Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ 5340c8a0

History | View | Annotate | Download (19.1 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "qemu-timer.h"
26
#include "sysemu.h"
27
#include "pc.h"
28
#include "apic.h"
29
#include "isa.h"
30
#include "mc146818rtc.h"
31

    
32
//#define DEBUG_CMOS
33
//#define DEBUG_COALESCED
34

    
35
#ifdef DEBUG_CMOS
36
# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
37
#else
38
# define CMOS_DPRINTF(format, ...)      do { } while (0)
39
#endif
40

    
41
#ifdef DEBUG_COALESCED
42
# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
43
#else
44
# define DPRINTF_C(format, ...)      do { } while (0)
45
#endif
46

    
47
#define RTC_REINJECT_ON_ACK_COUNT 20
48

    
49
#define RTC_SECONDS             0
50
#define RTC_SECONDS_ALARM       1
51
#define RTC_MINUTES             2
52
#define RTC_MINUTES_ALARM       3
53
#define RTC_HOURS               4
54
#define RTC_HOURS_ALARM         5
55
#define RTC_ALARM_DONT_CARE    0xC0
56

    
57
#define RTC_DAY_OF_WEEK         6
58
#define RTC_DAY_OF_MONTH        7
59
#define RTC_MONTH               8
60
#define RTC_YEAR                9
61

    
62
#define RTC_REG_A               10
63
#define RTC_REG_B               11
64
#define RTC_REG_C               12
65
#define RTC_REG_D               13
66

    
67
#define REG_A_UIP 0x80
68

    
69
#define REG_B_SET  0x80
70
#define REG_B_PIE  0x40
71
#define REG_B_AIE  0x20
72
#define REG_B_UIE  0x10
73
#define REG_B_SQWE 0x08
74
#define REG_B_DM   0x04
75

    
76
#define REG_C_UF   0x10
77
#define REG_C_IRQF 0x80
78
#define REG_C_PF   0x40
79
#define REG_C_AF   0x20
80

    
81
typedef struct RTCState {
82
    ISADevice dev;
83
    uint8_t cmos_data[128];
84
    uint8_t cmos_index;
85
    struct tm current_tm;
86
    int32_t base_year;
87
    qemu_irq irq;
88
    qemu_irq sqw_irq;
89
    int it_shift;
90
    /* periodic timer */
91
    QEMUTimer *periodic_timer;
92
    int64_t next_periodic_time;
93
    /* second update */
94
    int64_t next_second_time;
95
    uint16_t irq_reinject_on_ack_count;
96
    uint32_t irq_coalesced;
97
    uint32_t period;
98
    QEMUTimer *coalesced_timer;
99
    QEMUTimer *second_timer;
100
    QEMUTimer *second_timer2;
101
} RTCState;
102

    
103
static void rtc_set_time(RTCState *s);
104
static void rtc_copy_date(RTCState *s);
105

    
106
#ifdef TARGET_I386
107
static void rtc_coalesced_timer_update(RTCState *s)
108
{
109
    if (s->irq_coalesced == 0) {
110
        qemu_del_timer(s->coalesced_timer);
111
    } else {
112
        /* divide each RTC interval to 2 - 8 smaller intervals */
113
        int c = MIN(s->irq_coalesced, 7) + 1; 
114
        int64_t next_clock = qemu_get_clock(rtc_clock) +
115
            muldiv64(s->period / c, get_ticks_per_sec(), 32768);
116
        qemu_mod_timer(s->coalesced_timer, next_clock);
117
    }
118
}
119

    
120
static void rtc_coalesced_timer(void *opaque)
121
{
122
    RTCState *s = opaque;
123

    
124
    if (s->irq_coalesced != 0) {
125
        apic_reset_irq_delivered();
126
        s->cmos_data[RTC_REG_C] |= 0xc0;
127
        DPRINTF_C("cmos: injecting from timer\n");
128
        qemu_irq_raise(s->irq);
129
        if (apic_get_irq_delivered()) {
130
            s->irq_coalesced--;
131
            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
132
                      s->irq_coalesced);
133
        }
134
    }
135

    
136
    rtc_coalesced_timer_update(s);
137
}
138
#endif
139

    
140
static void rtc_timer_update(RTCState *s, int64_t current_time)
141
{
142
    int period_code, period;
143
    int64_t cur_clock, next_irq_clock;
144

    
145
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
146
    if (period_code != 0
147
        && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
148
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
149
        if (period_code <= 2)
150
            period_code += 7;
151
        /* period in 32 Khz cycles */
152
        period = 1 << (period_code - 1);
153
#ifdef TARGET_I386
154
        if (period != s->period) {
155
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
156
            DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
157
        }
158
        s->period = period;
159
#endif
160
        /* compute 32 khz clock */
161
        cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
162
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
163
        s->next_periodic_time =
164
            muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
165
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
166
    } else {
167
#ifdef TARGET_I386
168
        s->irq_coalesced = 0;
169
#endif
170
        qemu_del_timer(s->periodic_timer);
171
    }
172
}
173

    
174
static void rtc_periodic_timer(void *opaque)
175
{
176
    RTCState *s = opaque;
177

    
178
    rtc_timer_update(s, s->next_periodic_time);
179
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
180
        s->cmos_data[RTC_REG_C] |= 0xc0;
181
#ifdef TARGET_I386
182
        if(rtc_td_hack) {
183
            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
184
                s->irq_reinject_on_ack_count = 0;                
185
            apic_reset_irq_delivered();
186
            qemu_irq_raise(s->irq);
187
            if (!apic_get_irq_delivered()) {
188
                s->irq_coalesced++;
189
                rtc_coalesced_timer_update(s);
190
                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
191
                          s->irq_coalesced);
192
            }
193
        } else
194
#endif
195
        qemu_irq_raise(s->irq);
196
    }
197
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
198
        /* Not square wave at all but we don't want 2048Hz interrupts!
199
           Must be seen as a pulse.  */
200
        qemu_irq_raise(s->sqw_irq);
201
    }
202
}
203

    
204
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
205
{
206
    RTCState *s = opaque;
207

    
208
    if ((addr & 1) == 0) {
209
        s->cmos_index = data & 0x7f;
210
    } else {
211
        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
212
                     s->cmos_index, data);
213
        switch(s->cmos_index) {
214
        case RTC_SECONDS_ALARM:
215
        case RTC_MINUTES_ALARM:
216
        case RTC_HOURS_ALARM:
217
            s->cmos_data[s->cmos_index] = data;
218
            break;
219
        case RTC_SECONDS:
220
        case RTC_MINUTES:
221
        case RTC_HOURS:
222
        case RTC_DAY_OF_WEEK:
223
        case RTC_DAY_OF_MONTH:
224
        case RTC_MONTH:
225
        case RTC_YEAR:
226
            s->cmos_data[s->cmos_index] = data;
227
            /* if in set mode, do not update the time */
228
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
229
                rtc_set_time(s);
230
            }
231
            break;
232
        case RTC_REG_A:
233
            /* UIP bit is read only */
234
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
235
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
236
            rtc_timer_update(s, qemu_get_clock(rtc_clock));
237
            break;
238
        case RTC_REG_B:
239
            if (data & REG_B_SET) {
240
                /* set mode: reset UIP mode */
241
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
242
                data &= ~REG_B_UIE;
243
            } else {
244
                /* if disabling set mode, update the time */
245
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
246
                    rtc_set_time(s);
247
                }
248
            }
249
            s->cmos_data[RTC_REG_B] = data;
250
            rtc_timer_update(s, qemu_get_clock(rtc_clock));
251
            break;
252
        case RTC_REG_C:
253
        case RTC_REG_D:
254
            /* cannot write to them */
255
            break;
256
        default:
257
            s->cmos_data[s->cmos_index] = data;
258
            break;
259
        }
260
    }
261
}
262

    
263
static inline int rtc_to_bcd(RTCState *s, int a)
264
{
265
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
266
        return a;
267
    } else {
268
        return ((a / 10) << 4) | (a % 10);
269
    }
270
}
271

    
272
static inline int rtc_from_bcd(RTCState *s, int a)
273
{
274
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
275
        return a;
276
    } else {
277
        return ((a >> 4) * 10) + (a & 0x0f);
278
    }
279
}
280

    
281
static void rtc_set_time(RTCState *s)
282
{
283
    struct tm *tm = &s->current_tm;
284

    
285
    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
286
    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
287
    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
288
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
289
        (s->cmos_data[RTC_HOURS] & 0x80)) {
290
        tm->tm_hour += 12;
291
    }
292
    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
293
    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
294
    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
295
    tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
296

    
297
    rtc_change_mon_event(tm);
298
}
299

    
300
static void rtc_copy_date(RTCState *s)
301
{
302
    const struct tm *tm = &s->current_tm;
303
    int year;
304

    
305
    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
306
    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
307
    if (s->cmos_data[RTC_REG_B] & 0x02) {
308
        /* 24 hour format */
309
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
310
    } else {
311
        /* 12 hour format */
312
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
313
        if (tm->tm_hour >= 12)
314
            s->cmos_data[RTC_HOURS] |= 0x80;
315
    }
316
    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
317
    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
318
    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
319
    year = (tm->tm_year - s->base_year) % 100;
320
    if (year < 0)
321
        year += 100;
322
    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
323
}
324

    
325
/* month is between 0 and 11. */
326
static int get_days_in_month(int month, int year)
327
{
328
    static const int days_tab[12] = {
329
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
330
    };
331
    int d;
332
    if ((unsigned )month >= 12)
333
        return 31;
334
    d = days_tab[month];
335
    if (month == 1) {
336
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
337
            d++;
338
    }
339
    return d;
340
}
341

    
342
/* update 'tm' to the next second */
343
static void rtc_next_second(struct tm *tm)
344
{
345
    int days_in_month;
346

    
347
    tm->tm_sec++;
348
    if ((unsigned)tm->tm_sec >= 60) {
349
        tm->tm_sec = 0;
350
        tm->tm_min++;
351
        if ((unsigned)tm->tm_min >= 60) {
352
            tm->tm_min = 0;
353
            tm->tm_hour++;
354
            if ((unsigned)tm->tm_hour >= 24) {
355
                tm->tm_hour = 0;
356
                /* next day */
357
                tm->tm_wday++;
358
                if ((unsigned)tm->tm_wday >= 7)
359
                    tm->tm_wday = 0;
360
                days_in_month = get_days_in_month(tm->tm_mon,
361
                                                  tm->tm_year + 1900);
362
                tm->tm_mday++;
363
                if (tm->tm_mday < 1) {
364
                    tm->tm_mday = 1;
365
                } else if (tm->tm_mday > days_in_month) {
366
                    tm->tm_mday = 1;
367
                    tm->tm_mon++;
368
                    if (tm->tm_mon >= 12) {
369
                        tm->tm_mon = 0;
370
                        tm->tm_year++;
371
                    }
372
                }
373
            }
374
        }
375
    }
376
}
377

    
378

    
379
static void rtc_update_second(void *opaque)
380
{
381
    RTCState *s = opaque;
382
    int64_t delay;
383

    
384
    /* if the oscillator is not in normal operation, we do not update */
385
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
386
        s->next_second_time += get_ticks_per_sec();
387
        qemu_mod_timer(s->second_timer, s->next_second_time);
388
    } else {
389
        rtc_next_second(&s->current_tm);
390

    
391
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
392
            /* update in progress bit */
393
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
394
        }
395
        /* should be 244 us = 8 / 32768 seconds, but currently the
396
           timers do not have the necessary resolution. */
397
        delay = (get_ticks_per_sec() * 1) / 100;
398
        if (delay < 1)
399
            delay = 1;
400
        qemu_mod_timer(s->second_timer2,
401
                       s->next_second_time + delay);
402
    }
403
}
404

    
405
static void rtc_update_second2(void *opaque)
406
{
407
    RTCState *s = opaque;
408

    
409
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
410
        rtc_copy_date(s);
411
    }
412

    
413
    /* check alarm */
414
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
415
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
416
             rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
417
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
418
             rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
419
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
420
             rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
421

    
422
            s->cmos_data[RTC_REG_C] |= 0xa0;
423
            qemu_irq_raise(s->irq);
424
        }
425
    }
426

    
427
    /* update ended interrupt */
428
    s->cmos_data[RTC_REG_C] |= REG_C_UF;
429
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
430
        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
431
        qemu_irq_raise(s->irq);
432
    }
433

    
434
    /* clear update in progress bit */
435
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
436

    
437
    s->next_second_time += get_ticks_per_sec();
438
    qemu_mod_timer(s->second_timer, s->next_second_time);
439
}
440

    
441
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
442
{
443
    RTCState *s = opaque;
444
    int ret;
445
    if ((addr & 1) == 0) {
446
        return 0xff;
447
    } else {
448
        switch(s->cmos_index) {
449
        case RTC_SECONDS:
450
        case RTC_MINUTES:
451
        case RTC_HOURS:
452
        case RTC_DAY_OF_WEEK:
453
        case RTC_DAY_OF_MONTH:
454
        case RTC_MONTH:
455
        case RTC_YEAR:
456
            ret = s->cmos_data[s->cmos_index];
457
            break;
458
        case RTC_REG_A:
459
            ret = s->cmos_data[s->cmos_index];
460
            break;
461
        case RTC_REG_C:
462
            ret = s->cmos_data[s->cmos_index];
463
            qemu_irq_lower(s->irq);
464
#ifdef TARGET_I386
465
            if(s->irq_coalesced &&
466
                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
467
                s->irq_reinject_on_ack_count++;
468
                apic_reset_irq_delivered();
469
                DPRINTF_C("cmos: injecting on ack\n");
470
                qemu_irq_raise(s->irq);
471
                if (apic_get_irq_delivered()) {
472
                    s->irq_coalesced--;
473
                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
474
                              s->irq_coalesced);
475
                }
476
                break;
477
            }
478
#endif
479

    
480
            s->cmos_data[RTC_REG_C] = 0x00;
481
            break;
482
        default:
483
            ret = s->cmos_data[s->cmos_index];
484
            break;
485
        }
486
        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
487
                     s->cmos_index, ret);
488
        return ret;
489
    }
490
}
491

    
492
void rtc_set_memory(ISADevice *dev, int addr, int val)
493
{
494
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
495
    if (addr >= 0 && addr <= 127)
496
        s->cmos_data[addr] = val;
497
}
498

    
499
void rtc_set_date(ISADevice *dev, const struct tm *tm)
500
{
501
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
502
    s->current_tm = *tm;
503
    rtc_copy_date(s);
504
}
505

    
506
/* PC cmos mappings */
507
#define REG_IBM_CENTURY_BYTE        0x32
508
#define REG_IBM_PS2_CENTURY_BYTE    0x37
509

    
510
static void rtc_set_date_from_host(ISADevice *dev)
511
{
512
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
513
    struct tm tm;
514
    int val;
515

    
516
    /* set the CMOS date */
517
    qemu_get_timedate(&tm, 0);
518
    rtc_set_date(dev, &tm);
519

    
520
    val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
521
    rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
522
    rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
523
}
524

    
525
static int rtc_post_load(void *opaque, int version_id)
526
{
527
#ifdef TARGET_I386
528
    RTCState *s = opaque;
529

    
530
    if (version_id >= 2) {
531
        if (rtc_td_hack) {
532
            rtc_coalesced_timer_update(s);
533
        }
534
    }
535
#endif
536
    return 0;
537
}
538

    
539
static const VMStateDescription vmstate_rtc = {
540
    .name = "mc146818rtc",
541
    .version_id = 2,
542
    .minimum_version_id = 1,
543
    .minimum_version_id_old = 1,
544
    .post_load = rtc_post_load,
545
    .fields      = (VMStateField []) {
546
        VMSTATE_BUFFER(cmos_data, RTCState),
547
        VMSTATE_UINT8(cmos_index, RTCState),
548
        VMSTATE_INT32(current_tm.tm_sec, RTCState),
549
        VMSTATE_INT32(current_tm.tm_min, RTCState),
550
        VMSTATE_INT32(current_tm.tm_hour, RTCState),
551
        VMSTATE_INT32(current_tm.tm_wday, RTCState),
552
        VMSTATE_INT32(current_tm.tm_mday, RTCState),
553
        VMSTATE_INT32(current_tm.tm_mon, RTCState),
554
        VMSTATE_INT32(current_tm.tm_year, RTCState),
555
        VMSTATE_TIMER(periodic_timer, RTCState),
556
        VMSTATE_INT64(next_periodic_time, RTCState),
557
        VMSTATE_INT64(next_second_time, RTCState),
558
        VMSTATE_TIMER(second_timer, RTCState),
559
        VMSTATE_TIMER(second_timer2, RTCState),
560
        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
561
        VMSTATE_UINT32_V(period, RTCState, 2),
562
        VMSTATE_END_OF_LIST()
563
    }
564
};
565

    
566
static void rtc_reset(void *opaque)
567
{
568
    RTCState *s = opaque;
569

    
570
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
571
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
572

    
573
    qemu_irq_lower(s->irq);
574

    
575
#ifdef TARGET_I386
576
    if (rtc_td_hack)
577
            s->irq_coalesced = 0;
578
#endif
579
}
580

    
581
static int rtc_initfn(ISADevice *dev)
582
{
583
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
584
    int base = 0x70;
585

    
586
    s->cmos_data[RTC_REG_A] = 0x26;
587
    s->cmos_data[RTC_REG_B] = 0x02;
588
    s->cmos_data[RTC_REG_C] = 0x00;
589
    s->cmos_data[RTC_REG_D] = 0x80;
590

    
591
    rtc_set_date_from_host(dev);
592

    
593
    s->periodic_timer = qemu_new_timer(rtc_clock, rtc_periodic_timer, s);
594
#ifdef TARGET_I386
595
    if (rtc_td_hack)
596
        s->coalesced_timer =
597
            qemu_new_timer(rtc_clock, rtc_coalesced_timer, s);
598
#endif
599
    s->second_timer = qemu_new_timer(rtc_clock, rtc_update_second, s);
600
    s->second_timer2 = qemu_new_timer(rtc_clock, rtc_update_second2, s);
601

    
602
    s->next_second_time =
603
        qemu_get_clock(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
604
    qemu_mod_timer(s->second_timer2, s->next_second_time);
605

    
606
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
607
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
608

    
609
    qdev_set_legacy_instance_id(&dev->qdev, base, 2);
610
    qemu_register_reset(rtc_reset, s);
611
    return 0;
612
}
613

    
614
ISADevice *rtc_init(int base_year, qemu_irq intercept_irq)
615
{
616
    ISADevice *dev;
617
    RTCState *s;
618

    
619
    dev = isa_create("mc146818rtc");
620
    s = DO_UPCAST(RTCState, dev, dev);
621
    qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
622
    qdev_init_nofail(&dev->qdev);
623
    if (intercept_irq) {
624
        s->irq = intercept_irq;
625
    } else {
626
        isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
627
    }
628
    return dev;
629
}
630

    
631
static ISADeviceInfo mc146818rtc_info = {
632
    .qdev.name     = "mc146818rtc",
633
    .qdev.size     = sizeof(RTCState),
634
    .qdev.no_user  = 1,
635
    .qdev.vmsd     = &vmstate_rtc,
636
    .init          = rtc_initfn,
637
    .qdev.props    = (Property[]) {
638
        DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
639
        DEFINE_PROP_END_OF_LIST(),
640
    }
641
};
642

    
643
static void mc146818rtc_register(void)
644
{
645
    isa_qdev_register(&mc146818rtc_info);
646
}
647
device_init(mc146818rtc_register)