Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ 52cc07d0

History | View | Annotate | Download (8.1 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_TIMER
27

    
28
#ifdef DEBUG_TIMER
29
#define DPRINTF(fmt, args...) \
30
do { printf("TIMER: " fmt , ##args); } while (0)
31
#define pic_set_irq_new(intctl, irq, level)                             \
32
    do { printf("TIMER: set_irq(%d): %d\n", (irq), (level));            \
33
        pic_set_irq_new((intctl), (irq),(level));} while (0)
34
#else
35
#define DPRINTF(fmt, args...)
36
#endif
37

    
38
/*
39
 * Registers of hardware timer in sun4m.
40
 *
41
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 * 
45
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46
 * are zero. Bit 31 is 1 when count has been reached.
47
 *
48
 * Per-CPU timers interrupt local CPU, system timer uses normal
49
 * interrupt routing.
50
 *
51
 */
52

    
53
typedef struct SLAVIO_TIMERState {
54
    uint32_t limit, count, counthigh;
55
    int64_t count_load_time;
56
    int64_t expire_time;
57
    int64_t stop_time, tick_offset;
58
    QEMUTimer *irq_timer;
59
    int irq;
60
    int reached, stopped;
61
    int mode; // 0 = processor, 1 = user, 2 = system
62
    unsigned int cpu;
63
    void *intctl;
64
} SLAVIO_TIMERState;
65

    
66
#define TIMER_MAXADDR 0x1f
67
#define CNT_FREQ 2000000
68

    
69
// Update count, set irq, update expire_time
70
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
71
{
72
    int out;
73
    int64_t diff, ticks, count;
74
    uint32_t limit;
75

    
76
    // There are three clock tick units: CPU ticks, register units
77
    // (nanoseconds), and counter ticks (500 ns).
78
    if (s->mode == 1 && s->stopped)
79
        ticks = s->stop_time;
80
    else
81
        ticks = qemu_get_clock(vm_clock) - s->tick_offset;
82

    
83
    out = (ticks > s->expire_time);
84
    if (out)
85
        s->reached = 0x80000000;
86
    if (!s->limit)
87
        limit = 0x7fffffff;
88
    else
89
        limit = s->limit;
90

    
91
    // Convert register units to counter ticks
92
    limit = limit >> 9;
93

    
94
    // Convert cpu ticks to counter ticks
95
    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
96

    
97
    // Calculate what the counter should be, convert to register
98
    // units
99
    count = diff % limit;
100
    s->count = count << 9;
101
    s->counthigh = count >> 22;
102

    
103
    // Expire time: CPU ticks left to next interrupt
104
    // Convert remaining counter ticks to CPU ticks
105
    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
106

    
107
    DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
108

    
109
    if (s->mode != 1)
110
        pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
111
}
112

    
113
// timer callback
114
static void slavio_timer_irq(void *opaque)
115
{
116
    SLAVIO_TIMERState *s = opaque;
117

    
118
    if (!s->irq_timer)
119
        return;
120
    slavio_timer_get_out(s);
121
    if (s->mode != 1)
122
        qemu_mod_timer(s->irq_timer, s->expire_time);
123
}
124

    
125
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
126
{
127
    SLAVIO_TIMERState *s = opaque;
128
    uint32_t saddr;
129

    
130
    saddr = (addr & TIMER_MAXADDR) >> 2;
131
    switch (saddr) {
132
    case 0:
133
        // read limit (system counter mode) or read most signifying
134
        // part of counter (user mode)
135
        if (s->mode != 1) {
136
            // clear irq
137
            pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
138
            s->reached = 0;
139
            return s->limit;
140
        }
141
        else {
142
            slavio_timer_get_out(s);
143
            return s->counthigh & 0x7fffffff;
144
        }
145
    case 1:
146
        // read counter and reached bit (system mode) or read lsbits
147
        // of counter (user mode)
148
        slavio_timer_get_out(s);
149
        if (s->mode != 1)
150
            return (s->count & 0x7fffffff) | s->reached;
151
        else
152
            return s->count;
153
    case 3:
154
        // read start/stop status
155
        return s->stopped;
156
    case 4:
157
        // read user/system mode
158
        return s->mode & 1;
159
    default:
160
        return 0;
161
    }
162
}
163

    
164
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
165
{
166
    SLAVIO_TIMERState *s = opaque;
167
    uint32_t saddr;
168

    
169
    saddr = (addr & TIMER_MAXADDR) >> 2;
170
    switch (saddr) {
171
    case 0:
172
        // set limit, reset counter
173
        s->count_load_time = qemu_get_clock(vm_clock);
174
        // fall through
175
    case 2:
176
        // set limit without resetting counter
177
        if (!val)
178
            s->limit = 0x7fffffff;
179
        else
180
            s->limit = val & 0x7fffffff;
181
        slavio_timer_irq(s);
182
        break;
183
    case 3:
184
        // start/stop user counter
185
        if (s->mode == 1) {
186
            if (val & 1) {
187
                s->stop_time = qemu_get_clock(vm_clock);
188
                s->stopped = 1;
189
            }
190
            else {
191
                if (s->stopped)
192
                    s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
193
                s->stopped = 0;
194
            }
195
        }
196
        break;
197
    case 4:
198
        // bit 0: user (1) or system (0) counter mode
199
        if (s->mode == 0 || s->mode == 1)
200
            s->mode = val & 1;
201
        break;
202
    default:
203
        break;
204
    }
205
}
206

    
207
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
208
    slavio_timer_mem_readl,
209
    slavio_timer_mem_readl,
210
    slavio_timer_mem_readl,
211
};
212

    
213
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
214
    slavio_timer_mem_writel,
215
    slavio_timer_mem_writel,
216
    slavio_timer_mem_writel,
217
};
218

    
219
static void slavio_timer_save(QEMUFile *f, void *opaque)
220
{
221
    SLAVIO_TIMERState *s = opaque;
222

    
223
    qemu_put_be32s(f, &s->limit);
224
    qemu_put_be32s(f, &s->count);
225
    qemu_put_be32s(f, &s->counthigh);
226
    qemu_put_be64s(f, &s->count_load_time);
227
    qemu_put_be64s(f, &s->expire_time);
228
    qemu_put_be64s(f, &s->stop_time);
229
    qemu_put_be64s(f, &s->tick_offset);
230
    qemu_put_be32s(f, &s->irq);
231
    qemu_put_be32s(f, &s->reached);
232
    qemu_put_be32s(f, &s->stopped);
233
    qemu_put_be32s(f, &s->mode);
234
}
235

    
236
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
237
{
238
    SLAVIO_TIMERState *s = opaque;
239
    
240
    if (version_id != 1)
241
        return -EINVAL;
242

    
243
    qemu_get_be32s(f, &s->limit);
244
    qemu_get_be32s(f, &s->count);
245
    qemu_get_be32s(f, &s->counthigh);
246
    qemu_get_be64s(f, &s->count_load_time);
247
    qemu_get_be64s(f, &s->expire_time);
248
    qemu_get_be64s(f, &s->stop_time);
249
    qemu_get_be64s(f, &s->tick_offset);
250
    qemu_get_be32s(f, &s->irq);
251
    qemu_get_be32s(f, &s->reached);
252
    qemu_get_be32s(f, &s->stopped);
253
    qemu_get_be32s(f, &s->mode);
254
    return 0;
255
}
256

    
257
static void slavio_timer_reset(void *opaque)
258
{
259
    SLAVIO_TIMERState *s = opaque;
260

    
261
    s->limit = 0;
262
    s->count = 0;
263
    s->count_load_time = qemu_get_clock(vm_clock);;
264
    s->stop_time = s->count_load_time;
265
    s->tick_offset = 0;
266
    s->reached = 0;
267
    s->mode &= 2;
268
    s->stopped = 1;
269
    slavio_timer_get_out(s);
270
}
271

    
272
void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu,
273
                       void *intctl)
274
{
275
    int slavio_timer_io_memory;
276
    SLAVIO_TIMERState *s;
277

    
278
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
279
    if (!s)
280
        return;
281
    s->irq = irq;
282
    s->mode = mode;
283
    s->cpu = cpu;
284
    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
285
    s->intctl = intctl;
286

    
287
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
288
                                                    slavio_timer_mem_write, s);
289
    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
290
    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
291
    qemu_register_reset(slavio_timer_reset, s);
292
    slavio_timer_reset(s);
293
}