Statistics
| Branch: | Revision:

root / target-mips / op_helper.c @ 54454097

History | View | Annotate | Download (42.4 kB)

1
/*
2
 *  MIPS emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include <stdlib.h>
21
#include "exec.h"
22

    
23
#define GETPC() (__builtin_return_address(0))
24

    
25
/*****************************************************************************/
26
/* Exceptions processing helpers */
27

    
28
void do_raise_exception_err (uint32_t exception, int error_code)
29
{
30
#if 1
31
    if (logfile && exception < 0x100)
32
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33
#endif
34
    env->exception_index = exception;
35
    env->error_code = error_code;
36
    T0 = 0;
37
    cpu_loop_exit();
38
}
39

    
40
void do_raise_exception (uint32_t exception)
41
{
42
    do_raise_exception_err(exception, 0);
43
}
44

    
45
void do_restore_state (void *pc_ptr)
46
{
47
  TranslationBlock *tb;
48
  unsigned long pc = (unsigned long) pc_ptr;
49

    
50
  tb = tb_find_pc (pc);
51
  cpu_restore_state (tb, env, pc, NULL);
52
}
53

    
54
void do_raise_exception_direct_err (uint32_t exception, int error_code)
55
{
56
    do_restore_state (GETPC ());
57
    do_raise_exception_err (exception, error_code);
58
}
59

    
60
void do_raise_exception_direct (uint32_t exception)
61
{
62
    do_raise_exception_direct_err (exception, 0);
63
}
64

    
65
#define MEMSUFFIX _raw
66
#include "op_helper_mem.c"
67
#undef MEMSUFFIX
68
#if !defined(CONFIG_USER_ONLY)
69
#define MEMSUFFIX _user
70
#include "op_helper_mem.c"
71
#undef MEMSUFFIX
72
#define MEMSUFFIX _kernel
73
#include "op_helper_mem.c"
74
#undef MEMSUFFIX
75
#endif
76

    
77
#ifdef TARGET_MIPS64
78
#if TARGET_LONG_BITS > HOST_LONG_BITS
79
/* Those might call libgcc functions.  */
80
void do_dsll (void)
81
{
82
    T0 = T0 << T1;
83
}
84

    
85
void do_dsll32 (void)
86
{
87
    T0 = T0 << (T1 + 32);
88
}
89

    
90
void do_dsra (void)
91
{
92
    T0 = (int64_t)T0 >> T1;
93
}
94

    
95
void do_dsra32 (void)
96
{
97
    T0 = (int64_t)T0 >> (T1 + 32);
98
}
99

    
100
void do_dsrl (void)
101
{
102
    T0 = T0 >> T1;
103
}
104

    
105
void do_dsrl32 (void)
106
{
107
    T0 = T0 >> (T1 + 32);
108
}
109

    
110
void do_drotr (void)
111
{
112
    target_ulong tmp;
113

    
114
    if (T1) {
115
       tmp = T0 << (0x40 - T1);
116
       T0 = (T0 >> T1) | tmp;
117
    }
118
}
119

    
120
void do_drotr32 (void)
121
{
122
    target_ulong tmp;
123

    
124
    if (T1) {
125
       tmp = T0 << (0x40 - (32 + T1));
126
       T0 = (T0 >> (32 + T1)) | tmp;
127
    }
128
}
129

    
130
void do_dsllv (void)
131
{
132
    T0 = T1 << (T0 & 0x3F);
133
}
134

    
135
void do_dsrav (void)
136
{
137
    T0 = (int64_t)T1 >> (T0 & 0x3F);
138
}
139

    
140
void do_dsrlv (void)
141
{
142
    T0 = T1 >> (T0 & 0x3F);
143
}
144

    
145
void do_drotrv (void)
146
{
147
    target_ulong tmp;
148

    
149
    T0 &= 0x3F;
150
    if (T0) {
151
       tmp = T1 << (0x40 - T0);
152
       T0 = (T1 >> T0) | tmp;
153
    } else
154
       T0 = T1;
155
}
156
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
157
#endif /* TARGET_MIPS64 */
158

    
159
/* 64 bits arithmetic for 32 bits hosts */
160
#if TARGET_LONG_BITS > HOST_LONG_BITS
161
static inline uint64_t get_HILO (void)
162
{
163
    return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
164
}
165

    
166
static inline void set_HILO (uint64_t HILO)
167
{
168
    env->LO[0][env->current_tc] = (int32_t)HILO;
169
    env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
170
}
171

    
172
void do_mult (void)
173
{
174
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
175
}
176

    
177
void do_multu (void)
178
{
179
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
180
}
181

    
182
void do_madd (void)
183
{
184
    int64_t tmp;
185

    
186
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
187
    set_HILO((int64_t)get_HILO() + tmp);
188
}
189

    
190
void do_maddu (void)
191
{
192
    uint64_t tmp;
193

    
194
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
195
    set_HILO(get_HILO() + tmp);
196
}
197

    
198
void do_msub (void)
199
{
200
    int64_t tmp;
201

    
202
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
203
    set_HILO((int64_t)get_HILO() - tmp);
204
}
205

    
206
void do_msubu (void)
207
{
208
    uint64_t tmp;
209

    
210
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
211
    set_HILO(get_HILO() - tmp);
212
}
213
#endif
214

    
215
#if HOST_LONG_BITS < 64
216
void do_div (void)
217
{
218
    /* 64bit datatypes because we may see overflow/underflow. */
219
    if (T1 != 0) {
220
        env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
221
        env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
222
    }
223
}
224
#endif
225

    
226
#ifdef TARGET_MIPS64
227
void do_ddiv (void)
228
{
229
    if (T1 != 0) {
230
        lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
231
        env->LO[0][env->current_tc] = res.quot;
232
        env->HI[0][env->current_tc] = res.rem;
233
    }
234
}
235

    
236
#if TARGET_LONG_BITS > HOST_LONG_BITS
237
void do_ddivu (void)
238
{
239
    if (T1 != 0) {
240
        env->LO[0][env->current_tc] = T0 / T1;
241
        env->HI[0][env->current_tc] = T0 % T1;
242
    }
243
}
244
#endif
245
#endif /* TARGET_MIPS64 */
246

    
247
#if defined(CONFIG_USER_ONLY)
248
void do_mfc0_random (void)
249
{
250
    cpu_abort(env, "mfc0 random\n");
251
}
252

    
253
void do_mfc0_count (void)
254
{
255
    cpu_abort(env, "mfc0 count\n");
256
}
257

    
258
void cpu_mips_store_count(CPUState *env, uint32_t value)
259
{
260
    cpu_abort(env, "mtc0 count\n");
261
}
262

    
263
void cpu_mips_store_compare(CPUState *env, uint32_t value)
264
{
265
    cpu_abort(env, "mtc0 compare\n");
266
}
267

    
268
void cpu_mips_start_count(CPUState *env)
269
{
270
    cpu_abort(env, "start count\n");
271
}
272

    
273
void cpu_mips_stop_count(CPUState *env)
274
{
275
    cpu_abort(env, "stop count\n");
276
}
277

    
278
void cpu_mips_update_irq(CPUState *env)
279
{
280
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
281
}
282

    
283
void do_mtc0_status_debug(uint32_t old, uint32_t val)
284
{
285
    cpu_abort(env, "mtc0 status debug\n");
286
}
287

    
288
void do_mtc0_status_irqraise_debug (void)
289
{
290
    cpu_abort(env, "mtc0 status irqraise debug\n");
291
}
292

    
293
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
294
{
295
    cpu_abort(env, "mips_tlb_flush\n");
296
}
297

    
298
#else
299

    
300
/* CP0 helpers */
301
void do_mfc0_random (void)
302
{
303
    T0 = (int32_t)cpu_mips_get_random(env);
304
}
305

    
306
void do_mfc0_count (void)
307
{
308
    T0 = (int32_t)cpu_mips_get_count(env);
309
}
310

    
311
void do_mtc0_status_debug(uint32_t old, uint32_t val)
312
{
313
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
314
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
315
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
316
            env->CP0_Cause);
317
    (env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
318
                                  : fputs("\n", logfile);
319
}
320

    
321
void do_mtc0_status_irqraise_debug(void)
322
{
323
    fprintf(logfile, "Raise pending IRQs\n");
324
}
325

    
326
void fpu_handle_exception(void)
327
{
328
#ifdef CONFIG_SOFTFLOAT
329
    int flags = get_float_exception_flags(&env->fpu->fp_status);
330
    unsigned int cpuflags = 0, enable, cause = 0;
331

    
332
    enable = GET_FP_ENABLE(env->fpu->fcr31);
333

    
334
    /* determine current flags */
335
    if (flags & float_flag_invalid) {
336
        cpuflags |= FP_INVALID;
337
        cause |= FP_INVALID & enable;
338
    }
339
    if (flags & float_flag_divbyzero) {
340
        cpuflags |= FP_DIV0;
341
        cause |= FP_DIV0 & enable;
342
    }
343
    if (flags & float_flag_overflow) {
344
        cpuflags |= FP_OVERFLOW;
345
        cause |= FP_OVERFLOW & enable;
346
    }
347
    if (flags & float_flag_underflow) {
348
        cpuflags |= FP_UNDERFLOW;
349
        cause |= FP_UNDERFLOW & enable;
350
    }
351
    if (flags & float_flag_inexact) {
352
        cpuflags |= FP_INEXACT;
353
        cause |= FP_INEXACT & enable;
354
    }
355
    SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
356
    SET_FP_CAUSE(env->fpu->fcr31, cause);
357
#else
358
    SET_FP_FLAGS(env->fpu->fcr31, 0);
359
    SET_FP_CAUSE(env->fpu->fcr31, 0);
360
#endif
361
}
362

    
363
/* TLB management */
364
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
365
{
366
    /* Flush qemu's TLB and discard all shadowed entries.  */
367
    tlb_flush (env, flush_global);
368
    env->tlb->tlb_in_use = env->tlb->nb_tlb;
369
}
370

    
371
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
372
{
373
    /* Discard entries from env->tlb[first] onwards.  */
374
    while (env->tlb->tlb_in_use > first) {
375
        r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
376
    }
377
}
378

    
379
static void r4k_fill_tlb (int idx)
380
{
381
    r4k_tlb_t *tlb;
382

    
383
    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
384
    tlb = &env->tlb->mmu.r4k.tlb[idx];
385
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
386
#ifdef TARGET_MIPS64
387
    tlb->VPN &= env->SEGMask;
388
#endif
389
    tlb->ASID = env->CP0_EntryHi & 0xFF;
390
    tlb->PageMask = env->CP0_PageMask;
391
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
392
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
393
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
394
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
395
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
396
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
397
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
398
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
399
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
400
}
401

    
402
void r4k_do_tlbwi (void)
403
{
404
    /* Discard cached TLB entries.  We could avoid doing this if the
405
       tlbwi is just upgrading access permissions on the current entry;
406
       that might be a further win.  */
407
    r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
408

    
409
    r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
410
    r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
411
}
412

    
413
void r4k_do_tlbwr (void)
414
{
415
    int r = cpu_mips_get_random(env);
416

    
417
    r4k_invalidate_tlb(env, r, 1);
418
    r4k_fill_tlb(r);
419
}
420

    
421
void r4k_do_tlbp (void)
422
{
423
    r4k_tlb_t *tlb;
424
    target_ulong mask;
425
    target_ulong tag;
426
    target_ulong VPN;
427
    uint8_t ASID;
428
    int i;
429

    
430
    ASID = env->CP0_EntryHi & 0xFF;
431
    for (i = 0; i < env->tlb->nb_tlb; i++) {
432
        tlb = &env->tlb->mmu.r4k.tlb[i];
433
        /* 1k pages are not supported. */
434
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
435
        tag = env->CP0_EntryHi & ~mask;
436
        VPN = tlb->VPN & ~mask;
437
        /* Check ASID, virtual page number & size */
438
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
439
            /* TLB match */
440
            env->CP0_Index = i;
441
            break;
442
        }
443
    }
444
    if (i == env->tlb->nb_tlb) {
445
        /* No match.  Discard any shadow entries, if any of them match.  */
446
        for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
447
            tlb = &env->tlb->mmu.r4k.tlb[i];
448
            /* 1k pages are not supported. */
449
            mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
450
            tag = env->CP0_EntryHi & ~mask;
451
            VPN = tlb->VPN & ~mask;
452
            /* Check ASID, virtual page number & size */
453
            if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
454
                r4k_mips_tlb_flush_extra (env, i);
455
                break;
456
            }
457
        }
458

    
459
        env->CP0_Index |= 0x80000000;
460
    }
461
}
462

    
463
void r4k_do_tlbr (void)
464
{
465
    r4k_tlb_t *tlb;
466
    uint8_t ASID;
467

    
468
    ASID = env->CP0_EntryHi & 0xFF;
469
    tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
470

    
471
    /* If this will change the current ASID, flush qemu's TLB.  */
472
    if (ASID != tlb->ASID)
473
        cpu_mips_tlb_flush (env, 1);
474

    
475
    r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
476

    
477
    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
478
    env->CP0_PageMask = tlb->PageMask;
479
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
480
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
481
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
482
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
483
}
484

    
485
#endif /* !CONFIG_USER_ONLY */
486

    
487
void dump_ldst (const unsigned char *func)
488
{
489
    if (loglevel)
490
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
491
}
492

    
493
void dump_sc (void)
494
{
495
    if (loglevel) {
496
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
497
                T1, T0, env->CP0_LLAddr);
498
    }
499
}
500

    
501
void debug_pre_eret (void)
502
{
503
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
504
            env->PC[env->current_tc], env->CP0_EPC);
505
    if (env->CP0_Status & (1 << CP0St_ERL))
506
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
507
    if (env->hflags & MIPS_HFLAG_DM)
508
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
509
    fputs("\n", logfile);
510
}
511

    
512
void debug_post_eret (void)
513
{
514
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
515
            env->PC[env->current_tc], env->CP0_EPC);
516
    if (env->CP0_Status & (1 << CP0St_ERL))
517
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
518
    if (env->hflags & MIPS_HFLAG_DM)
519
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
520
    if (env->hflags & MIPS_HFLAG_UM)
521
        fputs(", UM\n", logfile);
522
    else
523
        fputs("\n", logfile);
524
}
525

    
526
void do_pmon (int function)
527
{
528
    function /= 2;
529
    switch (function) {
530
    case 2: /* TODO: char inbyte(int waitflag); */
531
        if (env->gpr[4][env->current_tc] == 0)
532
            env->gpr[2][env->current_tc] = -1;
533
        /* Fall through */
534
    case 11: /* TODO: char inbyte (void); */
535
        env->gpr[2][env->current_tc] = -1;
536
        break;
537
    case 3:
538
    case 12:
539
        printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
540
        break;
541
    case 17:
542
        break;
543
    case 158:
544
        {
545
            unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
546
            printf("%s", fmt);
547
        }
548
        break;
549
    }
550
}
551

    
552
#if !defined(CONFIG_USER_ONLY)
553

    
554
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
555

    
556
#define MMUSUFFIX _mmu
557
#define ALIGNED_ONLY
558

    
559
#define SHIFT 0
560
#include "softmmu_template.h"
561

    
562
#define SHIFT 1
563
#include "softmmu_template.h"
564

    
565
#define SHIFT 2
566
#include "softmmu_template.h"
567

    
568
#define SHIFT 3
569
#include "softmmu_template.h"
570

    
571
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
572
{
573
    env->CP0_BadVAddr = addr;
574
    do_restore_state (retaddr);
575
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
576
}
577

    
578
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
579
{
580
    TranslationBlock *tb;
581
    CPUState *saved_env;
582
    unsigned long pc;
583
    int ret;
584

    
585
    /* XXX: hack to restore env in all cases, even if not called from
586
       generated code */
587
    saved_env = env;
588
    env = cpu_single_env;
589
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1);
590
    if (ret) {
591
        if (retaddr) {
592
            /* now we have a real cpu fault */
593
            pc = (unsigned long)retaddr;
594
            tb = tb_find_pc(pc);
595
            if (tb) {
596
                /* the PC is inside the translated code. It means that we have
597
                   a virtual CPU fault */
598
                cpu_restore_state(tb, env, pc, NULL);
599
            }
600
        }
601
        do_raise_exception_err(env->exception_index, env->error_code);
602
    }
603
    env = saved_env;
604
}
605

    
606
#endif
607

    
608
/* Complex FPU operations which may need stack space. */
609

    
610
#define FLOAT_SIGN32 (1 << 31)
611
#define FLOAT_SIGN64 (1ULL << 63)
612
#define FLOAT_ONE32 (0x3f8 << 20)
613
#define FLOAT_ONE64 (0x3ffULL << 52)
614
#define FLOAT_TWO32 (1 << 30)
615
#define FLOAT_TWO64 (1ULL << 62)
616
#define FLOAT_QNAN32 0x7fbfffff
617
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
618
#define FLOAT_SNAN32 0x7fffffff
619
#define FLOAT_SNAN64 0x7fffffffffffffffULL
620

    
621
/* convert MIPS rounding mode in FCR31 to IEEE library */
622
unsigned int ieee_rm[] = {
623
    float_round_nearest_even,
624
    float_round_to_zero,
625
    float_round_up,
626
    float_round_down
627
};
628

    
629
#define RESTORE_ROUNDING_MODE \
630
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
631

    
632
void do_cfc1 (int reg)
633
{
634
    switch (reg) {
635
    case 0:
636
        T0 = (int32_t)env->fpu->fcr0;
637
        break;
638
    case 25:
639
        T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
640
        break;
641
    case 26:
642
        T0 = env->fpu->fcr31 & 0x0003f07c;
643
        break;
644
    case 28:
645
        T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
646
        break;
647
    default:
648
        T0 = (int32_t)env->fpu->fcr31;
649
        break;
650
    }
651
}
652

    
653
void do_ctc1 (int reg)
654
{
655
    switch(reg) {
656
    case 25:
657
        if (T0 & 0xffffff00)
658
            return;
659
        env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
660
                     ((T0 & 0x1) << 23);
661
        break;
662
    case 26:
663
        if (T0 & 0x007c0000)
664
            return;
665
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
666
        break;
667
    case 28:
668
        if (T0 & 0x007c0000)
669
            return;
670
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
671
                     ((T0 & 0x4) << 22);
672
        break;
673
    case 31:
674
        if (T0 & 0x007c0000)
675
            return;
676
        env->fpu->fcr31 = T0;
677
        break;
678
    default:
679
        return;
680
    }
681
    /* set rounding mode */
682
    RESTORE_ROUNDING_MODE;
683
    set_float_exception_flags(0, &env->fpu->fp_status);
684
    if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
685
        do_raise_exception(EXCP_FPE);
686
}
687

    
688
inline char ieee_ex_to_mips(char xcpt)
689
{
690
    return (xcpt & float_flag_inexact) >> 5 |
691
           (xcpt & float_flag_underflow) >> 3 |
692
           (xcpt & float_flag_overflow) >> 1 |
693
           (xcpt & float_flag_divbyzero) << 1 |
694
           (xcpt & float_flag_invalid) << 4;
695
}
696

    
697
inline char mips_ex_to_ieee(char xcpt)
698
{
699
    return (xcpt & FP_INEXACT) << 5 |
700
           (xcpt & FP_UNDERFLOW) << 3 |
701
           (xcpt & FP_OVERFLOW) << 1 |
702
           (xcpt & FP_DIV0) >> 1 |
703
           (xcpt & FP_INVALID) >> 4;
704
}
705

    
706
inline void update_fcr31(void)
707
{
708
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
709

    
710
    SET_FP_CAUSE(env->fpu->fcr31, tmp);
711
    if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
712
        do_raise_exception(EXCP_FPE);
713
    else
714
        UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
715
}
716

    
717
#define FLOAT_OP(name, p) void do_float_##name##_##p(void)
718

    
719
FLOAT_OP(cvtd, s)
720
{
721
    set_float_exception_flags(0, &env->fpu->fp_status);
722
    FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
723
    update_fcr31();
724
}
725
FLOAT_OP(cvtd, w)
726
{
727
    set_float_exception_flags(0, &env->fpu->fp_status);
728
    FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
729
    update_fcr31();
730
}
731
FLOAT_OP(cvtd, l)
732
{
733
    set_float_exception_flags(0, &env->fpu->fp_status);
734
    FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
735
    update_fcr31();
736
}
737
FLOAT_OP(cvtl, d)
738
{
739
    set_float_exception_flags(0, &env->fpu->fp_status);
740
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
741
    update_fcr31();
742
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
743
        DT2 = FLOAT_SNAN64;
744
}
745
FLOAT_OP(cvtl, s)
746
{
747
    set_float_exception_flags(0, &env->fpu->fp_status);
748
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
749
    update_fcr31();
750
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
751
        DT2 = FLOAT_SNAN64;
752
}
753

    
754
FLOAT_OP(cvtps, pw)
755
{
756
    set_float_exception_flags(0, &env->fpu->fp_status);
757
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
758
    FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
759
    update_fcr31();
760
}
761
FLOAT_OP(cvtpw, ps)
762
{
763
    set_float_exception_flags(0, &env->fpu->fp_status);
764
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
765
    WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
766
    update_fcr31();
767
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
768
        WT2 = FLOAT_SNAN32;
769
}
770
FLOAT_OP(cvts, d)
771
{
772
    set_float_exception_flags(0, &env->fpu->fp_status);
773
    FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
774
    update_fcr31();
775
}
776
FLOAT_OP(cvts, w)
777
{
778
    set_float_exception_flags(0, &env->fpu->fp_status);
779
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
780
    update_fcr31();
781
}
782
FLOAT_OP(cvts, l)
783
{
784
    set_float_exception_flags(0, &env->fpu->fp_status);
785
    FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
786
    update_fcr31();
787
}
788
FLOAT_OP(cvts, pl)
789
{
790
    set_float_exception_flags(0, &env->fpu->fp_status);
791
    WT2 = WT0;
792
    update_fcr31();
793
}
794
FLOAT_OP(cvts, pu)
795
{
796
    set_float_exception_flags(0, &env->fpu->fp_status);
797
    WT2 = WTH0;
798
    update_fcr31();
799
}
800
FLOAT_OP(cvtw, s)
801
{
802
    set_float_exception_flags(0, &env->fpu->fp_status);
803
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
804
    update_fcr31();
805
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
806
        WT2 = FLOAT_SNAN32;
807
}
808
FLOAT_OP(cvtw, d)
809
{
810
    set_float_exception_flags(0, &env->fpu->fp_status);
811
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
812
    update_fcr31();
813
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
814
        WT2 = FLOAT_SNAN32;
815
}
816

    
817
FLOAT_OP(roundl, d)
818
{
819
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
820
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
821
    RESTORE_ROUNDING_MODE;
822
    update_fcr31();
823
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
824
        DT2 = FLOAT_SNAN64;
825
}
826
FLOAT_OP(roundl, s)
827
{
828
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
829
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
830
    RESTORE_ROUNDING_MODE;
831
    update_fcr31();
832
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
833
        DT2 = FLOAT_SNAN64;
834
}
835
FLOAT_OP(roundw, d)
836
{
837
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
838
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
839
    RESTORE_ROUNDING_MODE;
840
    update_fcr31();
841
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
842
        WT2 = FLOAT_SNAN32;
843
}
844
FLOAT_OP(roundw, s)
845
{
846
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
847
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
848
    RESTORE_ROUNDING_MODE;
849
    update_fcr31();
850
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
851
        WT2 = FLOAT_SNAN32;
852
}
853

    
854
FLOAT_OP(truncl, d)
855
{
856
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
857
    update_fcr31();
858
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
859
        DT2 = FLOAT_SNAN64;
860
}
861
FLOAT_OP(truncl, s)
862
{
863
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
864
    update_fcr31();
865
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
866
        DT2 = FLOAT_SNAN64;
867
}
868
FLOAT_OP(truncw, d)
869
{
870
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
871
    update_fcr31();
872
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
873
        WT2 = FLOAT_SNAN32;
874
}
875
FLOAT_OP(truncw, s)
876
{
877
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
878
    update_fcr31();
879
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
880
        WT2 = FLOAT_SNAN32;
881
}
882

    
883
FLOAT_OP(ceill, d)
884
{
885
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
886
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
887
    RESTORE_ROUNDING_MODE;
888
    update_fcr31();
889
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
890
        DT2 = FLOAT_SNAN64;
891
}
892
FLOAT_OP(ceill, s)
893
{
894
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
895
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
896
    RESTORE_ROUNDING_MODE;
897
    update_fcr31();
898
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
899
        DT2 = FLOAT_SNAN64;
900
}
901
FLOAT_OP(ceilw, d)
902
{
903
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
904
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
905
    RESTORE_ROUNDING_MODE;
906
    update_fcr31();
907
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
908
        WT2 = FLOAT_SNAN32;
909
}
910
FLOAT_OP(ceilw, s)
911
{
912
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
913
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
914
    RESTORE_ROUNDING_MODE;
915
    update_fcr31();
916
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
917
        WT2 = FLOAT_SNAN32;
918
}
919

    
920
FLOAT_OP(floorl, d)
921
{
922
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
923
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
924
    RESTORE_ROUNDING_MODE;
925
    update_fcr31();
926
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
927
        DT2 = FLOAT_SNAN64;
928
}
929
FLOAT_OP(floorl, s)
930
{
931
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
932
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
933
    RESTORE_ROUNDING_MODE;
934
    update_fcr31();
935
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
936
        DT2 = FLOAT_SNAN64;
937
}
938
FLOAT_OP(floorw, d)
939
{
940
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
941
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
942
    RESTORE_ROUNDING_MODE;
943
    update_fcr31();
944
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
945
        WT2 = FLOAT_SNAN32;
946
}
947
FLOAT_OP(floorw, s)
948
{
949
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
950
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
951
    RESTORE_ROUNDING_MODE;
952
    update_fcr31();
953
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
954
        WT2 = FLOAT_SNAN32;
955
}
956

    
957
/* MIPS specific unary operations */
958
FLOAT_OP(recip, d)
959
{
960
    set_float_exception_flags(0, &env->fpu->fp_status);
961
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
962
    update_fcr31();
963
}
964
FLOAT_OP(recip, s)
965
{
966
    set_float_exception_flags(0, &env->fpu->fp_status);
967
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
968
    update_fcr31();
969
}
970

    
971
FLOAT_OP(rsqrt, d)
972
{
973
    set_float_exception_flags(0, &env->fpu->fp_status);
974
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
975
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
976
    update_fcr31();
977
}
978
FLOAT_OP(rsqrt, s)
979
{
980
    set_float_exception_flags(0, &env->fpu->fp_status);
981
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
982
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
983
    update_fcr31();
984
}
985

    
986
FLOAT_OP(recip1, d)
987
{
988
    set_float_exception_flags(0, &env->fpu->fp_status);
989
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
990
    update_fcr31();
991
}
992
FLOAT_OP(recip1, s)
993
{
994
    set_float_exception_flags(0, &env->fpu->fp_status);
995
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
996
    update_fcr31();
997
}
998
FLOAT_OP(recip1, ps)
999
{
1000
    set_float_exception_flags(0, &env->fpu->fp_status);
1001
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1002
    FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
1003
    update_fcr31();
1004
}
1005

    
1006
FLOAT_OP(rsqrt1, d)
1007
{
1008
    set_float_exception_flags(0, &env->fpu->fp_status);
1009
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1010
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1011
    update_fcr31();
1012
}
1013
FLOAT_OP(rsqrt1, s)
1014
{
1015
    set_float_exception_flags(0, &env->fpu->fp_status);
1016
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1017
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1018
    update_fcr31();
1019
}
1020
FLOAT_OP(rsqrt1, ps)
1021
{
1022
    set_float_exception_flags(0, &env->fpu->fp_status);
1023
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1024
    FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
1025
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1026
    FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
1027
    update_fcr31();
1028
}
1029

    
1030
/* binary operations */
1031
#define FLOAT_BINOP(name) \
1032
FLOAT_OP(name, d)         \
1033
{                         \
1034
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1035
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status);    \
1036
    update_fcr31();                                                \
1037
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
1038
        FDT2 = FLOAT_QNAN64;                                       \
1039
}                         \
1040
FLOAT_OP(name, s)         \
1041
{                         \
1042
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1043
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
1044
    update_fcr31();                                                \
1045
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
1046
        FST2 = FLOAT_QNAN32;                                       \
1047
}                         \
1048
FLOAT_OP(name, ps)        \
1049
{                         \
1050
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1051
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
1052
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
1053
    update_fcr31();       \
1054
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) {              \
1055
        FST2 = FLOAT_QNAN32;                                       \
1056
        FSTH2 = FLOAT_QNAN32;                                      \
1057
    }                     \
1058
}
1059
FLOAT_BINOP(add)
1060
FLOAT_BINOP(sub)
1061
FLOAT_BINOP(mul)
1062
FLOAT_BINOP(div)
1063
#undef FLOAT_BINOP
1064

    
1065
/* MIPS specific binary operations */
1066
FLOAT_OP(recip2, d)
1067
{
1068
    set_float_exception_flags(0, &env->fpu->fp_status);
1069
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1070
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1071
    update_fcr31();
1072
}
1073
FLOAT_OP(recip2, s)
1074
{
1075
    set_float_exception_flags(0, &env->fpu->fp_status);
1076
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1077
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1078
    update_fcr31();
1079
}
1080
FLOAT_OP(recip2, ps)
1081
{
1082
    set_float_exception_flags(0, &env->fpu->fp_status);
1083
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1084
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1085
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1086
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1087
    update_fcr31();
1088
}
1089

    
1090
FLOAT_OP(rsqrt2, d)
1091
{
1092
    set_float_exception_flags(0, &env->fpu->fp_status);
1093
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1094
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
1095
    FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1096
    update_fcr31();
1097
}
1098
FLOAT_OP(rsqrt2, s)
1099
{
1100
    set_float_exception_flags(0, &env->fpu->fp_status);
1101
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1102
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1103
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1104
    update_fcr31();
1105
}
1106
FLOAT_OP(rsqrt2, ps)
1107
{
1108
    set_float_exception_flags(0, &env->fpu->fp_status);
1109
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1110
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1111
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1112
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
1113
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1114
    FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1115
    update_fcr31();
1116
}
1117

    
1118
FLOAT_OP(addr, ps)
1119
{
1120
    set_float_exception_flags(0, &env->fpu->fp_status);
1121
    FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
1122
    FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
1123
    update_fcr31();
1124
}
1125

    
1126
FLOAT_OP(mulr, ps)
1127
{
1128
    set_float_exception_flags(0, &env->fpu->fp_status);
1129
    FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
1130
    FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
1131
    update_fcr31();
1132
}
1133

    
1134
/* compare operations */
1135
#define FOP_COND_D(op, cond)                   \
1136
void do_cmp_d_ ## op (long cc)                 \
1137
{                                              \
1138
    int c = cond;                              \
1139
    update_fcr31();                            \
1140
    if (c)                                     \
1141
        SET_FP_COND(cc, env->fpu);             \
1142
    else                                       \
1143
        CLEAR_FP_COND(cc, env->fpu);           \
1144
}                                              \
1145
void do_cmpabs_d_ ## op (long cc)              \
1146
{                                              \
1147
    int c;                                     \
1148
    FDT0 &= ~FLOAT_SIGN64;                     \
1149
    FDT1 &= ~FLOAT_SIGN64;                     \
1150
    c = cond;                                  \
1151
    update_fcr31();                            \
1152
    if (c)                                     \
1153
        SET_FP_COND(cc, env->fpu);             \
1154
    else                                       \
1155
        CLEAR_FP_COND(cc, env->fpu);           \
1156
}
1157

    
1158
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1159
{
1160
    if (float64_is_signaling_nan(a) ||
1161
        float64_is_signaling_nan(b) ||
1162
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1163
        float_raise(float_flag_invalid, status);
1164
        return 1;
1165
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
1166
        return 1;
1167
    } else {
1168
        return 0;
1169
    }
1170
}
1171

    
1172
/* NOTE: the comma operator will make "cond" to eval to false,
1173
 * but float*_is_unordered() is still called. */
1174
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
1175
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
1176
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1177
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1178
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1179
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1180
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1181
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1182
/* NOTE: the comma operator will make "cond" to eval to false,
1183
 * but float*_is_unordered() is still called. */
1184
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
1185
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
1186
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1187
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1188
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1189
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1190
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1191
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1192

    
1193
#define FOP_COND_S(op, cond)                   \
1194
void do_cmp_s_ ## op (long cc)                 \
1195
{                                              \
1196
    int c = cond;                              \
1197
    update_fcr31();                            \
1198
    if (c)                                     \
1199
        SET_FP_COND(cc, env->fpu);             \
1200
    else                                       \
1201
        CLEAR_FP_COND(cc, env->fpu);           \
1202
}                                              \
1203
void do_cmpabs_s_ ## op (long cc)              \
1204
{                                              \
1205
    int c;                                     \
1206
    FST0 &= ~FLOAT_SIGN32;                     \
1207
    FST1 &= ~FLOAT_SIGN32;                     \
1208
    c = cond;                                  \
1209
    update_fcr31();                            \
1210
    if (c)                                     \
1211
        SET_FP_COND(cc, env->fpu);             \
1212
    else                                       \
1213
        CLEAR_FP_COND(cc, env->fpu);           \
1214
}
1215

    
1216
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1217
{
1218
    if (float32_is_signaling_nan(a) ||
1219
        float32_is_signaling_nan(b) ||
1220
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1221
        float_raise(float_flag_invalid, status);
1222
        return 1;
1223
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
1224
        return 1;
1225
    } else {
1226
        return 0;
1227
    }
1228
}
1229

    
1230
/* NOTE: the comma operator will make "cond" to eval to false,
1231
 * but float*_is_unordered() is still called. */
1232
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
1233
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
1234
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1235
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
1236
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1237
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
1238
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1239
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
1240
/* NOTE: the comma operator will make "cond" to eval to false,
1241
 * but float*_is_unordered() is still called. */
1242
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
1243
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
1244
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1245
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
1246
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1247
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
1248
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1249
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
1250

    
1251
#define FOP_COND_PS(op, condl, condh)          \
1252
void do_cmp_ps_ ## op (long cc)                \
1253
{                                              \
1254
    int cl = condl;                            \
1255
    int ch = condh;                            \
1256
    update_fcr31();                            \
1257
    if (cl)                                    \
1258
        SET_FP_COND(cc, env->fpu);             \
1259
    else                                       \
1260
        CLEAR_FP_COND(cc, env->fpu);           \
1261
    if (ch)                                    \
1262
        SET_FP_COND(cc + 1, env->fpu);         \
1263
    else                                       \
1264
        CLEAR_FP_COND(cc + 1, env->fpu);       \
1265
}                                              \
1266
void do_cmpabs_ps_ ## op (long cc)             \
1267
{                                              \
1268
    int cl, ch;                                \
1269
    FST0 &= ~FLOAT_SIGN32;                     \
1270
    FSTH0 &= ~FLOAT_SIGN32;                    \
1271
    FST1 &= ~FLOAT_SIGN32;                     \
1272
    FSTH1 &= ~FLOAT_SIGN32;                    \
1273
    cl = condl;                                \
1274
    ch = condh;                                \
1275
    update_fcr31();                            \
1276
    if (cl)                                    \
1277
        SET_FP_COND(cc, env->fpu);             \
1278
    else                                       \
1279
        CLEAR_FP_COND(cc, env->fpu);           \
1280
    if (ch)                                    \
1281
        SET_FP_COND(cc + 1, env->fpu);         \
1282
    else                                       \
1283
        CLEAR_FP_COND(cc + 1, env->fpu);       \
1284
}
1285

    
1286
/* NOTE: the comma operator will make "cond" to eval to false,
1287
 * but float*_is_unordered() is still called. */
1288
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
1289
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1290
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
1291
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
1292
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
1293
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1294
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
1295
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1296
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
1297
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1298
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
1299
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1300
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
1301
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1302
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
1303
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1304
/* NOTE: the comma operator will make "cond" to eval to false,
1305
 * but float*_is_unordered() is still called. */
1306
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
1307
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1308
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
1309
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
1310
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
1311
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1312
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
1313
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1314
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
1315
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1316
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
1317
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1318
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
1319
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1320
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
1321
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))