Statistics
| Branch: | Revision:

root / op-i386.c @ 504e56eb

History | View | Annotate | Download (50.1 kB)

1
/*
2
 *  i386 micro operations
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec-i386.h"
21

    
22
/* NOTE: data are not static to force relocation generation by GCC */
23

    
24
uint8_t parity_table[256] = {
25
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57
};
58

    
59
/* modulo 17 table */
60
const uint8_t rclw_table[32] = {
61
    0, 1, 2, 3, 4, 5, 6, 7, 
62
    8, 9,10,11,12,13,14,15,
63
   16, 0, 1, 2, 3, 4, 5, 6,
64
    7, 8, 9,10,11,12,13,14,
65
};
66

    
67
/* modulo 9 table */
68
const uint8_t rclb_table[32] = {
69
    0, 1, 2, 3, 4, 5, 6, 7, 
70
    8, 0, 1, 2, 3, 4, 5, 6,
71
    7, 8, 0, 1, 2, 3, 4, 5, 
72
    6, 7, 8, 0, 1, 2, 3, 4,
73
};
74

    
75
#ifdef USE_X86LDOUBLE
76
/* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77
typedef unsigned short f15ld[5];
78
const f15ld f15rk[] =
79
{
80
/*0*/        {0x0000,0x0000,0x0000,0x0000,0x0000},
81
/*1*/        {0x0000,0x0000,0x0000,0x8000,0x3fff},
82
/*pi*/        {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83
/*lg2*/        {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84
/*ln2*/        {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85
/*l2e*/        {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86
/*l2t*/        {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87
};
88
#else
89
/* the same, 64-bit version */
90
typedef unsigned short f15ld[4];
91
const f15ld f15rk[] =
92
{
93
#ifndef WORDS_BIGENDIAN
94
/*0*/        {0x0000,0x0000,0x0000,0x0000},
95
/*1*/        {0x0000,0x0000,0x0000,0x3ff0},
96
/*pi*/        {0x2d18,0x5444,0x21fb,0x4009},
97
/*lg2*/        {0x79ff,0x509f,0x4413,0x3fd3},
98
/*ln2*/        {0x39ef,0xfefa,0x2e42,0x3fe6},
99
/*l2e*/        {0x82fe,0x652b,0x1547,0x3ff7},
100
/*l2t*/        {0xa371,0x0979,0x934f,0x400a}
101
#else
102
/*0*/   {0x0000,0x0000,0x0000,0x0000},
103
/*1*/   {0x3ff0,0x0000,0x0000,0x0000},
104
/*pi*/  {0x4009,0x21fb,0x5444,0x2d18},
105
/*lg2*/        {0x3fd3,0x4413,0x509f,0x79ff},
106
/*ln2*/        {0x3fe6,0x2e42,0xfefa,0x39ef},
107
/*l2e*/        {0x3ff7,0x1547,0x652b,0x82fe},
108
/*l2t*/        {0x400a,0x934f,0x0979,0xa371}
109
#endif
110
};
111
#endif
112
    
113
/* n must be a constant to be efficient */
114
static inline int lshift(int x, int n)
115
{
116
    if (n >= 0)
117
        return x << n;
118
    else
119
        return x >> (-n);
120
}
121

    
122
/* we define the various pieces of code used by the JIT */
123

    
124
#define REG EAX
125
#define REGNAME _EAX
126
#include "opreg_template.h"
127
#undef REG
128
#undef REGNAME
129

    
130
#define REG ECX
131
#define REGNAME _ECX
132
#include "opreg_template.h"
133
#undef REG
134
#undef REGNAME
135

    
136
#define REG EDX
137
#define REGNAME _EDX
138
#include "opreg_template.h"
139
#undef REG
140
#undef REGNAME
141

    
142
#define REG EBX
143
#define REGNAME _EBX
144
#include "opreg_template.h"
145
#undef REG
146
#undef REGNAME
147

    
148
#define REG ESP
149
#define REGNAME _ESP
150
#include "opreg_template.h"
151
#undef REG
152
#undef REGNAME
153

    
154
#define REG EBP
155
#define REGNAME _EBP
156
#include "opreg_template.h"
157
#undef REG
158
#undef REGNAME
159

    
160
#define REG ESI
161
#define REGNAME _ESI
162
#include "opreg_template.h"
163
#undef REG
164
#undef REGNAME
165

    
166
#define REG EDI
167
#define REGNAME _EDI
168
#include "opreg_template.h"
169
#undef REG
170
#undef REGNAME
171

    
172
/* operations with flags */
173

    
174
void OPPROTO op_addl_T0_T1_cc(void)
175
{
176
    CC_SRC = T0;
177
    T0 += T1;
178
    CC_DST = T0;
179
}
180

    
181
void OPPROTO op_orl_T0_T1_cc(void)
182
{
183
    T0 |= T1;
184
    CC_DST = T0;
185
}
186

    
187
void OPPROTO op_andl_T0_T1_cc(void)
188
{
189
    T0 &= T1;
190
    CC_DST = T0;
191
}
192

    
193
void OPPROTO op_subl_T0_T1_cc(void)
194
{
195
    CC_SRC = T0;
196
    T0 -= T1;
197
    CC_DST = T0;
198
}
199

    
200
void OPPROTO op_xorl_T0_T1_cc(void)
201
{
202
    T0 ^= T1;
203
    CC_DST = T0;
204
}
205

    
206
void OPPROTO op_cmpl_T0_T1_cc(void)
207
{
208
    CC_SRC = T0;
209
    CC_DST = T0 - T1;
210
}
211

    
212
void OPPROTO op_negl_T0_cc(void)
213
{
214
    CC_SRC = 0;
215
    T0 = -T0;
216
    CC_DST = T0;
217
}
218

    
219
void OPPROTO op_incl_T0_cc(void)
220
{
221
    CC_SRC = cc_table[CC_OP].compute_c();
222
    T0++;
223
    CC_DST = T0;
224
}
225

    
226
void OPPROTO op_decl_T0_cc(void)
227
{
228
    CC_SRC = cc_table[CC_OP].compute_c();
229
    T0--;
230
    CC_DST = T0;
231
}
232

    
233
void OPPROTO op_testl_T0_T1_cc(void)
234
{
235
    CC_DST = T0 & T1;
236
}
237

    
238
/* operations without flags */
239

    
240
void OPPROTO op_addl_T0_T1(void)
241
{
242
    T0 += T1;
243
}
244

    
245
void OPPROTO op_orl_T0_T1(void)
246
{
247
    T0 |= T1;
248
}
249

    
250
void OPPROTO op_andl_T0_T1(void)
251
{
252
    T0 &= T1;
253
}
254

    
255
void OPPROTO op_subl_T0_T1(void)
256
{
257
    T0 -= T1;
258
}
259

    
260
void OPPROTO op_xorl_T0_T1(void)
261
{
262
    T0 ^= T1;
263
}
264

    
265
void OPPROTO op_negl_T0(void)
266
{
267
    T0 = -T0;
268
}
269

    
270
void OPPROTO op_incl_T0(void)
271
{
272
    T0++;
273
}
274

    
275
void OPPROTO op_decl_T0(void)
276
{
277
    T0--;
278
}
279

    
280
void OPPROTO op_notl_T0(void)
281
{
282
    T0 = ~T0;
283
}
284

    
285
void OPPROTO op_bswapl_T0(void)
286
{
287
    T0 = bswap32(T0);
288
}
289

    
290
/* multiply/divide */
291
void OPPROTO op_mulb_AL_T0(void)
292
{
293
    unsigned int res;
294
    res = (uint8_t)EAX * (uint8_t)T0;
295
    EAX = (EAX & 0xffff0000) | res;
296
    CC_SRC = (res & 0xff00);
297
}
298

    
299
void OPPROTO op_imulb_AL_T0(void)
300
{
301
    int res;
302
    res = (int8_t)EAX * (int8_t)T0;
303
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
304
    CC_SRC = (res != (int8_t)res);
305
}
306

    
307
void OPPROTO op_mulw_AX_T0(void)
308
{
309
    unsigned int res;
310
    res = (uint16_t)EAX * (uint16_t)T0;
311
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
312
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313
    CC_SRC = res >> 16;
314
}
315

    
316
void OPPROTO op_imulw_AX_T0(void)
317
{
318
    int res;
319
    res = (int16_t)EAX * (int16_t)T0;
320
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
321
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322
    CC_SRC = (res != (int16_t)res);
323
}
324

    
325
void OPPROTO op_mull_EAX_T0(void)
326
{
327
    uint64_t res;
328
    res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329
    EAX = res;
330
    EDX = res >> 32;
331
    CC_SRC = res >> 32;
332
}
333

    
334
void OPPROTO op_imull_EAX_T0(void)
335
{
336
    int64_t res;
337
    res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338
    EAX = res;
339
    EDX = res >> 32;
340
    CC_SRC = (res != (int32_t)res);
341
}
342

    
343
void OPPROTO op_imulw_T0_T1(void)
344
{
345
    int res;
346
    res = (int16_t)T0 * (int16_t)T1;
347
    T0 = res;
348
    CC_SRC = (res != (int16_t)res);
349
}
350

    
351
void OPPROTO op_imull_T0_T1(void)
352
{
353
    int64_t res;
354
    res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355
    T0 = res;
356
    CC_SRC = (res != (int32_t)res);
357
}
358

    
359
/* division, flags are undefined */
360
/* XXX: add exceptions for overflow */
361
void OPPROTO op_divb_AL_T0(void)
362
{
363
    unsigned int num, den, q, r;
364

    
365
    num = (EAX & 0xffff);
366
    den = (T0 & 0xff);
367
    if (den == 0)
368
        raise_exception(EXCP00_DIVZ);
369
    q = (num / den) & 0xff;
370
    r = (num % den) & 0xff;
371
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
372
}
373

    
374
void OPPROTO op_idivb_AL_T0(void)
375
{
376
    int num, den, q, r;
377

    
378
    num = (int16_t)EAX;
379
    den = (int8_t)T0;
380
    if (den == 0)
381
        raise_exception(EXCP00_DIVZ);
382
    q = (num / den) & 0xff;
383
    r = (num % den) & 0xff;
384
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
385
}
386

    
387
void OPPROTO op_divw_AX_T0(void)
388
{
389
    unsigned int num, den, q, r;
390

    
391
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392
    den = (T0 & 0xffff);
393
    if (den == 0)
394
        raise_exception(EXCP00_DIVZ);
395
    q = (num / den) & 0xffff;
396
    r = (num % den) & 0xffff;
397
    EAX = (EAX & 0xffff0000) | q;
398
    EDX = (EDX & 0xffff0000) | r;
399
}
400

    
401
void OPPROTO op_idivw_AX_T0(void)
402
{
403
    int num, den, q, r;
404

    
405
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406
    den = (int16_t)T0;
407
    if (den == 0)
408
        raise_exception(EXCP00_DIVZ);
409
    q = (num / den) & 0xffff;
410
    r = (num % den) & 0xffff;
411
    EAX = (EAX & 0xffff0000) | q;
412
    EDX = (EDX & 0xffff0000) | r;
413
}
414

    
415
#ifdef BUGGY_GCC_DIV64
416
/* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
417
   call it from another function */
418
uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
419
{
420
    *q_ptr = num / den;
421
    return num % den;
422
}
423

    
424
int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
425
{
426
    *q_ptr = num / den;
427
    return num % den;
428
}
429
#endif
430

    
431
void OPPROTO op_divl_EAX_T0(void)
432
{
433
    unsigned int den, q, r;
434
    uint64_t num;
435
    
436
    num = EAX | ((uint64_t)EDX << 32);
437
    den = T0;
438
    if (den == 0)
439
        raise_exception(EXCP00_DIVZ);
440
#ifdef BUGGY_GCC_DIV64
441
    r = div64(&q, num, den);
442
#else
443
    q = (num / den);
444
    r = (num % den);
445
#endif
446
    EAX = q;
447
    EDX = r;
448
}
449

    
450
void OPPROTO op_idivl_EAX_T0(void)
451
{
452
    int den, q, r;
453
    int64_t num;
454
    
455
    num = EAX | ((uint64_t)EDX << 32);
456
    den = T0;
457
    if (den == 0)
458
        raise_exception(EXCP00_DIVZ);
459
#ifdef BUGGY_GCC_DIV64
460
    r = idiv64(&q, num, den);
461
#else
462
    q = (num / den);
463
    r = (num % den);
464
#endif
465
    EAX = q;
466
    EDX = r;
467
}
468

    
469
/* constant load & misc op */
470

    
471
void OPPROTO op_movl_T0_im(void)
472
{
473
    T0 = PARAM1;
474
}
475

    
476
void OPPROTO op_addl_T0_im(void)
477
{
478
    T0 += PARAM1;
479
}
480

    
481
void OPPROTO op_andl_T0_ffff(void)
482
{
483
    T0 = T0 & 0xffff;
484
}
485

    
486
void OPPROTO op_movl_T0_T1(void)
487
{
488
    T0 = T1;
489
}
490

    
491
void OPPROTO op_movl_T1_im(void)
492
{
493
    T1 = PARAM1;
494
}
495

    
496
void OPPROTO op_addl_T1_im(void)
497
{
498
    T1 += PARAM1;
499
}
500

    
501
void OPPROTO op_movl_T1_A0(void)
502
{
503
    T1 = A0;
504
}
505

    
506
void OPPROTO op_movl_A0_im(void)
507
{
508
    A0 = PARAM1;
509
}
510

    
511
void OPPROTO op_addl_A0_im(void)
512
{
513
    A0 += PARAM1;
514
}
515

    
516
void OPPROTO op_addl_A0_AL(void)
517
{
518
    A0 += (EAX & 0xff);
519
}
520

    
521
void OPPROTO op_andl_A0_ffff(void)
522
{
523
    A0 = A0 & 0xffff;
524
}
525

    
526
/* memory access */
527

    
528
void OPPROTO op_ldub_T0_A0(void)
529
{
530
    T0 = ldub((uint8_t *)A0);
531
}
532

    
533
void OPPROTO op_ldsb_T0_A0(void)
534
{
535
    T0 = ldsb((int8_t *)A0);
536
}
537

    
538
void OPPROTO op_lduw_T0_A0(void)
539
{
540
    T0 = lduw((uint8_t *)A0);
541
}
542

    
543
void OPPROTO op_ldsw_T0_A0(void)
544
{
545
    T0 = ldsw((int8_t *)A0);
546
}
547

    
548
void OPPROTO op_ldl_T0_A0(void)
549
{
550
    T0 = ldl((uint8_t *)A0);
551
}
552

    
553
void OPPROTO op_ldub_T1_A0(void)
554
{
555
    T1 = ldub((uint8_t *)A0);
556
}
557

    
558
void OPPROTO op_ldsb_T1_A0(void)
559
{
560
    T1 = ldsb((int8_t *)A0);
561
}
562

    
563
void OPPROTO op_lduw_T1_A0(void)
564
{
565
    T1 = lduw((uint8_t *)A0);
566
}
567

    
568
void OPPROTO op_ldsw_T1_A0(void)
569
{
570
    T1 = ldsw((int8_t *)A0);
571
}
572

    
573
void OPPROTO op_ldl_T1_A0(void)
574
{
575
    T1 = ldl((uint8_t *)A0);
576
}
577

    
578
void OPPROTO op_stb_T0_A0(void)
579
{
580
    stb((uint8_t *)A0, T0);
581
}
582

    
583
void OPPROTO op_stw_T0_A0(void)
584
{
585
    stw((uint8_t *)A0, T0);
586
}
587

    
588
void OPPROTO op_stl_T0_A0(void)
589
{
590
    stl((uint8_t *)A0, T0);
591
}
592

    
593
/* used for bit operations */
594

    
595
void OPPROTO op_add_bitw_A0_T1(void)
596
{
597
    A0 += ((int32_t)T1 >> 4) << 1;
598
}
599

    
600
void OPPROTO op_add_bitl_A0_T1(void)
601
{
602
    A0 += ((int32_t)T1 >> 5) << 2;
603
}
604

    
605
/* indirect jump */
606

    
607
void OPPROTO op_jmp_T0(void)
608
{
609
    EIP = T0;
610
}
611

    
612
void OPPROTO op_jmp_im(void)
613
{
614
    EIP = PARAM1;
615
}
616

    
617
void OPPROTO op_int_im(void)
618
{
619
    int intno;
620
    intno = PARAM1;
621
    EIP = PARAM2;
622
    raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
623
}
624

    
625
void OPPROTO op_int3(void)
626
{
627
    EIP = PARAM1;
628
    raise_exception(EXCP03_INT3);
629
}
630

    
631
void OPPROTO op_into(void)
632
{
633
    int eflags;
634
    eflags = cc_table[CC_OP].compute_all();
635
    if (eflags & CC_O) {
636
        raise_exception(EXCP04_INTO);
637
    }
638
    FORCE_RET();
639
}
640

    
641
void OPPROTO op_gpf(void)
642
{
643
    EIP = PARAM1;
644
    raise_exception(EXCP0D_GPF);
645
}
646

    
647
void OPPROTO op_cli(void)
648
{
649
    env->eflags &= ~IF_MASK;
650
}
651

    
652
void OPPROTO op_sti(void)
653
{
654
    env->eflags |= IF_MASK;
655
}
656

    
657
/* vm86plus instructions */
658

    
659
void OPPROTO op_cli_vm(void)
660
{
661
    env->eflags &= ~VIF_MASK;
662
}
663

    
664
void OPPROTO op_sti_vm(void)
665
{
666
    env->eflags |= VIF_MASK;
667
    if (env->eflags & VIP_MASK) {
668
        EIP = PARAM1;
669
        raise_exception(EXCP0D_GPF);
670
    }
671
    FORCE_RET();
672
}
673

    
674
void OPPROTO op_boundw(void)
675
{
676
    int low, high, v;
677
    low = ldsw((uint8_t *)A0);
678
    high = ldsw((uint8_t *)A0 + 2);
679
    v = (int16_t)T0;
680
    if (v < low || v > high)
681
        raise_exception(EXCP05_BOUND);
682
    FORCE_RET();
683
}
684

    
685
void OPPROTO op_boundl(void)
686
{
687
    int low, high, v;
688
    low = ldl((uint8_t *)A0);
689
    high = ldl((uint8_t *)A0 + 4);
690
    v = T0;
691
    if (v < low || v > high)
692
        raise_exception(EXCP05_BOUND);
693
    FORCE_RET();
694
}
695

    
696
void OPPROTO op_cmpxchg8b(void)
697
{
698
    uint64_t d;
699
    int eflags;
700

    
701
    eflags = cc_table[CC_OP].compute_all();
702
    d = ldq((uint8_t *)A0);
703
    if (d == (((uint64_t)EDX << 32) | EAX)) {
704
        stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
705
        eflags |= CC_Z;
706
    } else {
707
        EDX = d >> 32;
708
        EAX = d;
709
        eflags &= ~CC_Z;
710
    }
711
    CC_SRC = eflags;
712
    FORCE_RET();
713
}
714

    
715
/* string ops */
716

    
717
#define ldul ldl
718

    
719
#define SHIFT 0
720
#include "ops_template.h"
721
#undef SHIFT
722

    
723
#define SHIFT 1
724
#include "ops_template.h"
725
#undef SHIFT
726

    
727
#define SHIFT 2
728
#include "ops_template.h"
729
#undef SHIFT
730

    
731
/* sign extend */
732

    
733
void OPPROTO op_movsbl_T0_T0(void)
734
{
735
    T0 = (int8_t)T0;
736
}
737

    
738
void OPPROTO op_movzbl_T0_T0(void)
739
{
740
    T0 = (uint8_t)T0;
741
}
742

    
743
void OPPROTO op_movswl_T0_T0(void)
744
{
745
    T0 = (int16_t)T0;
746
}
747

    
748
void OPPROTO op_movzwl_T0_T0(void)
749
{
750
    T0 = (uint16_t)T0;
751
}
752

    
753
void OPPROTO op_movswl_EAX_AX(void)
754
{
755
    EAX = (int16_t)EAX;
756
}
757

    
758
void OPPROTO op_movsbw_AX_AL(void)
759
{
760
    EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
761
}
762

    
763
void OPPROTO op_movslq_EDX_EAX(void)
764
{
765
    EDX = (int32_t)EAX >> 31;
766
}
767

    
768
void OPPROTO op_movswl_DX_AX(void)
769
{
770
    EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
771
}
772

    
773
/* push/pop */
774

    
775
void op_pushl_T0(void)
776
{
777
    uint32_t offset;
778
    offset = ESP - 4;
779
    stl((void *)offset, T0);
780
    /* modify ESP after to handle exceptions correctly */
781
    ESP = offset;
782
}
783

    
784
void op_pushw_T0(void)
785
{
786
    uint32_t offset;
787
    offset = ESP - 2;
788
    stw((void *)offset, T0);
789
    /* modify ESP after to handle exceptions correctly */
790
    ESP = offset;
791
}
792

    
793
void op_pushl_ss32_T0(void)
794
{
795
    uint32_t offset;
796
    offset = ESP - 4;
797
    stl(env->seg_cache[R_SS].base + offset, T0);
798
    /* modify ESP after to handle exceptions correctly */
799
    ESP = offset;
800
}
801

    
802
void op_pushw_ss32_T0(void)
803
{
804
    uint32_t offset;
805
    offset = ESP - 2;
806
    stw(env->seg_cache[R_SS].base + offset, T0);
807
    /* modify ESP after to handle exceptions correctly */
808
    ESP = offset;
809
}
810

    
811
void op_pushl_ss16_T0(void)
812
{
813
    uint32_t offset;
814
    offset = (ESP - 4) & 0xffff;
815
    stl(env->seg_cache[R_SS].base + offset, T0);
816
    /* modify ESP after to handle exceptions correctly */
817
    ESP = (ESP & ~0xffff) | offset;
818
}
819

    
820
void op_pushw_ss16_T0(void)
821
{
822
    uint32_t offset;
823
    offset = (ESP - 2) & 0xffff;
824
    stw(env->seg_cache[R_SS].base + offset, T0);
825
    /* modify ESP after to handle exceptions correctly */
826
    ESP = (ESP & ~0xffff) | offset;
827
}
828

    
829
/* NOTE: ESP update is done after */
830
void op_popl_T0(void)
831
{
832
    T0 = ldl((void *)ESP);
833
}
834

    
835
void op_popw_T0(void)
836
{
837
    T0 = lduw((void *)ESP);
838
}
839

    
840
void op_popl_ss32_T0(void)
841
{
842
    T0 = ldl(env->seg_cache[R_SS].base + ESP);
843
}
844

    
845
void op_popw_ss32_T0(void)
846
{
847
    T0 = lduw(env->seg_cache[R_SS].base + ESP);
848
}
849

    
850
void op_popl_ss16_T0(void)
851
{
852
    T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
853
}
854

    
855
void op_popw_ss16_T0(void)
856
{
857
    T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
858
}
859

    
860
void op_addl_ESP_4(void)
861
{
862
    ESP += 4;
863
}
864

    
865
void op_addl_ESP_2(void)
866
{
867
    ESP += 2;
868
}
869

    
870
void op_addw_ESP_4(void)
871
{
872
    ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
873
}
874

    
875
void op_addw_ESP_2(void)
876
{
877
    ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
878
}
879

    
880
void op_addl_ESP_im(void)
881
{
882
    ESP += PARAM1;
883
}
884

    
885
void op_addw_ESP_im(void)
886
{
887
    ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
888
}
889

    
890
/* rdtsc */
891
#ifndef __i386__
892
uint64_t emu_time;
893
#endif
894

    
895
void OPPROTO op_rdtsc(void)
896
{
897
    uint64_t val;
898
#ifdef __i386__
899
    asm("rdtsc" : "=A" (val));
900
#else
901
    /* better than nothing: the time increases */
902
    val = emu_time++;
903
#endif
904
    EAX = val;
905
    EDX = val >> 32;
906
}
907

    
908
/* We simulate a pre-MMX pentium as in valgrind */
909
#define CPUID_FP87 (1 << 0)
910
#define CPUID_VME  (1 << 1)
911
#define CPUID_DE   (1 << 2)
912
#define CPUID_PSE  (1 << 3)
913
#define CPUID_TSC  (1 << 4)
914
#define CPUID_MSR  (1 << 5)
915
#define CPUID_PAE  (1 << 6)
916
#define CPUID_MCE  (1 << 7)
917
#define CPUID_CX8  (1 << 8)
918
#define CPUID_APIC (1 << 9)
919
#define CPUID_SEP  (1 << 11) /* sysenter/sysexit */
920
#define CPUID_MTRR (1 << 12)
921
#define CPUID_PGE  (1 << 13)
922
#define CPUID_MCA  (1 << 14)
923
#define CPUID_CMOV (1 << 15)
924
/* ... */
925
#define CPUID_MMX  (1 << 23)
926
#define CPUID_FXSR (1 << 24)
927
#define CPUID_SSE  (1 << 25)
928
#define CPUID_SSE2 (1 << 26)
929

    
930
void helper_cpuid(void)
931
{
932
    if (EAX == 0) {
933
        EAX = 1; /* max EAX index supported */
934
        EBX = 0x756e6547;
935
        ECX = 0x6c65746e;
936
        EDX = 0x49656e69;
937
    } else {
938
        /* EAX = 1 info */
939
        EAX = 0x52b;
940
        EBX = 0;
941
        ECX = 0;
942
        EDX = CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE |
943
            CPUID_TSC | CPUID_MSR | CPUID_MCE |
944
            CPUID_CX8;
945
    }
946
}
947

    
948
void OPPROTO op_cpuid(void)
949
{
950
    helper_cpuid();
951
}
952

    
953
/* bcd */
954

    
955
/* XXX: exception */
956
void OPPROTO op_aam(void)
957
{
958
    int base = PARAM1;
959
    int al, ah;
960
    al = EAX & 0xff;
961
    ah = al / base;
962
    al = al % base;
963
    EAX = (EAX & ~0xffff) | al | (ah << 8);
964
    CC_DST = al;
965
}
966

    
967
void OPPROTO op_aad(void)
968
{
969
    int base = PARAM1;
970
    int al, ah;
971
    al = EAX & 0xff;
972
    ah = (EAX >> 8) & 0xff;
973
    al = ((ah * base) + al) & 0xff;
974
    EAX = (EAX & ~0xffff) | al;
975
    CC_DST = al;
976
}
977

    
978
void OPPROTO op_aaa(void)
979
{
980
    int icarry;
981
    int al, ah, af;
982
    int eflags;
983

    
984
    eflags = cc_table[CC_OP].compute_all();
985
    af = eflags & CC_A;
986
    al = EAX & 0xff;
987
    ah = (EAX >> 8) & 0xff;
988

    
989
    icarry = (al > 0xf9);
990
    if (((al & 0x0f) > 9 ) || af) {
991
        al = (al + 6) & 0x0f;
992
        ah = (ah + 1 + icarry) & 0xff;
993
        eflags |= CC_C | CC_A;
994
    } else {
995
        eflags &= ~(CC_C | CC_A);
996
        al &= 0x0f;
997
    }
998
    EAX = (EAX & ~0xffff) | al | (ah << 8);
999
    CC_SRC = eflags;
1000
}
1001

    
1002
void OPPROTO op_aas(void)
1003
{
1004
    int icarry;
1005
    int al, ah, af;
1006
    int eflags;
1007

    
1008
    eflags = cc_table[CC_OP].compute_all();
1009
    af = eflags & CC_A;
1010
    al = EAX & 0xff;
1011
    ah = (EAX >> 8) & 0xff;
1012

    
1013
    icarry = (al < 6);
1014
    if (((al & 0x0f) > 9 ) || af) {
1015
        al = (al - 6) & 0x0f;
1016
        ah = (ah - 1 - icarry) & 0xff;
1017
        eflags |= CC_C | CC_A;
1018
    } else {
1019
        eflags &= ~(CC_C | CC_A);
1020
        al &= 0x0f;
1021
    }
1022
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1023
    CC_SRC = eflags;
1024
}
1025

    
1026
void OPPROTO op_daa(void)
1027
{
1028
    int al, af, cf;
1029
    int eflags;
1030

    
1031
    eflags = cc_table[CC_OP].compute_all();
1032
    cf = eflags & CC_C;
1033
    af = eflags & CC_A;
1034
    al = EAX & 0xff;
1035

    
1036
    eflags = 0;
1037
    if (((al & 0x0f) > 9 ) || af) {
1038
        al = (al + 6) & 0xff;
1039
        eflags |= CC_A;
1040
    }
1041
    if ((al > 0x9f) || cf) {
1042
        al = (al + 0x60) & 0xff;
1043
        eflags |= CC_C;
1044
    }
1045
    EAX = (EAX & ~0xff) | al;
1046
    /* well, speed is not an issue here, so we compute the flags by hand */
1047
    eflags |= (al == 0) << 6; /* zf */
1048
    eflags |= parity_table[al]; /* pf */
1049
    eflags |= (al & 0x80); /* sf */
1050
    CC_SRC = eflags;
1051
}
1052

    
1053
void OPPROTO op_das(void)
1054
{
1055
    int al, al1, af, cf;
1056
    int eflags;
1057

    
1058
    eflags = cc_table[CC_OP].compute_all();
1059
    cf = eflags & CC_C;
1060
    af = eflags & CC_A;
1061
    al = EAX & 0xff;
1062

    
1063
    eflags = 0;
1064
    al1 = al;
1065
    if (((al & 0x0f) > 9 ) || af) {
1066
        eflags |= CC_A;
1067
        if (al < 6 || cf)
1068
            eflags |= CC_C;
1069
        al = (al - 6) & 0xff;
1070
    }
1071
    if ((al1 > 0x99) || cf) {
1072
        al = (al - 0x60) & 0xff;
1073
        eflags |= CC_C;
1074
    }
1075
    EAX = (EAX & ~0xff) | al;
1076
    /* well, speed is not an issue here, so we compute the flags by hand */
1077
    eflags |= (al == 0) << 6; /* zf */
1078
    eflags |= parity_table[al]; /* pf */
1079
    eflags |= (al & 0x80); /* sf */
1080
    CC_SRC = eflags;
1081
}
1082

    
1083
/* segment handling */
1084

    
1085
/* XXX: use static VM86 information */
1086
void load_seg(int seg_reg, int selector)
1087
{
1088
    SegmentCache *sc;
1089
    SegmentDescriptorTable *dt;
1090
    int index;
1091
    uint32_t e1, e2;
1092
    uint8_t *ptr;
1093

    
1094
    env->segs[seg_reg] = selector;
1095
    sc = &env->seg_cache[seg_reg];
1096
    if (env->eflags & VM_MASK) {
1097
        sc->base = (void *)(selector << 4);
1098
        sc->limit = 0xffff;
1099
        sc->seg_32bit = 0;
1100
    } else {
1101
        if (selector & 0x4)
1102
            dt = &env->ldt;
1103
        else
1104
            dt = &env->gdt;
1105
        index = selector & ~7;
1106
        if ((index + 7) > dt->limit)
1107
            raise_exception_err(EXCP0D_GPF, selector);
1108
        ptr = dt->base + index;
1109
        e1 = ldl(ptr);
1110
        e2 = ldl(ptr + 4);
1111
        sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1112
        sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1113
        if (e2 & (1 << 23))
1114
            sc->limit = (sc->limit << 12) | 0xfff;
1115
        sc->seg_32bit = (e2 >> 22) & 1;
1116
#if 0
1117
        fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n", 
1118
                selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1119
#endif
1120
    }
1121
}
1122

    
1123
void OPPROTO op_movl_seg_T0(void)
1124
{
1125
    load_seg(PARAM1, T0 & 0xffff);
1126
}
1127

    
1128
void OPPROTO op_movl_T0_seg(void)
1129
{
1130
    T0 = env->segs[PARAM1];
1131
}
1132

    
1133
void OPPROTO op_movl_A0_seg(void)
1134
{
1135
    A0 = *(unsigned long *)((char *)env + PARAM1);
1136
}
1137

    
1138
void OPPROTO op_addl_A0_seg(void)
1139
{
1140
    A0 += *(unsigned long *)((char *)env + PARAM1);
1141
}
1142

    
1143
/* flags handling */
1144

    
1145
/* slow jumps cases (compute x86 flags) */
1146
void OPPROTO op_jo_cc(void)
1147
{
1148
    int eflags;
1149
    eflags = cc_table[CC_OP].compute_all();
1150
    if (eflags & CC_O)
1151
        EIP = PARAM1;
1152
    else
1153
        EIP = PARAM2;
1154
    FORCE_RET();
1155
}
1156

    
1157
void OPPROTO op_jb_cc(void)
1158
{
1159
    if (cc_table[CC_OP].compute_c())
1160
        EIP = PARAM1;
1161
    else
1162
        EIP = PARAM2;
1163
    FORCE_RET();
1164
}
1165

    
1166
void OPPROTO op_jz_cc(void)
1167
{
1168
    int eflags;
1169
    eflags = cc_table[CC_OP].compute_all();
1170
    if (eflags & CC_Z)
1171
        EIP = PARAM1;
1172
    else
1173
        EIP = PARAM2;
1174
    FORCE_RET();
1175
}
1176

    
1177
void OPPROTO op_jbe_cc(void)
1178
{
1179
    int eflags;
1180
    eflags = cc_table[CC_OP].compute_all();
1181
    if (eflags & (CC_Z | CC_C))
1182
        EIP = PARAM1;
1183
    else
1184
        EIP = PARAM2;
1185
    FORCE_RET();
1186
}
1187

    
1188
void OPPROTO op_js_cc(void)
1189
{
1190
    int eflags;
1191
    eflags = cc_table[CC_OP].compute_all();
1192
    if (eflags & CC_S)
1193
        EIP = PARAM1;
1194
    else
1195
        EIP = PARAM2;
1196
    FORCE_RET();
1197
}
1198

    
1199
void OPPROTO op_jp_cc(void)
1200
{
1201
    int eflags;
1202
    eflags = cc_table[CC_OP].compute_all();
1203
    if (eflags & CC_P)
1204
        EIP = PARAM1;
1205
    else
1206
        EIP = PARAM2;
1207
    FORCE_RET();
1208
}
1209

    
1210
void OPPROTO op_jl_cc(void)
1211
{
1212
    int eflags;
1213
    eflags = cc_table[CC_OP].compute_all();
1214
    if ((eflags ^ (eflags >> 4)) & 0x80)
1215
        EIP = PARAM1;
1216
    else
1217
        EIP = PARAM2;
1218
    FORCE_RET();
1219
}
1220

    
1221
void OPPROTO op_jle_cc(void)
1222
{
1223
    int eflags;
1224
    eflags = cc_table[CC_OP].compute_all();
1225
    if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
1226
        EIP = PARAM1;
1227
    else
1228
        EIP = PARAM2;
1229
    FORCE_RET();
1230
}
1231

    
1232
/* slow set cases (compute x86 flags) */
1233
void OPPROTO op_seto_T0_cc(void)
1234
{
1235
    int eflags;
1236
    eflags = cc_table[CC_OP].compute_all();
1237
    T0 = (eflags >> 11) & 1;
1238
}
1239

    
1240
void OPPROTO op_setb_T0_cc(void)
1241
{
1242
    T0 = cc_table[CC_OP].compute_c();
1243
}
1244

    
1245
void OPPROTO op_setz_T0_cc(void)
1246
{
1247
    int eflags;
1248
    eflags = cc_table[CC_OP].compute_all();
1249
    T0 = (eflags >> 6) & 1;
1250
}
1251

    
1252
void OPPROTO op_setbe_T0_cc(void)
1253
{
1254
    int eflags;
1255
    eflags = cc_table[CC_OP].compute_all();
1256
    T0 = (eflags & (CC_Z | CC_C)) != 0;
1257
}
1258

    
1259
void OPPROTO op_sets_T0_cc(void)
1260
{
1261
    int eflags;
1262
    eflags = cc_table[CC_OP].compute_all();
1263
    T0 = (eflags >> 7) & 1;
1264
}
1265

    
1266
void OPPROTO op_setp_T0_cc(void)
1267
{
1268
    int eflags;
1269
    eflags = cc_table[CC_OP].compute_all();
1270
    T0 = (eflags >> 2) & 1;
1271
}
1272

    
1273
void OPPROTO op_setl_T0_cc(void)
1274
{
1275
    int eflags;
1276
    eflags = cc_table[CC_OP].compute_all();
1277
    T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1278
}
1279

    
1280
void OPPROTO op_setle_T0_cc(void)
1281
{
1282
    int eflags;
1283
    eflags = cc_table[CC_OP].compute_all();
1284
    T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1285
}
1286

    
1287
void OPPROTO op_xor_T0_1(void)
1288
{
1289
    T0 ^= 1;
1290
}
1291

    
1292
void OPPROTO op_set_cc_op(void)
1293
{
1294
    CC_OP = PARAM1;
1295
}
1296

    
1297
#define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
1298
#define FL_UPDATE_MASK16 (TF_MASK)
1299

    
1300
void OPPROTO op_movl_eflags_T0(void)
1301
{
1302
    int eflags;
1303
    eflags = T0;
1304
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1305
    DF = 1 - (2 * ((eflags >> 10) & 1));
1306
    /* we also update some system flags as in user mode */
1307
    env->eflags = (env->eflags & ~FL_UPDATE_MASK32) | (eflags & FL_UPDATE_MASK32);
1308
}
1309

    
1310
void OPPROTO op_movw_eflags_T0(void)
1311
{
1312
    int eflags;
1313
    eflags = T0;
1314
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1315
    DF = 1 - (2 * ((eflags >> 10) & 1));
1316
    /* we also update some system flags as in user mode */
1317
    env->eflags = (env->eflags & ~FL_UPDATE_MASK16) | (eflags & FL_UPDATE_MASK16);
1318
}
1319

    
1320
/* vm86 version */
1321
void OPPROTO op_movw_eflags_T0_vm(void)
1322
{
1323
    int eflags;
1324
    eflags = T0;
1325
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1326
    DF = 1 - (2 * ((eflags >> 10) & 1));
1327
    /* we also update some system flags as in user mode */
1328
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1329
        (eflags & FL_UPDATE_MASK16);
1330
    if (eflags & IF_MASK) {
1331
        env->eflags |= VIF_MASK;
1332
        if (env->eflags & VIP_MASK) {
1333
            EIP = PARAM1;
1334
            raise_exception(EXCP0D_GPF);
1335
        }
1336
    }
1337
    FORCE_RET();
1338
}
1339

    
1340
void OPPROTO op_movl_eflags_T0_vm(void)
1341
{
1342
    int eflags;
1343
    eflags = T0;
1344
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1345
    DF = 1 - (2 * ((eflags >> 10) & 1));
1346
    /* we also update some system flags as in user mode */
1347
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1348
        (eflags & FL_UPDATE_MASK32);
1349
    if (eflags & IF_MASK) {
1350
        env->eflags |= VIF_MASK;
1351
        if (env->eflags & VIP_MASK) {
1352
            EIP = PARAM1;
1353
            raise_exception(EXCP0D_GPF);
1354
        }
1355
    }
1356
    FORCE_RET();
1357
}
1358

    
1359
/* XXX: compute only O flag */
1360
void OPPROTO op_movb_eflags_T0(void)
1361
{
1362
    int of;
1363
    of = cc_table[CC_OP].compute_all() & CC_O;
1364
    CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1365
}
1366

    
1367
void OPPROTO op_movl_T0_eflags(void)
1368
{
1369
    int eflags;
1370
    eflags = cc_table[CC_OP].compute_all();
1371
    eflags |= (DF & DF_MASK);
1372
    eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1373
    T0 = eflags;
1374
}
1375

    
1376
/* vm86 version */
1377
void OPPROTO op_movl_T0_eflags_vm(void)
1378
{
1379
    int eflags;
1380
    eflags = cc_table[CC_OP].compute_all();
1381
    eflags |= (DF & DF_MASK);
1382
    eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1383
    if (env->eflags & VIF_MASK)
1384
        eflags |= IF_MASK;
1385
    T0 = eflags;
1386
}
1387

    
1388
void OPPROTO op_cld(void)
1389
{
1390
    DF = 1;
1391
}
1392

    
1393
void OPPROTO op_std(void)
1394
{
1395
    DF = -1;
1396
}
1397

    
1398
void OPPROTO op_clc(void)
1399
{
1400
    int eflags;
1401
    eflags = cc_table[CC_OP].compute_all();
1402
    eflags &= ~CC_C;
1403
    CC_SRC = eflags;
1404
}
1405

    
1406
void OPPROTO op_stc(void)
1407
{
1408
    int eflags;
1409
    eflags = cc_table[CC_OP].compute_all();
1410
    eflags |= CC_C;
1411
    CC_SRC = eflags;
1412
}
1413

    
1414
void OPPROTO op_cmc(void)
1415
{
1416
    int eflags;
1417
    eflags = cc_table[CC_OP].compute_all();
1418
    eflags ^= CC_C;
1419
    CC_SRC = eflags;
1420
}
1421

    
1422
void OPPROTO op_salc(void)
1423
{
1424
    int cf;
1425
    cf = cc_table[CC_OP].compute_c();
1426
    EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1427
}
1428

    
1429
static int compute_all_eflags(void)
1430
{
1431
    return CC_SRC;
1432
}
1433

    
1434
static int compute_c_eflags(void)
1435
{
1436
    return CC_SRC & CC_C;
1437
}
1438

    
1439
static int compute_c_mul(void)
1440
{
1441
    int cf;
1442
    cf = (CC_SRC != 0);
1443
    return cf;
1444
}
1445

    
1446
static int compute_all_mul(void)
1447
{
1448
    int cf, pf, af, zf, sf, of;
1449
    cf = (CC_SRC != 0);
1450
    pf = 0; /* undefined */
1451
    af = 0; /* undefined */
1452
    zf = 0; /* undefined */
1453
    sf = 0; /* undefined */
1454
    of = cf << 11;
1455
    return cf | pf | af | zf | sf | of;
1456
}
1457
    
1458
CCTable cc_table[CC_OP_NB] = {
1459
    [CC_OP_DYNAMIC] = { /* should never happen */ },
1460

    
1461
    [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1462

    
1463
    [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1464

    
1465
    [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1466
    [CC_OP_ADDW] = { compute_all_addw, compute_c_addw  },
1467
    [CC_OP_ADDL] = { compute_all_addl, compute_c_addl  },
1468

    
1469
    [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1470
    [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw  },
1471
    [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl  },
1472

    
1473
    [CC_OP_SUBB] = { compute_all_subb, compute_c_subb  },
1474
    [CC_OP_SUBW] = { compute_all_subw, compute_c_subw  },
1475
    [CC_OP_SUBL] = { compute_all_subl, compute_c_subl  },
1476
    
1477
    [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb  },
1478
    [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw  },
1479
    [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl  },
1480
    
1481
    [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1482
    [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1483
    [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1484
    
1485
    [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1486
    [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1487
    [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1488
    
1489
    [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1490
    [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1491
    [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1492
    
1493
    [CC_OP_SHLB] = { compute_all_shlb, compute_c_shll },
1494
    [CC_OP_SHLW] = { compute_all_shlw, compute_c_shll },
1495
    [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1496

    
1497
    [CC_OP_SARB] = { compute_all_sarb, compute_c_shll },
1498
    [CC_OP_SARW] = { compute_all_sarw, compute_c_shll },
1499
    [CC_OP_SARL] = { compute_all_sarl, compute_c_shll },
1500
};
1501

    
1502
/* floating point support. Some of the code for complicated x87
1503
   functions comes from the LGPL'ed x86 emulator found in the Willows
1504
   TWIN windows emulator. */
1505

    
1506
#ifdef USE_X86LDOUBLE
1507
/* use long double functions */
1508
#define lrint lrintl
1509
#define llrint llrintl
1510
#define fabs fabsl
1511
#define sin sinl
1512
#define cos cosl
1513
#define sqrt sqrtl
1514
#define pow powl
1515
#define log logl
1516
#define tan tanl
1517
#define atan2 atan2l
1518
#define floor floorl
1519
#define ceil ceill
1520
#define rint rintl
1521
#endif
1522

    
1523
extern int lrint(CPU86_LDouble x);
1524
extern int64_t llrint(CPU86_LDouble x);
1525
extern CPU86_LDouble fabs(CPU86_LDouble x);
1526
extern CPU86_LDouble sin(CPU86_LDouble x);
1527
extern CPU86_LDouble cos(CPU86_LDouble x);
1528
extern CPU86_LDouble sqrt(CPU86_LDouble x);
1529
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1530
extern CPU86_LDouble log(CPU86_LDouble x);
1531
extern CPU86_LDouble tan(CPU86_LDouble x);
1532
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1533
extern CPU86_LDouble floor(CPU86_LDouble x);
1534
extern CPU86_LDouble ceil(CPU86_LDouble x);
1535
extern CPU86_LDouble rint(CPU86_LDouble x);
1536

    
1537
#if defined(__powerpc__)
1538
extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1539

    
1540
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1541
double qemu_rint(double x)
1542
{
1543
    double y = 4503599627370496.0;
1544
    if (fabs(x) >= y)
1545
        return x;
1546
    if (x < 0) 
1547
        y = -y;
1548
    y = (x + y) - y;
1549
    if (y == 0.0)
1550
        y = copysign(y, x);
1551
    return y;
1552
}
1553

    
1554
#define rint qemu_rint
1555
#endif
1556

    
1557
#define RC_MASK         0xc00
1558
#define RC_NEAR                0x000
1559
#define RC_DOWN                0x400
1560
#define RC_UP                0x800
1561
#define RC_CHOP                0xc00
1562

    
1563
#define MAXTAN 9223372036854775808.0
1564

    
1565
#ifdef USE_X86LDOUBLE
1566

    
1567
/* only for x86 */
1568
typedef union {
1569
    long double d;
1570
    struct {
1571
        unsigned long long lower;
1572
        unsigned short upper;
1573
    } l;
1574
} CPU86_LDoubleU;
1575

    
1576
/* the following deal with x86 long double-precision numbers */
1577
#define MAXEXPD 0x7fff
1578
#define EXPBIAS 16383
1579
#define EXPD(fp)        (fp.l.upper & 0x7fff)
1580
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
1581
#define MANTD(fp)       (fp.l.lower)
1582
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1583

    
1584
#else
1585

    
1586
typedef union {
1587
    double d;
1588
#ifndef WORDS_BIGENDIAN
1589
    struct {
1590
        unsigned long lower;
1591
        long upper;
1592
    } l;
1593
#else
1594
    struct {
1595
        long upper;
1596
        unsigned long lower;
1597
    } l;
1598
#endif
1599
    long long ll;
1600
} CPU86_LDoubleU;
1601

    
1602
/* the following deal with IEEE double-precision numbers */
1603
#define MAXEXPD 0x7ff
1604
#define EXPBIAS 1023
1605
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
1606
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
1607
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
1608
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1609
#endif
1610

    
1611
/* fp load FT0 */
1612

    
1613
void OPPROTO op_flds_FT0_A0(void)
1614
{
1615
#ifdef USE_FP_CONVERT
1616
    FP_CONVERT.i32 = ldl((void *)A0);
1617
    FT0 = FP_CONVERT.f;
1618
#else
1619
    FT0 = ldfl((void *)A0);
1620
#endif
1621
}
1622

    
1623
void OPPROTO op_fldl_FT0_A0(void)
1624
{
1625
#ifdef USE_FP_CONVERT
1626
    FP_CONVERT.i64 = ldq((void *)A0);
1627
    FT0 = FP_CONVERT.d;
1628
#else
1629
    FT0 = ldfq((void *)A0);
1630
#endif
1631
}
1632

    
1633
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1634
#ifdef USE_INT_TO_FLOAT_HELPERS
1635

    
1636
void helper_fild_FT0_A0(void)
1637
{
1638
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1639
}
1640

    
1641
void helper_fildl_FT0_A0(void)
1642
{
1643
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1644
}
1645

    
1646
void helper_fildll_FT0_A0(void)
1647
{
1648
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1649
}
1650

    
1651
void OPPROTO op_fild_FT0_A0(void)
1652
{
1653
    helper_fild_FT0_A0();
1654
}
1655

    
1656
void OPPROTO op_fildl_FT0_A0(void)
1657
{
1658
    helper_fildl_FT0_A0();
1659
}
1660

    
1661
void OPPROTO op_fildll_FT0_A0(void)
1662
{
1663
    helper_fildll_FT0_A0();
1664
}
1665

    
1666
#else
1667

    
1668
void OPPROTO op_fild_FT0_A0(void)
1669
{
1670
#ifdef USE_FP_CONVERT
1671
    FP_CONVERT.i32 = ldsw((void *)A0);
1672
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1673
#else
1674
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1675
#endif
1676
}
1677

    
1678
void OPPROTO op_fildl_FT0_A0(void)
1679
{
1680
#ifdef USE_FP_CONVERT
1681
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1682
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1683
#else
1684
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1685
#endif
1686
}
1687

    
1688
void OPPROTO op_fildll_FT0_A0(void)
1689
{
1690
#ifdef USE_FP_CONVERT
1691
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1692
    FT0 = (CPU86_LDouble)FP_CONVERT.i64;
1693
#else
1694
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1695
#endif
1696
}
1697
#endif
1698

    
1699
/* fp load ST0 */
1700

    
1701
void OPPROTO op_flds_ST0_A0(void)
1702
{
1703
#ifdef USE_FP_CONVERT
1704
    FP_CONVERT.i32 = ldl((void *)A0);
1705
    ST0 = FP_CONVERT.f;
1706
#else
1707
    ST0 = ldfl((void *)A0);
1708
#endif
1709
}
1710

    
1711
void OPPROTO op_fldl_ST0_A0(void)
1712
{
1713
#ifdef USE_FP_CONVERT
1714
    FP_CONVERT.i64 = ldq((void *)A0);
1715
    ST0 = FP_CONVERT.d;
1716
#else
1717
    ST0 = ldfq((void *)A0);
1718
#endif
1719
}
1720

    
1721
#ifdef USE_X86LDOUBLE
1722
void OPPROTO op_fldt_ST0_A0(void)
1723
{
1724
    ST0 = *(long double *)A0;
1725
}
1726
#else
1727
void helper_fldt_ST0_A0(void)
1728
{
1729
    CPU86_LDoubleU temp;
1730
    int upper, e;
1731
    /* mantissa */
1732
    upper = lduw((uint8_t *)A0 + 8);
1733
    /* XXX: handle overflow ? */
1734
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1735
    e |= (upper >> 4) & 0x800; /* sign */
1736
    temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1737
    ST0 = temp.d;
1738
}
1739

    
1740
void OPPROTO op_fldt_ST0_A0(void)
1741
{
1742
    helper_fldt_ST0_A0();
1743
}
1744
#endif
1745

    
1746
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1747
#ifdef USE_INT_TO_FLOAT_HELPERS
1748

    
1749
void helper_fild_ST0_A0(void)
1750
{
1751
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1752
}
1753

    
1754
void helper_fildl_ST0_A0(void)
1755
{
1756
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1757
}
1758

    
1759
void helper_fildll_ST0_A0(void)
1760
{
1761
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1762
}
1763

    
1764
void OPPROTO op_fild_ST0_A0(void)
1765
{
1766
    helper_fild_ST0_A0();
1767
}
1768

    
1769
void OPPROTO op_fildl_ST0_A0(void)
1770
{
1771
    helper_fildl_ST0_A0();
1772
}
1773

    
1774
void OPPROTO op_fildll_ST0_A0(void)
1775
{
1776
    helper_fildll_ST0_A0();
1777
}
1778

    
1779
#else
1780

    
1781
void OPPROTO op_fild_ST0_A0(void)
1782
{
1783
#ifdef USE_FP_CONVERT
1784
    FP_CONVERT.i32 = ldsw((void *)A0);
1785
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1786
#else
1787
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1788
#endif
1789
}
1790

    
1791
void OPPROTO op_fildl_ST0_A0(void)
1792
{
1793
#ifdef USE_FP_CONVERT
1794
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1795
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1796
#else
1797
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1798
#endif
1799
}
1800

    
1801
void OPPROTO op_fildll_ST0_A0(void)
1802
{
1803
#ifdef USE_FP_CONVERT
1804
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1805
    ST0 = (CPU86_LDouble)FP_CONVERT.i64;
1806
#else
1807
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1808
#endif
1809
}
1810

    
1811
#endif
1812

    
1813
/* fp store */
1814

    
1815
void OPPROTO op_fsts_ST0_A0(void)
1816
{
1817
#ifdef USE_FP_CONVERT
1818
    FP_CONVERT.d = ST0;
1819
    stfl((void *)A0, FP_CONVERT.f);
1820
#else
1821
    stfl((void *)A0, (float)ST0);
1822
#endif
1823
}
1824

    
1825
void OPPROTO op_fstl_ST0_A0(void)
1826
{
1827
    stfq((void *)A0, (double)ST0);
1828
}
1829

    
1830
#ifdef USE_X86LDOUBLE
1831
void OPPROTO op_fstt_ST0_A0(void)
1832
{
1833
    *(long double *)A0 = ST0;
1834
}
1835
#else
1836
void helper_fstt_ST0_A0(void)
1837
{
1838
    CPU86_LDoubleU temp;
1839
    int e;
1840
    temp.d = ST0;
1841
    /* mantissa */
1842
    stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1843
    /* exponent + sign */
1844
    e = EXPD(temp) - EXPBIAS + 16383;
1845
    e |= SIGND(temp) >> 16;
1846
    stw((uint8_t *)A0 + 8, e);
1847
}
1848

    
1849
void OPPROTO op_fstt_ST0_A0(void)
1850
{
1851
    helper_fstt_ST0_A0();
1852
}
1853
#endif
1854

    
1855
void OPPROTO op_fist_ST0_A0(void)
1856
{
1857
#if defined(__sparc__) && !defined(__sparc_v9__)
1858
    register CPU86_LDouble d asm("o0");
1859
#else
1860
    CPU86_LDouble d;
1861
#endif
1862
    int val;
1863

    
1864
    d = ST0;
1865
    val = lrint(d);
1866
    stw((void *)A0, val);
1867
}
1868

    
1869
void OPPROTO op_fistl_ST0_A0(void)
1870
{
1871
#if defined(__sparc__) && !defined(__sparc_v9__)
1872
    register CPU86_LDouble d asm("o0");
1873
#else
1874
    CPU86_LDouble d;
1875
#endif
1876
    int val;
1877

    
1878
    d = ST0;
1879
    val = lrint(d);
1880
    stl((void *)A0, val);
1881
}
1882

    
1883
void OPPROTO op_fistll_ST0_A0(void)
1884
{
1885
#if defined(__sparc__) && !defined(__sparc_v9__)
1886
    register CPU86_LDouble d asm("o0");
1887
#else
1888
    CPU86_LDouble d;
1889
#endif
1890
    int64_t val;
1891

    
1892
    d = ST0;
1893
    val = llrint(d);
1894
    stq((void *)A0, val);
1895
}
1896

    
1897
/* BCD ops */
1898

    
1899
#define MUL10(iv) ( iv + iv + (iv << 3) )
1900

    
1901
void helper_fbld_ST0_A0(void)
1902
{
1903
    uint8_t *seg;
1904
    CPU86_LDouble fpsrcop;
1905
    int m32i;
1906
    unsigned int v;
1907

    
1908
    /* in this code, seg/m32i will be used as temporary ptr/int */
1909
    seg = (uint8_t *)A0 + 8;
1910
    v = ldub(seg--);
1911
    /* XXX: raise exception */
1912
    if (v != 0)
1913
        return;
1914
    v = ldub(seg--);
1915
    /* XXX: raise exception */
1916
    if ((v & 0xf0) != 0)
1917
        return;
1918
    m32i = v;  /* <-- d14 */
1919
    v = ldub(seg--);
1920
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d13 */
1921
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1922
    v = ldub(seg--);
1923
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d11 */
1924
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1925
    v = ldub(seg--);
1926
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d9 */
1927
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1928
    fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1929

    
1930
    v = ldub(seg--);
1931
    m32i = (v >> 4);  /* <-- d7 */
1932
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1933
    v = ldub(seg--);
1934
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d5 */
1935
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1936
    v = ldub(seg--);
1937
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d3 */
1938
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1939
    v = ldub(seg);
1940
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d1 */
1941
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1942
    fpsrcop += ((CPU86_LDouble)m32i);
1943
    if ( ldub(seg+9) & 0x80 )
1944
        fpsrcop = -fpsrcop;
1945
    ST0 = fpsrcop;
1946
}
1947

    
1948
void OPPROTO op_fbld_ST0_A0(void)
1949
{
1950
    helper_fbld_ST0_A0();
1951
}
1952

    
1953
void helper_fbst_ST0_A0(void)
1954
{
1955
    CPU86_LDouble fptemp;
1956
    CPU86_LDouble fpsrcop;
1957
    int v;
1958
    uint8_t *mem_ref, *mem_end;
1959

    
1960
    fpsrcop = rint(ST0);
1961
    mem_ref = (uint8_t *)A0;
1962
    mem_end = mem_ref + 8;
1963
    if ( fpsrcop < 0.0 ) {
1964
        stw(mem_end, 0x8000);
1965
        fpsrcop = -fpsrcop;
1966
    } else {
1967
        stw(mem_end, 0x0000);
1968
    }
1969
    while (mem_ref < mem_end) {
1970
        if (fpsrcop == 0.0)
1971
            break;
1972
        fptemp = floor(fpsrcop/10.0);
1973
        v = ((int)(fpsrcop - fptemp*10.0));
1974
        if  (fptemp == 0.0)  { 
1975
            stb(mem_ref++, v); 
1976
            break; 
1977
        }
1978
        fpsrcop = fptemp;
1979
        fptemp = floor(fpsrcop/10.0);
1980
        v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
1981
        stb(mem_ref++, v);
1982
        fpsrcop = fptemp;
1983
    }
1984
    while (mem_ref < mem_end) {
1985
        stb(mem_ref++, 0);
1986
    }
1987
}
1988

    
1989
void OPPROTO op_fbst_ST0_A0(void)
1990
{
1991
    helper_fbst_ST0_A0();
1992
}
1993

    
1994
/* FPU move */
1995

    
1996
static inline void fpush(void)
1997
{
1998
    env->fpstt = (env->fpstt - 1) & 7;
1999
    env->fptags[env->fpstt] = 0; /* validate stack entry */
2000
}
2001

    
2002
static inline void fpop(void)
2003
{
2004
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
2005
    env->fpstt = (env->fpstt + 1) & 7;
2006
}
2007

    
2008
void OPPROTO op_fpush(void)
2009
{
2010
    fpush();
2011
}
2012

    
2013
void OPPROTO op_fpop(void)
2014
{
2015
    fpop();
2016
}
2017

    
2018
void OPPROTO op_fdecstp(void)
2019
{
2020
    env->fpstt = (env->fpstt - 1) & 7;
2021
    env->fpus &= (~0x4700);
2022
}
2023

    
2024
void OPPROTO op_fincstp(void)
2025
{
2026
    env->fpstt = (env->fpstt + 1) & 7;
2027
    env->fpus &= (~0x4700);
2028
}
2029

    
2030
void OPPROTO op_fmov_ST0_FT0(void)
2031
{
2032
    ST0 = FT0;
2033
}
2034

    
2035
void OPPROTO op_fmov_FT0_STN(void)
2036
{
2037
    FT0 = ST(PARAM1);
2038
}
2039

    
2040
void OPPROTO op_fmov_ST0_STN(void)
2041
{
2042
    ST0 = ST(PARAM1);
2043
}
2044

    
2045
void OPPROTO op_fmov_STN_ST0(void)
2046
{
2047
    ST(PARAM1) = ST0;
2048
}
2049

    
2050
void OPPROTO op_fxchg_ST0_STN(void)
2051
{
2052
    CPU86_LDouble tmp;
2053
    tmp = ST(PARAM1);
2054
    ST(PARAM1) = ST0;
2055
    ST0 = tmp;
2056
}
2057

    
2058
/* FPU operations */
2059

    
2060
/* XXX: handle nans */
2061
void OPPROTO op_fcom_ST0_FT0(void)
2062
{
2063
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2064
    if (ST0 < FT0)
2065
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2066
    else if (ST0 == FT0)
2067
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2068
    FORCE_RET();
2069
}
2070

    
2071
/* XXX: handle nans */
2072
void OPPROTO op_fucom_ST0_FT0(void)
2073
{
2074
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2075
    if (ST0 < FT0)
2076
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2077
    else if (ST0 == FT0)
2078
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2079
    FORCE_RET();
2080
}
2081

    
2082
void OPPROTO op_fadd_ST0_FT0(void)
2083
{
2084
    ST0 += FT0;
2085
}
2086

    
2087
void OPPROTO op_fmul_ST0_FT0(void)
2088
{
2089
    ST0 *= FT0;
2090
}
2091

    
2092
void OPPROTO op_fsub_ST0_FT0(void)
2093
{
2094
    ST0 -= FT0;
2095
}
2096

    
2097
void OPPROTO op_fsubr_ST0_FT0(void)
2098
{
2099
    ST0 = FT0 - ST0;
2100
}
2101

    
2102
void OPPROTO op_fdiv_ST0_FT0(void)
2103
{
2104
    ST0 /= FT0;
2105
}
2106

    
2107
void OPPROTO op_fdivr_ST0_FT0(void)
2108
{
2109
    ST0 = FT0 / ST0;
2110
}
2111

    
2112
/* fp operations between STN and ST0 */
2113

    
2114
void OPPROTO op_fadd_STN_ST0(void)
2115
{
2116
    ST(PARAM1) += ST0;
2117
}
2118

    
2119
void OPPROTO op_fmul_STN_ST0(void)
2120
{
2121
    ST(PARAM1) *= ST0;
2122
}
2123

    
2124
void OPPROTO op_fsub_STN_ST0(void)
2125
{
2126
    ST(PARAM1) -= ST0;
2127
}
2128

    
2129
void OPPROTO op_fsubr_STN_ST0(void)
2130
{
2131
    CPU86_LDouble *p;
2132
    p = &ST(PARAM1);
2133
    *p = ST0 - *p;
2134
}
2135

    
2136
void OPPROTO op_fdiv_STN_ST0(void)
2137
{
2138
    ST(PARAM1) /= ST0;
2139
}
2140

    
2141
void OPPROTO op_fdivr_STN_ST0(void)
2142
{
2143
    CPU86_LDouble *p;
2144
    p = &ST(PARAM1);
2145
    *p = ST0 / *p;
2146
}
2147

    
2148
/* misc FPU operations */
2149
void OPPROTO op_fchs_ST0(void)
2150
{
2151
    ST0 = -ST0;
2152
}
2153

    
2154
void OPPROTO op_fabs_ST0(void)
2155
{
2156
    ST0 = fabs(ST0);
2157
}
2158

    
2159
void helper_fxam_ST0(void)
2160
{
2161
    CPU86_LDoubleU temp;
2162
    int expdif;
2163

    
2164
    temp.d = ST0;
2165

    
2166
    env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2167
    if (SIGND(temp))
2168
        env->fpus |= 0x200; /* C1 <-- 1 */
2169

    
2170
    expdif = EXPD(temp);
2171
    if (expdif == MAXEXPD) {
2172
        if (MANTD(temp) == 0)
2173
            env->fpus |=  0x500 /*Infinity*/;
2174
        else
2175
            env->fpus |=  0x100 /*NaN*/;
2176
    } else if (expdif == 0) {
2177
        if (MANTD(temp) == 0)
2178
            env->fpus |=  0x4000 /*Zero*/;
2179
        else
2180
            env->fpus |= 0x4400 /*Denormal*/;
2181
    } else {
2182
        env->fpus |= 0x400;
2183
    }
2184
}
2185

    
2186
void OPPROTO op_fxam_ST0(void)
2187
{
2188
    helper_fxam_ST0();
2189
}
2190

    
2191
void OPPROTO op_fld1_ST0(void)
2192
{
2193
    ST0 = *(CPU86_LDouble *)&f15rk[1];
2194
}
2195

    
2196
void OPPROTO op_fldl2t_ST0(void)
2197
{
2198
    ST0 = *(CPU86_LDouble *)&f15rk[6];
2199
}
2200

    
2201
void OPPROTO op_fldl2e_ST0(void)
2202
{
2203
    ST0 = *(CPU86_LDouble *)&f15rk[5];
2204
}
2205

    
2206
void OPPROTO op_fldpi_ST0(void)
2207
{
2208
    ST0 = *(CPU86_LDouble *)&f15rk[2];
2209
}
2210

    
2211
void OPPROTO op_fldlg2_ST0(void)
2212
{
2213
    ST0 = *(CPU86_LDouble *)&f15rk[3];
2214
}
2215

    
2216
void OPPROTO op_fldln2_ST0(void)
2217
{
2218
    ST0 = *(CPU86_LDouble *)&f15rk[4];
2219
}
2220

    
2221
void OPPROTO op_fldz_ST0(void)
2222
{
2223
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2224
}
2225

    
2226
void OPPROTO op_fldz_FT0(void)
2227
{
2228
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2229
}
2230

    
2231
void helper_f2xm1(void)
2232
{
2233
    ST0 = pow(2.0,ST0) - 1.0;
2234
}
2235

    
2236
void helper_fyl2x(void)
2237
{
2238
    CPU86_LDouble fptemp;
2239
    
2240
    fptemp = ST0;
2241
    if (fptemp>0.0){
2242
        fptemp = log(fptemp)/log(2.0);         /* log2(ST) */
2243
        ST1 *= fptemp;
2244
        fpop();
2245
    } else { 
2246
        env->fpus &= (~0x4700);
2247
        env->fpus |= 0x400;
2248
    }
2249
}
2250

    
2251
void helper_fptan(void)
2252
{
2253
    CPU86_LDouble fptemp;
2254

    
2255
    fptemp = ST0;
2256
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2257
        env->fpus |= 0x400;
2258
    } else {
2259
        ST0 = tan(fptemp);
2260
        fpush();
2261
        ST0 = 1.0;
2262
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2263
        /* the above code is for  |arg| < 2**52 only */
2264
    }
2265
}
2266

    
2267
void helper_fpatan(void)
2268
{
2269
    CPU86_LDouble fptemp, fpsrcop;
2270

    
2271
    fpsrcop = ST1;
2272
    fptemp = ST0;
2273
    ST1 = atan2(fpsrcop,fptemp);
2274
    fpop();
2275
}
2276

    
2277
void helper_fxtract(void)
2278
{
2279
    CPU86_LDoubleU temp;
2280
    unsigned int expdif;
2281

    
2282
    temp.d = ST0;
2283
    expdif = EXPD(temp) - EXPBIAS;
2284
    /*DP exponent bias*/
2285
    ST0 = expdif;
2286
    fpush();
2287
    BIASEXPONENT(temp);
2288
    ST0 = temp.d;
2289
}
2290

    
2291
void helper_fprem1(void)
2292
{
2293
    CPU86_LDouble dblq, fpsrcop, fptemp;
2294
    CPU86_LDoubleU fpsrcop1, fptemp1;
2295
    int expdif;
2296
    int q;
2297

    
2298
    fpsrcop = ST0;
2299
    fptemp = ST1;
2300
    fpsrcop1.d = fpsrcop;
2301
    fptemp1.d = fptemp;
2302
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2303
    if (expdif < 53) {
2304
        dblq = fpsrcop / fptemp;
2305
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2306
        ST0 = fpsrcop - fptemp*dblq;
2307
        q = (int)dblq; /* cutting off top bits is assumed here */
2308
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2309
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2310
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2311
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2312
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2313
    } else {
2314
        env->fpus |= 0x400;  /* C2 <-- 1 */
2315
        fptemp = pow(2.0, expdif-50);
2316
        fpsrcop = (ST0 / ST1) / fptemp;
2317
        /* fpsrcop = integer obtained by rounding to the nearest */
2318
        fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2319
            floor(fpsrcop): ceil(fpsrcop);
2320
        ST0 -= (ST1 * fpsrcop * fptemp);
2321
    }
2322
}
2323

    
2324
void helper_fprem(void)
2325
{
2326
    CPU86_LDouble dblq, fpsrcop, fptemp;
2327
    CPU86_LDoubleU fpsrcop1, fptemp1;
2328
    int expdif;
2329
    int q;
2330
    
2331
    fpsrcop = ST0;
2332
    fptemp = ST1;
2333
    fpsrcop1.d = fpsrcop;
2334
    fptemp1.d = fptemp;
2335
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2336
    if ( expdif < 53 ) {
2337
        dblq = fpsrcop / fptemp;
2338
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2339
        ST0 = fpsrcop - fptemp*dblq;
2340
        q = (int)dblq; /* cutting off top bits is assumed here */
2341
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2342
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2343
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2344
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2345
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2346
    } else {
2347
        env->fpus |= 0x400;  /* C2 <-- 1 */
2348
        fptemp = pow(2.0, expdif-50);
2349
        fpsrcop = (ST0 / ST1) / fptemp;
2350
        /* fpsrcop = integer obtained by chopping */
2351
        fpsrcop = (fpsrcop < 0.0)?
2352
            -(floor(fabs(fpsrcop))): floor(fpsrcop);
2353
        ST0 -= (ST1 * fpsrcop * fptemp);
2354
    }
2355
}
2356

    
2357
void helper_fyl2xp1(void)
2358
{
2359
    CPU86_LDouble fptemp;
2360

    
2361
    fptemp = ST0;
2362
    if ((fptemp+1.0)>0.0) {
2363
        fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2364
        ST1 *= fptemp;
2365
        fpop();
2366
    } else { 
2367
        env->fpus &= (~0x4700);
2368
        env->fpus |= 0x400;
2369
    }
2370
}
2371

    
2372
void helper_fsqrt(void)
2373
{
2374
    CPU86_LDouble fptemp;
2375

    
2376
    fptemp = ST0;
2377
    if (fptemp<0.0) { 
2378
        env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2379
        env->fpus |= 0x400;
2380
    }
2381
    ST0 = sqrt(fptemp);
2382
}
2383

    
2384
void helper_fsincos(void)
2385
{
2386
    CPU86_LDouble fptemp;
2387

    
2388
    fptemp = ST0;
2389
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2390
        env->fpus |= 0x400;
2391
    } else {
2392
        ST0 = sin(fptemp);
2393
        fpush();
2394
        ST0 = cos(fptemp);
2395
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2396
        /* the above code is for  |arg| < 2**63 only */
2397
    }
2398
}
2399

    
2400
void helper_frndint(void)
2401
{
2402
    ST0 = rint(ST0);
2403
}
2404

    
2405
void helper_fscale(void)
2406
{
2407
    CPU86_LDouble fpsrcop, fptemp;
2408

    
2409
    fpsrcop = 2.0;
2410
    fptemp = pow(fpsrcop,ST1);
2411
    ST0 *= fptemp;
2412
}
2413

    
2414
void helper_fsin(void)
2415
{
2416
    CPU86_LDouble fptemp;
2417

    
2418
    fptemp = ST0;
2419
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2420
        env->fpus |= 0x400;
2421
    } else {
2422
        ST0 = sin(fptemp);
2423
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2424
        /* the above code is for  |arg| < 2**53 only */
2425
    }
2426
}
2427

    
2428
void helper_fcos(void)
2429
{
2430
    CPU86_LDouble fptemp;
2431

    
2432
    fptemp = ST0;
2433
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2434
        env->fpus |= 0x400;
2435
    } else {
2436
        ST0 = cos(fptemp);
2437
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2438
        /* the above code is for  |arg5 < 2**63 only */
2439
    }
2440
}
2441

    
2442
/* associated heplers to reduce generated code length and to simplify
2443
   relocation (FP constants are usually stored in .rodata section) */
2444

    
2445
void OPPROTO op_f2xm1(void)
2446
{
2447
    helper_f2xm1();
2448
}
2449

    
2450
void OPPROTO op_fyl2x(void)
2451
{
2452
    helper_fyl2x();
2453
}
2454

    
2455
void OPPROTO op_fptan(void)
2456
{
2457
    helper_fptan();
2458
}
2459

    
2460
void OPPROTO op_fpatan(void)
2461
{
2462
    helper_fpatan();
2463
}
2464

    
2465
void OPPROTO op_fxtract(void)
2466
{
2467
    helper_fxtract();
2468
}
2469

    
2470
void OPPROTO op_fprem1(void)
2471
{
2472
    helper_fprem1();
2473
}
2474

    
2475

    
2476
void OPPROTO op_fprem(void)
2477
{
2478
    helper_fprem();
2479
}
2480

    
2481
void OPPROTO op_fyl2xp1(void)
2482
{
2483
    helper_fyl2xp1();
2484
}
2485

    
2486
void OPPROTO op_fsqrt(void)
2487
{
2488
    helper_fsqrt();
2489
}
2490

    
2491
void OPPROTO op_fsincos(void)
2492
{
2493
    helper_fsincos();
2494
}
2495

    
2496
void OPPROTO op_frndint(void)
2497
{
2498
    helper_frndint();
2499
}
2500

    
2501
void OPPROTO op_fscale(void)
2502
{
2503
    helper_fscale();
2504
}
2505

    
2506
void OPPROTO op_fsin(void)
2507
{
2508
    helper_fsin();
2509
}
2510

    
2511
void OPPROTO op_fcos(void)
2512
{
2513
    helper_fcos();
2514
}
2515

    
2516
void OPPROTO op_fnstsw_A0(void)
2517
{
2518
    int fpus;
2519
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2520
    stw((void *)A0, fpus);
2521
}
2522

    
2523
void OPPROTO op_fnstsw_EAX(void)
2524
{
2525
    int fpus;
2526
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2527
    EAX = (EAX & 0xffff0000) | fpus;
2528
}
2529

    
2530
void OPPROTO op_fnstcw_A0(void)
2531
{
2532
    stw((void *)A0, env->fpuc);
2533
}
2534

    
2535
void OPPROTO op_fldcw_A0(void)
2536
{
2537
    int rnd_type;
2538
    env->fpuc = lduw((void *)A0);
2539
    /* set rounding mode */
2540
    switch(env->fpuc & RC_MASK) {
2541
    default:
2542
    case RC_NEAR:
2543
        rnd_type = FE_TONEAREST;
2544
        break;
2545
    case RC_DOWN:
2546
        rnd_type = FE_DOWNWARD;
2547
        break;
2548
    case RC_UP:
2549
        rnd_type = FE_UPWARD;
2550
        break;
2551
    case RC_CHOP:
2552
        rnd_type = FE_TOWARDZERO;
2553
        break;
2554
    }
2555
    fesetround(rnd_type);
2556
}
2557

    
2558
void OPPROTO op_fclex(void)
2559
{
2560
    env->fpus &= 0x7f00;
2561
}
2562

    
2563
void OPPROTO op_fninit(void)
2564
{
2565
    env->fpus = 0;
2566
    env->fpstt = 0;
2567
    env->fpuc = 0x37f;
2568
    env->fptags[0] = 1;
2569
    env->fptags[1] = 1;
2570
    env->fptags[2] = 1;
2571
    env->fptags[3] = 1;
2572
    env->fptags[4] = 1;
2573
    env->fptags[5] = 1;
2574
    env->fptags[6] = 1;
2575
    env->fptags[7] = 1;
2576
}
2577

    
2578
/* threading support */
2579
void OPPROTO op_lock(void)
2580
{
2581
    cpu_lock();
2582
}
2583

    
2584
void OPPROTO op_unlock(void)
2585
{
2586
    cpu_unlock();
2587
}