Statistics
| Branch: | Revision:

root / hw / arm_timer.c @ 563e3c6e

History | View | Annotate | Download (9.1 kB)

1
/*
2
 * ARM PrimeCell Timer modules.
3
 *
4
 * Copyright (c) 2005-2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the GPL.
8
 */
9

    
10
#include "hw.h"
11
#include "qemu-timer.h"
12
#include "primecell.h"
13

    
14
/* Common timer implementation.  */
15

    
16
#define TIMER_CTRL_ONESHOT      (1 << 0)
17
#define TIMER_CTRL_32BIT        (1 << 1)
18
#define TIMER_CTRL_DIV1         (0 << 2)
19
#define TIMER_CTRL_DIV16        (1 << 2)
20
#define TIMER_CTRL_DIV256       (2 << 2)
21
#define TIMER_CTRL_IE           (1 << 5)
22
#define TIMER_CTRL_PERIODIC     (1 << 6)
23
#define TIMER_CTRL_ENABLE       (1 << 7)
24

    
25
typedef struct {
26
    ptimer_state *timer;
27
    uint32_t control;
28
    uint32_t limit;
29
    int freq;
30
    int int_level;
31
    qemu_irq irq;
32
} arm_timer_state;
33

    
34
/* Check all active timers, and schedule the next timer interrupt.  */
35

    
36
static void arm_timer_update(arm_timer_state *s)
37
{
38
    /* Update interrupts.  */
39
    if (s->int_level && (s->control & TIMER_CTRL_IE)) {
40
        qemu_irq_raise(s->irq);
41
    } else {
42
        qemu_irq_lower(s->irq);
43
    }
44
}
45

    
46
static uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
47
{
48
    arm_timer_state *s = (arm_timer_state *)opaque;
49

    
50
    switch (offset >> 2) {
51
    case 0: /* TimerLoad */
52
    case 6: /* TimerBGLoad */
53
        return s->limit;
54
    case 1: /* TimerValue */
55
        return ptimer_get_count(s->timer);
56
    case 2: /* TimerControl */
57
        return s->control;
58
    case 4: /* TimerRIS */
59
        return s->int_level;
60
    case 5: /* TimerMIS */
61
        if ((s->control & TIMER_CTRL_IE) == 0)
62
            return 0;
63
        return s->int_level;
64
    default:
65
        cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n",
66
                   (int)offset);
67
        return 0;
68
    }
69
}
70

    
71
/* Reset the timer limit after settings have changed.  */
72
static void arm_timer_recalibrate(arm_timer_state *s, int reload)
73
{
74
    uint32_t limit;
75

    
76
    if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
77
        /* Free running.  */
78
        if (s->control & TIMER_CTRL_32BIT)
79
            limit = 0xffffffff;
80
        else
81
            limit = 0xffff;
82
    } else {
83
          /* Periodic.  */
84
          limit = s->limit;
85
    }
86
    ptimer_set_limit(s->timer, limit, reload);
87
}
88

    
89
static void arm_timer_write(void *opaque, target_phys_addr_t offset,
90
                            uint32_t value)
91
{
92
    arm_timer_state *s = (arm_timer_state *)opaque;
93
    int freq;
94

    
95
    switch (offset >> 2) {
96
    case 0: /* TimerLoad */
97
        s->limit = value;
98
        arm_timer_recalibrate(s, 1);
99
        break;
100
    case 1: /* TimerValue */
101
        /* ??? Linux seems to want to write to this readonly register.
102
           Ignore it.  */
103
        break;
104
    case 2: /* TimerControl */
105
        if (s->control & TIMER_CTRL_ENABLE) {
106
            /* Pause the timer if it is running.  This may cause some
107
               inaccuracy dure to rounding, but avoids a whole lot of other
108
               messyness.  */
109
            ptimer_stop(s->timer);
110
        }
111
        s->control = value;
112
        freq = s->freq;
113
        /* ??? Need to recalculate expiry time after changing divisor.  */
114
        switch ((value >> 2) & 3) {
115
        case 1: freq >>= 4; break;
116
        case 2: freq >>= 8; break;
117
        }
118
        arm_timer_recalibrate(s, 0);
119
        ptimer_set_freq(s->timer, freq);
120
        if (s->control & TIMER_CTRL_ENABLE) {
121
            /* Restart the timer if still enabled.  */
122
            ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
123
        }
124
        break;
125
    case 3: /* TimerIntClr */
126
        s->int_level = 0;
127
        break;
128
    case 6: /* TimerBGLoad */
129
        s->limit = value;
130
        arm_timer_recalibrate(s, 0);
131
        break;
132
    default:
133
        cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n",
134
                   (int)offset);
135
    }
136
    arm_timer_update(s);
137
}
138

    
139
static void arm_timer_tick(void *opaque)
140
{
141
    arm_timer_state *s = (arm_timer_state *)opaque;
142
    s->int_level = 1;
143
    arm_timer_update(s);
144
}
145

    
146
static void arm_timer_save(QEMUFile *f, void *opaque)
147
{
148
    arm_timer_state *s = (arm_timer_state *)opaque;
149
    qemu_put_be32(f, s->control);
150
    qemu_put_be32(f, s->limit);
151
    qemu_put_be32(f, s->int_level);
152
    qemu_put_ptimer(f, s->timer);
153
}
154

    
155
static int arm_timer_load(QEMUFile *f, void *opaque, int version_id)
156
{
157
    arm_timer_state *s = (arm_timer_state *)opaque;
158

    
159
    if (version_id != 1)
160
        return -EINVAL;
161

    
162
    s->control = qemu_get_be32(f);
163
    s->limit = qemu_get_be32(f);
164
    s->int_level = qemu_get_be32(f);
165
    qemu_get_ptimer(f, s->timer);
166
    return 0;
167
}
168

    
169
static void *arm_timer_init(uint32_t freq, qemu_irq irq)
170
{
171
    arm_timer_state *s;
172
    QEMUBH *bh;
173

    
174
    s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
175
    s->irq = irq;
176
    s->freq = freq;
177
    s->control = TIMER_CTRL_IE;
178

    
179
    bh = qemu_bh_new(arm_timer_tick, s);
180
    s->timer = ptimer_init(bh);
181
    register_savevm("arm_timer", -1, 1, arm_timer_save, arm_timer_load, s);
182
    return s;
183
}
184

    
185
/* ARM PrimeCell SP804 dual timer module.
186
   Docs for this device don't seem to be publicly available.  This
187
   implementation is based on guesswork, the linux kernel sources and the
188
   Integrator/CP timer modules.  */
189

    
190
typedef struct {
191
    void *timer[2];
192
    int level[2];
193
    uint32_t base;
194
    qemu_irq irq;
195
} sp804_state;
196

    
197
/* Merge the IRQs from the two component devices.  */
198
static void sp804_set_irq(void *opaque, int irq, int level)
199
{
200
    sp804_state *s = (sp804_state *)opaque;
201

    
202
    s->level[irq] = level;
203
    qemu_set_irq(s->irq, s->level[0] || s->level[1]);
204
}
205

    
206
static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
207
{
208
    sp804_state *s = (sp804_state *)opaque;
209

    
210
    /* ??? Don't know the PrimeCell ID for this device.  */
211
    offset -= s->base;
212
    if (offset < 0x20) {
213
        return arm_timer_read(s->timer[0], offset);
214
    } else {
215
        return arm_timer_read(s->timer[1], offset - 0x20);
216
    }
217
}
218

    
219
static void sp804_write(void *opaque, target_phys_addr_t offset,
220
                        uint32_t value)
221
{
222
    sp804_state *s = (sp804_state *)opaque;
223

    
224
    offset -= s->base;
225
    if (offset < 0x20) {
226
        arm_timer_write(s->timer[0], offset, value);
227
    } else {
228
        arm_timer_write(s->timer[1], offset - 0x20, value);
229
    }
230
}
231

    
232
static CPUReadMemoryFunc *sp804_readfn[] = {
233
   sp804_read,
234
   sp804_read,
235
   sp804_read
236
};
237

    
238
static CPUWriteMemoryFunc *sp804_writefn[] = {
239
   sp804_write,
240
   sp804_write,
241
   sp804_write
242
};
243

    
244
static void sp804_save(QEMUFile *f, void *opaque)
245
{
246
    sp804_state *s = (sp804_state *)opaque;
247
    qemu_put_be32(f, s->level[0]);
248
    qemu_put_be32(f, s->level[1]);
249
}
250

    
251
static int sp804_load(QEMUFile *f, void *opaque, int version_id)
252
{
253
    sp804_state *s = (sp804_state *)opaque;
254

    
255
    if (version_id != 1)
256
        return -EINVAL;
257

    
258
    s->level[0] = qemu_get_be32(f);
259
    s->level[1] = qemu_get_be32(f);
260
    return 0;
261
}
262

    
263
void sp804_init(uint32_t base, qemu_irq irq)
264
{
265
    int iomemtype;
266
    sp804_state *s;
267
    qemu_irq *qi;
268

    
269
    s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
270
    qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
271
    s->base = base;
272
    s->irq = irq;
273
    /* ??? The timers are actually configurable between 32kHz and 1MHz, but
274
       we don't implement that.  */
275
    s->timer[0] = arm_timer_init(1000000, qi[0]);
276
    s->timer[1] = arm_timer_init(1000000, qi[1]);
277
    iomemtype = cpu_register_io_memory(0, sp804_readfn,
278
                                       sp804_writefn, s);
279
    cpu_register_physical_memory(base, 0x00001000, iomemtype);
280
    register_savevm("sp804", -1, 1, sp804_save, sp804_load, s);
281
}
282

    
283

    
284
/* Integrator/CP timer module.  */
285

    
286
typedef struct {
287
    void *timer[3];
288
    uint32_t base;
289
} icp_pit_state;
290

    
291
static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
292
{
293
    icp_pit_state *s = (icp_pit_state *)opaque;
294
    int n;
295

    
296
    /* ??? Don't know the PrimeCell ID for this device.  */
297
    offset -= s->base;
298
    n = offset >> 8;
299
    if (n > 3)
300
        cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
301

    
302
    return arm_timer_read(s->timer[n], offset & 0xff);
303
}
304

    
305
static void icp_pit_write(void *opaque, target_phys_addr_t offset,
306
                          uint32_t value)
307
{
308
    icp_pit_state *s = (icp_pit_state *)opaque;
309
    int n;
310

    
311
    offset -= s->base;
312
    n = offset >> 8;
313
    if (n > 3)
314
        cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
315

    
316
    arm_timer_write(s->timer[n], offset & 0xff, value);
317
}
318

    
319

    
320
static CPUReadMemoryFunc *icp_pit_readfn[] = {
321
   icp_pit_read,
322
   icp_pit_read,
323
   icp_pit_read
324
};
325

    
326
static CPUWriteMemoryFunc *icp_pit_writefn[] = {
327
   icp_pit_write,
328
   icp_pit_write,
329
   icp_pit_write
330
};
331

    
332
void icp_pit_init(uint32_t base, qemu_irq *pic, int irq)
333
{
334
    int iomemtype;
335
    icp_pit_state *s;
336

    
337
    s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
338
    s->base = base;
339
    /* Timer 0 runs at the system clock speed (40MHz).  */
340
    s->timer[0] = arm_timer_init(40000000, pic[irq]);
341
    /* The other two timers run at 1MHz.  */
342
    s->timer[1] = arm_timer_init(1000000, pic[irq + 1]);
343
    s->timer[2] = arm_timer_init(1000000, pic[irq + 2]);
344

    
345
    iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
346
                                       icp_pit_writefn, s);
347
    cpu_register_physical_memory(base, 0x00001000, iomemtype);
348
    /* This device has no state to save/restore.  The component timers will
349
       save themselves.  */
350
}
351