buf, 1);
1700
    if (size == 0) {
1701
        /* stdin has been closed. Remove it from the active list.  */
1702
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1703
        return;
1704
    }
1705
    if (size > 0) {
1706
        if (qemu_chr_can_read(chr) > 0) {
1707
            qemu_chr_read(chr, buf, 1);
1708
        } else if (term_fifo_size == 0) {
1709
            term_fifo[term_fifo_size++] = buf[0];
1710
        }
1711
    }
1712
}
1713

    
1714
/* init terminal so that we can grab keys */
1715
static struct termios oldtty;
1716
static int old_fd0_flags;
1717

    
1718
static void term_exit(void)
1719
{
1720
    tcsetattr (0, TCSANOW, &oldtty);
1721
    fcntl(0, F_SETFL, old_fd0_flags);
1722
}
1723

    
1724
static void term_init(void)
1725
{
1726
    struct termios tty;
1727

    
1728
    tcgetattr (0, &tty);
1729
    oldtty = tty;
1730
    old_fd0_flags = fcntl(0, F_GETFL);
1731

    
1732
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1733
                          |INLCR|IGNCR|ICRNL|IXON);
1734
    tty.c_oflag |= OPOST;
1735
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1736
    /* if graphical mode, we allow Ctrl-C handling */
1737
    if (nographic)
1738
        tty.c_lflag &= ~ISIG;
1739
    tty.c_cflag &= ~(CSIZE|PARENB);
1740
    tty.c_cflag |= CS8;
1741
    tty.c_cc[VMIN] = 1;
1742
    tty.c_cc[VTIME] = 0;
1743
    
1744
    tcsetattr (0, TCSANOW, &tty);
1745

    
1746
    atexit(term_exit);
1747

    
1748
    fcntl(0, F_SETFL, O_NONBLOCK);
1749
}
1750

    
1751
static CharDriverState *qemu_chr_open_stdio(void)
1752
{
1753
    CharDriverState *chr;
1754

    
1755
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1756
        return NULL;
1757
    chr = qemu_chr_open_fd(0, 1);
1758
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1759
    stdio_nb_clients++;
1760
    term_init();
1761

    
1762
    return chr;
1763
}
1764

    
1765
#if defined(__linux__)
1766
static CharDriverState *qemu_chr_open_pty(void)
1767
{
1768
    struct termios tty;
1769
    char slave_name[1024];
1770
    int master_fd, slave_fd;
1771
    
1772
    /* Not satisfying */
1773
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1774
        return NULL;
1775
    }
1776
    
1777
    /* Disabling local echo and line-buffered output */
1778
    tcgetattr (master_fd, &tty);
1779
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1780
    tty.c_cc[VMIN] = 1;
1781
    tty.c_cc[VTIME] = 0;
1782
    tcsetattr (master_fd, TCSAFLUSH, &tty);
1783

    
1784
    fprintf(stderr, "char device redirected to %s\n", slave_name);
1785
    return qemu_chr_open_fd(master_fd, master_fd);
1786
}
1787

    
1788
static void tty_serial_init(int fd, int speed, 
1789
                            int parity, int data_bits, int stop_bits)
1790
{
1791
    struct termios tty;
1792
    speed_t spd;
1793

    
1794
#if 0
1795
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n", 
1796
           speed, parity, data_bits, stop_bits);
1797
#endif
1798
    tcgetattr (fd, &tty);
1799

    
1800
    switch(speed) {
1801
    case 50:
1802
        spd = B50;
1803
        break;
1804
    case 75:
1805
        spd = B75;
1806
        break;
1807
    case 300:
1808
        spd = B300;
1809
        break;
1810
    case 600:
1811
        spd = B600;
1812
        break;
1813
    case 1200:
1814
        spd = B1200;
1815
        break;
1816
    case 2400:
1817
        spd = B2400;
1818
        break;
1819
    case 4800:
1820
        spd = B4800;
1821
        break;
1822
    case 9600:
1823
        spd = B9600;
1824
        break;
1825
    case 19200:
1826
        spd = B19200;
1827
        break;
1828
    case 38400:
1829
        spd = B38400;
1830
        break;
1831
    case 57600:
1832
        spd = B57600;
1833
        break;
1834
    default:
1835
    case 115200:
1836
        spd = B115200;
1837
        break;
1838
    }
1839

    
1840
    cfsetispeed(&tty, spd);
1841
    cfsetospeed(&tty, spd);
1842

    
1843
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1844
                          |INLCR|IGNCR|ICRNL|IXON);
1845
    tty.c_oflag |= OPOST;
1846
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1847
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1848
    switch(data_bits) {
1849
    default:
1850
    case 8:
1851
        tty.c_cflag |= CS8;
1852
        break;
1853
    case 7:
1854
        tty.c_cflag |= CS7;
1855
        break;
1856
    case 6:
1857
        tty.c_cflag |= CS6;
1858
        break;
1859
    case 5:
1860
        tty.c_cflag |= CS5;
1861
        break;
1862
    }
1863
    switch(parity) {
1864
    default:
1865
    case 'N':
1866
        break;
1867
    case 'E':
1868
        tty.c_cflag |= PARENB;
1869
        break;
1870
    case 'O':
1871
        tty.c_cflag |= PARENB | PARODD;
1872
        break;
1873
    }
1874
    if (stop_bits == 2)
1875
        tty.c_cflag |= CSTOPB;
1876
    
1877
    tcsetattr (fd, TCSANOW, &tty);
1878
}
1879

    
1880
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1881
{
1882
    FDCharDriver *s = chr->opaque;
1883
    
1884
    switch(cmd) {
1885
    case CHR_IOCTL_SERIAL_SET_PARAMS:
1886
        {
1887
            QEMUSerialSetParams *ssp = arg;
1888
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity, 
1889
                            ssp->data_bits, ssp->stop_bits);
1890
        }
1891
        break;
1892
    case CHR_IOCTL_SERIAL_SET_BREAK:
1893
        {
1894
            int enable = *(int *)arg;
1895
            if (enable)
1896
                tcsendbreak(s->fd_in, 1);
1897
        }
1898
        break;
1899
    default:
1900
        return -ENOTSUP;
1901
    }
1902
    return 0;
1903
}
1904

    
1905
static CharDriverState *qemu_chr_open_tty(const char *filename)
1906
{
1907
    CharDriverState *chr;
1908
    int fd;
1909

    
1910
    fd = open(filename, O_RDWR | O_NONBLOCK);
1911
    if (fd < 0)
1912
        return NULL;
1913
    fcntl(fd, F_SETFL, O_NONBLOCK);
1914
    tty_serial_init(fd, 115200, 'N', 8, 1);
1915
    chr = qemu_chr_open_fd(fd, fd);
1916
    if (!chr)
1917
        return NULL;
1918
    chr->chr_ioctl = tty_serial_ioctl;
1919
    qemu_chr_reset(chr);
1920
    return chr;
1921
}
1922

    
1923
typedef struct {
1924
    int fd;
1925
    int mode;
1926
} ParallelCharDriver;
1927

    
1928
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1929
{
1930
    if (s->mode != mode) {
1931
        int m = mode;
1932
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
1933
            return 0;
1934
        s->mode = mode;
1935
    }
1936
    return 1;
1937
}
1938

    
1939
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1940
{
1941
    ParallelCharDriver *drv = chr->opaque;
1942
    int fd = drv->fd;
1943
    uint8_t b;
1944

    
1945
    switch(cmd) {
1946
    case CHR_IOCTL_PP_READ_DATA:
1947
        if (ioctl(fd, PPRDATA, &b) < 0)
1948
            return -ENOTSUP;
1949
        *(uint8_t *)arg = b;
1950
        break;
1951
    case CHR_IOCTL_PP_WRITE_DATA:
1952
        b = *(uint8_t *)arg;
1953
        if (ioctl(fd, PPWDATA, &b) < 0)
1954
            return -ENOTSUP;
1955
        break;
1956
    case CHR_IOCTL_PP_READ_CONTROL:
1957
        if (ioctl(fd, PPRCONTROL, &b) < 0)
1958
            return -ENOTSUP;
1959
        /* Linux gives only the lowest bits, and no way to know data
1960
           direction! For better compatibility set the fixed upper
1961
           bits. */
1962
        *(uint8_t *)arg = b | 0xc0;
1963
        break;
1964
    case CHR_IOCTL_PP_WRITE_CONTROL:
1965
        b = *(uint8_t *)arg;
1966
        if (ioctl(fd, PPWCONTROL, &b) < 0)
1967
            return -ENOTSUP;
1968
        break;
1969
    case CHR_IOCTL_PP_READ_STATUS:
1970
        if (ioctl(fd, PPRSTATUS, &b) < 0)
1971
            return -ENOTSUP;
1972
        *(uint8_t *)arg = b;
1973
        break;
1974
    case CHR_IOCTL_PP_EPP_READ_ADDR:
1975
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1976
            struct ParallelIOArg *parg = arg;
1977
            int n = read(fd, parg->buffer, parg->count);
1978
            if (n != parg->count) {
1979
                return -EIO;
1980
            }
1981
        }
1982
        break;
1983
    case CHR_IOCTL_PP_EPP_READ:
1984
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1985
            struct ParallelIOArg *parg = arg;
1986
            int n = read(fd, parg->buffer, parg->count);
1987
            if (n != parg->count) {
1988
                return -EIO;
1989
            }
1990
        }
1991
        break;
1992
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1993
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1994
            struct ParallelIOArg *parg = arg;
1995
            int n = write(fd, parg->buffer, parg->count);
1996
            if (n != parg->count) {
1997
                return -EIO;
1998
            }
1999
        }
2000
        break;
2001
    case CHR_IOCTL_PP_EPP_WRITE:
2002
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2003
            struct ParallelIOArg *parg = arg;
2004
            int n = write(fd, parg->buffer, parg->count);
2005
            if (n != parg->count) {
2006
                return -EIO;
2007
            }
2008
        }
2009
        break;
2010
    default:
2011
        return -ENOTSUP;
2012
    }
2013
    return 0;
2014
}
2015

    
2016
static void pp_close(CharDriverState *chr)
2017
{
2018
    ParallelCharDriver *drv = chr->opaque;
2019
    int fd = drv->fd;
2020

    
2021
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2022
    ioctl(fd, PPRELEASE);
2023
    close(fd);
2024
    qemu_free(drv);
2025
}
2026

    
2027
static CharDriverState *qemu_chr_open_pp(const char *filename)
2028
{
2029
    CharDriverState *chr;
2030
    ParallelCharDriver *drv;
2031
    int fd;
2032

    
2033
    fd = open(filename, O_RDWR);
2034
    if (fd < 0)
2035
        return NULL;
2036

    
2037
    if (ioctl(fd, PPCLAIM) < 0) {
2038
        close(fd);
2039
        return NULL;
2040
    }
2041

    
2042
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2043
    if (!drv) {
2044
        close(fd);
2045
        return NULL;
2046
    }
2047
    drv->fd = fd;
2048
    drv->mode = IEEE1284_MODE_COMPAT;
2049

    
2050
    chr = qemu_mallocz(sizeof(CharDriverState));
2051
    if (!chr) {
2052
        qemu_free(drv);
2053
        close(fd);
2054
        return NULL;
2055
    }
2056
    chr->chr_write = null_chr_write;
2057
    chr->chr_ioctl = pp_ioctl;
2058
    chr->chr_close = pp_close;
2059
    chr->opaque = drv;
2060

    
2061
    qemu_chr_reset(chr);
2062

    
2063
    return chr;
2064
}
2065

    
2066
#else
2067
static CharDriverState *qemu_chr_open_pty(void)
2068
{
2069
    return NULL;
2070
}
2071
#endif
2072

    
2073
#endif /* !defined(_WIN32) */
2074

    
2075
#ifdef _WIN32
2076
typedef struct {
2077
    int max_size;
2078
    HANDLE hcom, hrecv, hsend;
2079
    OVERLAPPED orecv, osend;
2080
    BOOL fpipe;
2081
    DWORD len;
2082
} WinCharState;
2083

    
2084
#define NSENDBUF 2048
2085
#define NRECVBUF 2048
2086
#define MAXCONNECT 1
2087
#define NTIMEOUT 5000
2088

    
2089
static int win_chr_poll(void *opaque);
2090
static int win_chr_pipe_poll(void *opaque);
2091

    
2092
static void win_chr_close(CharDriverState *chr)
2093
{
2094
    WinCharState *s = chr->opaque;
2095

    
2096
    if (s->hsend) {
2097
        CloseHandle(s->hsend);
2098
        s->hsend = NULL;
2099
    }
2100
    if (s->hrecv) {
2101
        CloseHandle(s->hrecv);
2102
        s->hrecv = NULL;
2103
    }
2104
    if (s->hcom) {
2105
        CloseHandle(s->hcom);
2106
        s->hcom = NULL;
2107
    }
2108
    if (s->fpipe)
2109
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2110
    else
2111
        qemu_del_polling_cb(win_chr_poll, chr);
2112
}
2113

    
2114
static int win_chr_init(CharDriverState *chr, const char *filename)
2115
{
2116
    WinCharState *s = chr->opaque;
2117
    COMMCONFIG comcfg;
2118
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2119
    COMSTAT comstat;
2120
    DWORD size;
2121
    DWORD err;
2122
    
2123
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2124
    if (!s->hsend) {
2125
        fprintf(stderr, "Failed CreateEvent\n");
2126
        goto fail;
2127
    }
2128
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2129
    if (!s->hrecv) {
2130
        fprintf(stderr, "Failed CreateEvent\n");
2131
        goto fail;
2132
    }
2133

    
2134
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2135
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2136
    if (s->hcom == INVALID_HANDLE_VALUE) {
2137
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2138
        s->hcom = NULL;
2139
        goto fail;
2140
    }
2141
    
2142
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2143
        fprintf(stderr, "Failed SetupComm\n");
2144
        goto fail;
2145
    }
2146
    
2147
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2148
    size = sizeof(COMMCONFIG);
2149
    GetDefaultCommConfig(filename, &comcfg, &size);
2150
    comcfg.dcb.DCBlength = sizeof(DCB);
2151
    CommConfigDialog(filename, NULL, &comcfg);
2152

    
2153
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2154
        fprintf(stderr, "Failed SetCommState\n");
2155
        goto fail;
2156
    }
2157

    
2158
    if (!SetCommMask(s->hcom, EV_ERR)) {
2159
        fprintf(stderr, "Failed SetCommMask\n");
2160
        goto fail;
2161
    }
2162

    
2163
    cto.ReadIntervalTimeout = MAXDWORD;
2164
    if (!SetCommTimeouts(s->hcom, &cto)) {
2165
        fprintf(stderr, "Failed SetCommTimeouts\n");
2166
        goto fail;
2167
    }
2168
    
2169
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2170
        fprintf(stderr, "Failed ClearCommError\n");
2171
        goto fail;
2172
    }
2173
    qemu_add_polling_cb(win_chr_poll, chr);
2174
    return 0;
2175

    
2176
 fail:
2177
    win_chr_close(chr);
2178
    return -1;
2179
}
2180

    
2181
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2182
{
2183
    WinCharState *s = chr->opaque;
2184
    DWORD len, ret, size, err;
2185

    
2186
    len = len1;
2187
    ZeroMemory(&s->osend, sizeof(s->osend));
2188
    s->osend.hEvent = s->hsend;
2189
    while (len > 0) {
2190
        if (s->hsend)
2191
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2192
        else
2193
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2194
        if (!ret) {
2195
            err = GetLastError();
2196
            if (err == ERROR_IO_PENDING) {
2197
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2198
                if (ret) {
2199
                    buf += size;
2200
                    len -= size;
2201
                } else {
2202
                    break;
2203
                }
2204
            } else {
2205
                break;
2206
            }
2207
        } else {
2208
            buf += size;
2209
            len -= size;
2210
        }
2211
    }
2212
    return len1 - len;
2213
}
2214

    
2215
static int win_chr_read_poll(CharDriverState *chr)
2216
{
2217
    WinCharState *s = chr->opaque;
2218

    
2219
    s->max_size = qemu_chr_can_read(chr);
2220
    return s->max_size;
2221
}
2222

    
2223
static void win_chr_readfile(CharDriverState *chr)
2224
{
2225
    WinCharState *s = chr->opaque;
2226
    int ret, err;
2227
    uint8_t buf[1024];
2228
    DWORD size;
2229
    
2230
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2231
    s->orecv.hEvent = s->hrecv;
2232
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2233
    if (!ret) {
2234
        err = GetLastError();
2235
        if (err == ERROR_IO_PENDING) {
2236
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2237
        }
2238
    }
2239

    
2240
    if (size > 0) {
2241
        qemu_chr_read(chr, buf, size);
2242
    }
2243
}
2244

    
2245
static void win_chr_read(CharDriverState *chr)
2246
{
2247
    WinCharState *s = chr->opaque;
2248

    
2249
    if (s->len > s->max_size)
2250
        s->len = s->max_size;
2251
    if (s->len == 0)
2252
        return;
2253
    
2254
    win_chr_readfile(chr);
2255
}
2256

    
2257
static int win_chr_poll(void *opaque)
2258
{
2259
    CharDriverState *chr = opaque;
2260
    WinCharState *s = chr->opaque;
2261
    COMSTAT status;
2262
    DWORD comerr;
2263
    
2264
    ClearCommError(s->hcom, &comerr, &status);
2265
    if (status.cbInQue > 0) {
2266
        s->len = status.cbInQue;
2267
        win_chr_read_poll(chr);
2268
        win_chr_read(chr);
2269
        return 1;
2270
    }
2271
    return 0;
2272
}
2273

    
2274
static CharDriverState *qemu_chr_open_win(const char *filename)
2275
{
2276
    CharDriverState *chr;
2277
    WinCharState *s;
2278
    
2279
    chr = qemu_mallocz(sizeof(CharDriverState));
2280
    if (!chr)
2281
        return NULL;
2282
    s = qemu_mallocz(sizeof(WinCharState));
2283
    if (!s) {
2284
        free(chr);
2285
        return NULL;
2286
    }
2287
    chr->opaque = s;
2288
    chr->chr_write = win_chr_write;
2289
    chr->chr_close = win_chr_close;
2290

    
2291
    if (win_chr_init(chr, filename) < 0) {
2292
        free(s);
2293
        free(chr);
2294
        return NULL;
2295
    }
2296
    qemu_chr_reset(chr);
2297
    return chr;
2298
}
2299

    
2300
static int win_chr_pipe_poll(void *opaque)
2301
{
2302
    CharDriverState *chr = opaque;
2303
    WinCharState *s = chr->opaque;
2304
    DWORD size;
2305

    
2306
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2307
    if (size > 0) {
2308
        s->len = size;
2309
        win_chr_read_poll(chr);
2310
        win_chr_read(chr);
2311
        return 1;
2312
    }
2313
    return 0;
2314
}
2315

    
2316
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2317
{
2318
    WinCharState *s = chr->opaque;
2319
    OVERLAPPED ov;
2320
    int ret;
2321
    DWORD size;
2322
    char openname[256];
2323
    
2324
    s->fpipe = TRUE;
2325

    
2326
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2327
    if (!s->hsend) {
2328
        fprintf(stderr, "Failed CreateEvent\n");
2329
        goto fail;
2330
    }
2331
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2332
    if (!s->hrecv) {
2333
        fprintf(stderr, "Failed CreateEvent\n");
2334
        goto fail;
2335
    }
2336
    
2337
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2338
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2339
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2340
                              PIPE_WAIT,
2341
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2342
    if (s->hcom == INVALID_HANDLE_VALUE) {
2343
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2344
        s->hcom = NULL;
2345
        goto fail;
2346
    }
2347

    
2348
    ZeroMemory(&ov, sizeof(ov));
2349
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2350
    ret = ConnectNamedPipe(s->hcom, &ov);
2351
    if (ret) {
2352
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2353
        goto fail;
2354
    }
2355

    
2356
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2357
    if (!ret) {
2358
        fprintf(stderr, "Failed GetOverlappedResult\n");
2359
        if (ov.hEvent) {
2360
            CloseHandle(ov.hEvent);
2361
            ov.hEvent = NULL;
2362
        }
2363
        goto fail;
2364
    }
2365

    
2366
    if (ov.hEvent) {
2367
        CloseHandle(ov.hEvent);
2368
        ov.hEvent = NULL;
2369
    }
2370
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2371
    return 0;
2372

    
2373
 fail:
2374
    win_chr_close(chr);
2375
    return -1;
2376
}
2377

    
2378

    
2379
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2380
{
2381
    CharDriverState *chr;
2382
    WinCharState *s;
2383

    
2384
    chr = qemu_mallocz(sizeof(CharDriverState));
2385
    if (!chr)
2386
        return NULL;
2387
    s = qemu_mallocz(sizeof(WinCharState));
2388
    if (!s) {
2389
        free(chr);
2390
        return NULL;
2391
    }
2392
    chr->opaque = s;
2393
    chr->chr_write = win_chr_write;
2394
    chr->chr_close = win_chr_close;
2395
    
2396
    if (win_chr_pipe_init(chr, filename) < 0) {
2397
        free(s);
2398
        free(chr);
2399
        return NULL;
2400
    }
2401
    qemu_chr_reset(chr);
2402
    return chr;
2403
}
2404

    
2405
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2406
{
2407
    CharDriverState *chr;
2408
    WinCharState *s;
2409

    
2410
    chr = qemu_mallocz(sizeof(CharDriverState));
2411
    if (!chr)
2412
        return NULL;
2413
    s = qemu_mallocz(sizeof(WinCharState));
2414
    if (!s) {
2415
        free(chr);
2416
        return NULL;
2417
    }
2418
    s->hcom = fd_out;
2419
    chr->opaque = s;
2420
    chr->chr_write = win_chr_write;
2421
    qemu_chr_reset(chr);
2422
    return chr;
2423
}
2424

    
2425
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2426
{
2427
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2428
}
2429

    
2430
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2431
{
2432
    HANDLE fd_out;
2433
    
2434
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2435
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2436
    if (fd_out == INVALID_HANDLE_VALUE)
2437
        return NULL;
2438

    
2439
    return qemu_chr_open_win_file(fd_out);
2440
}
2441
#endif
2442

    
2443
/***********************************************************/
2444
/* UDP Net console */
2445

    
2446
typedef struct {
2447
    int fd;
2448
    struct sockaddr_in daddr;
2449
    char buf[1024];
2450
    int bufcnt;
2451
    int bufptr;
2452
    int max_size;
2453
} NetCharDriver;
2454

    
2455
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2456
{
2457
    NetCharDriver *s = chr->opaque;
2458

    
2459
    return sendto(s->fd, buf, len, 0,
2460
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2461
}
2462

    
2463
static int udp_chr_read_poll(void *opaque)
2464
{
2465
    CharDriverState *chr = opaque;
2466
    NetCharDriver *s = chr->opaque;
2467

    
2468
    s->max_size = qemu_chr_can_read(chr);
2469

    
2470
    /* If there were any stray characters in the queue process them
2471
     * first
2472
     */
2473
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2474
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2475
        s->bufptr++;
2476
        s->max_size = qemu_chr_can_read(chr);
2477
    }
2478
    return s->max_size;
2479
}
2480

    
2481
static void udp_chr_read(void *opaque)
2482
{
2483
    CharDriverState *chr = opaque;
2484
    NetCharDriver *s = chr->opaque;
2485

    
2486
    if (s->max_size == 0)
2487
        return;
2488
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2489
    s->bufptr = s->bufcnt;
2490
    if (s->bufcnt <= 0)
2491
        return;
2492

    
2493
    s->bufptr = 0;
2494
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2495
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2496
        s->bufptr++;
2497
        s->max_size = qemu_chr_can_read(chr);
2498
    }
2499
}
2500

    
2501
static void udp_chr_update_read_handler(CharDriverState *chr)
2502
{
2503
    NetCharDriver *s = chr->opaque;
2504

    
2505
    if (s->fd >= 0) {
2506
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2507
                             udp_chr_read, NULL, chr);
2508
    }
2509
}
2510

    
2511
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2512
#ifndef _WIN32
2513
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2514
#endif
2515
int parse_host_src_port(struct sockaddr_in *haddr,
2516
                        struct sockaddr_in *saddr,
2517
                        const char *str);
2518

    
2519
static CharDriverState *qemu_chr_open_udp(const char *def)
2520
{
2521
    CharDriverState *chr = NULL;
2522
    NetCharDriver *s = NULL;
2523
    int fd = -1;
2524
    struct sockaddr_in saddr;
2525

    
2526
    chr = qemu_mallocz(sizeof(CharDriverState));
2527
    if (!chr)
2528
        goto return_err;
2529
    s = qemu_mallocz(sizeof(NetCharDriver));
2530
    if (!s)
2531
        goto return_err;
2532

    
2533
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2534
    if (fd < 0) {
2535
        perror("socket(PF_INET, SOCK_DGRAM)");
2536
        goto return_err;
2537
    }
2538

    
2539
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2540
        printf("Could not parse: %s\n", def);
2541
        goto return_err;
2542
    }
2543

    
2544
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2545
    {
2546
        perror("bind");
2547
        goto return_err;
2548
    }
2549

    
2550
    s->fd = fd;
2551
    s->bufcnt = 0;
2552
    s->bufptr = 0;
2553
    chr->opaque = s;
2554
    chr->chr_write = udp_chr_write;
2555
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2556
    return chr;
2557

    
2558
return_err:
2559
    if (chr)
2560
        free(chr);
2561
    if (s)
2562
        free(s);
2563
    if (fd >= 0)
2564
        closesocket(fd);
2565
    return NULL;
2566
}
2567

    
2568
/***********************************************************/
2569
/* TCP Net console */
2570

    
2571
typedef struct {
2572
    int fd, listen_fd;
2573
    int connected;
2574
    int max_size;
2575
    int do_telnetopt;
2576
    int do_nodelay;
2577
    int is_unix;
2578
} TCPCharDriver;
2579

    
2580
static void tcp_chr_accept(void *opaque);
2581

    
2582
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2583
{
2584
    TCPCharDriver *s = chr->opaque;
2585
    if (s->connected) {
2586
        return send_all(s->fd, buf, len);
2587
    } else {
2588
        /* XXX: indicate an error ? */
2589
        return len;
2590
    }
2591
}
2592

    
2593
static int tcp_chr_read_poll(void *opaque)
2594
{
2595
    CharDriverState *chr = opaque;
2596
    TCPCharDriver *s = chr->opaque;
2597
    if (!s->connected)
2598
        return 0;
2599
    s->max_size = qemu_chr_can_read(chr);
2600
    return s->max_size;
2601
}
2602

    
2603
#define IAC 255
2604
#define IAC_BREAK 243
2605
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2606
                                      TCPCharDriver *s,
2607
                                      char *buf, int *size)
2608
{
2609
    /* Handle any telnet client's basic IAC options to satisfy char by
2610
     * char mode with no echo.  All IAC options will be removed from
2611
     * the buf and the do_telnetopt variable will be used to track the
2612
     * state of the width of the IAC information.
2613
     *
2614
     * IAC commands come in sets of 3 bytes with the exception of the
2615
     * "IAC BREAK" command and the double IAC.
2616
     */
2617

    
2618
    int i;
2619
    int j = 0;
2620

    
2621
    for (i = 0; i < *size; i++) {
2622
        if (s->do_telnetopt > 1) {
2623
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2624
                /* Double IAC means send an IAC */
2625
                if (j != i)
2626
                    buf[j] = buf[i];
2627
                j++;
2628
                s->do_telnetopt = 1;
2629
            } else {
2630
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2631
                    /* Handle IAC break commands by sending a serial break */
2632
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
2633
                    s->do_telnetopt++;
2634
                }
2635
                s->do_telnetopt++;
2636
            }
2637
            if (s->do_telnetopt >= 4) {
2638
                s->do_telnetopt = 1;
2639
            }
2640
        } else {
2641
            if ((unsigned char)buf[i] == IAC) {
2642
                s->do_telnetopt = 2;
2643
            } else {
2644
                if (j != i)
2645
                    buf[j] = buf[i];
2646
                j++;
2647
            }
2648
        }
2649
    }
2650
    *size = j;
2651
}
2652

    
2653
static void tcp_chr_read(void *opaque)
2654
{
2655
    CharDriverState *chr = opaque;
2656
    TCPCharDriver *s = chr->opaque;
2657
    uint8_t buf[1024];
2658
    int len, size;
2659

    
2660
    if (!s->connected || s->max_size <= 0)
2661
        return;
2662
    len = sizeof(buf);
2663
    if (len > s->max_size)
2664
        len = s->max_size;
2665
    size = recv(s->fd, buf, len, 0);
2666
    if (size == 0) {
2667
        /* connection closed */
2668
        s->connected = 0;
2669
        if (s->listen_fd >= 0) {
2670
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2671
        }
2672
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2673
        closesocket(s->fd);
2674
        s->fd = -1;
2675
    } else if (size > 0) {
2676
        if (s->do_telnetopt)
2677
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2678
        if (size > 0)
2679
            qemu_chr_read(chr, buf, size);
2680
    }
2681
}
2682

    
2683
static void tcp_chr_connect(void *opaque)
2684
{
2685
    CharDriverState *chr = opaque;
2686
    TCPCharDriver *s = chr->opaque;
2687

    
2688
    s->connected = 1;
2689
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2690
                         tcp_chr_read, NULL, chr);
2691
    qemu_chr_reset(chr);
2692
}
2693

    
2694
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2695
static void tcp_chr_telnet_init(int fd)
2696
{
2697
    char buf[3];
2698
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2699
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
2700
    send(fd, (char *)buf, 3, 0);
2701
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
2702
    send(fd, (char *)buf, 3, 0);
2703
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
2704
    send(fd, (char *)buf, 3, 0);
2705
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
2706
    send(fd, (char *)buf, 3, 0);
2707
}
2708

    
2709
static void socket_set_nodelay(int fd)
2710
{
2711
    int val = 1;
2712
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2713
}
2714

    
2715
static void tcp_chr_accept(void *opaque)
2716
{
2717
    CharDriverState *chr = opaque;
2718
    TCPCharDriver *s = chr->opaque;
2719
    struct sockaddr_in saddr;
2720
#ifndef _WIN32
2721
    struct sockaddr_un uaddr;
2722
#endif
2723
    struct sockaddr *addr;
2724
    socklen_t len;
2725
    int fd;
2726

    
2727
    for(;;) {
2728
#ifndef _WIN32
2729
        if (s->is_unix) {
2730
            len = sizeof(uaddr);
2731
            addr = (struct sockaddr *)&uaddr;
2732
        } else
2733
#endif
2734
        {
2735
            len = sizeof(saddr);
2736
            addr = (struct sockaddr *)&saddr;
2737
        }
2738
        fd = accept(s->listen_fd, addr, &len);
2739
        if (fd < 0 && errno != EINTR) {
2740
            return;
2741
        } else if (fd >= 0) {
2742
            if (s->do_telnetopt)
2743
                tcp_chr_telnet_init(fd);
2744
            break;
2745
        }
2746
    }
2747
    socket_set_nonblock(fd);
2748
    if (s->do_nodelay)
2749
        socket_set_nodelay(fd);
2750
    s->fd = fd;
2751
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2752
    tcp_chr_connect(chr);
2753
}
2754

    
2755
static void tcp_chr_close(CharDriverState *chr)
2756
{
2757
    TCPCharDriver *s = chr->opaque;
2758
    if (s->fd >= 0)
2759
        closesocket(s->fd);
2760
    if (s->listen_fd >= 0)
2761
        closesocket(s->listen_fd);
2762
    qemu_free(s);
2763
}
2764

    
2765
static CharDriverState *qemu_chr_open_tcp(const char *host_str, 
2766
                                          int is_telnet,
2767
                                          int is_unix)
2768
{
2769
    CharDriverState *chr = NULL;
2770
    TCPCharDriver *s = NULL;
2771
    int fd = -1, ret, err, val;
2772
    int is_listen = 0;
2773
    int is_waitconnect = 1;
2774
    int do_nodelay = 0;
2775
    const char *ptr;
2776
    struct sockaddr_in saddr;
2777
#ifndef _WIN32
2778
    struct sockaddr_un uaddr;
2779
#endif
2780
    struct sockaddr *addr;
2781
    socklen_t addrlen;
2782

    
2783
#ifndef _WIN32
2784
    if (is_unix) {
2785
        addr = (struct sockaddr *)&uaddr;
2786
        addrlen = sizeof(uaddr);
2787
        if (parse_unix_path(&uaddr, host_str) < 0)
2788
            goto fail;
2789
    } else
2790
#endif
2791
    {
2792
        addr = (struct sockaddr *)&saddr;
2793
        addrlen = sizeof(saddr);
2794
        if (parse_host_port(&saddr, host_str) < 0)
2795
            goto fail;
2796
    }
2797

    
2798
    ptr = host_str;
2799
    while((ptr = strchr(ptr,','))) {
2800
        ptr++;
2801
        if (!strncmp(ptr,"server",6)) {
2802
            is_listen = 1;
2803
        } else if (!strncmp(ptr,"nowait",6)) {
2804
            is_waitconnect = 0;
2805
        } else if (!strncmp(ptr,"nodelay",6)) {
2806
            do_nodelay = 1;
2807
        } else {
2808
            printf("Unknown option: %s\n", ptr);
2809
            goto fail;
2810
        }
2811
    }
2812
    if (!is_listen)
2813
        is_waitconnect = 0;
2814

    
2815
    chr = qemu_mallocz(sizeof(CharDriverState));
2816
    if (!chr)
2817
        goto fail;
2818
    s = qemu_mallocz(sizeof(TCPCharDriver));
2819
    if (!s)
2820
        goto fail;
2821

    
2822
#ifndef _WIN32
2823
    if (is_unix)
2824
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
2825
    else
2826
#endif
2827
        fd = socket(PF_INET, SOCK_STREAM, 0);
2828
        
2829
    if (fd < 0) 
2830
        goto fail;
2831

    
2832
    if (!is_waitconnect)
2833
        socket_set_nonblock(fd);
2834

    
2835
    s->connected = 0;
2836
    s->fd = -1;
2837
    s->listen_fd = -1;
2838
    s->is_unix = is_unix;
2839
    s->do_nodelay = do_nodelay && !is_unix;
2840

    
2841
    chr->opaque = s;
2842
    chr->chr_write = tcp_chr_write;
2843
    chr->chr_close = tcp_chr_close;
2844

    
2845
    if (is_listen) {
2846
        /* allow fast reuse */
2847
#ifndef _WIN32
2848
        if (is_unix) {
2849
            char path[109];
2850
            strncpy(path, uaddr.sun_path, 108);
2851
            path[108] = 0;
2852
            unlink(path);
2853
        } else
2854
#endif
2855
        {
2856
            val = 1;
2857
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2858
        }
2859
        
2860
        ret = bind(fd, addr, addrlen);
2861
        if (ret < 0)
2862
            goto fail;
2863

    
2864
        ret = listen(fd, 0);
2865
        if (ret < 0)
2866
            goto fail;
2867

    
2868
        s->listen_fd = fd;
2869
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2870
        if (is_telnet)
2871
            s->do_telnetopt = 1;
2872
    } else {
2873
        for(;;) {
2874
            ret = connect(fd, addr, addrlen);
2875
            if (ret < 0) {
2876
                err = socket_error();
2877
                if (err == EINTR || err == EWOULDBLOCK) {
2878
                } else if (err == EINPROGRESS) {
2879
                    break;
2880
#ifdef _WIN32
2881
                } else if (err == WSAEALREADY) {
2882
                    break;
2883
#endif
2884
                } else {
2885
                    goto fail;
2886
                }
2887
            } else {
2888
                s->connected = 1;
2889
                break;
2890
            }
2891
        }
2892
        s->fd = fd;
2893
        socket_set_nodelay(fd);
2894
        if (s->connected)
2895
            tcp_chr_connect(chr);
2896
        else
2897
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2898
    }
2899
    
2900
    if (is_listen && is_waitconnect) {
2901
        printf("QEMU waiting for connection on: %s\n", host_str);
2902
        tcp_chr_accept(chr);
2903
        socket_set_nonblock(s->listen_fd);
2904
    }
2905

    
2906
    return chr;
2907
 fail:
2908
    if (fd >= 0)
2909
        closesocket(fd);
2910
    qemu_free(s);
2911
    qemu_free(chr);
2912
    return NULL;
2913
}
2914

    
2915
CharDriverState *qemu_chr_open(const char *filename)
2916
{
2917
    const char *p;
2918

    
2919
    if (!strcmp(filename, "vc")) {
2920
        return text_console_init(&display_state);
2921
    } else if (!strcmp(filename, "null")) {
2922
        return qemu_chr_open_null();
2923
    } else 
2924
    if (strstart(filename, "tcp:", &p)) {
2925
        return qemu_chr_open_tcp(p, 0, 0);
2926
    } else
2927
    if (strstart(filename, "telnet:", &p)) {
2928
        return qemu_chr_open_tcp(p, 1, 0);
2929
    } else
2930
    if (strstart(filename, "udp:", &p)) {
2931
        return qemu_chr_open_udp(p);
2932
    } else
2933
    if (strstart(filename, "mon:", &p)) {
2934
        CharDriverState *drv = qemu_chr_open(p);
2935
        if (drv) {
2936
            drv = qemu_chr_open_mux(drv);
2937
            monitor_init(drv, !nographic);
2938
            return drv;
2939
        }
2940
        printf("Unable to open driver: %s\n", p);
2941
        return 0;
2942
    } else
2943
#ifndef _WIN32
2944
    if (strstart(filename, "unix:", &p)) {
2945
        return qemu_chr_open_tcp(p, 0, 1);
2946
    } else if (strstart(filename, "file:", &p)) {
2947
        return qemu_chr_open_file_out(p);
2948
    } else if (strstart(filename, "pipe:", &p)) {
2949
        return qemu_chr_open_pipe(p);
2950
    } else if (!strcmp(filename, "pty")) {
2951
        return qemu_chr_open_pty();
2952
    } else if (!strcmp(filename, "stdio")) {
2953
        return qemu_chr_open_stdio();
2954
    } else 
2955
#endif
2956
#if defined(__linux__)
2957
    if (strstart(filename, "/dev/parport", NULL)) {
2958
        return qemu_chr_open_pp(filename);
2959
    } else 
2960
    if (strstart(filename, "/dev/", NULL)) {
2961
        return qemu_chr_open_tty(filename);
2962
    } else 
2963
#endif
2964
#ifdef _WIN32
2965
    if (strstart(filename, "COM", NULL)) {
2966
        return qemu_chr_open_win(filename);
2967
    } else
2968
    if (strstart(filename, "pipe:", &p)) {
2969
        return qemu_chr_open_win_pipe(p);
2970
    } else
2971
    if (strstart(filename, "con:", NULL)) {
2972
        return qemu_chr_open_win_con(filename);
2973
    } else
2974
    if (strstart(filename, "file:", &p)) {
2975
        return qemu_chr_open_win_file_out(p);
2976
    }
2977
#endif
2978
    {
2979
        return NULL;
2980
    }
2981
}
2982

    
2983
void qemu_chr_close(CharDriverState *chr)
2984
{
2985
    if (chr->chr_close)
2986
        chr->chr_close(chr);
2987
}
2988

    
2989
/***********************************************************/
2990
/* network device redirectors */
2991

    
2992
void hex_dump(FILE *f, const uint8_t *buf, int size)
2993
{
2994
    int len, i, j, c;
2995

    
2996
    for(i=0;i<size;i+=16) {
2997
        len = size - i;
2998
        if (len > 16)
2999
            len = 16;
3000
        fprintf(f, "%08x ", i);
3001
        for(j=0;j<16;j++) {
3002
            if (j < len)
3003
                fprintf(f, " %02x", buf[i+j]);
3004
            else
3005
                fprintf(f, "   ");
3006
        }
3007
        fprintf(f, " ");
3008
        for(j=0;j<len;j++) {
3009
            c = buf[i+j];
3010
            if (c < ' ' || c > '~')
3011
                c = '.';
3012
            fprintf(f, "%c", c);
3013
        }
3014
        fprintf(f, "\n");
3015
    }
3016
}
3017

    
3018
static int parse_macaddr(uint8_t *macaddr, const char *p)
3019
{
3020
    int i;
3021
    for(i = 0; i < 6; i++) {
3022
        macaddr[i] = strtol(p, (char **)&p, 16);
3023
        if (i == 5) {
3024
            if (*p != '\0') 
3025
                return -1;
3026
        } else {
3027
            if (*p != ':') 
3028
                return -1;
3029
            p++;
3030
        }
3031
    }
3032
    return 0;
3033
}
3034

    
3035
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3036
{
3037
    const char *p, *p1;
3038
    int len;
3039
    p = *pp;
3040
    p1 = strchr(p, sep);
3041
    if (!p1)
3042
        return -1;
3043
    len = p1 - p;
3044
    p1++;
3045
    if (buf_size > 0) {
3046
        if (len > buf_size - 1)
3047
            len = buf_size - 1;
3048
        memcpy(buf, p, len);
3049
        buf[len] = '\0';
3050
    }
3051
    *pp = p1;
3052
    return 0;
3053
}
3054

    
3055
int parse_host_src_port(struct sockaddr_in *haddr,
3056
                        struct sockaddr_in *saddr,
3057
                        const char *input_str)
3058
{
3059
    char *str = strdup(input_str);
3060
    char *host_str = str;
3061
    char *src_str;
3062
    char *ptr;
3063

    
3064
    /*
3065
     * Chop off any extra arguments at the end of the string which
3066
     * would start with a comma, then fill in the src port information
3067
     * if it was provided else use the "any address" and "any port".
3068
     */
3069
    if ((ptr = strchr(str,',')))
3070
        *ptr = '\0';
3071

    
3072
    if ((src_str = strchr(input_str,'@'))) {
3073
        *src_str = '\0';
3074
        src_str++;
3075
    }
3076

    
3077
    if (parse_host_port(haddr, host_str) < 0)
3078
        goto fail;
3079

    
3080
    if (!src_str || *src_str == '\0')
3081
        src_str = ":0";
3082

    
3083
    if (parse_host_port(saddr, src_str) < 0)
3084
        goto fail;
3085

    
3086
    free(str);
3087
    return(0);
3088

    
3089
fail:
3090
    free(str);
3091
    return -1;
3092
}
3093

    
3094
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3095
{
3096
    char buf[512];
3097
    struct hostent *he;
3098
    const char *p, *r;
3099
    int port;
3100

    
3101
    p = str;
3102
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3103
        return -1;
3104
    saddr->sin_family = AF_INET;
3105
    if (buf[0] == '\0') {
3106
        saddr->sin_addr.s_addr = 0;
3107
    } else {
3108
        if (isdigit(buf[0])) {
3109
            if (!inet_aton(buf, &saddr->sin_addr))
3110
                return -1;
3111
        } else {
3112
            if ((he = gethostbyname(buf)) == NULL)
3113
                return - 1;
3114
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3115
        }
3116
    }
3117
    port = strtol(p, (char **)&r, 0);
3118
    if (r == p)
3119
        return -1;
3120
    saddr->sin_port = htons(port);
3121
    return 0;
3122
}
3123

    
3124
#ifndef _WIN32
3125
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3126
{
3127
    const char *p;
3128
    int len;
3129

    
3130
    len = MIN(108, strlen(str));
3131
    p = strchr(str, ',');
3132
    if (p)
3133
        len = MIN(len, p - str);
3134

    
3135
    memset(uaddr, 0, sizeof(*uaddr));
3136

    
3137
    uaddr->sun_family = AF_UNIX;
3138
    memcpy(uaddr->sun_path, str, len);
3139

    
3140
    return 0;
3141
}
3142
#endif
3143

    
3144
/* find or alloc a new VLAN */
3145
VLANState *qemu_find_vlan(int id)
3146
{
3147
    VLANState **pvlan, *vlan;
3148
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3149
        if (vlan->id == id)
3150
            return vlan;
3151
    }
3152
    vlan = qemu_mallocz(sizeof(VLANState));
3153
    if (!vlan)
3154
        return NULL;
3155
    vlan->id = id;
3156
    vlan->next = NULL;
3157
    pvlan = &first_vlan;
3158
    while (*pvlan != NULL)
3159
        pvlan = &(*pvlan)->next;
3160
    *pvlan = vlan;
3161
    return vlan;
3162
}
3163

    
3164
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3165
                                      IOReadHandler *fd_read,
3166
                                      IOCanRWHandler *fd_can_read,
3167
                                      void *opaque)
3168
{
3169
    VLANClientState *vc, **pvc;
3170
    vc = qemu_mallocz(sizeof(VLANClientState));
3171
    if (!vc)
3172
        return NULL;
3173
    vc->fd_read = fd_read;
3174
    vc->fd_can_read = fd_can_read;
3175
    vc->opaque = opaque;
3176
    vc->vlan = vlan;
3177

    
3178
    vc->next = NULL;
3179
    pvc = &vlan->first_client;
3180
    while (*pvc != NULL)
3181
        pvc = &(*pvc)->next;
3182
    *pvc = vc;
3183
    return vc;
3184
}
3185

    
3186
int qemu_can_send_packet(VLANClientState *vc1)
3187
{
3188
    VLANState *vlan = vc1->vlan;
3189
    VLANClientState *vc;
3190

    
3191
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3192
        if (vc != vc1) {
3193
            if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3194
                return 0;
3195
        }
3196
    }
3197
    return 1;
3198
}
3199

    
3200
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3201
{
3202
    VLANState *vlan = vc1->vlan;
3203
    VLANClientState *vc;
3204

    
3205
#if 0
3206
    printf("vlan %d send:\n", vlan->id);
3207
    hex_dump(stdout, buf, size);
3208
#endif
3209
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3210
        if (vc != vc1) {
3211
            vc->fd_read(vc->opaque, buf, size);
3212
        }
3213
    }
3214
}
3215

    
3216
#if defined(CONFIG_SLIRP)
3217

    
3218
/* slirp network adapter */
3219

    
3220
static int slirp_inited;
3221
static VLANClientState *slirp_vc;
3222

    
3223
int slirp_can_output(void)
3224
{
3225
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3226
}
3227

    
3228
void slirp_output(const uint8_t *pkt, int pkt_len)
3229
{
3230
#if 0
3231
    printf("slirp output:\n");
3232
    hex_dump(stdout, pkt, pkt_len);
3233
#endif
3234
    if (!slirp_vc)
3235
        return;
3236
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3237
}
3238

    
3239
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3240
{
3241
#if 0
3242
    printf("slirp input:\n");
3243
    hex_dump(stdout, buf, size);
3244
#endif
3245
    slirp_input(buf, size);
3246
}
3247

    
3248
static int net_slirp_init(VLANState *vlan)
3249
{
3250
    if (!slirp_inited) {
3251
        slirp_inited = 1;
3252
        slirp_init();
3253
    }
3254
    slirp_vc = qemu_new_vlan_client(vlan, 
3255
                                    slirp_receive, NULL, NULL);
3256
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3257
    return 0;
3258
}
3259

    
3260
static void net_slirp_redir(const char *redir_str)
3261
{
3262
    int is_udp;
3263
    char buf[256], *r;
3264
    const char *p;
3265
    struct in_addr guest_addr;
3266
    int host_port, guest_port;
3267
    
3268
    if (!slirp_inited) {
3269
        slirp_inited = 1;
3270
        slirp_init();
3271
    }
3272

    
3273
    p = redir_str;
3274
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3275
        goto fail;
3276
    if (!strcmp(buf, "tcp")) {
3277
        is_udp = 0;
3278
    } else if (!strcmp(buf, "udp")) {
3279
        is_udp = 1;
3280
    } else {
3281
        goto fail;
3282
    }
3283

    
3284
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3285
        goto fail;
3286
    host_port = strtol(buf, &r, 0);
3287
    if (r == buf)
3288
        goto fail;
3289

    
3290
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3291
        goto fail;
3292
    if (buf[0] == '\0') {
3293
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3294
    }
3295
    if (!inet_aton(buf, &guest_addr))
3296
        goto fail;
3297
    
3298
    guest_port = strtol(p, &r, 0);
3299
    if (r == p)
3300
        goto fail;
3301
    
3302
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3303
        fprintf(stderr, "qemu: could not set up redirection\n");
3304
        exit(1);
3305
    }
3306
    return;
3307
 fail:
3308
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3309
    exit(1);
3310
}
3311
    
3312
#ifndef _WIN32
3313

    
3314
char smb_dir[1024];
3315

    
3316
static void smb_exit(void)
3317
{
3318
    DIR *d;
3319
    struct dirent *de;
3320
    char filename[1024];
3321

    
3322
    /* erase all the files in the directory */
3323
    d = opendir(smb_dir);
3324
    for(;;) {
3325
        de = readdir(d);
3326
        if (!de)
3327
            break;
3328
        if (strcmp(de->d_name, ".") != 0 &&
3329
            strcmp(de->d_name, "..") != 0) {
3330
            snprintf(filename, sizeof(filename), "%s/%s", 
3331
                     smb_dir, de->d_name);
3332
            unlink(filename);
3333
        }
3334
    }
3335
    closedir(d);
3336
    rmdir(smb_dir);
3337
}
3338

    
3339
/* automatic user mode samba server configuration */
3340
void net_slirp_smb(const char *exported_dir)
3341
{
3342
    char smb_conf[1024];
3343
    char smb_cmdline[1024];
3344
    FILE *f;
3345

    
3346
    if (!slirp_inited) {
3347
        slirp_inited = 1;
3348
        slirp_init();
3349
    }
3350

    
3351
    /* XXX: better tmp dir construction */
3352
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3353
    if (mkdir(smb_dir, 0700) < 0) {
3354
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3355
        exit(1);
3356
    }
3357
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3358
    
3359
    f = fopen(smb_conf, "w");
3360
    if (!f) {
3361
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3362
        exit(1);
3363
    }
3364
    fprintf(f, 
3365
            "[global]\n"
3366
            "private dir=%s\n"
3367
            "smb ports=0\n"
3368
            "socket address=127.0.0.1\n"
3369
            "pid directory=%s\n"
3370
            "lock directory=%s\n"
3371
            "log file=%s/log.smbd\n"
3372
            "smb passwd file=%s/smbpasswd\n"
3373
            "security = share\n"
3374
            "[qemu]\n"
3375
            "path=%s\n"
3376
            "read only=no\n"
3377
            "guest ok=yes\n",
3378
            smb_dir,
3379
            smb_dir,
3380
            smb_dir,
3381
            smb_dir,
3382
            smb_dir,
3383
            exported_dir
3384
            );
3385
    fclose(f);
3386
    atexit(smb_exit);
3387

    
3388
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3389
             SMBD_COMMAND, smb_conf);
3390
    
3391
    slirp_add_exec(0, smb_cmdline, 4, 139);
3392
}
3393

    
3394
#endif /* !defined(_WIN32) */
3395

    
3396
#endif /* CONFIG_SLIRP */
3397

    
3398
#if !defined(_WIN32)
3399

    
3400
typedef struct TAPState {
3401
    VLANClientState *vc;
3402
    int fd;
3403
} TAPState;
3404

    
3405
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3406
{
3407
    TAPState *s = opaque;
3408
    int ret;
3409
    for(;;) {
3410
        ret = write(s->fd, buf, size);
3411
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3412
        } else {
3413
            break;
3414
        }
3415
    }
3416
}
3417

    
3418
static void tap_send(void *opaque)
3419
{
3420
    TAPState *s = opaque;
3421
    uint8_t buf[4096];
3422
    int size;
3423

    
3424
#ifdef __sun__
3425
    struct strbuf sbuf;
3426
    int f = 0;
3427
    sbuf.maxlen = sizeof(buf);
3428
    sbuf.buf = buf;
3429
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3430
#else
3431
    size = read(s->fd, buf, sizeof(buf));
3432
#endif
3433
    if (size > 0) {
3434
        qemu_send_packet(s->vc, buf, size);
3435
    }
3436
}
3437

    
3438
/* fd support */
3439

    
3440
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3441
{
3442
    TAPState *s;
3443

    
3444
    s = qemu_mallocz(sizeof(TAPState));
3445
    if (!s)
3446
        return NULL;
3447
    s->fd = fd;
3448
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3449
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3450
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3451
    return s;
3452
}
3453

    
3454
#ifdef _BSD
3455
static int tap_open(char *ifname, int ifname_size)
3456
{
3457
    int fd;
3458
    char *dev;
3459
    struct stat s;
3460

    
3461
    fd = open("/dev/tap", O_RDWR);
3462
    if (fd < 0) {
3463
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3464
        return -1;
3465
    }
3466

    
3467
    fstat(fd, &s);
3468
    dev = devname(s.st_rdev, S_IFCHR);
3469
    pstrcpy(ifname, ifname_size, dev);
3470

    
3471
    fcntl(fd, F_SETFL, O_NONBLOCK);
3472
    return fd;
3473
}
3474
#elif defined(__sun__)
3475
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3476
/* 
3477
 * Allocate TAP device, returns opened fd. 
3478
 * Stores dev name in the first arg(must be large enough).
3479
 */  
3480
int tap_alloc(char *dev)
3481
{
3482
    int tap_fd, if_fd, ppa = -1;
3483
    static int ip_fd = 0;
3484
    char *ptr;
3485

    
3486
    static int arp_fd = 0;
3487
    int ip_muxid, arp_muxid;
3488
    struct strioctl  strioc_if, strioc_ppa;
3489
    int link_type = I_PLINK;;
3490
    struct lifreq ifr;
3491
    char actual_name[32] = "";
3492

    
3493
    memset(&ifr, 0x0, sizeof(ifr));
3494

    
3495
    if( *dev ){
3496
       ptr = dev;        
3497
       while( *ptr && !isdigit((int)*ptr) ) ptr++; 
3498
       ppa = atoi(ptr);
3499
    }
3500

    
3501
    /* Check if IP device was opened */
3502
    if( ip_fd )
3503
       close(ip_fd);
3504

    
3505
    if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3506
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3507
       return -1;
3508
    }
3509

    
3510
    if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3511
       syslog(LOG_ERR, "Can't open /dev/tap");
3512
       return -1;
3513
    }
3514

    
3515
    /* Assign a new PPA and get its unit number. */
3516
    strioc_ppa.ic_cmd = TUNNEWPPA;
3517
    strioc_ppa.ic_timout = 0;
3518
    strioc_ppa.ic_len = sizeof(ppa);
3519
    strioc_ppa.ic_dp = (char *)&ppa;
3520
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3521
       syslog (LOG_ERR, "Can't assign new interface");
3522

    
3523
    if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3524
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3525
       return -1;
3526
    }
3527
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3528
       syslog(LOG_ERR, "Can't push IP module");
3529
       return -1;
3530
    }
3531

    
3532
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3533
        syslog(LOG_ERR, "Can't get flags\n");
3534

    
3535
    snprintf (actual_name, 32, "tap%d", ppa);
3536
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3537

    
3538
    ifr.lifr_ppa = ppa;
3539
    /* Assign ppa according to the unit number returned by tun device */
3540

    
3541
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3542
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3543
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3544
        syslog (LOG_ERR, "Can't get flags\n");
3545
    /* Push arp module to if_fd */
3546
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3547
        syslog (LOG_ERR, "Can't push ARP module (2)");
3548

    
3549
    /* Push arp module to ip_fd */
3550
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3551
        syslog (LOG_ERR, "I_POP failed\n");
3552
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3553
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3554
    /* Open arp_fd */
3555
    if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3556
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3557

    
3558
    /* Set ifname to arp */
3559
    strioc_if.ic_cmd = SIOCSLIFNAME;
3560
    strioc_if.ic_timout = 0;
3561
    strioc_if.ic_len = sizeof(ifr);
3562
    strioc_if.ic_dp = (char *)&ifr;
3563
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3564
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3565
    }
3566

    
3567
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3568
       syslog(LOG_ERR, "Can't link TAP device to IP");
3569
       return -1;
3570
    }
3571

    
3572
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3573
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3574

    
3575
    close (if_fd);
3576

    
3577
    memset(&ifr, 0x0, sizeof(ifr));
3578
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3579
    ifr.lifr_ip_muxid  = ip_muxid;
3580
    ifr.lifr_arp_muxid = arp_muxid;
3581

    
3582
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3583
    {
3584
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3585
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3586
      syslog (LOG_ERR, "Can't set multiplexor id");
3587
    }
3588

    
3589
    sprintf(dev, "tap%d", ppa);
3590
    return tap_fd;
3591
}
3592

    
3593
static int tap_open(char *ifname, int ifname_size)
3594
{
3595
    char  dev[10]="";
3596
    int fd;
3597
    if( (fd = tap_alloc(dev)) < 0 ){
3598
       fprintf(stderr, "Cannot allocate TAP device\n");
3599
       return -1;
3600
    }
3601
    pstrcpy(ifname, ifname_size, dev);
3602
    fcntl(fd, F_SETFL, O_NONBLOCK);
3603
    return fd;
3604
}
3605
#else
3606
static int tap_open(char *ifname, int ifname_size)
3607
{
3608
    struct ifreq ifr;
3609
    int fd, ret;
3610
    
3611
    fd = open("/dev/net/tun", O_RDWR);
3612
    if (fd < 0) {
3613
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3614
        return -1;
3615
    }
3616
    memset(&ifr, 0, sizeof(ifr));
3617
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3618
    if (ifname[0] != '\0')
3619
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3620
    else
3621
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3622
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3623
    if (ret != 0) {
3624
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3625
        close(fd);
3626
        return -1;
3627
    }
3628
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
3629
    fcntl(fd, F_SETFL, O_NONBLOCK);
3630
    return fd;
3631
}
3632
#endif
3633

    
3634
static int net_tap_init(VLANState *vlan, const char *ifname1,
3635
                        const char *setup_script)
3636
{
3637
    TAPState *s;
3638
    int pid, status, fd;
3639
    char *args[3];
3640
    char **parg;
3641
    char ifname[128];
3642

    
3643
    if (ifname1 != NULL)
3644
        pstrcpy(ifname, sizeof(ifname), ifname1);
3645
    else
3646
        ifname[0] = '\0';
3647
    fd = tap_open(ifname, sizeof(ifname));
3648
    if (fd < 0)
3649
        return -1;
3650

    
3651
    if (!setup_script || !strcmp(setup_script, "no"))
3652
        setup_script = "";
3653
    if (setup_script[0] != '\0') {
3654
        /* try to launch network init script */
3655
        pid = fork();
3656
        if (pid >= 0) {
3657
            if (pid == 0) {
3658
                int open_max = sysconf (_SC_OPEN_MAX), i;
3659
                for (i = 0; i < open_max; i++)
3660
                    if (i != STDIN_FILENO &&
3661
                        i != STDOUT_FILENO &&
3662
                        i != STDERR_FILENO &&
3663
                        i != fd)
3664
                        close(i);
3665

    
3666
                parg = args;
3667
                *parg++ = (char *)setup_script;
3668
                *parg++ = ifname;
3669
                *parg++ = NULL;
3670
                execv(setup_script, args);
3671
                _exit(1);
3672
            }
3673
            while (waitpid(pid, &status, 0) != pid);
3674
            if (!WIFEXITED(status) ||
3675
                WEXITSTATUS(status) != 0) {
3676
                fprintf(stderr, "%s: could not launch network script\n",
3677
                        setup_script);
3678
                return -1;
3679
            }
3680
        }
3681
    }
3682
    s = net_tap_fd_init(vlan, fd);
3683
    if (!s)
3684
        return -1;
3685
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), 
3686
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
3687
    return 0;
3688
}
3689

    
3690
#endif /* !_WIN32 */
3691

    
3692
/* network connection */
3693
typedef struct NetSocketState {
3694
    VLANClientState *vc;
3695
    int fd;
3696
    int state; /* 0 = getting length, 1 = getting data */
3697
    int index;
3698
    int packet_len;
3699
    uint8_t buf[4096];
3700
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3701
} NetSocketState;
3702

    
3703
typedef struct NetSocketListenState {
3704
    VLANState *vlan;
3705
    int fd;
3706
} NetSocketListenState;
3707

    
3708
/* XXX: we consider we can send the whole packet without blocking */
3709
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3710
{
3711
    NetSocketState *s = opaque;
3712
    uint32_t len;
3713
    len = htonl(size);
3714

    
3715
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3716
    send_all(s->fd, buf, size);
3717
}
3718

    
3719
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3720
{
3721
    NetSocketState *s = opaque;
3722
    sendto(s->fd, buf, size, 0, 
3723
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3724
}
3725

    
3726
static void net_socket_send(void *opaque)
3727
{
3728
    NetSocketState *s = opaque;
3729
    int l, size, err;
3730
    uint8_t buf1[4096];
3731
    const uint8_t *buf;
3732

    
3733
    size = recv(s->fd, buf1, sizeof(buf1), 0);
3734
    if (size < 0) {
3735
        err = socket_error();
3736
        if (err != EWOULDBLOCK) 
3737
            goto eoc;
3738
    } else if (size == 0) {
3739
        /* end of connection */
3740
    eoc:
3741
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3742
        closesocket(s->fd);
3743
        return;
3744
    }
3745
    buf = buf1;
3746
    while (size > 0) {
3747
        /* reassemble a packet from the network */
3748
        switch(s->state) {
3749
        case 0:
3750
            l = 4 - s->index;
3751
            if (l > size)
3752
                l = size;
3753
            memcpy(s->buf + s->index, buf, l);
3754
            buf += l;
3755
            size -= l;
3756
            s->index += l;
3757
            if (s->index == 4) {
3758
                /* got length */
3759
                s->packet_len = ntohl(*(uint32_t *)s->buf);
3760
                s->index = 0;
3761
                s->state = 1;
3762
            }
3763
            break;
3764
        case 1:
3765
            l = s->packet_len - s->index;
3766
            if (l > size)
3767
                l = size;
3768
            memcpy(s->buf + s->index, buf, l);
3769
            s->index += l;
3770
            buf += l;
3771
            size -= l;
3772
            if (s->index >= s->packet_len) {
3773
                qemu_send_packet(s->vc, s->buf, s->packet_len);
3774
                s->index = 0;
3775
                s->state = 0;
3776
            }
3777
            break;
3778
        }
3779
    }
3780
}
3781

    
3782
static void net_socket_send_dgram(void *opaque)
3783
{
3784
    NetSocketState *s = opaque;
3785
    int size;
3786

    
3787
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3788
    if (size < 0) 
3789
        return;
3790
    if (size == 0) {
3791
        /* end of connection */
3792
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3793
        return;
3794
    }
3795
    qemu_send_packet(s->vc, s->buf, size);
3796
}
3797

    
3798
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3799
{
3800
    struct ip_mreq imr;
3801
    int fd;
3802
    int val, ret;
3803
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3804
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3805
                inet_ntoa(mcastaddr->sin_addr), 
3806
                (int)ntohl(mcastaddr->sin_addr.s_addr));
3807
        return -1;
3808

    
3809
    }
3810
    fd = socket(PF_INET, SOCK_DGRAM, 0);
3811
    if (fd < 0) {
3812
        perror("socket(PF_INET, SOCK_DGRAM)");
3813
        return -1;
3814
    }
3815

    
3816
    val = 1;
3817
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, 
3818
                   (const char *)&val, sizeof(val));
3819
    if (ret < 0) {
3820
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3821
        goto fail;
3822
    }
3823

    
3824
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3825
    if (ret < 0) {
3826
        perror("bind");
3827
        goto fail;
3828
    }
3829
    
3830
    /* Add host to multicast group */
3831
    imr.imr_multiaddr = mcastaddr->sin_addr;
3832
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
3833

    
3834
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, 
3835
                     (const char *)&imr, sizeof(struct ip_mreq));
3836
    if (ret < 0) {
3837
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
3838
        goto fail;
3839
    }
3840

    
3841
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3842
    val = 1;
3843
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, 
3844
                   (const char *)&val, sizeof(val));
3845
    if (ret < 0) {
3846
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3847
        goto fail;
3848
    }
3849

    
3850
    socket_set_nonblock(fd);
3851
    return fd;
3852
fail:
3853
    if (fd >= 0) 
3854
        closesocket(fd);
3855
    return -1;
3856
}
3857

    
3858
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd, 
3859
                                          int is_connected)
3860
{
3861
    struct sockaddr_in saddr;
3862
    int newfd;
3863
    socklen_t saddr_len;
3864
    NetSocketState *s;
3865

    
3866
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3867
     * Because this may be "shared" socket from a "master" process, datagrams would be recv() 
3868
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
3869
     */
3870

    
3871
    if (is_connected) {
3872
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3873
            /* must be bound */
3874
            if (saddr.sin_addr.s_addr==0) {
3875
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3876
                        fd);
3877
                return NULL;
3878
            }
3879
            /* clone dgram socket */
3880
            newfd = net_socket_mcast_create(&saddr);
3881
            if (newfd < 0) {
3882
                /* error already reported by net_socket_mcast_create() */
3883
                close(fd);
3884
                return NULL;
3885
            }
3886
            /* clone newfd to fd, close newfd */
3887
            dup2(newfd, fd);
3888
            close(newfd);
3889
        
3890
        } else {
3891
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3892
                    fd, strerror(errno));
3893
            return NULL;
3894
        }
3895
    }
3896

    
3897
    s = qemu_mallocz(sizeof(NetSocketState));
3898
    if (!s)
3899
        return NULL;
3900
    s->fd = fd;
3901

    
3902
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3903
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3904

    
3905
    /* mcast: save bound address as dst */
3906
    if (is_connected) s->dgram_dst=saddr;
3907

    
3908
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3909
            "socket: fd=%d (%s mcast=%s:%d)", 
3910
            fd, is_connected? "cloned" : "",
3911
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3912
    return s;
3913
}
3914

    
3915
static void net_socket_connect(void *opaque)
3916
{
3917
    NetSocketState *s = opaque;
3918
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3919
}
3920

    
3921
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd, 
3922
                                          int is_connected)
3923
{
3924
    NetSocketState *s;
3925
    s = qemu_mallocz(sizeof(NetSocketState));
3926
    if (!s)
3927
        return NULL;
3928
    s->fd = fd;
3929
    s->vc = qemu_new_vlan_client(vlan, 
3930
                                 net_socket_receive, NULL, s);
3931
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3932
             "socket: fd=%d", fd);
3933
    if (is_connected) {
3934
        net_socket_connect(s);
3935
    } else {
3936
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3937
    }
3938
    return s;
3939
}
3940

    
3941
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd, 
3942
                                          int is_connected)
3943
{
3944
    int so_type=-1, optlen=sizeof(so_type);
3945

    
3946
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3947
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
3948
        return NULL;
3949
    }
3950
    switch(so_type) {
3951
    case SOCK_DGRAM:
3952
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
3953
    case SOCK_STREAM:
3954
        return net_socket_fd_init_stream(vlan, fd, is_connected);
3955
    default:
3956
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3957
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3958
        return net_socket_fd_init_stream(vlan, fd, is_connected);
3959
    }
3960
    return NULL;
3961
}
3962

    
3963
static void net_socket_accept(void *opaque)
3964
{
3965
    NetSocketListenState *s = opaque;    
3966
    NetSocketState *s1;
3967
    struct sockaddr_in saddr;
3968
    socklen_t len;
3969
    int fd;
3970

    
3971
    for(;;) {
3972
        len = sizeof(saddr);
3973
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3974
        if (fd < 0 && errno != EINTR) {
3975
            return;
3976
        } else if (fd >= 0) {
3977
            break;
3978
        }
3979
    }
3980
    s1 = net_socket_fd_init(s->vlan, fd, 1); 
3981
    if (!s1) {
3982
        closesocket(fd);
3983
    } else {
3984
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3985
                 "socket: connection from %s:%d", 
3986
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3987
    }
3988
}
3989

    
3990
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3991
{
3992
    NetSocketListenState *s;
3993
    int fd, val, ret;
3994
    struct sockaddr_in saddr;
3995

    
3996
    if (parse_host_port(&saddr, host_str) < 0)
3997
        return -1;
3998
    
3999
    s = qemu_mallocz(sizeof(NetSocketListenState));
4000
    if (!s)
4001
        return -1;
4002

    
4003
    fd = socket(PF_INET, SOCK_STREAM, 0);
4004
    if (fd < 0) {
4005
        perror("socket");
4006
        return -1;
4007
    }
4008
    socket_set_nonblock(fd);
4009

    
4010
    /* allow fast reuse */
4011
    val = 1;
4012
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4013
    
4014
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4015
    if (ret < 0) {
4016
        perror("bind");
4017
        return -1;
4018
    }
4019
    ret = listen(fd, 0);
4020
    if (ret < 0) {
4021
        perror("listen");
4022
        return -1;
4023
    }
4024
    s->vlan = vlan;
4025
    s->fd = fd;
4026
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4027
    return 0;
4028
}
4029

    
4030
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4031
{
4032
    NetSocketState *s;
4033
    int fd, connected, ret, err;
4034
    struct sockaddr_in saddr;
4035

    
4036
    if (parse_host_port(&saddr, host_str) < 0)
4037
        return -1;
4038

    
4039
    fd = socket(PF_INET, SOCK_STREAM, 0);
4040
    if (fd < 0) {
4041
        perror("socket");
4042
        return -1;
4043
    }
4044
    socket_set_nonblock(fd);
4045

    
4046
    connected = 0;
4047
    for(;;) {
4048
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4049
        if (ret < 0) {
4050
            err = socket_error();
4051
            if (err == EINTR || err == EWOULDBLOCK) {
4052
            } else if (err == EINPROGRESS) {
4053
                break;
4054
#ifdef _WIN32
4055
            } else if (err == WSAEALREADY) {
4056
                break;
4057
#endif
4058
            } else {
4059
                perror("connect");
4060
                closesocket(fd);
4061
                return -1;
4062
            }
4063
        } else {
4064
            connected = 1;
4065
            break;
4066
        }
4067
    }
4068
    s = net_socket_fd_init(vlan, fd, connected);
4069
    if (!s)
4070
        return -1;
4071
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4072
             "socket: connect to %s:%d", 
4073
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4074
    return 0;
4075
}
4076

    
4077
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4078
{
4079
    NetSocketState *s;
4080
    int fd;
4081
    struct sockaddr_in saddr;
4082

    
4083
    if (parse_host_port(&saddr, host_str) < 0)
4084
        return -1;
4085

    
4086

    
4087
    fd = net_socket_mcast_create(&saddr);
4088
    if (fd < 0)
4089
        return -1;
4090

    
4091
    s = net_socket_fd_init(vlan, fd, 0);
4092
    if (!s)
4093
        return -1;
4094

    
4095
    s->dgram_dst = saddr;
4096
    
4097
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4098
             "socket: mcast=%s:%d", 
4099
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4100
    return 0;
4101

    
4102
}
4103

    
4104
static int get_param_value(char *buf, int buf_size,
4105
                           const char *tag, const char *str)
4106
{
4107
    const char *p;
4108
    char *q;
4109
    char option[128];
4110

    
4111
    p = str;
4112
    for(;;) {
4113
        q = option;
4114
        while (*p != '\0' && *p != '=') {
4115
            if ((q - option) < sizeof(option) - 1)
4116
                *q++ = *p;
4117
            p++;
4118
        }
4119
        *q = '\0';
4120
        if (*p != '=')
4121
            break;
4122
        p++;
4123
        if (!strcmp(tag, option)) {
4124
            q = buf;
4125
            while (*p != '\0' && *p != ',') {
4126
                if ((q - buf) < buf_size - 1)
4127
                    *q++ = *p;
4128
                p++;
4129
            }
4130
            *q = '\0';
4131
            return q - buf;
4132
        } else {
4133
            while (*p != '\0' && *p != ',') {
4134
                p++;
4135
            }
4136
        }
4137
        if (*p != ',')
4138
            break;
4139
        p++;
4140
    }
4141
    return 0;
4142
}
4143

    
4144
static int net_client_init(const char *str)
4145
{
4146
    const char *p;
4147
    char *q;
4148
    char device[64];
4149
    char buf[1024];
4150
    int vlan_id, ret;
4151
    VLANState *vlan;
4152

    
4153
    p = str;
4154
    q = device;
4155
    while (*p != '\0' && *p != ',') {
4156
        if ((q - device) < sizeof(device) - 1)
4157
            *q++ = *p;
4158
        p++;
4159
    }
4160
    *q = '\0';
4161
    if (*p == ',')
4162
        p++;
4163
    vlan_id = 0;
4164
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4165
        vlan_id = strtol(buf, NULL, 0);
4166
    }
4167
    vlan = qemu_find_vlan(vlan_id);
4168
    if (!vlan) {
4169
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4170
        return -1;
4171
    }
4172
    if (!strcmp(device, "nic")) {
4173
        NICInfo *nd;
4174
        uint8_t *macaddr;
4175

    
4176
        if (nb_nics >= MAX_NICS) {
4177
            fprintf(stderr, "Too Many NICs\n");
4178
            return -1;
4179
        }
4180
        nd = &nd_table[nb_nics];
4181
        macaddr = nd->macaddr;
4182
        macaddr[0] = 0x52;
4183
        macaddr[1] = 0x54;
4184
        macaddr[2] = 0x00;
4185
        macaddr[3] = 0x12;
4186
        macaddr[4] = 0x34;
4187
        macaddr[5] = 0x56 + nb_nics;
4188

    
4189
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4190
            if (parse_macaddr(macaddr, buf) < 0) {
4191
                fprintf(stderr, "invalid syntax for ethernet address\n");
4192
                return -1;
4193
            }
4194
        }
4195
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4196
            nd->model = strdup(buf);
4197
        }
4198
        nd->vlan = vlan;
4199
        nb_nics++;
4200
        vlan->nb_guest_devs++;
4201
        ret = 0;
4202
    } else
4203
    if (!strcmp(device, "none")) {
4204
        /* does nothing. It is needed to signal that no network cards
4205
           are wanted */
4206
        ret = 0;
4207
    } else
4208
#ifdef CONFIG_SLIRP
4209
    if (!strcmp(device, "user")) {
4210
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4211
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4212
        }
4213
        vlan->nb_host_devs++;
4214
        ret = net_slirp_init(vlan);
4215
    } else
4216
#endif
4217
#ifdef _WIN32
4218
    if (!strcmp(device, "tap")) {
4219
        char ifname[64];
4220
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4221
            fprintf(stderr, "tap: no interface name\n");
4222
            return -1;
4223
        }
4224
        vlan->nb_host_devs++;
4225
        ret = tap_win32_init(vlan, ifname);
4226
    } else
4227
#else
4228
    if (!strcmp(device, "tap")) {
4229
        char ifname[64];
4230
        char setup_script[1024];
4231
        int fd;
4232
        vlan->nb_host_devs++;
4233
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4234
            fd = strtol(buf, NULL, 0);
4235
            ret = -1;
4236
            if (net_tap_fd_init(vlan, fd))
4237
                ret = 0;
4238
        } else {
4239
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4240
                ifname[0] = '\0';
4241
            }
4242
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4243
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4244
            }
4245
            ret = net_tap_init(vlan, ifname, setup_script);
4246
        }
4247
    } else
4248
#endif
4249
    if (!strcmp(device, "socket")) {
4250
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4251
            int fd;
4252
            fd = strtol(buf, NULL, 0);
4253
            ret = -1;
4254
            if (net_socket_fd_init(vlan, fd, 1))
4255
                ret = 0;
4256
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4257
            ret = net_socket_listen_init(vlan, buf);
4258
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4259
            ret = net_socket_connect_init(vlan, buf);
4260
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4261
            ret = net_socket_mcast_init(vlan, buf);
4262
        } else {
4263
            fprintf(stderr, "Unknown socket options: %s\n", p);
4264
            return -1;
4265
        }
4266
        vlan->nb_host_devs++;
4267
    } else
4268
    {
4269
        fprintf(stderr, "Unknown network device: %s\n", device);
4270
        return -1;
4271
    }
4272
    if (ret < 0) {
4273
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4274
    }
4275
    
4276
    return ret;
4277
}
4278

    
4279
void do_info_network(void)
4280
{
4281
    VLANState *vlan;
4282
    VLANClientState *vc;
4283

    
4284
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4285
        term_printf("VLAN %d devices:\n", vlan->id);
4286
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4287
            term_printf("  %s\n", vc->info_str);
4288
    }
4289
}
4290

    
4291
/***********************************************************/
4292
/* USB devices */
4293

    
4294
static USBPort *used_usb_ports;
4295
static USBPort *free_usb_ports;
4296

    
4297
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4298
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4299
                            usb_attachfn attach)
4300
{
4301
    port->opaque = opaque;
4302
    port->index = index;
4303
    port->attach = attach;
4304
    port->next = free_usb_ports;
4305
    free_usb_ports = port;
4306
}
4307

    
4308
static int usb_device_add(const char *devname)
4309
{
4310
    const char *p;
4311
    USBDevice *dev;
4312
    USBPort *port;
4313

    
4314
    if (!free_usb_ports)
4315
        return -1;
4316

    
4317
    if (strstart(devname, "host:", &p)) {
4318
        dev = usb_host_device_open(p);
4319
    } else if (!strcmp(devname, "mouse")) {
4320
        dev = usb_mouse_init();
4321
    } else if (!strcmp(devname, "tablet")) {
4322
        dev = usb_tablet_init();
4323
    } else if (strstart(devname, "disk:", &p)) {
4324
        dev = usb_msd_init(p);
4325
    } else {
4326
        return -1;
4327
    }
4328
    if (!dev)
4329
        return -1;
4330

    
4331
    /* Find a USB port to add the device to.  */
4332
    port = free_usb_ports;
4333
    if (!port->next) {
4334
        USBDevice *hub;
4335

    
4336
        /* Create a new hub and chain it on.  */
4337
        free_usb_ports = NULL;
4338
        port->next = used_usb_ports;
4339
        used_usb_ports = port;
4340

    
4341
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4342
        usb_attach(port, hub);
4343
        port = free_usb_ports;
4344
    }
4345

    
4346
    free_usb_ports = port->next;
4347
    port->next = used_usb_ports;
4348
    used_usb_ports = port;
4349
    usb_attach(port, dev);
4350
    return 0;
4351
}
4352

    
4353
static int usb_device_del(const char *devname)
4354
{
4355
    USBPort *port;
4356
    USBPort **lastp;
4357
    USBDevice *dev;
4358
    int bus_num, addr;
4359
    const char *p;
4360

    
4361
    if (!used_usb_ports)
4362
        return -1;
4363

    
4364
    p = strchr(devname, '.');
4365
    if (!p) 
4366
        return -1;
4367
    bus_num = strtoul(devname, NULL, 0);
4368
    addr = strtoul(p + 1, NULL, 0);
4369
    if (bus_num != 0)
4370
        return -1;
4371

    
4372
    lastp = &used_usb_ports;
4373
    port = used_usb_ports;
4374
    while (port && port->dev->addr != addr) {
4375
        lastp = &port->next;
4376
        port = port->next;
4377
    }
4378

    
4379
    if (!port)
4380
        return -1;
4381

    
4382
    dev = port->dev;
4383
    *lastp = port->next;
4384
    usb_attach(port, NULL);
4385
    dev->handle_destroy(dev);
4386
    port->next = free_usb_ports;
4387
    free_usb_ports = port;
4388
    return 0;
4389
}
4390

    
4391
void do_usb_add(const char *devname)
4392
{
4393
    int ret;
4394
    ret = usb_device_add(devname);
4395
    if (ret < 0) 
4396
        term_printf("Could not add USB device '%s'\n", devname);
4397
}
4398

    
4399
void do_usb_del(const char *devname)
4400
{
4401
    int ret;
4402
    ret = usb_device_del(devname);
4403
    if (ret < 0) 
4404
        term_printf("Could not remove USB device '%s'\n", devname);
4405
}
4406

    
4407
void usb_info(void)
4408
{
4409
    USBDevice *dev;
4410
    USBPort *port;
4411
    const char *speed_str;
4412

    
4413
    if (!usb_enabled) {
4414
        term_printf("USB support not enabled\n");
4415
        return;
4416
    }
4417

    
4418
    for (port = used_usb_ports; port; port = port->next) {
4419
        dev = port->dev;
4420
        if (!dev)
4421
            continue;
4422
        switch(dev->speed) {
4423
        case USB_SPEED_LOW: 
4424
            speed_str = "1.5"; 
4425
            break;
4426
        case USB_SPEED_FULL: 
4427
            speed_str = "12"; 
4428
            break;
4429
        case USB_SPEED_HIGH: 
4430
            speed_str = "480"; 
4431
            break;
4432
        default:
4433
            speed_str = "?"; 
4434
            break;
4435
        }
4436
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n", 
4437
                    0, dev->addr, speed_str, dev->devname);
4438
    }
4439
}
4440

    
4441
/***********************************************************/
4442
/* PCMCIA/Cardbus */
4443

    
4444
static struct pcmcia_socket_entry_s {
4445
    struct pcmcia_socket_s *socket;
4446
    struct pcmcia_socket_entry_s *next;
4447
} *pcmcia_sockets = 0;
4448

    
4449
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4450
{
4451
    struct pcmcia_socket_entry_s *entry;
4452

    
4453
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4454
    entry->socket = socket;
4455
    entry->next = pcmcia_sockets;
4456
    pcmcia_sockets = entry;
4457
}
4458

    
4459
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4460
{
4461
    struct pcmcia_socket_entry_s *entry, **ptr;
4462

    
4463
    ptr = &pcmcia_sockets;
4464
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4465
        if (entry->socket == socket) {
4466
            *ptr = entry->next;
4467
            qemu_free(entry);
4468
        }
4469
}
4470

    
4471
void pcmcia_info(void)
4472
{
4473
    struct pcmcia_socket_entry_s *iter;
4474
    if (!pcmcia_sockets)
4475
        term_printf("No PCMCIA sockets\n");
4476

    
4477
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4478
        term_printf("%s: %s\n", iter->socket->slot_string,
4479
                    iter->socket->attached ? iter->socket->card_string :
4480
                    "Empty");
4481
}
4482

    
4483
/***********************************************************/
4484
/* dumb display */
4485

    
4486
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4487
{
4488
}
4489

    
4490
static void dumb_resize(DisplayState *ds, int w, int h)
4491
{
4492
}
4493

    
4494
static void dumb_refresh(DisplayState *ds)
4495
{
4496
    vga_hw_update();
4497
}
4498

    
4499
void dumb_display_init(DisplayState *ds)
4500
{
4501
    ds->data = NULL;
4502
    ds->linesize = 0;
4503
    ds->depth = 0;
4504
    ds->dpy_update = dumb_update;
4505
    ds->dpy_resize = dumb_resize;
4506
    ds->dpy_refresh = dumb_refresh;
4507
}
4508

    
4509
/***********************************************************/
4510
/* I/O handling */
4511

    
4512
#define MAX_IO_HANDLERS 64
4513

    
4514
typedef struct IOHandlerRecord {
4515
    int fd;
4516
    IOCanRWHandler *fd_read_poll;
4517
    IOHandler *fd_read;
4518
    IOHandler *fd_write;
4519
    int deleted;
4520
    void *opaque;
4521
    /* temporary data */
4522
    struct pollfd *ufd;
4523
    struct IOHandlerRecord *next;
4524
} IOHandlerRecord;
4525

    
4526
static IOHandlerRecord *first_io_handler;
4527

    
4528
/* XXX: fd_read_poll should be suppressed, but an API change is
4529
   necessary in the character devices to suppress fd_can_read(). */
4530
int qemu_set_fd_handler2(int fd, 
4531
                         IOCanRWHandler *fd_read_poll, 
4532
                         IOHandler *fd_read, 
4533
                         IOHandler *fd_write, 
4534
                         void *opaque)
4535
{
4536
    IOHandlerRecord **pioh, *ioh;
4537

    
4538
    if (!fd_read && !fd_write) {
4539
        pioh = &first_io_handler;
4540
        for(;;) {
4541
            ioh = *pioh;
4542
            if (ioh == NULL)
4543
                break;
4544
            if (ioh->fd == fd) {
4545
                ioh->deleted = 1;
4546
                break;
4547
            }
4548
            pioh = &ioh->next;
4549
        }
4550
    } else {
4551
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4552
            if (ioh->fd == fd)
4553
                goto found;
4554
        }
4555
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4556
        if (!ioh)
4557
            return -1;
4558
        ioh->next = first_io_handler;
4559
        first_io_handler = ioh;
4560
    found:
4561
        ioh->fd = fd;
4562
        ioh->fd_read_poll = fd_read_poll;
4563
        ioh->fd_read = fd_read;
4564
        ioh->fd_write = fd_write;
4565
        ioh->opaque = opaque;
4566
        ioh->deleted = 0;
4567
    }
4568
    return 0;
4569
}
4570

    
4571
int qemu_set_fd_handler(int fd, 
4572
                        IOHandler *fd_read, 
4573
                        IOHandler *fd_write, 
4574
                        void *opaque)
4575
{
4576
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4577
}
4578

    
4579
/***********************************************************/
4580
/* Polling handling */
4581

    
4582
typedef struct PollingEntry {
4583
    PollingFunc *func;
4584
    void *opaque;
4585
    struct PollingEntry *next;
4586
} PollingEntry;
4587

    
4588
static PollingEntry *first_polling_entry;
4589

    
4590
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4591
{
4592
    PollingEntry **ppe, *pe;
4593
    pe = qemu_mallocz(sizeof(PollingEntry));
4594
    if (!pe)
4595
        return -1;
4596
    pe->func = func;
4597
    pe->opaque = opaque;
4598
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4599
    *ppe = pe;
4600
    return 0;
4601
}
4602

    
4603
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4604
{
4605
    PollingEntry **ppe, *pe;
4606
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4607
        pe = *ppe;
4608
        if (pe->func == func && pe->opaque == opaque) {
4609
            *ppe = pe->next;
4610
            qemu_free(pe);
4611
            break;
4612
        }
4613
    }
4614
}
4615

    
4616
#ifdef _WIN32
4617
/***********************************************************/
4618
/* Wait objects support */
4619
typedef struct WaitObjects {
4620
    int num;
4621
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4622
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4623
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4624
} WaitObjects;
4625

    
4626
static WaitObjects wait_objects = {0};
4627
    
4628
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4629
{
4630
    WaitObjects *w = &wait_objects;
4631

    
4632
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
4633
        return -1;
4634
    w->events[w->num] = handle;
4635
    w->func[w->num] = func;
4636
    w->opaque[w->num] = opaque;
4637
    w->num++;
4638
    return 0;
4639
}
4640

    
4641
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4642
{
4643
    int i, found;
4644
    WaitObjects *w = &wait_objects;
4645

    
4646
    found = 0;
4647
    for (i = 0; i < w->num; i++) {
4648
        if (w->events[i] == handle)
4649
            found = 1;
4650
        if (found) {
4651
            w->events[i] = w->events[i + 1];
4652
            w->func[i] = w->func[i + 1];
4653
            w->opaque[i] = w->opaque[i + 1];
4654
        }            
4655
    }
4656
    if (found)
4657
        w->num--;
4658
}
4659
#endif
4660

    
4661
/***********************************************************/
4662
/* savevm/loadvm support */
4663

    
4664
#define IO_BUF_SIZE 32768
4665

    
4666
struct QEMUFile {
4667
    FILE *outfile;
4668
    BlockDriverState *bs;
4669
    int is_file;
4670
    int is_writable;
4671
    int64_t base_offset;
4672
    int64_t buf_offset; /* start of buffer when writing, end of buffer
4673
                           when reading */
4674
    int buf_index;
4675
    int buf_size; /* 0 when writing */
4676
    uint8_t buf[IO_BUF_SIZE];
4677
};
4678

    
4679
QEMUFile *qemu_fopen(const char *filename, const char *mode)
4680
{
4681
    QEMUFile *f;
4682

    
4683
    f = qemu_mallocz(sizeof(QEMUFile));
4684
    if (!f)
4685
        return NULL;
4686
    if (!strcmp(mode, "wb")) {
4687
        f->is_writable = 1;
4688
    } else if (!strcmp(mode, "rb")) {
4689
        f->is_writable = 0;
4690
    } else {
4691
        goto fail;
4692
    }
4693
    f->outfile = fopen(filename, mode);
4694
    if (!f->outfile)
4695
        goto fail;
4696
    f->is_file = 1;
4697
    return f;
4698
 fail:
4699
    if (f->outfile)
4700
        fclose(f->outfile);
4701
    qemu_free(f);
4702
    return NULL;
4703
}
4704

    
4705
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4706
{
4707
    QEMUFile *f;
4708

    
4709
    f = qemu_mallocz(sizeof(QEMUFile));
4710
    if (!f)
4711
        return NULL;
4712
    f->is_file = 0;
4713
    f->bs = bs;
4714
    f->is_writable = is_writable;
4715
    f->base_offset = offset;
4716
    return f;
4717
}
4718

    
4719
void qemu_fflush(QEMUFile *f)
4720
{
4721
    if (!f->is_writable)
4722
        return;
4723
    if (f->buf_index > 0) {
4724
        if (f->is_file) {
4725
            fseek(f->outfile, f->buf_offset, SEEK_SET);
4726
            fwrite(f->buf, 1, f->buf_index, f->outfile);
4727
        } else {
4728
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset, 
4729
                        f->buf, f->buf_index);
4730
        }
4731
        f->buf_offset += f->buf_index;
4732
        f->buf_index = 0;
4733
    }
4734
}
4735

    
4736
static void qemu_fill_buffer(QEMUFile *f)
4737
{
4738
    int len;
4739

    
4740
    if (f->is_writable)
4741
        return;
4742
    if (f->is_file) {
4743
        fseek(f->outfile, f->buf_offset, SEEK_SET);
4744
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4745
        if (len < 0)
4746
            len = 0;
4747
    } else {
4748
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset, 
4749
                         f->buf, IO_BUF_SIZE);
4750
        if (len < 0)
4751
            len = 0;
4752
    }
4753
    f->buf_index = 0;
4754
    f->buf_size = len;
4755
    f->buf_offset += len;
4756
}
4757

    
4758
void qemu_fclose(QEMUFile *f)
4759
{
4760
    if (f->is_writable)
4761
        qemu_fflush(f);
4762
    if (f->is_file) {
4763
        fclose(f->outfile);
4764
    }
4765
    qemu_free(f);
4766
}
4767

    
4768
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4769
{
4770
    int l;
4771
    while (size > 0) {
4772
        l = IO_BUF_SIZE - f->buf_index;
4773
        if (l > size)
4774
            l = size;
4775
        memcpy(f->buf + f->buf_index, buf, l);
4776
        f->buf_index += l;
4777
        buf += l;
4778
        size -= l;
4779
        if (f->buf_index >= IO_BUF_SIZE)
4780
            qemu_fflush(f);
4781
    }
4782
}
4783

    
4784
void qemu_put_byte(QEMUFile *f, int v)
4785
{
4786
    f->buf[f->buf_index++] = v;
4787
    if (f->buf_index >= IO_BUF_SIZE)
4788
        qemu_fflush(f);
4789
}
4790

    
4791
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4792
{
4793
    int size, l;
4794

    
4795
    size = size1;
4796
    while (size > 0) {
4797
        l = f->buf_size - f->buf_index;
4798
        if (l == 0) {
4799
            qemu_fill_buffer(f);
4800
            l = f->buf_size - f->buf_index;
4801
            if (l == 0)
4802
                break;
4803
        }
4804
        if (l > size)
4805
            l = size;
4806
        memcpy(buf, f->buf + f->buf_index, l);
4807
        f->buf_index += l;
4808
        buf += l;
4809
        size -= l;
4810
    }
4811
    return size1 - size;
4812
}
4813

    
4814
int qemu_get_byte(QEMUFile *f)
4815
{
4816
    if (f->buf_index >= f->buf_size) {
4817
        qemu_fill_buffer(f);
4818
        if (f->buf_index >= f->buf_size)
4819
            return 0;
4820
    }
4821
    return f->buf[f->buf_index++];
4822
}
4823

    
4824
int64_t qemu_ftell(QEMUFile *f)
4825
{
4826
    return f->buf_offset - f->buf_size + f->buf_index;
4827
}
4828

    
4829
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4830
{
4831
    if (whence == SEEK_SET) {
4832
        /* nothing to do */
4833
    } else if (whence == SEEK_CUR) {
4834
        pos += qemu_ftell(f);
4835
    } else {
4836
        /* SEEK_END not supported */
4837
        return -1;
4838
    }
4839
    if (f->is_writable) {
4840
        qemu_fflush(f);
4841
        f->buf_offset = pos;
4842
    } else {
4843
        f->buf_offset = pos;
4844
        f->buf_index = 0;
4845
        f->buf_size = 0;
4846
    }
4847
    return pos;
4848
}
4849

    
4850
void qemu_put_be16(QEMUFile *f, unsigned int v)
4851
{
4852
    qemu_put_byte(f, v >> 8);
4853
    qemu_put_byte(f, v);
4854
}
4855

    
4856
void qemu_put_be32(QEMUFile *f, unsigned int v)
4857
{
4858
    qemu_put_byte(f, v >> 24);
4859
    qemu_put_byte(f, v >> 16);
4860
    qemu_put_byte(f, v >> 8);
4861
    qemu_put_byte(f, v);
4862
}
4863

    
4864
void qemu_put_be64(QEMUFile *f, uint64_t v)
4865
{
4866
    qemu_put_be32(f, v >> 32);
4867
    qemu_put_be32(f, v);
4868
}
4869

    
4870
unsigned int qemu_get_be16(QEMUFile *f)
4871
{
4872
    unsigned int v;
4873
    v = qemu_get_byte(f) << 8;
4874
    v |= qemu_get_byte(f);
4875
    return v;
4876
}
4877

    
4878
unsigned int qemu_get_be32(QEMUFile *f)
4879
{
4880
    unsigned int v;
4881
    v = qemu_get_byte(f) << 24;
4882
    v |= qemu_get_byte(f) << 16;
4883
    v |= qemu_get_byte(f) << 8;
4884
    v |= qemu_get_byte(f);
4885
    return v;
4886
}
4887

    
4888
uint64_t qemu_get_be64(QEMUFile *f)
4889
{
4890
    uint64_t v;
4891
    v = (uint64_t)qemu_get_be32(f) << 32;
4892
    v |= qemu_get_be32(f);
4893
    return v;
4894
}
4895

    
4896
typedef struct SaveStateEntry {
4897
    char idstr[256];
4898
    int instance_id;
4899
    int version_id;
4900
    SaveStateHandler *save_state;
4901
    LoadStateHandler *load_state;
4902
    void *opaque;
4903
    struct SaveStateEntry *next;
4904
} SaveStateEntry;
4905

    
4906
static SaveStateEntry *first_se;
4907

    
4908
int register_savevm(const char *idstr, 
4909
                    int instance_id, 
4910
                    int version_id,
4911
                    SaveStateHandler *save_state,
4912
                    LoadStateHandler *load_state,
4913
                    void *opaque)
4914
{
4915
    SaveStateEntry *se, **pse;
4916

    
4917
    se = qemu_malloc(sizeof(SaveStateEntry));
4918
    if (!se)
4919
        return -1;
4920
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4921
    se->instance_id = instance_id;
4922
    se->version_id = version_id;
4923
    se->save_state = save_state;
4924
    se->load_state = load_state;
4925
    se->opaque = opaque;
4926
    se->next = NULL;
4927

    
4928
    /* add at the end of list */
4929
    pse = &first_se;
4930
    while (*pse != NULL)
4931
        pse = &(*pse)->next;
4932
    *pse = se;
4933
    return 0;
4934
}
4935

    
4936
#define QEMU_VM_FILE_MAGIC   0x5145564d
4937
#define QEMU_VM_FILE_VERSION 0x00000002
4938

    
4939
int qemu_savevm_state(QEMUFile *f)
4940
{
4941
    SaveStateEntry *se;
4942
    int len, ret;
4943
    int64_t cur_pos, len_pos, total_len_pos;
4944

    
4945
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4946
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4947
    total_len_pos = qemu_ftell(f);
4948
    qemu_put_be64(f, 0); /* total size */
4949

    
4950
    for(se = first_se; se != NULL; se = se->next) {
4951
        /* ID string */
4952
        len = strlen(se->idstr);
4953
        qemu_put_byte(f, len);
4954
        qemu_put_buffer(f, se->idstr, len);
4955

    
4956
        qemu_put_be32(f, se->instance_id);
4957
        qemu_put_be32(f, se->version_id);
4958

    
4959
        /* record size: filled later */
4960
        len_pos = qemu_ftell(f);
4961
        qemu_put_be32(f, 0);
4962
        
4963
        se->save_state(f, se->opaque);
4964

    
4965
        /* fill record size */
4966
        cur_pos = qemu_ftell(f);
4967
        len = cur_pos - len_pos - 4;
4968
        qemu_fseek(f, len_pos, SEEK_SET);
4969
        qemu_put_be32(f, len);
4970
        qemu_fseek(f, cur_pos, SEEK_SET);
4971
    }
4972
    cur_pos = qemu_ftell(f);
4973
    qemu_fseek(f, total_len_pos, SEEK_SET);
4974
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
4975
    qemu_fseek(f, cur_pos, SEEK_SET);
4976

    
4977
    ret = 0;
4978
    return ret;
4979
}
4980

    
4981
static SaveStateEntry *find_se(const char *idstr, int instance_id)
4982
{
4983
    SaveStateEntry *se;
4984

    
4985
    for(se = first_se; se != NULL; se = se->next) {
4986
        if (!strcmp(se->idstr, idstr) && 
4987
            instance_id == se->instance_id)
4988
            return se;
4989
    }
4990
    return NULL;
4991
}
4992

    
4993
int qemu_loadvm_state(QEMUFile *f)
4994
{
4995
    SaveStateEntry *se;
4996
    int len, ret, instance_id, record_len, version_id;
4997
    int64_t total_len, end_pos, cur_pos;
4998
    unsigned int v;
4999
    char idstr[256];
5000
    
5001
    v = qemu_get_be32(f);
5002
    if (v != QEMU_VM_FILE_MAGIC)
5003
        goto fail;
5004
    v = qemu_get_be32(f);
5005
    if (v != QEMU_VM_FILE_VERSION) {
5006
    fail:
5007
        ret = -1;
5008
        goto the_end;
5009
    }
5010
    total_len = qemu_get_be64(f);
5011
    end_pos = total_len + qemu_ftell(f);
5012
    for(;;) {
5013
        if (qemu_ftell(f) >= end_pos)
5014
            break;
5015
        len = qemu_get_byte(f);
5016
        qemu_get_buffer(f, idstr, len);
5017
        idstr[len] = '\0';
5018
        instance_id = qemu_get_be32(f);
5019
        version_id = qemu_get_be32(f);
5020
        record_len = qemu_get_be32(f);
5021
#if 0
5022
        printf("idstr=%s instance=0x%x version=%d len=%d\n", 
5023
               idstr, instance_id, version_id, record_len);
5024
#endif
5025
        cur_pos = qemu_ftell(f);
5026
        se = find_se(idstr, instance_id);
5027
        if (!se) {
5028
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", 
5029
                    instance_id, idstr);
5030
        } else {
5031
            ret = se->load_state(f, se->opaque, version_id);
5032
            if (ret < 0) {
5033
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", 
5034
                        instance_id, idstr);
5035
            }
5036
        }
5037
        /* always seek to exact end of record */
5038
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5039
    }
5040
    ret = 0;
5041
 the_end:
5042
    return ret;
5043
}
5044

    
5045
/* device can contain snapshots */
5046
static int bdrv_can_snapshot(BlockDriverState *bs)
5047
{
5048
    return (bs &&
5049
            !bdrv_is_removable(bs) &&
5050
            !bdrv_is_read_only(bs));
5051
}
5052

    
5053
/* device must be snapshots in order to have a reliable snapshot */
5054
static int bdrv_has_snapshot(BlockDriverState *bs)
5055
{
5056
    return (bs &&
5057
            !bdrv_is_removable(bs) &&
5058
            !bdrv_is_read_only(bs));
5059
}
5060

    
5061
static BlockDriverState *get_bs_snapshots(void)
5062
{
5063
    BlockDriverState *bs;
5064
    int i;
5065

    
5066
    if (bs_snapshots)
5067
        return bs_snapshots;
5068
    for(i = 0; i <= MAX_DISKS; i++) {
5069
        bs = bs_table[i];
5070
        if (bdrv_can_snapshot(bs))
5071
            goto ok;
5072
    }
5073
    return NULL;
5074
 ok:
5075
    bs_snapshots = bs;
5076
    return bs;
5077
}
5078

    
5079
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5080
                              const char *name)
5081
{
5082
    QEMUSnapshotInfo *sn_tab, *sn;
5083
    int nb_sns, i, ret;
5084
    
5085
    ret = -ENOENT;
5086
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5087
    if (nb_sns < 0)
5088
        return ret;
5089
    for(i = 0; i < nb_sns; i++) {
5090
        sn = &sn_tab[i];
5091
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5092
            *sn_info = *sn;
5093
            ret = 0;
5094
            break;
5095
        }
5096
    }
5097
    qemu_free(sn_tab);
5098
    return ret;
5099
}
5100

    
5101
void do_savevm(const char *name)
5102
{
5103
    BlockDriverState *bs, *bs1;
5104
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5105
    int must_delete, ret, i;
5106
    BlockDriverInfo bdi1, *bdi = &bdi1;
5107
    QEMUFile *f;
5108
    int saved_vm_running;
5109
#ifdef _WIN32
5110
    struct _timeb tb;
5111
#else
5112
    struct timeval tv;
5113
#endif
5114

    
5115
    bs = get_bs_snapshots();
5116
    if (!bs) {
5117
        term_printf("No block device can accept snapshots\n");
5118
        return;
5119
    }
5120

    
5121
    /* ??? Should this occur after vm_stop?  */
5122
    qemu_aio_flush();
5123

    
5124
    saved_vm_running = vm_running;
5125
    vm_stop(0);
5126
    
5127
    must_delete = 0;
5128
    if (name) {
5129
        ret = bdrv_snapshot_find(bs, old_sn, name);
5130
        if (ret >= 0) {
5131
            must_delete = 1;
5132
        }
5133
    }
5134
    memset(sn, 0, sizeof(*sn));
5135
    if (must_delete) {
5136
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5137
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5138
    } else {
5139
        if (name)
5140
            pstrcpy(sn->name, sizeof(sn->name), name);
5141
    }
5142

    
5143
    /* fill auxiliary fields */
5144
#ifdef _WIN32
5145
    _ftime(&tb);
5146
    sn->date_sec = tb.time;
5147
    sn->date_nsec = tb.millitm * 1000000;
5148
#else
5149
    gettimeofday(&tv, NULL);
5150
    sn->date_sec = tv.tv_sec;
5151
    sn->date_nsec = tv.tv_usec * 1000;
5152
#endif
5153
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5154
    
5155
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5156
        term_printf("Device %s does not support VM state snapshots\n",
5157
                    bdrv_get_device_name(bs));
5158
        goto the_end;
5159
    }
5160
    
5161
    /* save the VM state */
5162
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5163
    if (!f) {
5164
        term_printf("Could not open VM state file\n");
5165
        goto the_end;
5166
    }
5167
    ret = qemu_savevm_state(f);
5168
    sn->vm_state_size = qemu_ftell(f);
5169
    qemu_fclose(f);
5170
    if (ret < 0) {
5171
        term_printf("Error %d while writing VM\n", ret);
5172
        goto the_end;
5173
    }
5174
    
5175
    /* create the snapshots */
5176

    
5177
    for(i = 0; i < MAX_DISKS; i++) {
5178
        bs1 = bs_table[i];
5179
        if (bdrv_has_snapshot(bs1)) {
5180
            if (must_delete) {
5181
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5182
                if (ret < 0) {
5183
                    term_printf("Error while deleting snapshot on '%s'\n",
5184
                                bdrv_get_device_name(bs1));
5185
                }
5186
            }
5187
            ret = bdrv_snapshot_create(bs1, sn);
5188
            if (ret < 0) {
5189
                term_printf("Error while creating snapshot on '%s'\n",
5190
                            bdrv_get_device_name(bs1));
5191
            }
5192
        }
5193
    }
5194

    
5195
 the_end:
5196
    if (saved_vm_running)
5197
        vm_start();
5198
}
5199

    
5200
void do_loadvm(const char *name)
5201
{
5202
    BlockDriverState *bs, *bs1;
5203
    BlockDriverInfo bdi1, *bdi = &bdi1;
5204
    QEMUFile *f;
5205
    int i, ret;
5206
    int saved_vm_running;
5207

    
5208
    bs = get_bs_snapshots();
5209
    if (!bs) {
5210
        term_printf("No block device supports snapshots\n");
5211
        return;
5212
    }
5213
    
5214
    /* Flush all IO requests so they don't interfere with the new state.  */
5215
    qemu_aio_flush();
5216

    
5217
    saved_vm_running = vm_running;
5218
    vm_stop(0);
5219

    
5220
    for(i = 0; i <= MAX_DISKS; i++) {
5221
        bs1 = bs_table[i];
5222
        if (bdrv_has_snapshot(bs1)) {
5223
            ret = bdrv_snapshot_goto(bs1, name);
5224
            if (ret < 0) {
5225
                if (bs != bs1)
5226
                    term_printf("Warning: ");
5227
                switch(ret) {
5228
                case -ENOTSUP:
5229
                    term_printf("Snapshots not supported on device '%s'\n",
5230
                                bdrv_get_device_name(bs1));
5231
                    break;
5232
                case -ENOENT:
5233
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5234
                                name, bdrv_get_device_name(bs1));
5235
                    break;
5236
                default:
5237
                    term_printf("Error %d while activating snapshot on '%s'\n",
5238
                                ret, bdrv_get_device_name(bs1));
5239
                    break;
5240
                }
5241
                /* fatal on snapshot block device */
5242
                if (bs == bs1)
5243
                    goto the_end;
5244
            }
5245
        }
5246
    }
5247

    
5248
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5249
        term_printf("Device %s does not support VM state snapshots\n",
5250
                    bdrv_get_device_name(bs));
5251
        return;
5252
    }
5253
    
5254
    /* restore the VM state */
5255
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5256
    if (!f) {
5257
        term_printf("Could not open VM state file\n");
5258
        goto the_end;
5259
    }
5260
    ret = qemu_loadvm_state(f);
5261
    qemu_fclose(f);
5262
    if (ret < 0) {
5263
        term_printf("Error %d while loading VM state\n", ret);
5264
    }
5265
 the_end:
5266
    if (saved_vm_running)
5267
        vm_start();
5268
}
5269

    
5270
void do_delvm(const char *name)
5271
{
5272
    BlockDriverState *bs, *bs1;
5273
    int i, ret;
5274

    
5275
    bs = get_bs_snapshots();
5276
    if (!bs) {
5277
        term_printf("No block device supports snapshots\n");
5278
        return;
5279
    }
5280
    
5281
    for(i = 0; i <= MAX_DISKS; i++) {
5282
        bs1 = bs_table[i];
5283
        if (bdrv_has_snapshot(bs1)) {
5284
            ret = bdrv_snapshot_delete(bs1, name);
5285
            if (ret < 0) {
5286
                if (ret == -ENOTSUP)
5287
                    term_printf("Snapshots not supported on device '%s'\n",
5288
                                bdrv_get_device_name(bs1));
5289
                else
5290
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5291
                                ret, bdrv_get_device_name(bs1));
5292
            }
5293
        }
5294
    }
5295
}
5296

    
5297
void do_info_snapshots(void)
5298
{
5299
    BlockDriverState *bs, *bs1;
5300
    QEMUSnapshotInfo *sn_tab, *sn;
5301
    int nb_sns, i;
5302
    char buf[256];
5303

    
5304
    bs = get_bs_snapshots();
5305
    if (!bs) {
5306
        term_printf("No available block device supports snapshots\n");
5307
        return;
5308
    }
5309
    term_printf("Snapshot devices:");
5310
    for(i = 0; i <= MAX_DISKS; i++) {
5311
        bs1 = bs_table[i];
5312
        if (bdrv_has_snapshot(bs1)) {
5313
            if (bs == bs1)
5314
                term_printf(" %s", bdrv_get_device_name(bs1));
5315
        }
5316
    }
5317
    term_printf("\n");
5318

    
5319
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5320
    if (nb_sns < 0) {
5321
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5322
        return;
5323
    }
5324
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5325
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5326
    for(i = 0; i < nb_sns; i++) {
5327
        sn = &sn_tab[i];
5328
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5329
    }
5330
    qemu_free(sn_tab);
5331
}
5332

    
5333
/***********************************************************/
5334
/* cpu save/restore */
5335

    
5336
#if defined(TARGET_I386)
5337

    
5338
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5339
{
5340
    qemu_put_be32(f, dt->selector);
5341
    qemu_put_betl(f, dt->base);
5342
    qemu_put_be32(f, dt->limit);
5343
    qemu_put_be32(f, dt->flags);
5344
}
5345

    
5346
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5347
{
5348
    dt->selector = qemu_get_be32(f);
5349
    dt->base = qemu_get_betl(f);
5350
    dt->limit = qemu_get_be32(f);
5351
    dt->flags = qemu_get_be32(f);
5352
}
5353

    
5354
void cpu_save(QEMUFile *f, void *opaque)
5355
{
5356
    CPUState *env = opaque;
5357
    uint16_t fptag, fpus, fpuc, fpregs_format;
5358
    uint32_t hflags;
5359
    int i;
5360
    
5361
    for(i = 0; i < CPU_NB_REGS; i++)
5362
        qemu_put_betls(f, &env->regs[i]);
5363
    qemu_put_betls(f, &env->eip);
5364
    qemu_put_betls(f, &env->eflags);
5365
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5366
    qemu_put_be32s(f, &hflags);
5367
    
5368
    /* FPU */
5369
    fpuc = env->fpuc;
5370
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5371
    fptag = 0;
5372
    for(i = 0; i < 8; i++) {
5373
        fptag |= ((!env->fptags[i]) << i);
5374
    }
5375
    
5376
    qemu_put_be16s(f, &fpuc);
5377
    qemu_put_be16s(f, &fpus);
5378
    qemu_put_be16s(f, &fptag);
5379

    
5380
#ifdef USE_X86LDOUBLE
5381
    fpregs_format = 0;
5382
#else
5383
    fpregs_format = 1;
5384
#endif
5385
    qemu_put_be16s(f, &fpregs_format);
5386
    
5387
    for(i = 0; i < 8; i++) {
5388
#ifdef USE_X86LDOUBLE
5389
        {
5390
            uint64_t mant;
5391
            uint16_t exp;
5392
            /* we save the real CPU data (in case of MMX usage only 'mant'
5393
               contains the MMX register */
5394
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5395
            qemu_put_be64(f, mant);
5396
            qemu_put_be16(f, exp);
5397
        }
5398
#else
5399
        /* if we use doubles for float emulation, we save the doubles to
5400
           avoid losing information in case of MMX usage. It can give
5401
           problems if the image is restored on a CPU where long
5402
           doubles are used instead. */
5403
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5404
#endif
5405
    }
5406

    
5407
    for(i = 0; i < 6; i++)
5408
        cpu_put_seg(f, &env->segs[i]);
5409
    cpu_put_seg(f, &env->ldt);
5410
    cpu_put_seg(f, &env->tr);
5411
    cpu_put_seg(f, &env->gdt);
5412
    cpu_put_seg(f, &env->idt);
5413
    
5414
    qemu_put_be32s(f, &env->sysenter_cs);
5415
    qemu_put_be32s(f, &env->sysenter_esp);
5416
    qemu_put_be32s(f, &env->sysenter_eip);
5417
    
5418
    qemu_put_betls(f, &env->cr[0]);
5419
    qemu_put_betls(f, &env->cr[2]);
5420
    qemu_put_betls(f, &env->cr[3]);
5421
    qemu_put_betls(f, &env->cr[4]);
5422
    
5423
    for(i = 0; i < 8; i++)
5424
        qemu_put_betls(f, &env->dr[i]);
5425

    
5426
    /* MMU */
5427
    qemu_put_be32s(f, &env->a20_mask);
5428

    
5429
    /* XMM */
5430
    qemu_put_be32s(f, &env->mxcsr);
5431
    for(i = 0; i < CPU_NB_REGS; i++) {
5432
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5433
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5434
    }
5435

    
5436
#ifdef TARGET_X86_64
5437
    qemu_put_be64s(f, &env->efer);
5438
    qemu_put_be64s(f, &env->star);
5439
    qemu_put_be64s(f, &env->lstar);
5440
    qemu_put_be64s(f, &env->cstar);
5441
    qemu_put_be64s(f, &env->fmask);
5442
    qemu_put_be64s(f, &env->kernelgsbase);
5443
#endif
5444
    qemu_put_be32s(f, &env->smbase);
5445
}
5446

    
5447
#ifdef USE_X86LDOUBLE
5448
/* XXX: add that in a FPU generic layer */
5449
union x86_longdouble {
5450
    uint64_t mant;
5451
    uint16_t exp;
5452
};
5453

    
5454
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5455
#define EXPBIAS1 1023
5456
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5457
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5458

    
5459
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5460
{
5461
    int e;
5462
    /* mantissa */
5463
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5464
    /* exponent + sign */
5465
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5466
    e |= SIGND1(temp) >> 16;
5467
    p->exp = e;
5468
}
5469
#endif
5470

    
5471
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5472
{
5473
    CPUState *env = opaque;
5474
    int i, guess_mmx;
5475
    uint32_t hflags;
5476
    uint16_t fpus, fpuc, fptag, fpregs_format;
5477

    
5478
    if (version_id != 3 && version_id != 4)
5479
        return -EINVAL;
5480
    for(i = 0; i < CPU_NB_REGS; i++)
5481
        qemu_get_betls(f, &env->regs[i]);
5482
    qemu_get_betls(f, &env->eip);
5483
    qemu_get_betls(f, &env->eflags);
5484
    qemu_get_be32s(f, &hflags);
5485

    
5486
    qemu_get_be16s(f, &fpuc);
5487
    qemu_get_be16s(f, &fpus);
5488
    qemu_get_be16s(f, &fptag);
5489
    qemu_get_be16s(f, &fpregs_format);
5490
    
5491
    /* NOTE: we cannot always restore the FPU state if the image come
5492
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5493
       if we are in an MMX state to restore correctly in that case. */
5494
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5495
    for(i = 0; i < 8; i++) {
5496
        uint64_t mant;
5497
        uint16_t exp;
5498
        
5499
        switch(fpregs_format) {
5500
        case 0:
5501
            mant = qemu_get_be64(f);
5502
            exp = qemu_get_be16(f);
5503
#ifdef USE_X86LDOUBLE
5504
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5505
#else
5506
            /* difficult case */
5507
            if (guess_mmx)
5508
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5509
            else
5510
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5511
#endif
5512
            break;
5513
        case 1:
5514
            mant = qemu_get_be64(f);
5515
#ifdef USE_X86LDOUBLE
5516
            {
5517
                union x86_longdouble *p;
5518
                /* difficult case */
5519
                p = (void *)&env->fpregs[i];
5520
                if (guess_mmx) {
5521
                    p->mant = mant;
5522
                    p->exp = 0xffff;
5523
                } else {
5524
                    fp64_to_fp80(p, mant);
5525
                }
5526
            }
5527
#else
5528
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5529
#endif            
5530
            break;
5531
        default:
5532
            return -EINVAL;
5533
        }
5534
    }
5535

    
5536
    env->fpuc = fpuc;
5537
    /* XXX: restore FPU round state */
5538
    env->fpstt = (fpus >> 11) & 7;
5539
    env->fpus = fpus & ~0x3800;
5540
    fptag ^= 0xff;
5541
    for(i = 0; i < 8; i++) {
5542
        env->fptags[i] = (fptag >> i) & 1;
5543
    }
5544
    
5545
    for(i = 0; i < 6; i++)
5546
        cpu_get_seg(f, &env->segs[i]);
5547
    cpu_get_seg(f, &env->ldt);
5548
    cpu_get_seg(f, &env->tr);
5549
    cpu_get_seg(f, &env->gdt);
5550
    cpu_get_seg(f, &env->idt);
5551
    
5552
    qemu_get_be32s(f, &env->sysenter_cs);
5553
    qemu_get_be32s(f, &env->sysenter_esp);
5554
    qemu_get_be32s(f, &env->sysenter_eip);
5555
    
5556
    qemu_get_betls(f, &env->cr[0]);
5557
    qemu_get_betls(f, &env->cr[2]);
5558
    qemu_get_betls(f, &env->cr[3]);
5559
    qemu_get_betls(f, &env->cr[4]);
5560
    
5561
    for(i = 0; i < 8; i++)
5562
        qemu_get_betls(f, &env->dr[i]);
5563

    
5564
    /* MMU */
5565
    qemu_get_be32s(f, &env->a20_mask);
5566

    
5567
    qemu_get_be32s(f, &env->mxcsr);
5568
    for(i = 0; i < CPU_NB_REGS; i++) {
5569
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5570
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5571
    }
5572

    
5573
#ifdef TARGET_X86_64
5574
    qemu_get_be64s(f, &env->efer);
5575
    qemu_get_be64s(f, &env->star);
5576
    qemu_get_be64s(f, &env->lstar);
5577
    qemu_get_be64s(f, &env->cstar);
5578
    qemu_get_be64s(f, &env->fmask);
5579
    qemu_get_be64s(f, &env->kernelgsbase);
5580
#endif
5581
    if (version_id >= 4) 
5582
        qemu_get_be32s(f, &env->smbase);
5583

    
5584
    /* XXX: compute hflags from scratch, except for CPL and IIF */
5585
    env->hflags = hflags;
5586
    tlb_flush(env, 1);
5587
    return 0;
5588
}
5589

    
5590
#elif defined(TARGET_PPC)
5591
void cpu_save(QEMUFile *f, void *opaque)
5592
{
5593
}
5594

    
5595
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5596
{
5597
    return 0;
5598
}
5599

    
5600
#elif defined(TARGET_MIPS)
5601
void cpu_save(QEMUFile *f, void *opaque)
5602
{
5603
}
5604

    
5605
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5606
{
5607
    return 0;
5608
}
5609

    
5610
#elif defined(TARGET_SPARC)
5611
void cpu_save(QEMUFile *f, void *opaque)
5612
{
5613
    CPUState *env = opaque;
5614
    int i;
5615
    uint32_t tmp;
5616

    
5617
    for(i = 0; i < 8; i++)
5618
        qemu_put_betls(f, &env->gregs[i]);
5619
    for(i = 0; i < NWINDOWS * 16; i++)
5620
        qemu_put_betls(f, &env->regbase[i]);
5621

    
5622
    /* FPU */
5623
    for(i = 0; i < TARGET_FPREGS; i++) {
5624
        union {
5625
            float32 f;
5626
            uint32_t i;
5627
        } u;
5628
        u.f = env->fpr[i];
5629
        qemu_put_be32(f, u.i);
5630
    }
5631

    
5632
    qemu_put_betls(f, &env->pc);
5633
    qemu_put_betls(f, &env->npc);
5634
    qemu_put_betls(f, &env->y);
5635
    tmp = GET_PSR(env);
5636
    qemu_put_be32(f, tmp);
5637
    qemu_put_betls(f, &env->fsr);
5638
    qemu_put_betls(f, &env->tbr);
5639
#ifndef TARGET_SPARC64
5640
    qemu_put_be32s(f, &env->wim);
5641
    /* MMU */
5642
    for(i = 0; i < 16; i++)
5643
        qemu_put_be32s(f, &env->mmuregs[i]);
5644
#endif
5645
}
5646

    
5647
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5648
{
5649
    CPUState *env = opaque;
5650
    int i;
5651
    uint32_t tmp;
5652

    
5653
    for(i = 0; i < 8; i++)
5654
        qemu_get_betls(f, &env->gregs[i]);
5655
    for(i = 0; i < NWINDOWS * 16; i++)
5656
        qemu_get_betls(f, &env->regbase[i]);
5657

    
5658
    /* FPU */
5659
    for(i = 0; i < TARGET_FPREGS; i++) {
5660
        union {
5661
            float32 f;
5662
            uint32_t i;
5663
        } u;
5664
        u.i = qemu_get_be32(f);
5665
        env->fpr[i] = u.f;
5666
    }
5667

    
5668
    qemu_get_betls(f, &env->pc);
5669
    qemu_get_betls(f, &env->npc);
5670
    qemu_get_betls(f, &env->y);
5671
    tmp = qemu_get_be32(f);
5672
    env->cwp = 0; /* needed to ensure that the wrapping registers are
5673
                     correctly updated */
5674
    PUT_PSR(env, tmp);
5675
    qemu_get_betls(f, &env->fsr);
5676
    qemu_get_betls(f, &env->tbr);
5677
#ifndef TARGET_SPARC64
5678
    qemu_get_be32s(f, &env->wim);
5679
    /* MMU */
5680
    for(i = 0; i < 16; i++)
5681
        qemu_get_be32s(f, &env->mmuregs[i]);
5682
#endif
5683
    tlb_flush(env, 1);
5684
    return 0;
5685
}
5686

    
5687
#elif defined(TARGET_ARM)
5688

    
5689
void cpu_save(QEMUFile *f, void *opaque)
5690
{
5691
    int i;
5692
    CPUARMState *env = (CPUARMState *)opaque;
5693

    
5694
    for (i = 0; i < 16; i++) {
5695
        qemu_put_be32(f, env->regs[i]);
5696
    }
5697
    qemu_put_be32(f, cpsr_read(env));
5698
    qemu_put_be32(f, env->spsr);
5699
    for (i = 0; i < 6; i++) {
5700
        qemu_put_be32(f, env->banked_spsr[i]);
5701
        qemu_put_be32(f, env->banked_r13[i]);
5702
        qemu_put_be32(f, env->banked_r14[i]);
5703
    }
5704
    for (i = 0; i < 5; i++) {
5705
        qemu_put_be32(f, env->usr_regs[i]);
5706
        qemu_put_be32(f, env->fiq_regs[i]);
5707
    }
5708
    qemu_put_be32(f, env->cp15.c0_cpuid);
5709
    qemu_put_be32(f, env->cp15.c0_cachetype);
5710
    qemu_put_be32(f, env->cp15.c1_sys);
5711
    qemu_put_be32(f, env->cp15.c1_coproc);
5712
    qemu_put_be32(f, env->cp15.c2_base);
5713
    qemu_put_be32(f, env->cp15.c2_data);
5714
    qemu_put_be32(f, env->cp15.c2_insn);
5715
    qemu_put_be32(f, env->cp15.c3);
5716
    qemu_put_be32(f, env->cp15.c5_insn);
5717
    qemu_put_be32(f, env->cp15.c5_data);
5718
    for (i = 0; i < 8; i++) {
5719
        qemu_put_be32(f, env->cp15.c6_region[i]);
5720
    }
5721
    qemu_put_be32(f, env->cp15.c6_insn);
5722
    qemu_put_be32(f, env->cp15.c6_data);
5723
    qemu_put_be32(f, env->cp15.c9_insn);
5724
    qemu_put_be32(f, env->cp15.c9_data);
5725
    qemu_put_be32(f, env->cp15.c13_fcse);
5726
    qemu_put_be32(f, env->cp15.c13_context);
5727
    qemu_put_be32(f, env->cp15.c15_cpar);
5728

    
5729
    qemu_put_be32(f, env->features);
5730

    
5731
    if (arm_feature(env, ARM_FEATURE_VFP)) {
5732
        for (i = 0;  i < 16; i++) {
5733
            CPU_DoubleU u;
5734
            u.d = env->vfp.regs[i];
5735
            qemu_put_be32(f, u.l.upper);
5736
            qemu_put_be32(f, u.l.lower);
5737
        }
5738
        for (i = 0; i < 16; i++) {
5739
            qemu_put_be32(f, env->vfp.xregs[i]);
5740
        }
5741

    
5742
        /* TODO: Should use proper FPSCR access functions.  */
5743
        qemu_put_be32(f, env->vfp.vec_len);
5744
        qemu_put_be32(f, env->vfp.vec_stride);
5745
    }
5746

    
5747
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5748
        for (i = 0; i < 16; i++) {
5749
            qemu_put_be64(f, env->iwmmxt.regs[i]);
5750
        }
5751
        for (i = 0; i < 16; i++) {
5752
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
5753
        }
5754
    }
5755
}
5756

    
5757
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5758
{
5759
    CPUARMState *env = (CPUARMState *)opaque;
5760
    int i;
5761

    
5762
    if (version_id != 0)
5763
        return -EINVAL;
5764

    
5765
    for (i = 0; i < 16; i++) {
5766
        env->regs[i] = qemu_get_be32(f);
5767
    }
5768
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
5769
    env->spsr = qemu_get_be32(f);
5770
    for (i = 0; i < 6; i++) {
5771
        env->banked_spsr[i] = qemu_get_be32(f);
5772
        env->banked_r13[i] = qemu_get_be32(f);
5773
        env->banked_r14[i] = qemu_get_be32(f);
5774
    }
5775
    for (i = 0; i < 5; i++) {
5776
        env->usr_regs[i] = qemu_get_be32(f);
5777
        env->fiq_regs[i] = qemu_get_be32(f);
5778
    }
5779
    env->cp15.c0_cpuid = qemu_get_be32(f);
5780
    env->cp15.c0_cachetype = qemu_get_be32(f);
5781
    env->cp15.c1_sys = qemu_get_be32(f);
5782
    env->cp15.c1_coproc = qemu_get_be32(f);
5783
    env->cp15.c2_base = qemu_get_be32(f);
5784
    env->cp15.c2_data = qemu_get_be32(f);
5785
    env->cp15.c2_insn = qemu_get_be32(f);
5786
    env->cp15.c3 = qemu_get_be32(f);
5787
    env->cp15.c5_insn = qemu_get_be32(f);
5788
    env->cp15.c5_data = qemu_get_be32(f);
5789
    for (i = 0; i < 8; i++) {
5790
        env->cp15.c6_region[i] = qemu_get_be32(f);
5791
    }
5792
    env->cp15.c6_insn = qemu_get_be32(f);
5793
    env->cp15.c6_data = qemu_get_be32(f);
5794
    env->cp15.c9_insn = qemu_get_be32(f);
5795
    env->cp15.c9_data = qemu_get_be32(f);
5796
    env->cp15.c13_fcse = qemu_get_be32(f);
5797
    env->cp15.c13_context = qemu_get_be32(f);
5798
    env->cp15.c15_cpar = qemu_get_be32(f);
5799

    
5800
    env->features = qemu_get_be32(f);
5801

    
5802
    if (arm_feature(env, ARM_FEATURE_VFP)) {
5803
        for (i = 0;  i < 16; i++) {
5804
            CPU_DoubleU u;
5805
            u.l.upper = qemu_get_be32(f);
5806
            u.l.lower = qemu_get_be32(f);
5807
            env->vfp.regs[i] = u.d;
5808
        }
5809
        for (i = 0; i < 16; i++) {
5810
            env->vfp.xregs[i] = qemu_get_be32(f);
5811
        }
5812

    
5813
        /* TODO: Should use proper FPSCR access functions.  */
5814
        env->vfp.vec_len = qemu_get_be32(f);
5815
        env->vfp.vec_stride = qemu_get_be32(f);
5816
    }
5817

    
5818
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5819
        for (i = 0; i < 16; i++) {
5820
            env->iwmmxt.regs[i] = qemu_get_be64(f);
5821
        }
5822
        for (i = 0; i < 16; i++) {
5823
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
5824
        }
5825
    }
5826

    
5827
    return 0;
5828
}
5829

    
5830
#else
5831

    
5832
#warning No CPU save/restore functions
5833

    
5834
#endif
5835

    
5836
/***********************************************************/
5837
/* ram save/restore */
5838

    
5839
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5840
{
5841
    int v;
5842

    
5843
    v = qemu_get_byte(f);
5844
    switch(v) {
5845
    case 0:
5846
        if (qemu_get_buffer(f, buf, len) != len)
5847
            return -EIO;
5848
        break;
5849
    case 1:
5850
        v = qemu_get_byte(f);
5851
        memset(buf, v, len);
5852
        break;
5853
    default:
5854
        return -EINVAL;
5855
    }
5856
    return 0;
5857
}
5858

    
5859
static int ram_load_v1(QEMUFile *f, void *opaque)
5860
{
5861
    int i, ret;
5862

    
5863
    if (qemu_get_be32(f) != phys_ram_size)
5864
        return -EINVAL;
5865
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5866
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5867
        if (ret)
5868
            return ret;
5869
    }
5870
    return 0;
5871
}
5872

    
5873
#define BDRV_HASH_BLOCK_SIZE 1024
5874
#define IOBUF_SIZE 4096
5875
#define RAM_CBLOCK_MAGIC 0xfabe
5876

    
5877
typedef struct RamCompressState {
5878
    z_stream zstream;
5879
    QEMUFile *f;
5880
    uint8_t buf[IOBUF_SIZE];
5881
} RamCompressState;
5882

    
5883
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5884
{
5885
    int ret;
5886
    memset(s, 0, sizeof(*s));
5887
    s->f = f;
5888
    ret = deflateInit2(&s->zstream, 1,
5889
                       Z_DEFLATED, 15, 
5890
                       9, Z_DEFAULT_STRATEGY);
5891
    if (ret != Z_OK)
5892
        return -1;
5893
    s->zstream.avail_out = IOBUF_SIZE;
5894
    s->zstream.next_out = s->buf;
5895
    return 0;
5896
}
5897

    
5898
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5899
{
5900
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5901
    qemu_put_be16(s->f, len);
5902
    qemu_put_buffer(s->f, buf, len);
5903
}
5904

    
5905
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5906
{
5907
    int ret;
5908

    
5909
    s->zstream.avail_in = len;
5910
    s->zstream.next_in = (uint8_t *)buf;
5911
    while (s->zstream.avail_in > 0) {
5912
        ret = deflate(&s->zstream, Z_NO_FLUSH);
5913
        if (ret != Z_OK)
5914
            return -1;
5915
        if (s->zstream.avail_out == 0) {
5916
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
5917
            s->zstream.avail_out = IOBUF_SIZE;
5918
            s->zstream.next_out = s->buf;
5919
        }
5920
    }
5921
    return 0;
5922
}
5923

    
5924
static void ram_compress_close(RamCompressState *s)
5925
{
5926
    int len, ret;
5927

    
5928
    /* compress last bytes */
5929
    for(;;) {
5930
        ret = deflate(&s->zstream, Z_FINISH);
5931
        if (ret == Z_OK || ret == Z_STREAM_END) {
5932
            len = IOBUF_SIZE - s->zstream.avail_out;
5933
            if (len > 0) {
5934
                ram_put_cblock(s, s->buf, len);
5935
            }
5936
            s->zstream.avail_out = IOBUF_SIZE;
5937
            s->zstream.next_out = s->buf;
5938
            if (ret == Z_STREAM_END)
5939
                break;
5940
        } else {
5941
            goto fail;
5942
        }
5943
    }
5944
fail:
5945
    deflateEnd(&s->zstream);
5946
}
5947

    
5948
typedef struct RamDecompressState {
5949
    z_stream zstream;
5950
    QEMUFile *f;
5951
    uint8_t buf[IOBUF_SIZE];
5952
} RamDecompressState;
5953

    
5954
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5955
{
5956
    int ret;
5957
    memset(s, 0, sizeof(*s));
5958
    s->f = f;
5959
    ret = inflateInit(&s->zstream);
5960
    if (ret != Z_OK)
5961
        return -1;
5962
    return 0;
5963
}
5964

    
5965
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5966
{
5967
    int ret, clen;
5968

    
5969
    s->zstream.avail_out = len;
5970
    s->zstream.next_out = buf;
5971
    while (s->zstream.avail_out > 0) {
5972
        if (s->zstream.avail_in == 0) {
5973
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5974
                return -1;
5975
            clen = qemu_get_be16(s->f);
5976
            if (clen > IOBUF_SIZE)
5977
                return -1;
5978
            qemu_get_buffer(s->f, s->buf, clen);
5979
            s->zstream.avail_in = clen;
5980
            s->zstream.next_in = s->buf;
5981
        }
5982
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5983
        if (ret != Z_OK && ret != Z_STREAM_END) {
5984
            return -1;
5985
        }
5986
    }
5987
    return 0;
5988
}
5989

    
5990
static void ram_decompress_close(RamDecompressState *s)
5991
{
5992
    inflateEnd(&s->zstream);
5993
}
5994

    
5995
static void ram_save(QEMUFile *f, void *opaque)
5996
{
5997
    int i;
5998
    RamCompressState s1, *s = &s1;
5999
    uint8_t buf[10];
6000
    
6001
    qemu_put_be32(f, phys_ram_size);
6002
    if (ram_compress_open(s, f) < 0)
6003
        return;
6004
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6005
#if 0
6006
        if (tight_savevm_enabled) {
6007
            int64_t sector_num;
6008
            int j;
6009

6010
            /* find if the memory block is available on a virtual
6011
               block device */
6012
            sector_num = -1;
6013
            for(j = 0; j < MAX_DISKS; j++) {
6014
                if (bs_table[j]) {
6015
                    sector_num = bdrv_hash_find(bs_table[j], 
6016
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6017
                    if (sector_num >= 0)
6018
                        break;
6019
                }
6020
            }
6021
            if (j == MAX_DISKS)
6022
                goto normal_compress;
6023
            buf[0] = 1;
6024
            buf[1] = j;
6025
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6026
            ram_compress_buf(s, buf, 10);
6027
        } else 
6028
#endif
6029
        {
6030
            //        normal_compress:
6031
            buf[0] = 0;
6032
            ram_compress_buf(s, buf, 1);
6033
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6034
        }
6035
    }
6036
    ram_compress_close(s);
6037
}
6038

    
6039
static int ram_load(QEMUFile *f, void *opaque, int version_id)
6040
{
6041
    RamDecompressState s1, *s = &s1;
6042
    uint8_t buf[10];
6043
    int i;
6044

    
6045
    if (version_id == 1)
6046
        return ram_load_v1(f, opaque);
6047
    if (version_id != 2)
6048
        return -EINVAL;
6049
    if (qemu_get_be32(f) != phys_ram_size)
6050
        return -EINVAL;
6051
    if (ram_decompress_open(s, f) < 0)
6052
        return -EINVAL;
6053
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6054
        if (ram_decompress_buf(s, buf, 1) < 0) {
6055
            fprintf(stderr, "Error while reading ram block header\n");
6056
            goto error;
6057
        }
6058
        if (buf[0] == 0) {
6059
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6060
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6061
                goto error;
6062
            }
6063
        } else 
6064
#if 0
6065
        if (buf[0] == 1) {
6066
            int bs_index;
6067
            int64_t sector_num;
6068

6069
            ram_decompress_buf(s, buf + 1, 9);
6070
            bs_index = buf[1];
6071
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6072
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6073
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
6074
                goto error;
6075
            }
6076
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i, 
6077
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6078
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n", 
6079
                        bs_index, sector_num);
6080
                goto error;
6081
            }
6082
        } else 
6083
#endif
6084
        {
6085
        error:
6086
            printf("Error block header\n");
6087
            return -EINVAL;
6088
        }
6089
    }
6090
    ram_decompress_close(s);
6091
    return 0;
6092
}
6093

    
6094
/***********************************************************/
6095
/* bottom halves (can be seen as timers which expire ASAP) */
6096

    
6097
struct QEMUBH {
6098
    QEMUBHFunc *cb;
6099
    void *opaque;
6100
    int scheduled;
6101
    QEMUBH *next;
6102
};
6103

    
6104
static QEMUBH *first_bh = NULL;
6105

    
6106
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6107
{
6108
    QEMUBH *bh;
6109
    bh = qemu_mallocz(sizeof(QEMUBH));
6110
    if (!bh)
6111
        return NULL;
6112
    bh->cb = cb;
6113
    bh->opaque = opaque;
6114
    return bh;
6115
}
6116

    
6117
int qemu_bh_poll(void)
6118
{
6119
    QEMUBH *bh, **pbh;
6120
    int ret;
6121

    
6122
    ret = 0;
6123
    for(;;) {
6124
        pbh = &first_bh;
6125
        bh = *pbh;
6126
        if (!bh)
6127
            break;
6128
        ret = 1;
6129
        *pbh = bh->next;
6130
        bh->scheduled = 0;
6131
        bh->cb(bh->opaque);
6132
    }
6133
    return ret;
6134
}
6135

    
6136
void qemu_bh_schedule(QEMUBH *bh)
6137
{
6138
    CPUState *env = cpu_single_env;
6139
    if (bh->scheduled)
6140
        return;
6141
    bh->scheduled = 1;
6142
    bh->next = first_bh;
6143
    first_bh = bh;
6144

    
6145
    /* stop the currently executing CPU to execute the BH ASAP */
6146
    if (env) {
6147
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6148
    }
6149
}
6150

    
6151
void qemu_bh_cancel(QEMUBH *bh)
6152
{
6153
    QEMUBH **pbh;
6154
    if (bh->scheduled) {
6155
        pbh = &first_bh;
6156
        while (*pbh != bh)
6157
            pbh = &(*pbh)->next;
6158
        *pbh = bh->next;
6159
        bh->scheduled = 0;
6160
    }
6161
}
6162

    
6163
void qemu_bh_delete(QEMUBH *bh)
6164
{
6165
    qemu_bh_cancel(bh);
6166
    qemu_free(bh);
6167
}
6168

    
6169
/***********************************************************/
6170
/* machine registration */
6171

    
6172
QEMUMachine *first_machine = NULL;
6173

    
6174
int qemu_register_machine(QEMUMachine *m)
6175
{
6176
    QEMUMachine **pm;
6177
    pm = &first_machine;
6178
    while (*pm != NULL)
6179
        pm = &(*pm)->next;
6180
    m->next = NULL;
6181
    *pm = m;
6182
    return 0;
6183
}
6184

    
6185
QEMUMachine *find_machine(const char *name)
6186
{
6187
    QEMUMachine *m;
6188

    
6189
    for(m = first_machine; m != NULL; m = m->next) {
6190
        if (!strcmp(m->name, name))
6191
            return m;
6192
    }
6193
    return NULL;
6194
}
6195

    
6196
/***********************************************************/
6197
/* main execution loop */
6198

    
6199
void gui_update(void *opaque)
6200
{
6201
    display_state.dpy_refresh(&display_state);
6202
    qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6203
}
6204

    
6205
struct vm_change_state_entry {
6206
    VMChangeStateHandler *cb;
6207
    void *opaque;
6208
    LIST_ENTRY (vm_change_state_entry) entries;
6209
};
6210

    
6211
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6212

    
6213
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6214
                                                     void *opaque)
6215
{
6216
    VMChangeStateEntry *e;
6217

    
6218
    e = qemu_mallocz(sizeof (*e));
6219
    if (!e)
6220
        return NULL;
6221

    
6222
    e->cb = cb;
6223
    e->opaque = opaque;
6224
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6225
    return e;
6226
}
6227

    
6228
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6229
{
6230
    LIST_REMOVE (e, entries);
6231
    qemu_free (e);
6232
}
6233

    
6234
static void vm_state_notify(int running)
6235
{
6236
    VMChangeStateEntry *e;
6237

    
6238
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6239
        e->cb(e->opaque, running);
6240
    }
6241
}
6242

    
6243
/* XXX: support several handlers */
6244
static VMStopHandler *vm_stop_cb;
6245
static void *vm_stop_opaque;
6246

    
6247
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6248
{
6249
    vm_stop_cb = cb;
6250
    vm_stop_opaque = opaque;
6251
    return 0;
6252
}
6253

    
6254
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6255
{
6256
    vm_stop_cb = NULL;
6257
}
6258

    
6259
void vm_start(void)
6260
{
6261
    if (!vm_running) {
6262
        cpu_enable_ticks();
6263
        vm_running = 1;
6264
        vm_state_notify(1);
6265
    }
6266
}
6267

    
6268
void vm_stop(int reason) 
6269
{
6270
    if (vm_running) {
6271
        cpu_disable_ticks();
6272
        vm_running = 0;
6273
        if (reason != 0) {
6274
            if (vm_stop_cb) {
6275
                vm_stop_cb(vm_stop_opaque, reason);
6276
            }
6277
        }
6278
        vm_state_notify(0);
6279
    }
6280
}
6281

    
6282
/* reset/shutdown handler */
6283

    
6284
typedef struct QEMUResetEntry {
6285
    QEMUResetHandler *func;
6286
    void *opaque;
6287
    struct QEMUResetEntry *next;
6288
} QEMUResetEntry;
6289

    
6290
static QEMUResetEntry *first_reset_entry;
6291
static int reset_requested;
6292
static int shutdown_requested;
6293
static int powerdown_requested;
6294

    
6295
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6296
{
6297
    QEMUResetEntry **pre, *re;
6298

    
6299
    pre = &first_reset_entry;
6300
    while (*pre != NULL)
6301
        pre = &(*pre)->next;
6302
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6303
    re->func = func;
6304
    re->opaque = opaque;
6305
    re->next = NULL;
6306
    *pre = re;
6307
}
6308

    
6309
static void qemu_system_reset(void)
6310
{
6311
    QEMUResetEntry *re;
6312

    
6313
    /* reset all devices */
6314
    for(re = first_reset_entry; re != NULL; re = re->next) {
6315
        re->func(re->opaque);
6316
    }
6317
}
6318

    
6319
void qemu_system_reset_request(void)
6320
{
6321
    if (no_reboot) {
6322
        shutdown_requested = 1;
6323
    } else {
6324
        reset_requested = 1;
6325
    }
6326
    if (cpu_single_env)
6327
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6328
}
6329

    
6330
void qemu_system_shutdown_request(void)
6331
{
6332
    shutdown_requested = 1;
6333
    if (cpu_single_env)
6334
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6335
}
6336

    
6337
void qemu_system_powerdown_request(void)
6338
{
6339
    powerdown_requested = 1;
6340
    if (cpu_single_env)
6341
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6342
}
6343

    
6344
void main_loop_wait(int timeout)
6345
{
6346
    IOHandlerRecord *ioh;
6347
    fd_set rfds, wfds, xfds;
6348
    int ret, nfds;
6349
#ifdef _WIN32
6350
    int ret2, i;
6351
#endif
6352
    struct timeval tv;
6353
    PollingEntry *pe;
6354

    
6355

    
6356
    /* XXX: need to suppress polling by better using win32 events */
6357
    ret = 0;
6358
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6359
        ret |= pe->func(pe->opaque);
6360
    }
6361
#ifdef _WIN32
6362
    if (ret == 0) {
6363
        int err;
6364
        WaitObjects *w = &wait_objects;
6365
        
6366
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6367
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6368
            if (w->func[ret - WAIT_OBJECT_0])
6369
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6370
                
6371
            /* Check for additional signaled events */ 
6372
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6373
                                
6374
                /* Check if event is signaled */
6375
                ret2 = WaitForSingleObject(w->events[i], 0);
6376
                if(ret2 == WAIT_OBJECT_0) {
6377
                    if (w->func[i])
6378
                        w->func[i](w->opaque[i]);
6379
                } else if (ret2 == WAIT_TIMEOUT) {
6380
                } else {
6381
                    err = GetLastError();
6382
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6383
                }                
6384
            }                 
6385
        } else if (ret == WAIT_TIMEOUT) {
6386
        } else {
6387
            err = GetLastError();
6388
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6389
        }
6390
    }
6391
#endif
6392
    /* poll any events */
6393
    /* XXX: separate device handlers from system ones */
6394
    nfds = -1;
6395
    FD_ZERO(&rfds);
6396
    FD_ZERO(&wfds);
6397
    FD_ZERO(&xfds);
6398
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6399
        if (ioh->deleted)
6400
            continue;
6401
        if (ioh->fd_read &&
6402
            (!ioh->fd_read_poll ||
6403
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6404
            FD_SET(ioh->fd, &rfds);
6405
            if (ioh->fd > nfds)
6406
                nfds = ioh->fd;
6407
        }
6408
        if (ioh->fd_write) {
6409
            FD_SET(ioh->fd, &wfds);
6410
            if (ioh->fd > nfds)
6411
                nfds = ioh->fd;
6412
        }
6413
    }
6414
    
6415
    tv.tv_sec = 0;
6416
#ifdef _WIN32
6417
    tv.tv_usec = 0;
6418
#else
6419
    tv.tv_usec = timeout * 1000;
6420
#endif
6421
#if defined(CONFIG_SLIRP)
6422
    if (slirp_inited) {
6423
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6424
    }
6425
#endif
6426
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6427
    if (ret > 0) {
6428
        IOHandlerRecord **pioh;
6429

    
6430
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6431
            if (ioh->deleted)
6432
                continue;
6433
            if (FD_ISSET(ioh->fd, &rfds)) {
6434
                ioh->fd_read(ioh->opaque);
6435
            }
6436
            if (FD_ISSET(ioh->fd, &wfds)) {
6437
                ioh->fd_write(ioh->opaque);
6438
            }
6439
        }
6440

    
6441
        /* remove deleted IO handlers */
6442
        pioh = &first_io_handler;
6443
        while (*pioh) {
6444
            ioh = *pioh;
6445
            if (ioh->deleted) {
6446
                *pioh = ioh->next;
6447
                qemu_free(ioh);
6448
            } else 
6449
                pioh = &ioh->next;
6450
        }
6451
    }
6452
#if defined(CONFIG_SLIRP)
6453
    if (slirp_inited) {
6454
        if (ret < 0) {
6455
            FD_ZERO(&rfds);
6456
            FD_ZERO(&wfds);
6457
            FD_ZERO(&xfds);
6458
        }
6459
        slirp_select_poll(&rfds, &wfds, &xfds);
6460
    }
6461
#endif
6462
    qemu_aio_poll();
6463

    
6464
    if (vm_running) {
6465
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], 
6466
                        qemu_get_clock(vm_clock));
6467
        /* run dma transfers, if any */
6468
        DMA_run();
6469
    }
6470

    
6471
    /* real time timers */
6472
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], 
6473
                    qemu_get_clock(rt_clock));
6474

    
6475
    /* Check bottom-halves last in case any of the earlier events triggered
6476
       them.  */
6477
    qemu_bh_poll();
6478
    
6479
}
6480

    
6481
static CPUState *cur_cpu;
6482

    
6483
int main_loop(void)
6484
{
6485
    int ret, timeout;
6486
#ifdef CONFIG_PROFILER
6487
    int64_t ti;
6488
#endif
6489
    CPUState *env;
6490

    
6491
    cur_cpu = first_cpu;
6492
    for(;;) {
6493
        if (vm_running) {
6494

    
6495
            env = cur_cpu;
6496
            for(;;) {
6497
                /* get next cpu */
6498
                env = env->next_cpu;
6499
                if (!env)
6500
                    env = first_cpu;
6501
#ifdef CONFIG_PROFILER
6502
                ti = profile_getclock();
6503
#endif
6504
                ret = cpu_exec(env);
6505
#ifdef CONFIG_PROFILER
6506
                qemu_time += profile_getclock() - ti;
6507
#endif
6508
                if (ret == EXCP_HLT) {
6509
                    /* Give the next CPU a chance to run.  */
6510
                    cur_cpu = env;
6511
                    continue;
6512
                }
6513
                if (ret != EXCP_HALTED)
6514
                    break;
6515
                /* all CPUs are halted ? */
6516
                if (env == cur_cpu)
6517
                    break;
6518
            }
6519
            cur_cpu = env;
6520

    
6521
            if (shutdown_requested) {
6522
                ret = EXCP_INTERRUPT;
6523
                break;
6524
            }
6525
            if (reset_requested) {
6526
                reset_requested = 0;
6527
                qemu_system_reset();
6528
                ret = EXCP_INTERRUPT;
6529
            }
6530
            if (powerdown_requested) {
6531
                powerdown_requested = 0;
6532
                qemu_system_powerdown();
6533
                ret = EXCP_INTERRUPT;
6534
            }
6535
            if (ret == EXCP_DEBUG) {
6536
                vm_stop(EXCP_DEBUG);
6537
            }
6538
            /* If all cpus are halted then wait until the next IRQ */
6539
            /* XXX: use timeout computed from timers */
6540
            if (ret == EXCP_HALTED)
6541
                timeout = 10;
6542
            else
6543
                timeout = 0;
6544
        } else {
6545
            timeout = 10;
6546
        }
6547
#ifdef CONFIG_PROFILER
6548
        ti = profile_getclock();
6549
#endif
6550
        main_loop_wait(timeout);
6551
#ifdef CONFIG_PROFILER
6552
        dev_time += profile_getclock() - ti;
6553
#endif
6554
    }
6555
    cpu_disable_ticks();
6556
    return ret;
6557
}
6558

    
6559
void help(void)
6560
{
6561
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6562
           "usage: %s [options] [disk_image]\n"
6563
           "\n"
6564
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6565
           "\n"
6566
           "Standard options:\n"
6567
           "-M machine      select emulated machine (-M ? for list)\n"
6568
           "-cpu cpu        select CPU (-cpu ? for list)\n"
6569
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
6570
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
6571
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
6572
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6573
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
6574
           "-sd file        use 'file' as SecureDigital card image\n"
6575
           "-pflash file    use 'file' as a parallel flash image\n"
6576
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6577
           "-snapshot       write to temporary files instead of disk image files\n"
6578
#ifdef CONFIG_SDL
6579
           "-no-frame       open SDL window without a frame and window decorations\n"
6580
           "-no-quit        disable SDL window close capability\n"
6581
#endif
6582
#ifdef TARGET_I386
6583
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
6584
#endif
6585
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
6586
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
6587
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
6588
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
6589
#ifndef _WIN32
6590
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
6591
#endif
6592
#ifdef HAS_AUDIO
6593
           "-audio-help     print list of audio drivers and their options\n"
6594
           "-soundhw c1,... enable audio support\n"
6595
           "                and only specified sound cards (comma separated list)\n"
6596
           "                use -soundhw ? to get the list of supported cards\n"
6597
           "                use -soundhw all to enable all of them\n"
6598
#endif
6599
           "-localtime      set the real time clock to local time [default=utc]\n"
6600
           "-full-screen    start in full screen\n"
6601
#ifdef TARGET_I386
6602
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
6603
#endif
6604
           "-usb            enable the USB driver (will be the default soon)\n"
6605
           "-usbdevice name add the host or guest USB device 'name'\n"
6606
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
6607
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
6608
#endif
6609
           "-name string    set the name of the guest\n"
6610
           "\n"
6611
           "Network options:\n"
6612
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6613
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
6614
#ifdef CONFIG_SLIRP
6615
           "-net user[,vlan=n][,hostname=host]\n"
6616
           "                connect the user mode network stack to VLAN 'n' and send\n"
6617
           "                hostname 'host' to DHCP clients\n"
6618
#endif
6619
#ifdef _WIN32
6620
           "-net tap[,vlan=n],ifname=name\n"
6621
           "                connect the host TAP network interface to VLAN 'n'\n"
6622
#else
6623
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6624
           "                connect the host TAP network interface to VLAN 'n' and use\n"
6625
           "                the network script 'file' (default=%s);\n"
6626
           "                use 'script=no' to disable script execution;\n"
6627
           "                use 'fd=h' to connect to an already opened TAP interface\n"
6628
#endif
6629
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6630
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
6631
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6632
           "                connect the vlan 'n' to multicast maddr and port\n"
6633
           "-net none       use it alone to have zero network devices; if no -net option\n"
6634
           "                is provided, the default is '-net nic -net user'\n"
6635
           "\n"
6636
#ifdef CONFIG_SLIRP
6637
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
6638
           "-bootp file     advertise file in BOOTP replies\n"
6639
#ifndef _WIN32
6640
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
6641
#endif
6642
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6643
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
6644
#endif
6645
           "\n"
6646
           "Linux boot specific:\n"
6647
           "-kernel bzImage use 'bzImage' as kernel image\n"
6648
           "-append cmdline use 'cmdline' as kernel command line\n"
6649
           "-initrd file    use 'file' as initial ram disk\n"
6650
           "\n"
6651
           "Debug/Expert options:\n"
6652
           "-monitor dev    redirect the monitor to char device 'dev'\n"
6653
           "-serial dev     redirect the serial port to char device 'dev'\n"
6654
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
6655
           "-pidfile file   Write PID to 'file'\n"
6656
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
6657
           "-s              wait gdb connection to port\n"
6658
           "-p port         set gdb connection port [default=%s]\n"
6659
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
6660
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
6661
           "                translation (t=none or lba) (usually qemu can guess them)\n"
6662
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
6663
#ifdef USE_KQEMU
6664
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
6665
           "-no-kqemu       disable KQEMU kernel module usage\n"
6666
#endif
6667
#ifdef USE_CODE_COPY
6668
           "-no-code-copy   disable code copy acceleration\n"
6669
#endif
6670
#ifdef TARGET_I386
6671
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
6672
           "                (default is CL-GD5446 PCI VGA)\n"
6673
           "-no-acpi        disable ACPI\n"
6674
#endif
6675
           "-no-reboot      exit instead of rebooting\n"
6676
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
6677
           "-vnc display    start a VNC server on display\n"
6678
#ifndef _WIN32
6679
           "-daemonize      daemonize QEMU after initializing\n"
6680
#endif
6681
           "-option-rom rom load a file, rom, into the option ROM space\n"
6682
#ifdef TARGET_SPARC
6683
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
6684
#endif
6685
           "\n"
6686
           "During emulation, the following keys are useful:\n"
6687
           "ctrl-alt-f      toggle full screen\n"
6688
           "ctrl-alt-n      switch to virtual console 'n'\n"
6689
           "ctrl-alt        toggle mouse and keyboard grab\n"
6690
           "\n"
6691
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
6692
           ,
6693
           "qemu",
6694
           DEFAULT_RAM_SIZE,
6695
#ifndef _WIN32
6696
           DEFAULT_NETWORK_SCRIPT,
6697
#endif
6698
           DEFAULT_GDBSTUB_PORT,
6699
           "/tmp/qemu.log");
6700
    exit(1);
6701
}
6702

    
6703
#define HAS_ARG 0x0001
6704

    
6705
enum {
6706
    QEMU_OPTION_h,
6707

    
6708
    QEMU_OPTION_M,
6709
    QEMU_OPTION_cpu,
6710
    QEMU_OPTION_fda,
6711
    QEMU_OPTION_fdb,
6712
    QEMU_OPTION_hda,
6713
    QEMU_OPTION_hdb,
6714
    QEMU_OPTION_hdc,
6715
    QEMU_OPTION_hdd,
6716
    QEMU_OPTION_cdrom,
6717
    QEMU_OPTION_mtdblock,
6718
    QEMU_OPTION_sd,
6719
    QEMU_OPTION_pflash,
6720
    QEMU_OPTION_boot,
6721
    QEMU_OPTION_snapshot,
6722
#ifdef TARGET_I386
6723
    QEMU_OPTION_no_fd_bootchk,
6724
#endif
6725
    QEMU_OPTION_m,
6726
    QEMU_OPTION_nographic,
6727
    QEMU_OPTION_portrait,
6728
#ifdef HAS_AUDIO
6729
    QEMU_OPTION_audio_help,
6730
    QEMU_OPTION_soundhw,
6731
#endif
6732

    
6733
    QEMU_OPTION_net,
6734
    QEMU_OPTION_tftp,
6735
    QEMU_OPTION_bootp,
6736
    QEMU_OPTION_smb,
6737
    QEMU_OPTION_redir,
6738

    
6739
    QEMU_OPTION_kernel,
6740
    QEMU_OPTION_append,
6741
    QEMU_OPTION_initrd,
6742

    
6743
    QEMU_OPTION_S,
6744
    QEMU_OPTION_s,
6745
    QEMU_OPTION_p,
6746
    QEMU_OPTION_d,
6747
    QEMU_OPTION_hdachs,
6748
    QEMU_OPTION_L,
6749
    QEMU_OPTION_no_code_copy,
6750
    QEMU_OPTION_k,
6751
    QEMU_OPTION_localtime,
6752
    QEMU_OPTION_cirrusvga,
6753
    QEMU_OPTION_vmsvga,
6754
    QEMU_OPTION_g,
6755
    QEMU_OPTION_std_vga,
6756
    QEMU_OPTION_echr,
6757
    QEMU_OPTION_monitor,
6758
    QEMU_OPTION_serial,
6759
    QEMU_OPTION_parallel,
6760
    QEMU_OPTION_loadvm,
6761
    QEMU_OPTION_full_screen,
6762
    QEMU_OPTION_no_frame,
6763
    QEMU_OPTION_no_quit,
6764
    QEMU_OPTION_pidfile,
6765
    QEMU_OPTION_no_kqemu,
6766
    QEMU_OPTION_kernel_kqemu,
6767
    QEMU_OPTION_win2k_hack,
6768
    QEMU_OPTION_usb,
6769
    QEMU_OPTION_usbdevice,
6770
    QEMU_OPTION_smp,
6771
    QEMU_OPTION_vnc,
6772
    QEMU_OPTION_no_acpi,
6773
    QEMU_OPTION_no_reboot,
6774
    QEMU_OPTION_show_cursor,
6775
    QEMU_OPTION_daemonize,
6776
    QEMU_OPTION_option_rom,
6777
    QEMU_OPTION_semihosting,
6778
    QEMU_OPTION_name,
6779
    QEMU_OPTION_prom_env,
6780
};
6781

    
6782
typedef struct QEMUOption {
6783
    const char *name;
6784
    int flags;
6785
    int index;
6786
} QEMUOption;
6787

    
6788
const QEMUOption qemu_options[] = {
6789
    { "h", 0, QEMU_OPTION_h },
6790
    { "help", 0, QEMU_OPTION_h },
6791

    
6792
    { "M", HAS_ARG, QEMU_OPTION_M },
6793
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6794
    { "fda", HAS_ARG, QEMU_OPTION_fda },
6795
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6796
    { "hda", HAS_ARG, QEMU_OPTION_hda },
6797
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6798
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6799
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6800
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6801
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
6802
    { "sd", HAS_ARG, QEMU_OPTION_sd },
6803
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
6804
    { "boot", HAS_ARG, QEMU_OPTION_boot },
6805
    { "snapshot", 0, QEMU_OPTION_snapshot },
6806
#ifdef TARGET_I386
6807
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6808
#endif
6809
    { "m", HAS_ARG, QEMU_OPTION_m },
6810
    { "nographic", 0, QEMU_OPTION_nographic },
6811
    { "portrait", 0, QEMU_OPTION_portrait },
6812
    { "k", HAS_ARG, QEMU_OPTION_k },
6813
#ifdef HAS_AUDIO
6814
    { "audio-help", 0, QEMU_OPTION_audio_help },
6815
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6816
#endif
6817

    
6818
    { "net", HAS_ARG, QEMU_OPTION_net},
6819
#ifdef CONFIG_SLIRP
6820
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6821
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6822
#ifndef _WIN32
6823
    { "smb", HAS_ARG, QEMU_OPTION_smb },
6824
#endif
6825
    { "redir", HAS_ARG, QEMU_OPTION_redir },
6826
#endif
6827

    
6828
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6829
    { "append", HAS_ARG, QEMU_OPTION_append },
6830
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6831

    
6832
    { "S", 0, QEMU_OPTION_S },
6833
    { "s", 0, QEMU_OPTION_s },
6834
    { "p", HAS_ARG, QEMU_OPTION_p },
6835
    { "d", HAS_ARG, QEMU_OPTION_d },
6836
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6837
    { "L", HAS_ARG, QEMU_OPTION_L },
6838
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6839
#ifdef USE_KQEMU
6840
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6841
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6842
#endif
6843
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
6844
    { "g", 1, QEMU_OPTION_g },
6845
#endif
6846
    { "localtime", 0, QEMU_OPTION_localtime },
6847
    { "std-vga", 0, QEMU_OPTION_std_vga },
6848
    { "echr", 1, QEMU_OPTION_echr },
6849
    { "monitor", 1, QEMU_OPTION_monitor },
6850
    { "serial", 1, QEMU_OPTION_serial },
6851
    { "parallel", 1, QEMU_OPTION_parallel },
6852
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6853
    { "full-screen", 0, QEMU_OPTION_full_screen },
6854
#ifdef CONFIG_SDL
6855
    { "no-frame", 0, QEMU_OPTION_no_frame },
6856
    { "no-quit", 0, QEMU_OPTION_no_quit },
6857
#endif
6858
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6859
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6860
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6861
    { "smp", HAS_ARG, QEMU_OPTION_smp },
6862
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6863

    
6864
    /* temporary options */
6865
    { "usb", 0, QEMU_OPTION_usb },
6866
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6867
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
6868
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
6869
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
6870
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
6871
    { "daemonize", 0, QEMU_OPTION_daemonize },
6872
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6873
#if defined(TARGET_ARM) || defined(TARGET_M68K)
6874
    { "semihosting", 0, QEMU_OPTION_semihosting },
6875
#endif
6876
    { "name", HAS_ARG, QEMU_OPTION_name },
6877
#if defined(TARGET_SPARC)
6878
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
6879
#endif
6880
    { NULL },
6881
};
6882

    
6883
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
6884

    
6885
/* this stack is only used during signal handling */
6886
#define SIGNAL_STACK_SIZE 32768
6887

    
6888
static uint8_t *signal_stack;
6889

    
6890
#endif
6891

    
6892
/* password input */
6893

    
6894
int qemu_key_check(BlockDriverState *bs, const char *name)
6895
{
6896
    char password[256];
6897
    int i;
6898

    
6899
    if (!bdrv_is_encrypted(bs))
6900
        return 0;
6901

    
6902
    term_printf("%s is encrypted.\n", name);
6903
    for(i = 0; i < 3; i++) {
6904
        monitor_readline("Password: ", 1, password, sizeof(password));
6905
        if (bdrv_set_key(bs, password) == 0)
6906
            return 0;
6907
        term_printf("invalid password\n");
6908
    }
6909
    return -EPERM;
6910
}
6911

    
6912
static BlockDriverState *get_bdrv(int index)
6913
{
6914
    BlockDriverState *bs;
6915

    
6916
    if (index < 4) {
6917
        bs = bs_table[index];
6918
    } else if (index < 6) {
6919
        bs = fd_table[index - 4];
6920
    } else {
6921
        bs = NULL;
6922
    }
6923
    return bs;
6924
}
6925

    
6926
static void read_passwords(void)
6927
{
6928
    BlockDriverState *bs;
6929
    int i;
6930

    
6931
    for(i = 0; i < 6; i++) {
6932
        bs = get_bdrv(i);
6933
        if (bs)
6934
            qemu_key_check(bs, bdrv_get_device_name(bs));
6935
    }
6936
}
6937

    
6938
/* XXX: currently we cannot use simultaneously different CPUs */
6939
void register_machines(void)
6940
{
6941
#if defined(TARGET_I386)
6942
    qemu_register_machine(&pc_machine);
6943
    qemu_register_machine(&isapc_machine);
6944
#elif defined(TARGET_PPC)
6945
    qemu_register_machine(&heathrow_machine);
6946
    qemu_register_machine(&core99_machine);
6947
    qemu_register_machine(&prep_machine);
6948
    qemu_register_machine(&ref405ep_machine);
6949
    qemu_register_machine(&taihu_machine);
6950
#elif defined(TARGET_MIPS)
6951
    qemu_register_machine(&mips_machine);
6952
    qemu_register_machine(&mips_malta_machine);
6953
    qemu_register_machine(&mips_pica61_machine);
6954
#elif defined(TARGET_SPARC)
6955
#ifdef TARGET_SPARC64
6956
    qemu_register_machine(&sun4u_machine);
6957
#else
6958
    qemu_register_machine(&ss5_machine);
6959
    qemu_register_machine(&ss10_machine);
6960
#endif
6961
#elif defined(TARGET_ARM)
6962
    qemu_register_machine(&integratorcp_machine);
6963
    qemu_register_machine(&versatilepb_machine);
6964
    qemu_register_machine(&versatileab_machine);
6965
    qemu_register_machine(&realview_machine);
6966
    qemu_register_machine(&akitapda_machine);
6967
    qemu_register_machine(&spitzpda_machine);
6968
    qemu_register_machine(&borzoipda_machine);
6969
    qemu_register_machine(&terrierpda_machine);
6970
#elif defined(TARGET_SH4)
6971
    qemu_register_machine(&shix_machine);
6972
#elif defined(TARGET_ALPHA)
6973
    /* XXX: TODO */
6974
#elif defined(TARGET_M68K)
6975
    qemu_register_machine(&an5206_machine);
6976
#else
6977
#error unsupported CPU
6978
#endif
6979
}
6980

    
6981
#ifdef HAS_AUDIO
6982
struct soundhw soundhw[] = {
6983
#ifdef HAS_AUDIO_CHOICE
6984
#ifdef TARGET_I386
6985
    {
6986
        "pcspk",
6987
        "PC speaker",
6988
        0,
6989
        1,
6990
        { .init_isa = pcspk_audio_init }
6991
    },
6992
#endif
6993
    {
6994
        "sb16",
6995
        "Creative Sound Blaster 16",
6996
        0,
6997
        1,
6998
        { .init_isa = SB16_init }
6999
    },
7000

    
7001
#ifdef CONFIG_ADLIB
7002
    {
7003
        "adlib",
7004
#ifdef HAS_YMF262
7005
        "Yamaha YMF262 (OPL3)",
7006
#else
7007
        "Yamaha YM3812 (OPL2)",
7008
#endif
7009
        0,
7010
        1,
7011
        { .init_isa = Adlib_init }
7012
    },
7013
#endif
7014

    
7015
#ifdef CONFIG_GUS
7016
    {
7017
        "gus",
7018
        "Gravis Ultrasound GF1",
7019
        0,
7020
        1,
7021
        { .init_isa = GUS_init }
7022
    },
7023
#endif
7024

    
7025
    {
7026
        "es1370",
7027
        "ENSONIQ AudioPCI ES1370",
7028
        0,
7029
        0,
7030
        { .init_pci = es1370_init }
7031
    },
7032
#endif
7033

    
7034
    { NULL, NULL, 0, 0, { NULL } }
7035
};
7036

    
7037
static void select_soundhw (const char *optarg)
7038
{
7039
    struct soundhw *c;
7040

    
7041
    if (*optarg == '?') {
7042
    show_valid_cards:
7043

    
7044
        printf ("Valid sound card names (comma separated):\n");
7045
        for (c = soundhw; c->name; ++c) {
7046
            printf ("%-11s %s\n", c->name, c->descr);
7047
        }
7048
        printf ("\n-soundhw all will enable all of the above\n");
7049
        exit (*optarg != '?');
7050
    }
7051
    else {
7052
        size_t l;
7053
        const char *p;
7054
        char *e;
7055
        int bad_card = 0;
7056

    
7057
        if (!strcmp (optarg, "all")) {
7058
            for (c = soundhw; c->name; ++c) {
7059
                c->enabled = 1;
7060
            }
7061
            return;
7062
        }
7063

    
7064
        p = optarg;
7065
        while (*p) {
7066
            e = strchr (p, ',');
7067
            l = !e ? strlen (p) : (size_t) (e - p);
7068

    
7069
            for (c = soundhw; c->name; ++c) {
7070
                if (!strncmp (c->name, p, l)) {
7071
                    c->enabled = 1;
7072
                    break;
7073
                }
7074
            }
7075

    
7076
            if (!c->name) {
7077
                if (l > 80) {
7078
                    fprintf (stderr,
7079
                             "Unknown sound card name (too big to show)\n");
7080
                }
7081
                else {
7082
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
7083
                             (int) l, p);
7084
                }
7085
                bad_card = 1;
7086
            }
7087
            p += l + (e != NULL);
7088
        }
7089

    
7090
        if (bad_card)
7091
            goto show_valid_cards;
7092
    }
7093
}
7094
#endif
7095

    
7096
#ifdef _WIN32
7097
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7098
{
7099
    exit(STATUS_CONTROL_C_EXIT);
7100
    return TRUE;
7101
}
7102
#endif
7103

    
7104
#define MAX_NET_CLIENTS 32
7105

    
7106
int main(int argc, char **argv)
7107
{
7108
#ifdef CONFIG_GDBSTUB
7109
    int use_gdbstub;
7110
    const char *gdbstub_port;
7111
#endif
7112
    int i, cdrom_index, pflash_index;
7113
    int snapshot, linux_boot;
7114
    const char *initrd_filename;
7115
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7116
    const char *pflash_filename[MAX_PFLASH];
7117
    const char *sd_filename;
7118
    const char *mtd_filename;
7119
    const char *kernel_filename, *kernel_cmdline;
7120
    DisplayState *ds = &display_state;
7121
    int cyls, heads, secs, translation;
7122
    char net_clients[MAX_NET_CLIENTS][256];
7123
    int nb_net_clients;
7124
    int optind;
7125
    const char *r, *optarg;
7126
    CharDriverState *monitor_hd;
7127
    char monitor_device[128];
7128
    char serial_devices[MAX_SERIAL_PORTS][128];
7129
    int serial_device_index;
7130
    char parallel_devices[MAX_PARALLEL_PORTS][128];
7131
    int parallel_device_index;
7132
    const char *loadvm = NULL;
7133
    QEMUMachine *machine;
7134
    const char *cpu_model;
7135
    char usb_devices[MAX_USB_CMDLINE][128];
7136
    int usb_devices_index;
7137
    int fds[2];
7138
    const char *pid_file = NULL;
7139
    VLANState *vlan;
7140

    
7141
    LIST_INIT (&vm_change_state_head);
7142
#ifndef _WIN32
7143
    {
7144
        struct sigaction act;
7145
        sigfillset(&act.sa_mask);
7146
        act.sa_flags = 0;
7147
        act.sa_handler = SIG_IGN;
7148
        sigaction(SIGPIPE, &act, NULL);
7149
    }
7150
#else
7151
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7152
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7153
       QEMU to run on a single CPU */
7154
    {
7155
        HANDLE h;
7156
        DWORD mask, smask;
7157
        int i;
7158
        h = GetCurrentProcess();
7159
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7160
            for(i = 0; i < 32; i++) {
7161
                if (mask & (1 << i))
7162
                    break;
7163
            }
7164
            if (i != 32) {
7165
                mask = 1 << i;
7166
                SetProcessAffinityMask(h, mask);
7167
            }
7168
        }
7169
    }
7170
#endif
7171

    
7172
    register_machines();
7173
    machine = first_machine;
7174
    cpu_model = NULL;
7175
    initrd_filename = NULL;
7176
    for(i = 0; i < MAX_FD; i++)
7177
        fd_filename[i] = NULL;
7178
    for(i = 0; i < MAX_DISKS; i++)
7179
        hd_filename[i] = NULL;
7180
    for(i = 0; i < MAX_PFLASH; i++)
7181
        pflash_filename[i] = NULL;
7182
    pflash_index = 0;
7183
    sd_filename = NULL;
7184
    mtd_filename = NULL;
7185
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7186
    vga_ram_size = VGA_RAM_SIZE;
7187
#ifdef CONFIG_GDBSTUB
7188
    use_gdbstub = 0;
7189
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7190
#endif
7191
    snapshot = 0;
7192
    nographic = 0;
7193
    kernel_filename = NULL;
7194
    kernel_cmdline = "";
7195
#ifdef TARGET_PPC
7196
    cdrom_index = 1;
7197
#else
7198
    cdrom_index = 2;
7199
#endif
7200
    cyls = heads = secs = 0;
7201
    translation = BIOS_ATA_TRANSLATION_AUTO;
7202
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7203

    
7204
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7205
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7206
        serial_devices[i][0] = '\0';
7207
    serial_device_index = 0;
7208
    
7209
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7210
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7211
        parallel_devices[i][0] = '\0';
7212
    parallel_device_index = 0;
7213
    
7214
    usb_devices_index = 0;
7215
    
7216
    nb_net_clients = 0;
7217

    
7218
    nb_nics = 0;
7219
    /* default mac address of the first network interface */
7220
    
7221
    optind = 1;
7222
    for(;;) {
7223
        if (optind >= argc)
7224
            break;
7225
        r = argv[optind];
7226
        if (r[0] != '-') {
7227
            hd_filename[0] = argv[optind++];
7228
        } else {
7229
            const QEMUOption *popt;
7230

    
7231
            optind++;
7232
            /* Treat --foo the same as -foo.  */
7233
            if (r[1] == '-')
7234
                r++;
7235
            popt = qemu_options;
7236
            for(;;) {
7237
                if (!popt->name) {
7238
                    fprintf(stderr, "%s: invalid option -- '%s'\n", 
7239
                            argv[0], r);
7240
                    exit(1);
7241
                }
7242
                if (!strcmp(popt->name, r + 1))
7243
                    break;
7244
                popt++;
7245
            }
7246
            if (popt->flags & HAS_ARG) {
7247
                if (optind >= argc) {
7248
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7249
                            argv[0], r);
7250
                    exit(1);
7251
                }
7252
                optarg = argv[optind++];
7253
            } else {
7254
                optarg = NULL;
7255
            }
7256

    
7257
            switch(popt->index) {
7258
            case QEMU_OPTION_M:
7259
                machine = find_machine(optarg);
7260
                if (!machine) {
7261
                    QEMUMachine *m;
7262
                    printf("Supported machines are:\n");
7263
                    for(m = first_machine; m != NULL; m = m->next) {
7264
                        printf("%-10s %s%s\n",
7265
                               m->name, m->desc, 
7266
                               m == first_machine ? " (default)" : "");
7267
                    }
7268
                    exit(1);
7269
                }
7270
                break;
7271
            case QEMU_OPTION_cpu:
7272
                /* hw initialization will check this */
7273
                if (optarg[0] == '?') {
7274
#if defined(TARGET_PPC)
7275
                    ppc_cpu_list(stdout, &fprintf);
7276
#elif defined(TARGET_ARM)
7277
                    arm_cpu_list();
7278
#elif defined(TARGET_MIPS)
7279
                    mips_cpu_list(stdout, &fprintf);
7280
#elif defined(TARGET_SPARC)
7281
                    sparc_cpu_list(stdout, &fprintf);
7282
#endif
7283
                    exit(1);
7284
                } else {
7285
                    cpu_model = optarg;
7286
                }
7287
                break;
7288
            case QEMU_OPTION_initrd:
7289
                initrd_filename = optarg;
7290
                break;
7291
            case QEMU_OPTION_hda:
7292
            case QEMU_OPTION_hdb:
7293
            case QEMU_OPTION_hdc:
7294
            case QEMU_OPTION_hdd:
7295
                {
7296
                    int hd_index;
7297
                    hd_index = popt->index - QEMU_OPTION_hda;
7298
                    hd_filename[hd_index] = optarg;
7299
                    if (hd_index == cdrom_index)
7300
                        cdrom_index = -1;
7301
                }
7302
                break;
7303
            case QEMU_OPTION_mtdblock:
7304
                mtd_filename = optarg;
7305
                break;
7306
            case QEMU_OPTION_sd:
7307
                sd_filename = optarg;
7308
                break;
7309
            case QEMU_OPTION_pflash:
7310
                if (pflash_index >= MAX_PFLASH) {
7311
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7312
                    exit(1);
7313
                }
7314
                pflash_filename[pflash_index++] = optarg;
7315
                break;
7316
            case QEMU_OPTION_snapshot:
7317
                snapshot = 1;
7318
                break;
7319
            case QEMU_OPTION_hdachs:
7320
                {
7321
                    const char *p;
7322
                    p = optarg;
7323
                    cyls = strtol(p, (char **)&p, 0);
7324
                    if (cyls < 1 || cyls > 16383)
7325
                        goto chs_fail;
7326
                    if (*p != ',')
7327
                        goto chs_fail;
7328
                    p++;
7329
                    heads = strtol(p, (char **)&p, 0);
7330
                    if (heads < 1 || heads > 16)
7331
                        goto chs_fail;
7332
                    if (*p != ',')
7333
                        goto chs_fail;
7334
                    p++;
7335
                    secs = strtol(p, (char **)&p, 0);
7336
                    if (secs < 1 || secs > 63)
7337
                        goto chs_fail;
7338
                    if (*p == ',') {
7339
                        p++;
7340
                        if (!strcmp(p, "none"))
7341
                            translation = BIOS_ATA_TRANSLATION_NONE;
7342
                        else if (!strcmp(p, "lba"))
7343
                            translation = BIOS_ATA_TRANSLATION_LBA;
7344
                        else if (!strcmp(p, "auto"))
7345
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7346
                        else
7347
                            goto chs_fail;
7348
                    } else if (*p != '\0') {
7349
                    chs_fail:
7350
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7351
                        exit(1);
7352
                    }
7353
                }
7354
                break;
7355
            case QEMU_OPTION_nographic:
7356
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7357
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7358
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7359
                nographic = 1;
7360
                break;
7361
            case QEMU_OPTION_portrait:
7362
                graphic_rotate = 1;
7363
                break;
7364
            case QEMU_OPTION_kernel:
7365
                kernel_filename = optarg;
7366
                break;
7367
            case QEMU_OPTION_append:
7368
                kernel_cmdline = optarg;
7369
                break;
7370
            case QEMU_OPTION_cdrom:
7371
                if (cdrom_index >= 0) {
7372
                    hd_filename[cdrom_index] = optarg;
7373
                }
7374
                break;
7375
            case QEMU_OPTION_boot:
7376
                boot_device = optarg[0];
7377
                if (boot_device != 'a' && 
7378
#if defined(TARGET_SPARC) || defined(TARGET_I386)
7379
                    // Network boot
7380
                    boot_device != 'n' &&
7381
#endif
7382
                    boot_device != 'c' && boot_device != 'd') {
7383
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7384
                    exit(1);
7385
                }
7386
                break;
7387
            case QEMU_OPTION_fda:
7388
                fd_filename[0] = optarg;
7389
                break;
7390
            case QEMU_OPTION_fdb:
7391
                fd_filename[1] = optarg;
7392
                break;
7393
#ifdef TARGET_I386
7394
            case QEMU_OPTION_no_fd_bootchk:
7395
                fd_bootchk = 0;
7396
                break;
7397
#endif
7398
            case QEMU_OPTION_no_code_copy:
7399
                code_copy_enabled = 0;
7400
                break;
7401
            case QEMU_OPTION_net:
7402
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7403
                    fprintf(stderr, "qemu: too many network clients\n");
7404
                    exit(1);
7405
                }
7406
                pstrcpy(net_clients[nb_net_clients],
7407
                        sizeof(net_clients[0]),
7408
                        optarg);
7409
                nb_net_clients++;
7410
                break;
7411
#ifdef CONFIG_SLIRP
7412
            case QEMU_OPTION_tftp:
7413
                tftp_prefix = optarg;
7414
                break;
7415
            case QEMU_OPTION_bootp:
7416
                bootp_filename = optarg;
7417
                break;
7418
#ifndef _WIN32
7419
            case QEMU_OPTION_smb:
7420
                net_slirp_smb(optarg);
7421
                break;
7422
#endif
7423
            case QEMU_OPTION_redir:
7424
                net_slirp_redir(optarg);                
7425
                break;
7426
#endif
7427
#ifdef HAS_AUDIO
7428
            case QEMU_OPTION_audio_help:
7429
                AUD_help ();
7430
                exit (0);
7431
                break;
7432
            case QEMU_OPTION_soundhw:
7433
                select_soundhw (optarg);
7434
                break;
7435
#endif
7436
            case QEMU_OPTION_h:
7437
                help();
7438
                break;
7439
            case QEMU_OPTION_m:
7440
                ram_size = atoi(optarg) * 1024 * 1024;
7441
                if (ram_size <= 0)
7442
                    help();
7443
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7444
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7445
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7446
                    exit(1);
7447
                }
7448
                break;
7449
            case QEMU_OPTION_d:
7450
                {
7451
                    int mask;
7452
                    CPULogItem *item;
7453
                    
7454
                    mask = cpu_str_to_log_mask(optarg);
7455
                    if (!mask) {
7456
                        printf("Log items (comma separated):\n");
7457
                    for(item = cpu_log_items; item->mask != 0; item++) {
7458
                        printf("%-10s %s\n", item->name, item->help);
7459
                    }
7460
                    exit(1);
7461
                    }
7462
                    cpu_set_log(mask);
7463
                }
7464
                break;
7465
#ifdef CONFIG_GDBSTUB
7466
            case QEMU_OPTION_s:
7467
                use_gdbstub = 1;
7468
                break;
7469
            case QEMU_OPTION_p:
7470
                gdbstub_port = optarg;
7471
                break;
7472
#endif
7473
            case QEMU_OPTION_L:
7474
                bios_dir = optarg;
7475
                break;
7476
            case QEMU_OPTION_S:
7477
                autostart = 0;
7478
                break;
7479
            case QEMU_OPTION_k:
7480
                keyboard_layout = optarg;
7481
                break;
7482
            case QEMU_OPTION_localtime:
7483
                rtc_utc = 0;
7484
                break;
7485
            case QEMU_OPTION_cirrusvga:
7486
                cirrus_vga_enabled = 1;
7487
                vmsvga_enabled = 0;
7488
                break;
7489
            case QEMU_OPTION_vmsvga:
7490
                cirrus_vga_enabled = 0;
7491
                vmsvga_enabled = 1;
7492
                break;
7493
            case QEMU_OPTION_std_vga:
7494
                cirrus_vga_enabled = 0;
7495
                vmsvga_enabled = 0;
7496
                break;
7497
            case QEMU_OPTION_g:
7498
                {
7499
                    const char *p;
7500
                    int w, h, depth;
7501
                    p = optarg;
7502
                    w = strtol(p, (char **)&p, 10);
7503
                    if (w <= 0) {
7504
                    graphic_error:
7505
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
7506
                        exit(1);
7507
                    }
7508
                    if (*p != 'x')
7509
                        goto graphic_error;
7510
                    p++;
7511
                    h = strtol(p, (char **)&p, 10);
7512
                    if (h <= 0)
7513
                        goto graphic_error;
7514
                    if (*p == 'x') {
7515
                        p++;
7516
                        depth = strtol(p, (char **)&p, 10);
7517
                        if (depth != 8 && depth != 15 && depth != 16 && 
7518
                            depth != 24 && depth != 32)
7519
                            goto graphic_error;
7520
                    } else if (*p == '\0') {
7521
                        depth = graphic_depth;
7522
                    } else {
7523
                        goto graphic_error;
7524
                    }
7525
                    
7526
                    graphic_width = w;
7527
                    graphic_height = h;
7528
                    graphic_depth = depth;
7529
                }
7530
                break;
7531
            case QEMU_OPTION_echr:
7532
                {
7533
                    char *r;
7534
                    term_escape_char = strtol(optarg, &r, 0);
7535
                    if (r == optarg)
7536
                        printf("Bad argument to echr\n");
7537
                    break;
7538
                }
7539
            case QEMU_OPTION_monitor:
7540
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7541
                break;
7542
            case QEMU_OPTION_serial:
7543
                if (serial_device_index >= MAX_SERIAL_PORTS) {
7544
                    fprintf(stderr, "qemu: too many serial ports\n");
7545
                    exit(1);
7546
                }
7547
                pstrcpy(serial_devices[serial_device_index], 
7548
                        sizeof(serial_devices[0]), optarg);
7549
                serial_device_index++;
7550
                break;
7551
            case QEMU_OPTION_parallel:
7552
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7553
                    fprintf(stderr, "qemu: too many parallel ports\n");
7554
                    exit(1);
7555
                }
7556
                pstrcpy(parallel_devices[parallel_device_index], 
7557
                        sizeof(parallel_devices[0]), optarg);
7558
                parallel_device_index++;
7559
                break;
7560
            case QEMU_OPTION_loadvm:
7561
                loadvm = optarg;
7562
                break;
7563
            case QEMU_OPTION_full_screen:
7564
                full_screen = 1;
7565
                break;
7566
#ifdef CONFIG_SDL
7567
            case QEMU_OPTION_no_frame:
7568
                no_frame = 1;
7569
                break;
7570
            case QEMU_OPTION_no_quit:
7571
                no_quit = 1;
7572
                break;
7573
#endif
7574
            case QEMU_OPTION_pidfile:
7575
                pid_file = optarg;
7576
                break;
7577
#ifdef TARGET_I386
7578
            case QEMU_OPTION_win2k_hack:
7579
                win2k_install_hack = 1;
7580
                break;
7581
#endif
7582
#ifdef USE_KQEMU
7583
            case QEMU_OPTION_no_kqemu:
7584
                kqemu_allowed = 0;
7585
                break;
7586
            case QEMU_OPTION_kernel_kqemu:
7587
                kqemu_allowed = 2;
7588
                break;
7589
#endif
7590
            case QEMU_OPTION_usb:
7591
                usb_enabled = 1;
7592
                break;
7593
            case QEMU_OPTION_usbdevice:
7594
                usb_enabled = 1;
7595
                if (usb_devices_index >= MAX_USB_CMDLINE) {
7596
                    fprintf(stderr, "Too many USB devices\n");
7597
                    exit(1);
7598
                }
7599
                pstrcpy(usb_devices[usb_devices_index],
7600
                        sizeof(usb_devices[usb_devices_index]),
7601
                        optarg);
7602
                usb_devices_index++;
7603
                break;
7604
            case QEMU_OPTION_smp:
7605
                smp_cpus = atoi(optarg);
7606
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7607
                    fprintf(stderr, "Invalid number of CPUs\n");
7608
                    exit(1);
7609
                }
7610
                break;
7611
            case QEMU_OPTION_vnc:
7612
                vnc_display = optarg;
7613
                break;
7614
            case QEMU_OPTION_no_acpi:
7615
                acpi_enabled = 0;
7616
                break;
7617
            case QEMU_OPTION_no_reboot:
7618
                no_reboot = 1;
7619
                break;
7620
            case QEMU_OPTION_show_cursor:
7621
                cursor_hide = 0;
7622
                break;
7623
            case QEMU_OPTION_daemonize:
7624
                daemonize = 1;
7625
                break;
7626
            case QEMU_OPTION_option_rom:
7627
                if (nb_option_roms >= MAX_OPTION_ROMS) {
7628
                    fprintf(stderr, "Too many option ROMs\n");
7629
                    exit(1);
7630
                }
7631
                option_rom[nb_option_roms] = optarg;
7632
                nb_option_roms++;
7633
                break;
7634
            case QEMU_OPTION_semihosting:
7635
                semihosting_enabled = 1;
7636
                break;
7637
            case QEMU_OPTION_name:
7638
                qemu_name = optarg;
7639
                break;
7640
#ifdef TARGET_SPARC
7641
            case QEMU_OPTION_prom_env:
7642
                if (nb_prom_envs >= MAX_PROM_ENVS) {
7643
                    fprintf(stderr, "Too many prom variables\n");
7644
                    exit(1);
7645
                }
7646
                prom_envs[nb_prom_envs] = optarg;
7647
                nb_prom_envs++;
7648
                break;
7649
#endif
7650
            }
7651
        }
7652
    }
7653

    
7654
#ifndef _WIN32
7655
    if (daemonize && !nographic && vnc_display == NULL) {
7656
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7657
        daemonize = 0;
7658
    }
7659

    
7660
    if (daemonize) {
7661
        pid_t pid;
7662

    
7663
        if (pipe(fds) == -1)
7664
            exit(1);
7665

    
7666
        pid = fork();
7667
        if (pid > 0) {
7668
            uint8_t status;
7669
            ssize_t len;
7670

    
7671
            close(fds[1]);
7672

    
7673
        again:
7674
            len = read(fds[0], &status, 1);
7675
            if (len == -1 && (errno == EINTR))
7676
                goto again;
7677

    
7678
            if (len != 1)
7679
                exit(1);
7680
            else if (status == 1) {
7681
                fprintf(stderr, "Could not acquire pidfile\n");
7682
                exit(1);
7683
            } else
7684
                exit(0);
7685
        } else if (pid < 0)
7686
            exit(1);
7687

    
7688
        setsid();
7689

    
7690
        pid = fork();
7691
        if (pid > 0)
7692
            exit(0);
7693
        else if (pid < 0)
7694
            exit(1);
7695

    
7696
        umask(027);
7697
        chdir("/");
7698

    
7699
        signal(SIGTSTP, SIG_IGN);
7700
        signal(SIGTTOU, SIG_IGN);
7701
        signal(SIGTTIN, SIG_IGN);
7702
    }
7703
#endif
7704

    
7705
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7706
        if (daemonize) {
7707
            uint8_t status = 1;
7708
            write(fds[1], &status, 1);
7709
        } else
7710
            fprintf(stderr, "Could not acquire pid file\n");
7711
        exit(1);
7712
    }
7713

    
7714
#ifdef USE_KQEMU
7715
    if (smp_cpus > 1)
7716
        kqemu_allowed = 0;
7717
#endif
7718
    linux_boot = (kernel_filename != NULL);
7719

    
7720
    if (!linux_boot &&
7721
        boot_device != 'n' &&
7722
        hd_filename[0] == '\0' && 
7723
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7724
        fd_filename[0] == '\0')
7725
        help();
7726

    
7727
    /* boot to floppy or the default cd if no hard disk defined yet */
7728
    if (hd_filename[0] == '\0' && boot_device == 'c') {
7729
        if (fd_filename[0] != '\0')
7730
            boot_device = 'a';
7731
        else
7732
            boot_device = 'd';
7733
    }
7734

    
7735
    setvbuf(stdout, NULL, _IOLBF, 0);
7736
    
7737
    init_timers();
7738
    init_timer_alarm();
7739
    qemu_aio_init();
7740

    
7741
#ifdef _WIN32
7742
    socket_init();
7743
#endif
7744

    
7745
    /* init network clients */
7746
    if (nb_net_clients == 0) {
7747
        /* if no clients, we use a default config */
7748
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
7749
                "nic");
7750
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
7751
                "user");
7752
        nb_net_clients = 2;
7753
    }
7754

    
7755
    for(i = 0;i < nb_net_clients; i++) {
7756
        if (net_client_init(net_clients[i]) < 0)
7757
            exit(1);
7758
    }
7759
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
7760
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
7761
            continue;
7762
        if (vlan->nb_guest_devs == 0) {
7763
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
7764
            exit(1);
7765
        }
7766
        if (vlan->nb_host_devs == 0)
7767
            fprintf(stderr,
7768
                    "Warning: vlan %d is not connected to host network\n",
7769
                    vlan->id);
7770
    }
7771

    
7772
#ifdef TARGET_I386
7773
    if (boot_device == 'n') {
7774
        for (i = 0; i < nb_nics; i++) {
7775
            const char *model = nd_table[i].model;
7776
            char buf[1024];
7777
            if (model == NULL)
7778
                model = "ne2k_pci";
7779
            snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7780
            if (get_image_size(buf) > 0) {
7781
                option_rom[nb_option_roms] = strdup(buf);
7782
                nb_option_roms++;
7783
                break;
7784
            }
7785
        }
7786
        if (i == nb_nics) {
7787
            fprintf(stderr, "No valid PXE rom found for network device\n");
7788
            exit(1);
7789
        }
7790
        boot_device = 'c'; /* to prevent confusion by the BIOS */
7791
    }
7792
#endif
7793

    
7794
    /* init the memory */
7795
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7796

    
7797
    phys_ram_base = qemu_vmalloc(phys_ram_size);
7798
    if (!phys_ram_base) {
7799
        fprintf(stderr, "Could not allocate physical memory\n");
7800
        exit(1);
7801
    }
7802

    
7803
    /* we always create the cdrom drive, even if no disk is there */
7804
    bdrv_init();
7805
    if (cdrom_index >= 0) {
7806
        bs_table[cdrom_index] = bdrv_new("cdrom");
7807
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7808
    }
7809

    
7810
    /* open the virtual block devices */
7811
    for(i = 0; i < MAX_DISKS; i++) {
7812
        if (hd_filename[i]) {
7813
            if (!bs_table[i]) {
7814
                char buf[64];
7815
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7816
                bs_table[i] = bdrv_new(buf);
7817
            }
7818
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7819
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7820
                        hd_filename[i]);
7821
                exit(1);
7822
            }
7823
            if (i == 0 && cyls != 0) {
7824
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7825
                bdrv_set_translation_hint(bs_table[i], translation);
7826
            }
7827
        }
7828
    }
7829

    
7830
    /* we always create at least one floppy disk */
7831
    fd_table[0] = bdrv_new("fda");
7832
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7833

    
7834
    for(i = 0; i < MAX_FD; i++) {
7835
        if (fd_filename[i]) {
7836
            if (!fd_table[i]) {
7837
                char buf[64];
7838
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7839
                fd_table[i] = bdrv_new(buf);
7840
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7841
            }
7842
            if (fd_filename[i][0] != '\0') {
7843
                if (bdrv_open(fd_table[i], fd_filename[i],
7844
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7845
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7846
                            fd_filename[i]);
7847
                    exit(1);
7848
                }
7849
            }
7850
        }
7851
    }
7852

    
7853
    /* Open the virtual parallel flash block devices */
7854
    for(i = 0; i < MAX_PFLASH; i++) {
7855
        if (pflash_filename[i]) {
7856
            if (!pflash_table[i]) {
7857
                char buf[64];
7858
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
7859
                pflash_table[i] = bdrv_new(buf);
7860
            }
7861
            if (bdrv_open(pflash_table[i], pflash_filename[i],
7862
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7863
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
7864
                        pflash_filename[i]);
7865
                exit(1);
7866
            }
7867
        }
7868
    }
7869

    
7870
    sd_bdrv = bdrv_new ("sd");
7871
    /* FIXME: This isn't really a floppy, but it's a reasonable
7872
       approximation.  */
7873
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
7874
    if (sd_filename) {
7875
        if (bdrv_open(sd_bdrv, sd_filename,
7876
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7877
            fprintf(stderr, "qemu: could not open SD card image %s\n",
7878
                    sd_filename);
7879
        } else
7880
            qemu_key_check(sd_bdrv, sd_filename);
7881
    }
7882

    
7883
    if (mtd_filename) {
7884
        mtd_bdrv = bdrv_new ("mtd");
7885
        if (bdrv_open(mtd_bdrv, mtd_filename,
7886
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
7887
            qemu_key_check(mtd_bdrv, mtd_filename)) {
7888
            fprintf(stderr, "qemu: could not open Flash image %s\n",
7889
                    mtd_filename);
7890
            bdrv_delete(mtd_bdrv);
7891
            mtd_bdrv = 0;
7892
        }
7893
    }
7894

    
7895
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7896
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7897

    
7898
    init_ioports();
7899

    
7900
    /* terminal init */
7901
    if (nographic) {
7902
        dumb_display_init(ds);
7903
    } else if (vnc_display != NULL) {
7904
        vnc_display_init(ds, vnc_display);
7905
    } else {
7906
#if defined(CONFIG_SDL)
7907
        sdl_display_init(ds, full_screen, no_frame);
7908
#elif defined(CONFIG_COCOA)
7909
        cocoa_display_init(ds, full_screen);
7910
#else
7911
        dumb_display_init(ds);
7912
#endif
7913
    }
7914

    
7915
    /* Maintain compatibility with multiple stdio monitors */
7916
    if (!strcmp(monitor_device,"stdio")) {
7917
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7918
            if (!strcmp(serial_devices[i],"mon:stdio")) {
7919
                monitor_device[0] = '\0';
7920
                break;
7921
            } else if (!strcmp(serial_devices[i],"stdio")) {
7922
                monitor_device[0] = '\0';
7923
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7924
                break;
7925
            }
7926
        }
7927
    }
7928
    if (monitor_device[0] != '\0') {
7929
        monitor_hd = qemu_chr_open(monitor_device);
7930
        if (!monitor_hd) {
7931
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7932
            exit(1);
7933
        }
7934
        monitor_init(monitor_hd, !nographic);
7935
    }
7936

    
7937
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7938
        const char *devname = serial_devices[i];
7939
        if (devname[0] != '\0' && strcmp(devname, "none")) {
7940
            serial_hds[i] = qemu_chr_open(devname);
7941
            if (!serial_hds[i]) {
7942
                fprintf(stderr, "qemu: could not open serial device '%s'\n", 
7943
                        devname);
7944
                exit(1);
7945
            }
7946
            if (!strcmp(devname, "vc"))
7947
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7948
        }
7949
    }
7950

    
7951
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7952
        const char *devname = parallel_devices[i];
7953
        if (devname[0] != '\0' && strcmp(devname, "none")) {
7954
            parallel_hds[i] = qemu_chr_open(devname);
7955
            if (!parallel_hds[i]) {
7956
                fprintf(stderr, "qemu: could not open parallel device '%s'\n", 
7957
                        devname);
7958
                exit(1);
7959
            }
7960
            if (!strcmp(devname, "vc"))
7961
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7962
        }
7963
    }
7964

    
7965
    machine->init(ram_size, vga_ram_size, boot_device,
7966
                  ds, fd_filename, snapshot,
7967
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7968

    
7969
    /* init USB devices */
7970
    if (usb_enabled) {
7971
        for(i = 0; i < usb_devices_index; i++) {
7972
            if (usb_device_add(usb_devices[i]) < 0) {
7973
                fprintf(stderr, "Warning: could not add USB device %s\n",
7974
                        usb_devices[i]);
7975
            }
7976
        }
7977
    }
7978

    
7979
    gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7980
    qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7981

    
7982
#ifdef CONFIG_GDBSTUB
7983
    if (use_gdbstub) {
7984
        /* XXX: use standard host:port notation and modify options
7985
           accordingly. */
7986
        if (gdbserver_start(gdbstub_port) < 0) {
7987
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7988
                    gdbstub_port);
7989
            exit(1);
7990
        }
7991
    } else 
7992
#endif
7993
    if (loadvm)
7994
        do_loadvm(loadvm);
7995

    
7996
    {
7997
        /* XXX: simplify init */
7998
        read_passwords();
7999
        if (autostart) {
8000
            vm_start();
8001
        }
8002
    }
8003

    
8004
    if (daemonize) {
8005
        uint8_t status = 0;
8006
        ssize_t len;
8007
        int fd;
8008

    
8009
    again1:
8010
        len = write(fds[1], &status, 1);
8011
        if (len == -1 && (errno == EINTR))
8012
            goto again1;
8013

    
8014
        if (len != 1)
8015
            exit(1);
8016

    
8017
        fd = open("/dev/null", O_RDWR);
8018
        if (fd == -1)
8019
            exit(1);
8020

    
8021
        dup2(fd, 0);
8022
        dup2(fd, 1);
8023
        dup2(fd, 2);
8024

    
8025
        close(fd);
8026
    }
8027

    
8028
    main_loop();
8029
    quit_timers();
8030
    return 0;
8031
}