Statistics
| Branch: | Revision:

root / qemu-tech.texi @ 54586bd1

History | View | Annotate | Download (22.1 kB)

1 1f673135 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-tech.info
4 debc7065 bellard
@settitle QEMU Internals
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 1f673135 bellard
9 1f673135 bellard
@iftex
10 1f673135 bellard
@titlepage
11 1f673135 bellard
@sp 7
12 1f673135 bellard
@center @titlefont{QEMU Internals}
13 1f673135 bellard
@sp 3
14 1f673135 bellard
@end titlepage
15 1f673135 bellard
@end iftex
16 1f673135 bellard
17 debc7065 bellard
@ifnottex
18 debc7065 bellard
@node Top
19 debc7065 bellard
@top
20 debc7065 bellard
21 debc7065 bellard
@menu
22 debc7065 bellard
* Introduction::
23 debc7065 bellard
* QEMU Internals::
24 debc7065 bellard
* Regression Tests::
25 debc7065 bellard
* Index::
26 debc7065 bellard
@end menu
27 debc7065 bellard
@end ifnottex
28 debc7065 bellard
29 debc7065 bellard
@contents
30 debc7065 bellard
31 debc7065 bellard
@node Introduction
32 1f673135 bellard
@chapter Introduction
33 1f673135 bellard
34 debc7065 bellard
@menu
35 debc7065 bellard
* intro_features::        Features
36 998a0501 blueswir1
* intro_x86_emulation::   x86 and x86-64 emulation
37 debc7065 bellard
* intro_arm_emulation::   ARM emulation
38 24d4de45 ths
* intro_mips_emulation::  MIPS emulation
39 debc7065 bellard
* intro_ppc_emulation::   PowerPC emulation
40 998a0501 blueswir1
* intro_sparc_emulation:: Sparc32 and Sparc64 emulation
41 998a0501 blueswir1
* intro_other_emulation:: Other CPU emulation
42 debc7065 bellard
@end menu
43 debc7065 bellard
44 debc7065 bellard
@node intro_features
45 1f673135 bellard
@section Features
46 1f673135 bellard
47 1f673135 bellard
QEMU is a FAST! processor emulator using a portable dynamic
48 1f673135 bellard
translator.
49 1f673135 bellard
50 1f673135 bellard
QEMU has two operating modes:
51 1f673135 bellard
52 1f673135 bellard
@itemize @minus
53 1f673135 bellard
54 5fafdf24 ths
@item
55 998a0501 blueswir1
Full system emulation. In this mode (full platform virtualization),
56 998a0501 blueswir1
QEMU emulates a full system (usually a PC), including a processor and
57 998a0501 blueswir1
various peripherals. It can be used to launch several different
58 998a0501 blueswir1
Operating Systems at once without rebooting the host machine or to
59 998a0501 blueswir1
debug system code.
60 1f673135 bellard
61 5fafdf24 ths
@item
62 998a0501 blueswir1
User mode emulation. In this mode (application level virtualization),
63 998a0501 blueswir1
QEMU can launch processes compiled for one CPU on another CPU, however
64 998a0501 blueswir1
the Operating Systems must match. This can be used for example to ease
65 998a0501 blueswir1
cross-compilation and cross-debugging.
66 1f673135 bellard
@end itemize
67 1f673135 bellard
68 1f673135 bellard
As QEMU requires no host kernel driver to run, it is very safe and
69 1f673135 bellard
easy to use.
70 1f673135 bellard
71 1f673135 bellard
QEMU generic features:
72 1f673135 bellard
73 5fafdf24 ths
@itemize
74 1f673135 bellard
75 1f673135 bellard
@item User space only or full system emulation.
76 1f673135 bellard
77 debc7065 bellard
@item Using dynamic translation to native code for reasonable speed.
78 1f673135 bellard
79 998a0501 blueswir1
@item
80 998a0501 blueswir1
Working on x86, x86_64 and PowerPC32/64 hosts. Being tested on ARM,
81 998a0501 blueswir1
HPPA, Sparc32 and Sparc64. Previous versions had some support for
82 998a0501 blueswir1
Alpha and S390 hosts, but TCG (see below) doesn't support those yet.
83 1f673135 bellard
84 1f673135 bellard
@item Self-modifying code support.
85 1f673135 bellard
86 1f673135 bellard
@item Precise exceptions support.
87 1f673135 bellard
88 5fafdf24 ths
@item The virtual CPU is a library (@code{libqemu}) which can be used
89 ad6a4837 bellard
in other projects (look at @file{qemu/tests/qruncom.c} to have an
90 ad6a4837 bellard
example of user mode @code{libqemu} usage).
91 1f673135 bellard
92 998a0501 blueswir1
@item
93 998a0501 blueswir1
Floating point library supporting both full software emulation and
94 998a0501 blueswir1
native host FPU instructions.
95 998a0501 blueswir1
96 1f673135 bellard
@end itemize
97 1f673135 bellard
98 1f673135 bellard
QEMU user mode emulation features:
99 5fafdf24 ths
@itemize
100 1f673135 bellard
@item Generic Linux system call converter, including most ioctls.
101 1f673135 bellard
102 1f673135 bellard
@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
103 1f673135 bellard
104 5fafdf24 ths
@item Accurate signal handling by remapping host signals to target signals.
105 1f673135 bellard
@end itemize
106 1f673135 bellard
107 998a0501 blueswir1
Linux user emulator (Linux host only) can be used to launch the Wine
108 998a0501 blueswir1
Windows API emulator (@url{http://www.winehq.org}). A Darwin user
109 998a0501 blueswir1
emulator (Darwin hosts only) exists and a BSD user emulator for BSD
110 998a0501 blueswir1
hosts is under development. It would also be possible to develop a
111 998a0501 blueswir1
similar user emulator for Solaris.
112 998a0501 blueswir1
113 1f673135 bellard
QEMU full system emulation features:
114 5fafdf24 ths
@itemize
115 998a0501 blueswir1
@item
116 998a0501 blueswir1
QEMU uses a full software MMU for maximum portability.
117 998a0501 blueswir1
118 998a0501 blueswir1
@item
119 998a0501 blueswir1
QEMU can optionally use an in-kernel accelerator, like kqemu and
120 998a0501 blueswir1
kvm. The accelerators execute some of the guest code natively, while
121 998a0501 blueswir1
continuing to emulate the rest of the machine.
122 998a0501 blueswir1
123 998a0501 blueswir1
@item
124 998a0501 blueswir1
Various hardware devices can be emulated and in some cases, host
125 998a0501 blueswir1
devices (e.g. serial and parallel ports, USB, drives) can be used
126 998a0501 blueswir1
transparently by the guest Operating System. Host device passthrough
127 998a0501 blueswir1
can be used for talking to external physical peripherals (e.g. a
128 998a0501 blueswir1
webcam, modem or tape drive).
129 998a0501 blueswir1
130 998a0501 blueswir1
@item
131 998a0501 blueswir1
Symmetric multiprocessing (SMP) even on a host with a single CPU. On a
132 998a0501 blueswir1
SMP host system, QEMU can use only one CPU fully due to difficulty in
133 998a0501 blueswir1
implementing atomic memory accesses efficiently.
134 998a0501 blueswir1
135 1f673135 bellard
@end itemize
136 1f673135 bellard
137 debc7065 bellard
@node intro_x86_emulation
138 998a0501 blueswir1
@section x86 and x86-64 emulation
139 1f673135 bellard
140 1f673135 bellard
QEMU x86 target features:
141 1f673135 bellard
142 5fafdf24 ths
@itemize
143 1f673135 bellard
144 5fafdf24 ths
@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
145 998a0501 blueswir1
LDT/GDT and IDT are emulated. VM86 mode is also supported to run
146 998a0501 blueswir1
DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
147 998a0501 blueswir1
and SSE4 as well as x86-64 SVM.
148 1f673135 bellard
149 1f673135 bellard
@item Support of host page sizes bigger than 4KB in user mode emulation.
150 1f673135 bellard
151 1f673135 bellard
@item QEMU can emulate itself on x86.
152 1f673135 bellard
153 5fafdf24 ths
@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
154 1f673135 bellard
It can be used to test other x86 virtual CPUs.
155 1f673135 bellard
156 1f673135 bellard
@end itemize
157 1f673135 bellard
158 1f673135 bellard
Current QEMU limitations:
159 1f673135 bellard
160 5fafdf24 ths
@itemize
161 1f673135 bellard
162 998a0501 blueswir1
@item Limited x86-64 support.
163 1f673135 bellard
164 1f673135 bellard
@item IPC syscalls are missing.
165 1f673135 bellard
166 5fafdf24 ths
@item The x86 segment limits and access rights are not tested at every
167 1f673135 bellard
memory access (yet). Hopefully, very few OSes seem to rely on that for
168 1f673135 bellard
normal use.
169 1f673135 bellard
170 1f673135 bellard
@end itemize
171 1f673135 bellard
172 debc7065 bellard
@node intro_arm_emulation
173 1f673135 bellard
@section ARM emulation
174 1f673135 bellard
175 1f673135 bellard
@itemize
176 1f673135 bellard
177 1f673135 bellard
@item Full ARM 7 user emulation.
178 1f673135 bellard
179 1f673135 bellard
@item NWFPE FPU support included in user Linux emulation.
180 1f673135 bellard
181 1f673135 bellard
@item Can run most ARM Linux binaries.
182 1f673135 bellard
183 1f673135 bellard
@end itemize
184 1f673135 bellard
185 24d4de45 ths
@node intro_mips_emulation
186 24d4de45 ths
@section MIPS emulation
187 24d4de45 ths
188 24d4de45 ths
@itemize
189 24d4de45 ths
190 24d4de45 ths
@item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
191 24d4de45 ths
including privileged instructions, FPU and MMU, in both little and big
192 24d4de45 ths
endian modes.
193 24d4de45 ths
194 24d4de45 ths
@item The Linux userland emulation can run many 32 bit MIPS Linux binaries.
195 24d4de45 ths
196 24d4de45 ths
@end itemize
197 24d4de45 ths
198 24d4de45 ths
Current QEMU limitations:
199 24d4de45 ths
200 24d4de45 ths
@itemize
201 24d4de45 ths
202 24d4de45 ths
@item Self-modifying code is not always handled correctly.
203 24d4de45 ths
204 24d4de45 ths
@item 64 bit userland emulation is not implemented.
205 24d4de45 ths
206 24d4de45 ths
@item The system emulation is not complete enough to run real firmware.
207 24d4de45 ths
208 b1f45238 ths
@item The watchpoint debug facility is not implemented.
209 b1f45238 ths
210 24d4de45 ths
@end itemize
211 24d4de45 ths
212 debc7065 bellard
@node intro_ppc_emulation
213 1f673135 bellard
@section PowerPC emulation
214 1f673135 bellard
215 1f673135 bellard
@itemize
216 1f673135 bellard
217 5fafdf24 ths
@item Full PowerPC 32 bit emulation, including privileged instructions,
218 1f673135 bellard
FPU and MMU.
219 1f673135 bellard
220 1f673135 bellard
@item Can run most PowerPC Linux binaries.
221 1f673135 bellard
222 1f673135 bellard
@end itemize
223 1f673135 bellard
224 debc7065 bellard
@node intro_sparc_emulation
225 998a0501 blueswir1
@section Sparc32 and Sparc64 emulation
226 1f673135 bellard
227 1f673135 bellard
@itemize
228 1f673135 bellard
229 f6b647cd blueswir1
@item Full SPARC V8 emulation, including privileged
230 3475187d bellard
instructions, FPU and MMU. SPARC V9 emulation includes most privileged
231 a785e42e blueswir1
and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
232 1f673135 bellard
233 a785e42e blueswir1
@item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
234 a785e42e blueswir1
some 64-bit SPARC Linux binaries.
235 3475187d bellard
236 3475187d bellard
@end itemize
237 3475187d bellard
238 3475187d bellard
Current QEMU limitations:
239 3475187d bellard
240 5fafdf24 ths
@itemize
241 3475187d bellard
242 3475187d bellard
@item IPC syscalls are missing.
243 3475187d bellard
244 1f587329 blueswir1
@item Floating point exception support is buggy.
245 3475187d bellard
246 3475187d bellard
@item Atomic instructions are not correctly implemented.
247 3475187d bellard
248 998a0501 blueswir1
@item There are still some problems with Sparc64 emulators.
249 998a0501 blueswir1
250 998a0501 blueswir1
@end itemize
251 998a0501 blueswir1
252 998a0501 blueswir1
@node intro_other_emulation
253 998a0501 blueswir1
@section Other CPU emulation
254 1f673135 bellard
255 998a0501 blueswir1
In addition to the above, QEMU supports emulation of other CPUs with
256 998a0501 blueswir1
varying levels of success. These are:
257 998a0501 blueswir1
258 998a0501 blueswir1
@itemize
259 998a0501 blueswir1
260 998a0501 blueswir1
@item
261 998a0501 blueswir1
Alpha
262 998a0501 blueswir1
@item
263 998a0501 blueswir1
CRIS
264 998a0501 blueswir1
@item
265 998a0501 blueswir1
M68k
266 998a0501 blueswir1
@item
267 998a0501 blueswir1
SH4
268 1f673135 bellard
@end itemize
269 1f673135 bellard
270 debc7065 bellard
@node QEMU Internals
271 1f673135 bellard
@chapter QEMU Internals
272 1f673135 bellard
273 debc7065 bellard
@menu
274 debc7065 bellard
* QEMU compared to other emulators::
275 debc7065 bellard
* Portable dynamic translation::
276 debc7065 bellard
* Condition code optimisations::
277 debc7065 bellard
* CPU state optimisations::
278 debc7065 bellard
* Translation cache::
279 debc7065 bellard
* Direct block chaining::
280 debc7065 bellard
* Self-modifying code and translated code invalidation::
281 debc7065 bellard
* Exception support::
282 debc7065 bellard
* MMU emulation::
283 998a0501 blueswir1
* Device emulation::
284 debc7065 bellard
* Hardware interrupts::
285 debc7065 bellard
* User emulation specific details::
286 debc7065 bellard
* Bibliography::
287 debc7065 bellard
@end menu
288 debc7065 bellard
289 debc7065 bellard
@node QEMU compared to other emulators
290 1f673135 bellard
@section QEMU compared to other emulators
291 1f673135 bellard
292 1f673135 bellard
Like bochs [3], QEMU emulates an x86 CPU. But QEMU is much faster than
293 1f673135 bellard
bochs as it uses dynamic compilation. Bochs is closely tied to x86 PC
294 1f673135 bellard
emulation while QEMU can emulate several processors.
295 1f673135 bellard
296 1f673135 bellard
Like Valgrind [2], QEMU does user space emulation and dynamic
297 1f673135 bellard
translation. Valgrind is mainly a memory debugger while QEMU has no
298 1f673135 bellard
support for it (QEMU could be used to detect out of bound memory
299 1f673135 bellard
accesses as Valgrind, but it has no support to track uninitialised data
300 1f673135 bellard
as Valgrind does). The Valgrind dynamic translator generates better code
301 1f673135 bellard
than QEMU (in particular it does register allocation) but it is closely
302 1f673135 bellard
tied to an x86 host and target and has no support for precise exceptions
303 1f673135 bellard
and system emulation.
304 1f673135 bellard
305 1f673135 bellard
EM86 [4] is the closest project to user space QEMU (and QEMU still uses
306 1f673135 bellard
some of its code, in particular the ELF file loader). EM86 was limited
307 1f673135 bellard
to an alpha host and used a proprietary and slow interpreter (the
308 1f673135 bellard
interpreter part of the FX!32 Digital Win32 code translator [5]).
309 1f673135 bellard
310 1f673135 bellard
TWIN [6] is a Windows API emulator like Wine. It is less accurate than
311 1f673135 bellard
Wine but includes a protected mode x86 interpreter to launch x86 Windows
312 36d54d15 bellard
executables. Such an approach has greater potential because most of the
313 1f673135 bellard
Windows API is executed natively but it is far more difficult to develop
314 1f673135 bellard
because all the data structures and function parameters exchanged
315 1f673135 bellard
between the API and the x86 code must be converted.
316 1f673135 bellard
317 1f673135 bellard
User mode Linux [7] was the only solution before QEMU to launch a
318 1f673135 bellard
Linux kernel as a process while not needing any host kernel
319 1f673135 bellard
patches. However, user mode Linux requires heavy kernel patches while
320 1f673135 bellard
QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is
321 1f673135 bellard
slower.
322 1f673135 bellard
323 998a0501 blueswir1
The Plex86 [8] PC virtualizer is done in the same spirit as the now
324 998a0501 blueswir1
obsolete qemu-fast system emulator. It requires a patched Linux kernel
325 998a0501 blueswir1
to work (you cannot launch the same kernel on your PC), but the
326 998a0501 blueswir1
patches are really small. As it is a PC virtualizer (no emulation is
327 998a0501 blueswir1
done except for some privileged instructions), it has the potential of
328 998a0501 blueswir1
being faster than QEMU. The downside is that a complicated (and
329 998a0501 blueswir1
potentially unsafe) host kernel patch is needed.
330 1f673135 bellard
331 1f673135 bellard
The commercial PC Virtualizers (VMWare [9], VirtualPC [10], TwoOStwo
332 1f673135 bellard
[11]) are faster than QEMU, but they all need specific, proprietary
333 1f673135 bellard
and potentially unsafe host drivers. Moreover, they are unable to
334 1f673135 bellard
provide cycle exact simulation as an emulator can.
335 1f673135 bellard
336 998a0501 blueswir1
VirtualBox [12], Xen [13] and KVM [14] are based on QEMU. QEMU-SystemC
337 998a0501 blueswir1
[15] uses QEMU to simulate a system where some hardware devices are
338 998a0501 blueswir1
developed in SystemC.
339 998a0501 blueswir1
340 debc7065 bellard
@node Portable dynamic translation
341 1f673135 bellard
@section Portable dynamic translation
342 1f673135 bellard
343 1f673135 bellard
QEMU is a dynamic translator. When it first encounters a piece of code,
344 1f673135 bellard
it converts it to the host instruction set. Usually dynamic translators
345 1f673135 bellard
are very complicated and highly CPU dependent. QEMU uses some tricks
346 1f673135 bellard
which make it relatively easily portable and simple while achieving good
347 1f673135 bellard
performances.
348 1f673135 bellard
349 998a0501 blueswir1
After the release of version 0.9.1, QEMU switched to a new method of
350 998a0501 blueswir1
generating code, Tiny Code Generator or TCG. TCG relaxes the
351 998a0501 blueswir1
dependency on the exact version of the compiler used. The basic idea
352 998a0501 blueswir1
is to split every target instruction into a couple of RISC-like TCG
353 998a0501 blueswir1
ops (see @code{target-i386/translate.c}). Some optimizations can be
354 998a0501 blueswir1
performed at this stage, including liveness analysis and trivial
355 998a0501 blueswir1
constant expression evaluation. TCG ops are then implemented in the
356 998a0501 blueswir1
host CPU back end, also known as TCG target (see
357 998a0501 blueswir1
@code{tcg/i386/tcg-target.c}). For more information, please take a
358 998a0501 blueswir1
look at @code{tcg/README}.
359 1f673135 bellard
360 debc7065 bellard
@node Condition code optimisations
361 1f673135 bellard
@section Condition code optimisations
362 1f673135 bellard
363 998a0501 blueswir1
Lazy evaluation of CPU condition codes (@code{EFLAGS} register on x86)
364 998a0501 blueswir1
is important for CPUs where every instruction sets the condition
365 998a0501 blueswir1
codes. It tends to be less important on conventional RISC systems
366 f0f26a06 Blue Swirl
where condition codes are only updated when explicitly requested. On
367 f0f26a06 Blue Swirl
Sparc64, costly update of both 32 and 64 bit condition codes can be
368 f0f26a06 Blue Swirl
avoided with lazy evaluation.
369 998a0501 blueswir1
370 998a0501 blueswir1
Instead of computing the condition codes after each x86 instruction,
371 998a0501 blueswir1
QEMU just stores one operand (called @code{CC_SRC}), the result
372 998a0501 blueswir1
(called @code{CC_DST}) and the type of operation (called
373 998a0501 blueswir1
@code{CC_OP}). When the condition codes are needed, the condition
374 998a0501 blueswir1
codes can be calculated using this information. In addition, an
375 998a0501 blueswir1
optimized calculation can be performed for some instruction types like
376 998a0501 blueswir1
conditional branches.
377 1f673135 bellard
378 1235fc06 ths
@code{CC_OP} is almost never explicitly set in the generated code
379 1f673135 bellard
because it is known at translation time.
380 1f673135 bellard
381 f0f26a06 Blue Swirl
The lazy condition code evaluation is used on x86, m68k, cris and
382 f0f26a06 Blue Swirl
Sparc. ARM uses a simplified variant for the N and Z flags.
383 1f673135 bellard
384 debc7065 bellard
@node CPU state optimisations
385 1f673135 bellard
@section CPU state optimisations
386 1f673135 bellard
387 998a0501 blueswir1
The target CPUs have many internal states which change the way it
388 998a0501 blueswir1
evaluates instructions. In order to achieve a good speed, the
389 998a0501 blueswir1
translation phase considers that some state information of the virtual
390 998a0501 blueswir1
CPU cannot change in it. The state is recorded in the Translation
391 998a0501 blueswir1
Block (TB). If the state changes (e.g. privilege level), a new TB will
392 998a0501 blueswir1
be generated and the previous TB won't be used anymore until the state
393 998a0501 blueswir1
matches the state recorded in the previous TB. For example, if the SS,
394 998a0501 blueswir1
DS and ES segments have a zero base, then the translator does not even
395 998a0501 blueswir1
generate an addition for the segment base.
396 1f673135 bellard
397 1f673135 bellard
[The FPU stack pointer register is not handled that way yet].
398 1f673135 bellard
399 debc7065 bellard
@node Translation cache
400 1f673135 bellard
@section Translation cache
401 1f673135 bellard
402 15a34c63 bellard
A 16 MByte cache holds the most recently used translations. For
403 1f673135 bellard
simplicity, it is completely flushed when it is full. A translation unit
404 1f673135 bellard
contains just a single basic block (a block of x86 instructions
405 1f673135 bellard
terminated by a jump or by a virtual CPU state change which the
406 1f673135 bellard
translator cannot deduce statically).
407 1f673135 bellard
408 debc7065 bellard
@node Direct block chaining
409 1f673135 bellard
@section Direct block chaining
410 1f673135 bellard
411 1f673135 bellard
After each translated basic block is executed, QEMU uses the simulated
412 1f673135 bellard
Program Counter (PC) and other cpu state informations (such as the CS
413 1f673135 bellard
segment base value) to find the next basic block.
414 1f673135 bellard
415 1f673135 bellard
In order to accelerate the most common cases where the new simulated PC
416 1f673135 bellard
is known, QEMU can patch a basic block so that it jumps directly to the
417 1f673135 bellard
next one.
418 1f673135 bellard
419 1f673135 bellard
The most portable code uses an indirect jump. An indirect jump makes
420 1f673135 bellard
it easier to make the jump target modification atomic. On some host
421 1f673135 bellard
architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
422 1f673135 bellard
directly patched so that the block chaining has no overhead.
423 1f673135 bellard
424 debc7065 bellard
@node Self-modifying code and translated code invalidation
425 1f673135 bellard
@section Self-modifying code and translated code invalidation
426 1f673135 bellard
427 1f673135 bellard
Self-modifying code is a special challenge in x86 emulation because no
428 1f673135 bellard
instruction cache invalidation is signaled by the application when code
429 1f673135 bellard
is modified.
430 1f673135 bellard
431 1f673135 bellard
When translated code is generated for a basic block, the corresponding
432 998a0501 blueswir1
host page is write protected if it is not already read-only. Then, if
433 998a0501 blueswir1
a write access is done to the page, Linux raises a SEGV signal. QEMU
434 998a0501 blueswir1
then invalidates all the translated code in the page and enables write
435 998a0501 blueswir1
accesses to the page.
436 1f673135 bellard
437 1f673135 bellard
Correct translated code invalidation is done efficiently by maintaining
438 1f673135 bellard
a linked list of every translated block contained in a given page. Other
439 5fafdf24 ths
linked lists are also maintained to undo direct block chaining.
440 1f673135 bellard
441 998a0501 blueswir1
On RISC targets, correctly written software uses memory barriers and
442 998a0501 blueswir1
cache flushes, so some of the protection above would not be
443 998a0501 blueswir1
necessary. However, QEMU still requires that the generated code always
444 998a0501 blueswir1
matches the target instructions in memory in order to handle
445 998a0501 blueswir1
exceptions correctly.
446 1f673135 bellard
447 debc7065 bellard
@node Exception support
448 1f673135 bellard
@section Exception support
449 1f673135 bellard
450 1f673135 bellard
longjmp() is used when an exception such as division by zero is
451 5fafdf24 ths
encountered.
452 1f673135 bellard
453 1f673135 bellard
The host SIGSEGV and SIGBUS signal handlers are used to get invalid
454 998a0501 blueswir1
memory accesses. The simulated program counter is found by
455 998a0501 blueswir1
retranslating the corresponding basic block and by looking where the
456 998a0501 blueswir1
host program counter was at the exception point.
457 1f673135 bellard
458 1f673135 bellard
The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
459 1f673135 bellard
in some cases it is not computed because of condition code
460 1f673135 bellard
optimisations. It is not a big concern because the emulated code can
461 1f673135 bellard
still be restarted in any cases.
462 1f673135 bellard
463 debc7065 bellard
@node MMU emulation
464 1f673135 bellard
@section MMU emulation
465 1f673135 bellard
466 998a0501 blueswir1
For system emulation QEMU supports a soft MMU. In that mode, the MMU
467 998a0501 blueswir1
virtual to physical address translation is done at every memory
468 998a0501 blueswir1
access. QEMU uses an address translation cache to speed up the
469 998a0501 blueswir1
translation.
470 1f673135 bellard
471 1f673135 bellard
In order to avoid flushing the translated code each time the MMU
472 1f673135 bellard
mappings change, QEMU uses a physically indexed translation cache. It
473 5fafdf24 ths
means that each basic block is indexed with its physical address.
474 1f673135 bellard
475 1f673135 bellard
When MMU mappings change, only the chaining of the basic blocks is
476 1f673135 bellard
reset (i.e. a basic block can no longer jump directly to another one).
477 1f673135 bellard
478 998a0501 blueswir1
@node Device emulation
479 998a0501 blueswir1
@section Device emulation
480 998a0501 blueswir1
481 998a0501 blueswir1
Systems emulated by QEMU are organized by boards. At initialization
482 998a0501 blueswir1
phase, each board instantiates a number of CPUs, devices, RAM and
483 998a0501 blueswir1
ROM. Each device in turn can assign I/O ports or memory areas (for
484 998a0501 blueswir1
MMIO) to its handlers. When the emulation starts, an access to the
485 998a0501 blueswir1
ports or MMIO memory areas assigned to the device causes the
486 998a0501 blueswir1
corresponding handler to be called.
487 998a0501 blueswir1
488 998a0501 blueswir1
RAM and ROM are handled more optimally, only the offset to the host
489 998a0501 blueswir1
memory needs to be added to the guest address.
490 998a0501 blueswir1
491 998a0501 blueswir1
The video RAM of VGA and other display cards is special: it can be
492 998a0501 blueswir1
read or written directly like RAM, but write accesses cause the memory
493 998a0501 blueswir1
to be marked with VGA_DIRTY flag as well.
494 998a0501 blueswir1
495 998a0501 blueswir1
QEMU supports some device classes like serial and parallel ports, USB,
496 998a0501 blueswir1
drives and network devices, by providing APIs for easier connection to
497 998a0501 blueswir1
the generic, higher level implementations. The API hides the
498 998a0501 blueswir1
implementation details from the devices, like native device use or
499 998a0501 blueswir1
advanced block device formats like QCOW.
500 998a0501 blueswir1
501 998a0501 blueswir1
Usually the devices implement a reset method and register support for
502 998a0501 blueswir1
saving and loading of the device state. The devices can also use
503 998a0501 blueswir1
timers, especially together with the use of bottom halves (BHs).
504 998a0501 blueswir1
505 debc7065 bellard
@node Hardware interrupts
506 1f673135 bellard
@section Hardware interrupts
507 1f673135 bellard
508 1f673135 bellard
In order to be faster, QEMU does not check at every basic block if an
509 1f673135 bellard
hardware interrupt is pending. Instead, the user must asynchrously
510 1f673135 bellard
call a specific function to tell that an interrupt is pending. This
511 1f673135 bellard
function resets the chaining of the currently executing basic
512 1f673135 bellard
block. It ensures that the execution will return soon in the main loop
513 1f673135 bellard
of the CPU emulator. Then the main loop can test if the interrupt is
514 1f673135 bellard
pending and handle it.
515 1f673135 bellard
516 debc7065 bellard
@node User emulation specific details
517 1f673135 bellard
@section User emulation specific details
518 1f673135 bellard
519 1f673135 bellard
@subsection Linux system call translation
520 1f673135 bellard
521 1f673135 bellard
QEMU includes a generic system call translator for Linux. It means that
522 1f673135 bellard
the parameters of the system calls can be converted to fix the
523 1f673135 bellard
endianness and 32/64 bit issues. The IOCTLs are converted with a generic
524 1f673135 bellard
type description system (see @file{ioctls.h} and @file{thunk.c}).
525 1f673135 bellard
526 1f673135 bellard
QEMU supports host CPUs which have pages bigger than 4KB. It records all
527 1f673135 bellard
the mappings the process does and try to emulated the @code{mmap()}
528 1f673135 bellard
system calls in cases where the host @code{mmap()} call would fail
529 1f673135 bellard
because of bad page alignment.
530 1f673135 bellard
531 1f673135 bellard
@subsection Linux signals
532 1f673135 bellard
533 1f673135 bellard
Normal and real-time signals are queued along with their information
534 1f673135 bellard
(@code{siginfo_t}) as it is done in the Linux kernel. Then an interrupt
535 1f673135 bellard
request is done to the virtual CPU. When it is interrupted, one queued
536 1f673135 bellard
signal is handled by generating a stack frame in the virtual CPU as the
537 1f673135 bellard
Linux kernel does. The @code{sigreturn()} system call is emulated to return
538 1f673135 bellard
from the virtual signal handler.
539 1f673135 bellard
540 1f673135 bellard
Some signals (such as SIGALRM) directly come from the host. Other
541 1f673135 bellard
signals are synthetized from the virtual CPU exceptions such as SIGFPE
542 1f673135 bellard
when a division by zero is done (see @code{main.c:cpu_loop()}).
543 1f673135 bellard
544 1f673135 bellard
The blocked signal mask is still handled by the host Linux kernel so
545 1f673135 bellard
that most signal system calls can be redirected directly to the host
546 1f673135 bellard
Linux kernel. Only the @code{sigaction()} and @code{sigreturn()} system
547 1f673135 bellard
calls need to be fully emulated (see @file{signal.c}).
548 1f673135 bellard
549 1f673135 bellard
@subsection clone() system call and threads
550 1f673135 bellard
551 1f673135 bellard
The Linux clone() system call is usually used to create a thread. QEMU
552 1f673135 bellard
uses the host clone() system call so that real host threads are created
553 1f673135 bellard
for each emulated thread. One virtual CPU instance is created for each
554 1f673135 bellard
thread.
555 1f673135 bellard
556 1f673135 bellard
The virtual x86 CPU atomic operations are emulated with a global lock so
557 1f673135 bellard
that their semantic is preserved.
558 1f673135 bellard
559 1f673135 bellard
Note that currently there are still some locking issues in QEMU. In
560 1f673135 bellard
particular, the translated cache flush is not protected yet against
561 1f673135 bellard
reentrancy.
562 1f673135 bellard
563 1f673135 bellard
@subsection Self-virtualization
564 1f673135 bellard
565 1f673135 bellard
QEMU was conceived so that ultimately it can emulate itself. Although
566 1f673135 bellard
it is not very useful, it is an important test to show the power of the
567 1f673135 bellard
emulator.
568 1f673135 bellard
569 1f673135 bellard
Achieving self-virtualization is not easy because there may be address
570 998a0501 blueswir1
space conflicts. QEMU user emulators solve this problem by being an
571 998a0501 blueswir1
executable ELF shared object as the ld-linux.so ELF interpreter. That
572 998a0501 blueswir1
way, it can be relocated at load time.
573 1f673135 bellard
574 debc7065 bellard
@node Bibliography
575 1f673135 bellard
@section Bibliography
576 1f673135 bellard
577 1f673135 bellard
@table @asis
578 1f673135 bellard
579 5fafdf24 ths
@item [1]
580 1f673135 bellard
@url{http://citeseer.nj.nec.com/piumarta98optimizing.html}, Optimizing
581 1f673135 bellard
direct threaded code by selective inlining (1998) by Ian Piumarta, Fabio
582 1f673135 bellard
Riccardi.
583 1f673135 bellard
584 1f673135 bellard
@item [2]
585 1f673135 bellard
@url{http://developer.kde.org/~sewardj/}, Valgrind, an open-source
586 1f673135 bellard
memory debugger for x86-GNU/Linux, by Julian Seward.
587 1f673135 bellard
588 1f673135 bellard
@item [3]
589 1f673135 bellard
@url{http://bochs.sourceforge.net/}, the Bochs IA-32 Emulator Project,
590 1f673135 bellard
by Kevin Lawton et al.
591 1f673135 bellard
592 1f673135 bellard
@item [4]
593 1f673135 bellard
@url{http://www.cs.rose-hulman.edu/~donaldlf/em86/index.html}, the EM86
594 1f673135 bellard
x86 emulator on Alpha-Linux.
595 1f673135 bellard
596 1f673135 bellard
@item [5]
597 debc7065 bellard
@url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/@/full_papers/chernoff/chernoff.pdf},
598 1f673135 bellard
DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
599 1f673135 bellard
Chernoff and Ray Hookway.
600 1f673135 bellard
601 1f673135 bellard
@item [6]
602 1f673135 bellard
@url{http://www.willows.com/}, Windows API library emulation from
603 1f673135 bellard
Willows Software.
604 1f673135 bellard
605 1f673135 bellard
@item [7]
606 5fafdf24 ths
@url{http://user-mode-linux.sourceforge.net/},
607 1f673135 bellard
The User-mode Linux Kernel.
608 1f673135 bellard
609 1f673135 bellard
@item [8]
610 5fafdf24 ths
@url{http://www.plex86.org/},
611 1f673135 bellard
The new Plex86 project.
612 1f673135 bellard
613 1f673135 bellard
@item [9]
614 5fafdf24 ths
@url{http://www.vmware.com/},
615 1f673135 bellard
The VMWare PC virtualizer.
616 1f673135 bellard
617 1f673135 bellard
@item [10]
618 5fafdf24 ths
@url{http://www.microsoft.com/windowsxp/virtualpc/},
619 1f673135 bellard
The VirtualPC PC virtualizer.
620 1f673135 bellard
621 1f673135 bellard
@item [11]
622 5fafdf24 ths
@url{http://www.twoostwo.org/},
623 1f673135 bellard
The TwoOStwo PC virtualizer.
624 1f673135 bellard
625 998a0501 blueswir1
@item [12]
626 998a0501 blueswir1
@url{http://virtualbox.org/},
627 998a0501 blueswir1
The VirtualBox PC virtualizer.
628 998a0501 blueswir1
629 998a0501 blueswir1
@item [13]
630 998a0501 blueswir1
@url{http://www.xen.org/},
631 998a0501 blueswir1
The Xen hypervisor.
632 998a0501 blueswir1
633 998a0501 blueswir1
@item [14]
634 998a0501 blueswir1
@url{http://kvm.qumranet.com/kvmwiki/Front_Page},
635 998a0501 blueswir1
Kernel Based Virtual Machine (KVM).
636 998a0501 blueswir1
637 998a0501 blueswir1
@item [15]
638 998a0501 blueswir1
@url{http://www.greensocs.com/projects/QEMUSystemC},
639 998a0501 blueswir1
QEMU-SystemC, a hardware co-simulator.
640 998a0501 blueswir1
641 1f673135 bellard
@end table
642 1f673135 bellard
643 debc7065 bellard
@node Regression Tests
644 1f673135 bellard
@chapter Regression Tests
645 1f673135 bellard
646 1f673135 bellard
In the directory @file{tests/}, various interesting testing programs
647 b1f45238 ths
are available. They are used for regression testing.
648 1f673135 bellard
649 debc7065 bellard
@menu
650 debc7065 bellard
* test-i386::
651 debc7065 bellard
* linux-test::
652 debc7065 bellard
* qruncom.c::
653 debc7065 bellard
@end menu
654 debc7065 bellard
655 debc7065 bellard
@node test-i386
656 1f673135 bellard
@section @file{test-i386}
657 1f673135 bellard
658 1f673135 bellard
This program executes most of the 16 bit and 32 bit x86 instructions and
659 1f673135 bellard
generates a text output. It can be compared with the output obtained with
660 1f673135 bellard
a real CPU or another emulator. The target @code{make test} runs this
661 1f673135 bellard
program and a @code{diff} on the generated output.
662 1f673135 bellard
663 1f673135 bellard
The Linux system call @code{modify_ldt()} is used to create x86 selectors
664 1f673135 bellard
to test some 16 bit addressing and 32 bit with segmentation cases.
665 1f673135 bellard
666 1f673135 bellard
The Linux system call @code{vm86()} is used to test vm86 emulation.
667 1f673135 bellard
668 1f673135 bellard
Various exceptions are raised to test most of the x86 user space
669 1f673135 bellard
exception reporting.
670 1f673135 bellard
671 debc7065 bellard
@node linux-test
672 1f673135 bellard
@section @file{linux-test}
673 1f673135 bellard
674 1f673135 bellard
This program tests various Linux system calls. It is used to verify
675 1f673135 bellard
that the system call parameters are correctly converted between target
676 1f673135 bellard
and host CPUs.
677 1f673135 bellard
678 debc7065 bellard
@node qruncom.c
679 15a34c63 bellard
@section @file{qruncom.c}
680 1f673135 bellard
681 15a34c63 bellard
Example of usage of @code{libqemu} to emulate a user mode i386 CPU.
682 debc7065 bellard
683 debc7065 bellard
@node Index
684 debc7065 bellard
@chapter Index
685 debc7065 bellard
@printindex cp
686 debc7065 bellard
687 debc7065 bellard
@bye