Statistics
| Branch: | Revision:

root / gdbstub.c @ 57e49b40

History | View | Annotate | Download (39.4 kB)

1
/*
2
 * gdb server stub
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#ifdef CONFIG_USER_ONLY
22
#include <stdlib.h>
23
#include <stdio.h>
24
#include <stdarg.h>
25
#include <string.h>
26
#include <errno.h>
27
#include <unistd.h>
28
#include <fcntl.h>
29

    
30
#include "qemu.h"
31
#else
32
#include "qemu-common.h"
33
#include "qemu-char.h"
34
#include "sysemu.h"
35
#include "gdbstub.h"
36
#endif
37

    
38
#include "qemu_socket.h"
39
#ifdef _WIN32
40
/* XXX: these constants may be independent of the host ones even for Unix */
41
#ifndef SIGTRAP
42
#define SIGTRAP 5
43
#endif
44
#ifndef SIGINT
45
#define SIGINT 2
46
#endif
47
#else
48
#include <signal.h>
49
#endif
50

    
51
//#define DEBUG_GDB
52

    
53
enum RSState {
54
    RS_IDLE,
55
    RS_GETLINE,
56
    RS_CHKSUM1,
57
    RS_CHKSUM2,
58
    RS_SYSCALL,
59
};
60
typedef struct GDBState {
61
    CPUState *env; /* current CPU */
62
    enum RSState state; /* parsing state */
63
    char line_buf[4096];
64
    int line_buf_index;
65
    int line_csum;
66
    uint8_t last_packet[4100];
67
    int last_packet_len;
68
    int signal;
69
#ifdef CONFIG_USER_ONLY
70
    int fd;
71
    int running_state;
72
#else
73
    CharDriverState *chr;
74
#endif
75
} GDBState;
76

    
77
/* By default use no IRQs and no timers while single stepping so as to
78
 * make single stepping like an ICE HW step.
79
 */
80
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
81

    
82
#ifdef CONFIG_USER_ONLY
83
/* XXX: This is not thread safe.  Do we care?  */
84
static int gdbserver_fd = -1;
85

    
86
/* XXX: remove this hack.  */
87
static GDBState gdbserver_state;
88

    
89
static int get_char(GDBState *s)
90
{
91
    uint8_t ch;
92
    int ret;
93

    
94
    for(;;) {
95
        ret = recv(s->fd, &ch, 1, 0);
96
        if (ret < 0) {
97
            if (errno == ECONNRESET)
98
                s->fd = -1;
99
            if (errno != EINTR && errno != EAGAIN)
100
                return -1;
101
        } else if (ret == 0) {
102
            close(s->fd);
103
            s->fd = -1;
104
            return -1;
105
        } else {
106
            break;
107
        }
108
    }
109
    return ch;
110
}
111
#endif
112

    
113
/* GDB stub state for use by semihosting syscalls.  */
114
static GDBState *gdb_syscall_state;
115
static gdb_syscall_complete_cb gdb_current_syscall_cb;
116

    
117
enum {
118
    GDB_SYS_UNKNOWN,
119
    GDB_SYS_ENABLED,
120
    GDB_SYS_DISABLED,
121
} gdb_syscall_mode;
122

    
123
/* If gdb is connected when the first semihosting syscall occurs then use
124
   remote gdb syscalls.  Otherwise use native file IO.  */
125
int use_gdb_syscalls(void)
126
{
127
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
128
        gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
129
                                              : GDB_SYS_DISABLED);
130
    }
131
    return gdb_syscall_mode == GDB_SYS_ENABLED;
132
}
133

    
134
/* Resume execution.  */
135
static inline void gdb_continue(GDBState *s)
136
{
137
#ifdef CONFIG_USER_ONLY
138
    s->running_state = 1;
139
#else
140
    vm_start();
141
#endif
142
}
143

    
144
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
145
{
146
#ifdef CONFIG_USER_ONLY
147
    int ret;
148

    
149
    while (len > 0) {
150
        ret = send(s->fd, buf, len, 0);
151
        if (ret < 0) {
152
            if (errno != EINTR && errno != EAGAIN)
153
                return;
154
        } else {
155
            buf += ret;
156
            len -= ret;
157
        }
158
    }
159
#else
160
    qemu_chr_write(s->chr, buf, len);
161
#endif
162
}
163

    
164
static inline int fromhex(int v)
165
{
166
    if (v >= '0' && v <= '9')
167
        return v - '0';
168
    else if (v >= 'A' && v <= 'F')
169
        return v - 'A' + 10;
170
    else if (v >= 'a' && v <= 'f')
171
        return v - 'a' + 10;
172
    else
173
        return 0;
174
}
175

    
176
static inline int tohex(int v)
177
{
178
    if (v < 10)
179
        return v + '0';
180
    else
181
        return v - 10 + 'a';
182
}
183

    
184
static void memtohex(char *buf, const uint8_t *mem, int len)
185
{
186
    int i, c;
187
    char *q;
188
    q = buf;
189
    for(i = 0; i < len; i++) {
190
        c = mem[i];
191
        *q++ = tohex(c >> 4);
192
        *q++ = tohex(c & 0xf);
193
    }
194
    *q = '\0';
195
}
196

    
197
static void hextomem(uint8_t *mem, const char *buf, int len)
198
{
199
    int i;
200

    
201
    for(i = 0; i < len; i++) {
202
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
203
        buf += 2;
204
    }
205
}
206

    
207
/* return -1 if error, 0 if OK */
208
static int put_packet(GDBState *s, char *buf)
209
{
210
    int len, csum, i;
211
    uint8_t *p;
212

    
213
#ifdef DEBUG_GDB
214
    printf("reply='%s'\n", buf);
215
#endif
216

    
217
    for(;;) {
218
        p = s->last_packet;
219
        *(p++) = '$';
220
        len = strlen(buf);
221
        memcpy(p, buf, len);
222
        p += len;
223
        csum = 0;
224
        for(i = 0; i < len; i++) {
225
            csum += buf[i];
226
        }
227
        *(p++) = '#';
228
        *(p++) = tohex((csum >> 4) & 0xf);
229
        *(p++) = tohex((csum) & 0xf);
230

    
231
        s->last_packet_len = p - s->last_packet;
232
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
233

    
234
#ifdef CONFIG_USER_ONLY
235
        i = get_char(s);
236
        if (i < 0)
237
            return -1;
238
        if (i == '+')
239
            break;
240
#else
241
        break;
242
#endif
243
    }
244
    return 0;
245
}
246

    
247
#if defined(TARGET_I386)
248

    
249
#ifdef TARGET_X86_64
250
static const uint8_t gdb_x86_64_regs[16] = {
251
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
252
    8, 9, 10, 11, 12, 13, 14, 15,
253
};
254
#endif
255

    
256
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
257
{
258
    int i, fpus, nb_regs;
259
    uint8_t *p;
260

    
261
    p = mem_buf;
262
#ifdef TARGET_X86_64
263
    if (env->hflags & HF_CS64_MASK) {
264
        nb_regs = 16;
265
        for(i = 0; i < 16; i++) {
266
            *(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
267
            p += 8;
268
        }
269
        *(uint64_t *)p = tswap64(env->eip);
270
        p += 8;
271
    } else
272
#endif
273
    {
274
        nb_regs = 8;
275
        for(i = 0; i < 8; i++) {
276
            *(uint32_t *)p = tswap32(env->regs[i]);
277
            p += 4;
278
        }
279
        *(uint32_t *)p = tswap32(env->eip);
280
        p += 4;
281
    }
282

    
283
    *(uint32_t *)p = tswap32(env->eflags);
284
    p += 4;
285
    *(uint32_t *)p = tswap32(env->segs[R_CS].selector);
286
    p += 4;
287
    *(uint32_t *)p = tswap32(env->segs[R_SS].selector);
288
    p += 4;
289
    *(uint32_t *)p = tswap32(env->segs[R_DS].selector);
290
    p += 4;
291
    *(uint32_t *)p = tswap32(env->segs[R_ES].selector);
292
    p += 4;
293
    *(uint32_t *)p = tswap32(env->segs[R_FS].selector);
294
    p += 4;
295
    *(uint32_t *)p = tswap32(env->segs[R_GS].selector);
296
    p += 4;
297
    for(i = 0; i < 8; i++) {
298
        /* XXX: convert floats */
299
#ifdef USE_X86LDOUBLE
300
        memcpy(p, &env->fpregs[i], 10);
301
#else
302
        memset(p, 0, 10);
303
#endif
304
        p += 10;
305
    }
306
    *(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
307
    p += 4;
308
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
309
    *(uint32_t *)p = tswap32(fpus); /* fstat */
310
    p += 4;
311
    *(uint32_t *)p = 0; /* ftag */
312
    p += 4;
313
    *(uint32_t *)p = 0; /* fiseg */
314
    p += 4;
315
    *(uint32_t *)p = 0; /* fioff */
316
    p += 4;
317
    *(uint32_t *)p = 0; /* foseg */
318
    p += 4;
319
    *(uint32_t *)p = 0; /* fooff */
320
    p += 4;
321
    *(uint32_t *)p = 0; /* fop */
322
    p += 4;
323
    for(i = 0; i < nb_regs; i++) {
324
        *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
325
        p += 8;
326
        *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
327
        p += 8;
328
    }
329
    *(uint32_t *)p = tswap32(env->mxcsr);
330
    p += 4;
331
    return p - mem_buf;
332
}
333

    
334
static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp, 
335
                                    int sreg)
336
{
337
    const uint8_t *p;
338
    uint32_t sel;
339
    p = *pp;
340
    sel = tswap32(*(uint32_t *)p);
341
    p += 4;
342
    if (sel != env->segs[sreg].selector) {
343
#if defined(CONFIG_USER_ONLY)
344
        cpu_x86_load_seg(env, sreg, sel);
345
#else
346
        /* XXX: do it with a debug function which does not raise an
347
           exception */
348
#endif
349
    }
350
    *pp = p;
351
}
352

    
353
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
354
{
355
    const uint8_t *p = mem_buf;
356
    int i, nb_regs;
357
    uint16_t fpus;
358

    
359
#ifdef TARGET_X86_64
360
    if (env->hflags & HF_CS64_MASK) {
361
        nb_regs = 16;
362
        for(i = 0; i < 16; i++) {
363
            env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
364
            p += 8;
365
        }
366
        env->eip = tswap64(*(uint64_t *)p);
367
        p += 8;
368
    } else
369
#endif
370
    {
371
        nb_regs = 8;
372
        for(i = 0; i < 8; i++) {
373
            env->regs[i] = tswap32(*(uint32_t *)p);
374
            p += 4;
375
        }
376
        env->eip = tswap32(*(uint32_t *)p);
377
        p += 4;
378
    }
379
    env->eflags = tswap32(*(uint32_t *)p);
380
    p += 4;
381
    cpu_gdb_load_seg(env, &p, R_CS);
382
    cpu_gdb_load_seg(env, &p, R_SS);
383
    cpu_gdb_load_seg(env, &p, R_DS);
384
    cpu_gdb_load_seg(env, &p, R_ES);
385
    cpu_gdb_load_seg(env, &p, R_FS);
386
    cpu_gdb_load_seg(env, &p, R_GS);
387
    
388
    /* FPU state */
389
    for(i = 0; i < 8; i++) {
390
        /* XXX: convert floats */
391
#ifdef USE_X86LDOUBLE
392
        memcpy(&env->fpregs[i], p, 10);
393
#endif
394
        p += 10;
395
    }
396
    env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
397
    p += 4;
398
    fpus = tswap32(*(uint32_t *)p);
399
    p += 4;
400
    env->fpstt = (fpus >> 11) & 7;
401
    env->fpus = fpus & ~0x3800;
402
    p += 4 * 6;
403
    
404
    if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
405
        /* SSE state */
406
        for(i = 0; i < nb_regs; i++) {
407
            env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
408
            p += 8;
409
            env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
410
            p += 8;
411
        }
412
        env->mxcsr = tswap32(*(uint32_t *)p);
413
        p += 4;
414
    }
415
}
416

    
417
#elif defined (TARGET_PPC)
418
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
419
{
420
    uint32_t *registers = (uint32_t *)mem_buf, tmp;
421
    int i;
422

    
423
    /* fill in gprs */
424
    for(i = 0; i < 32; i++) {
425
        registers[i] = tswapl(env->gpr[i]);
426
    }
427
    /* fill in fprs */
428
    for (i = 0; i < 32; i++) {
429
        registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
430
        registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
431
    }
432
    /* nip, msr, ccr, lnk, ctr, xer, mq */
433
    registers[96] = tswapl(env->nip);
434
    registers[97] = tswapl(env->msr);
435
    tmp = 0;
436
    for (i = 0; i < 8; i++)
437
        tmp |= env->crf[i] << (32 - ((i + 1) * 4));
438
    registers[98] = tswapl(tmp);
439
    registers[99] = tswapl(env->lr);
440
    registers[100] = tswapl(env->ctr);
441
    registers[101] = tswapl(ppc_load_xer(env));
442
    registers[102] = 0;
443

    
444
    return 103 * 4;
445
}
446

    
447
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
448
{
449
    uint32_t *registers = (uint32_t *)mem_buf;
450
    int i;
451

    
452
    /* fill in gprs */
453
    for (i = 0; i < 32; i++) {
454
        env->gpr[i] = tswapl(registers[i]);
455
    }
456
    /* fill in fprs */
457
    for (i = 0; i < 32; i++) {
458
        *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
459
        *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
460
    }
461
    /* nip, msr, ccr, lnk, ctr, xer, mq */
462
    env->nip = tswapl(registers[96]);
463
    ppc_store_msr(env, tswapl(registers[97]));
464
    registers[98] = tswapl(registers[98]);
465
    for (i = 0; i < 8; i++)
466
        env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
467
    env->lr = tswapl(registers[99]);
468
    env->ctr = tswapl(registers[100]);
469
    ppc_store_xer(env, tswapl(registers[101]));
470
}
471
#elif defined (TARGET_SPARC)
472
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
473
{
474
    target_ulong *registers = (target_ulong *)mem_buf;
475
    int i;
476

    
477
    /* fill in g0..g7 */
478
    for(i = 0; i < 8; i++) {
479
        registers[i] = tswapl(env->gregs[i]);
480
    }
481
    /* fill in register window */
482
    for(i = 0; i < 24; i++) {
483
        registers[i + 8] = tswapl(env->regwptr[i]);
484
    }
485
#ifndef TARGET_SPARC64
486
    /* fill in fprs */
487
    for (i = 0; i < 32; i++) {
488
        registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
489
    }
490
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
491
    registers[64] = tswapl(env->y);
492
    {
493
        target_ulong tmp;
494

    
495
        tmp = GET_PSR(env);
496
        registers[65] = tswapl(tmp);
497
    }
498
    registers[66] = tswapl(env->wim);
499
    registers[67] = tswapl(env->tbr);
500
    registers[68] = tswapl(env->pc);
501
    registers[69] = tswapl(env->npc);
502
    registers[70] = tswapl(env->fsr);
503
    registers[71] = 0; /* csr */
504
    registers[72] = 0;
505
    return 73 * sizeof(target_ulong);
506
#else
507
    /* fill in fprs */
508
    for (i = 0; i < 64; i += 2) {
509
        uint64_t tmp;
510

    
511
        tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
512
        tmp |= *(uint32_t *)&env->fpr[i + 1];
513
        registers[i / 2 + 32] = tswap64(tmp);
514
    }
515
    registers[64] = tswapl(env->pc);
516
    registers[65] = tswapl(env->npc);
517
    registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
518
                           ((env->asi & 0xff) << 24) |
519
                           ((env->pstate & 0xfff) << 8) |
520
                           GET_CWP64(env));
521
    registers[67] = tswapl(env->fsr);
522
    registers[68] = tswapl(env->fprs);
523
    registers[69] = tswapl(env->y);
524
    return 70 * sizeof(target_ulong);
525
#endif
526
}
527

    
528
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
529
{
530
    target_ulong *registers = (target_ulong *)mem_buf;
531
    int i;
532

    
533
    /* fill in g0..g7 */
534
    for(i = 0; i < 7; i++) {
535
        env->gregs[i] = tswapl(registers[i]);
536
    }
537
    /* fill in register window */
538
    for(i = 0; i < 24; i++) {
539
        env->regwptr[i] = tswapl(registers[i + 8]);
540
    }
541
#ifndef TARGET_SPARC64
542
    /* fill in fprs */
543
    for (i = 0; i < 32; i++) {
544
        *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
545
    }
546
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
547
    env->y = tswapl(registers[64]);
548
    PUT_PSR(env, tswapl(registers[65]));
549
    env->wim = tswapl(registers[66]);
550
    env->tbr = tswapl(registers[67]);
551
    env->pc = tswapl(registers[68]);
552
    env->npc = tswapl(registers[69]);
553
    env->fsr = tswapl(registers[70]);
554
#else
555
    for (i = 0; i < 64; i += 2) {
556
        uint64_t tmp;
557

    
558
        tmp = tswap64(registers[i / 2 + 32]);
559
        *((uint32_t *)&env->fpr[i]) = tmp >> 32;
560
        *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
561
    }
562
    env->pc = tswapl(registers[64]);
563
    env->npc = tswapl(registers[65]);
564
    {
565
        uint64_t tmp = tswapl(registers[66]);
566

    
567
        PUT_CCR(env, tmp >> 32);
568
        env->asi = (tmp >> 24) & 0xff;
569
        env->pstate = (tmp >> 8) & 0xfff;
570
        PUT_CWP64(env, tmp & 0xff);
571
    }
572
    env->fsr = tswapl(registers[67]);
573
    env->fprs = tswapl(registers[68]);
574
    env->y = tswapl(registers[69]);
575
#endif
576
}
577
#elif defined (TARGET_ARM)
578
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
579
{
580
    int i;
581
    uint8_t *ptr;
582

    
583
    ptr = mem_buf;
584
    /* 16 core integer registers (4 bytes each).  */
585
    for (i = 0; i < 16; i++)
586
      {
587
        *(uint32_t *)ptr = tswapl(env->regs[i]);
588
        ptr += 4;
589
      }
590
    /* 8 FPA registers (12 bytes each), FPS (4 bytes).
591
       Not yet implemented.  */
592
    memset (ptr, 0, 8 * 12 + 4);
593
    ptr += 8 * 12 + 4;
594
    /* CPSR (4 bytes).  */
595
    *(uint32_t *)ptr = tswapl (cpsr_read(env));
596
    ptr += 4;
597

    
598
    return ptr - mem_buf;
599
}
600

    
601
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
602
{
603
    int i;
604
    uint8_t *ptr;
605

    
606
    ptr = mem_buf;
607
    /* Core integer registers.  */
608
    for (i = 0; i < 16; i++)
609
      {
610
        env->regs[i] = tswapl(*(uint32_t *)ptr);
611
        ptr += 4;
612
      }
613
    /* Ignore FPA regs and scr.  */
614
    ptr += 8 * 12 + 4;
615
    cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
616
}
617
#elif defined (TARGET_M68K)
618
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
619
{
620
    int i;
621
    uint8_t *ptr;
622
    CPU_DoubleU u;
623

    
624
    ptr = mem_buf;
625
    /* D0-D7 */
626
    for (i = 0; i < 8; i++) {
627
        *(uint32_t *)ptr = tswapl(env->dregs[i]);
628
        ptr += 4;
629
    }
630
    /* A0-A7 */
631
    for (i = 0; i < 8; i++) {
632
        *(uint32_t *)ptr = tswapl(env->aregs[i]);
633
        ptr += 4;
634
    }
635
    *(uint32_t *)ptr = tswapl(env->sr);
636
    ptr += 4;
637
    *(uint32_t *)ptr = tswapl(env->pc);
638
    ptr += 4;
639
    /* F0-F7.  The 68881/68040 have 12-bit extended precision registers.
640
       ColdFire has 8-bit double precision registers.  */
641
    for (i = 0; i < 8; i++) {
642
        u.d = env->fregs[i];
643
        *(uint32_t *)ptr = tswap32(u.l.upper);
644
        *(uint32_t *)ptr = tswap32(u.l.lower);
645
    }
646
    /* FP control regs (not implemented).  */
647
    memset (ptr, 0, 3 * 4);
648
    ptr += 3 * 4;
649

    
650
    return ptr - mem_buf;
651
}
652

    
653
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
654
{
655
    int i;
656
    uint8_t *ptr;
657
    CPU_DoubleU u;
658

    
659
    ptr = mem_buf;
660
    /* D0-D7 */
661
    for (i = 0; i < 8; i++) {
662
        env->dregs[i] = tswapl(*(uint32_t *)ptr);
663
        ptr += 4;
664
    }
665
    /* A0-A7 */
666
    for (i = 0; i < 8; i++) {
667
        env->aregs[i] = tswapl(*(uint32_t *)ptr);
668
        ptr += 4;
669
    }
670
    env->sr = tswapl(*(uint32_t *)ptr);
671
    ptr += 4;
672
    env->pc = tswapl(*(uint32_t *)ptr);
673
    ptr += 4;
674
    /* F0-F7.  The 68881/68040 have 12-bit extended precision registers.
675
       ColdFire has 8-bit double precision registers.  */
676
    for (i = 0; i < 8; i++) {
677
        u.l.upper = tswap32(*(uint32_t *)ptr);
678
        u.l.lower = tswap32(*(uint32_t *)ptr);
679
        env->fregs[i] = u.d;
680
    }
681
    /* FP control regs (not implemented).  */
682
    ptr += 3 * 4;
683
}
684
#elif defined (TARGET_MIPS)
685
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
686
{
687
    int i;
688
    uint8_t *ptr;
689

    
690
    ptr = mem_buf;
691
    for (i = 0; i < 32; i++)
692
      {
693
        *(target_ulong *)ptr = tswapl(env->gpr[env->current_tc][i]);
694
        ptr += sizeof(target_ulong);
695
      }
696

    
697
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
698
    ptr += sizeof(target_ulong);
699

    
700
    *(target_ulong *)ptr = tswapl(env->LO[env->current_tc][0]);
701
    ptr += sizeof(target_ulong);
702

    
703
    *(target_ulong *)ptr = tswapl(env->HI[env->current_tc][0]);
704
    ptr += sizeof(target_ulong);
705

    
706
    *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
707
    ptr += sizeof(target_ulong);
708

    
709
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
710
    ptr += sizeof(target_ulong);
711

    
712
    *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
713
    ptr += sizeof(target_ulong);
714

    
715
    if (env->CP0_Config1 & (1 << CP0C1_FP))
716
      {
717
        for (i = 0; i < 32; i++)
718
          {
719
            if (env->CP0_Status & (1 << CP0St_FR))
720
              *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
721
            else
722
              *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
723
            ptr += sizeof(target_ulong);
724
          }
725

    
726
        *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
727
        ptr += sizeof(target_ulong);
728

    
729
        *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
730
        ptr += sizeof(target_ulong);
731
      }
732

    
733
    /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
734
    *(target_ulong *)ptr = 0;
735
    ptr += sizeof(target_ulong);
736

    
737
    /* Registers for embedded use, we just pad them. */
738
    for (i = 0; i < 16; i++)
739
      {
740
        *(target_ulong *)ptr = 0;
741
        ptr += sizeof(target_ulong);
742
      }
743

    
744
    /* Processor ID. */
745
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
746
    ptr += sizeof(target_ulong);
747

    
748
    return ptr - mem_buf;
749
}
750

    
751
/* convert MIPS rounding mode in FCR31 to IEEE library */
752
static unsigned int ieee_rm[] =
753
  {
754
    float_round_nearest_even,
755
    float_round_to_zero,
756
    float_round_up,
757
    float_round_down
758
  };
759
#define RESTORE_ROUNDING_MODE \
760
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
761

    
762
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
763
{
764
    int i;
765
    uint8_t *ptr;
766

    
767
    ptr = mem_buf;
768
    for (i = 0; i < 32; i++)
769
      {
770
        env->gpr[env->current_tc][i] = tswapl(*(target_ulong *)ptr);
771
        ptr += sizeof(target_ulong);
772
      }
773

    
774
    env->CP0_Status = tswapl(*(target_ulong *)ptr);
775
    ptr += sizeof(target_ulong);
776

    
777
    env->LO[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
778
    ptr += sizeof(target_ulong);
779

    
780
    env->HI[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
781
    ptr += sizeof(target_ulong);
782

    
783
    env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
784
    ptr += sizeof(target_ulong);
785

    
786
    env->CP0_Cause = tswapl(*(target_ulong *)ptr);
787
    ptr += sizeof(target_ulong);
788

    
789
    env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
790
    ptr += sizeof(target_ulong);
791

    
792
    if (env->CP0_Config1 & (1 << CP0C1_FP))
793
      {
794
        for (i = 0; i < 32; i++)
795
          {
796
            if (env->CP0_Status & (1 << CP0St_FR))
797
              env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
798
            else
799
              env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
800
            ptr += sizeof(target_ulong);
801
          }
802

    
803
        env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
804
        ptr += sizeof(target_ulong);
805

    
806
        /* The remaining registers are assumed to be read-only. */
807

    
808
        /* set rounding mode */
809
        RESTORE_ROUNDING_MODE;
810

    
811
#ifndef CONFIG_SOFTFLOAT
812
        /* no floating point exception for native float */
813
        SET_FP_ENABLE(env->fcr31, 0);
814
#endif
815
      }
816
}
817
#elif defined (TARGET_SH4)
818

    
819
/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
820

    
821
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
822
{
823
  uint32_t *ptr = (uint32_t *)mem_buf;
824
  int i;
825

    
826
#define SAVE(x) *ptr++=tswapl(x)
827
  if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
828
      for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
829
  } else {
830
      for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
831
  }
832
  for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
833
  SAVE (env->pc);
834
  SAVE (env->pr);
835
  SAVE (env->gbr);
836
  SAVE (env->vbr);
837
  SAVE (env->mach);
838
  SAVE (env->macl);
839
  SAVE (env->sr);
840
  SAVE (env->fpul);
841
  SAVE (env->fpscr);
842
  for (i = 0; i < 16; i++)
843
      SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
844
  SAVE (env->ssr);
845
  SAVE (env->spc);
846
  for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
847
  for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
848
  return ((uint8_t *)ptr - mem_buf);
849
}
850

    
851
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
852
{
853
  uint32_t *ptr = (uint32_t *)mem_buf;
854
  int i;
855

    
856
#define LOAD(x) (x)=*ptr++;
857
  if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
858
      for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
859
  } else {
860
      for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
861
  }
862
  for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
863
  LOAD (env->pc);
864
  LOAD (env->pr);
865
  LOAD (env->gbr);
866
  LOAD (env->vbr);
867
  LOAD (env->mach);
868
  LOAD (env->macl);
869
  LOAD (env->sr);
870
  LOAD (env->fpul);
871
  LOAD (env->fpscr);
872
  for (i = 0; i < 16; i++)
873
      LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
874
  LOAD (env->ssr);
875
  LOAD (env->spc);
876
  for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
877
  for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
878
}
879
#elif defined (TARGET_CRIS)
880

    
881
static int cris_save_32 (unsigned char *d, uint32_t value)
882
{
883
        *d++ = (value);
884
        *d++ = (value >>= 8);
885
        *d++ = (value >>= 8);
886
        *d++ = (value >>= 8);
887
        return 4;
888
}
889
static int cris_save_16 (unsigned char *d, uint32_t value)
890
{
891
        *d++ = (value);
892
        *d++ = (value >>= 8);
893
        return 2;
894
}
895
static int cris_save_8 (unsigned char *d, uint32_t value)
896
{
897
        *d++ = (value);
898
        return 1;
899
}
900

    
901
/* FIXME: this will bug on archs not supporting unaligned word accesses.  */
902
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
903
{
904
  uint8_t *ptr = mem_buf;
905
  uint8_t srs;
906
  int i;
907

    
908
  for (i = 0; i < 16; i++)
909
          ptr += cris_save_32 (ptr, env->regs[i]);
910

    
911
  srs = env->pregs[PR_SRS];
912

    
913
  ptr += cris_save_8 (ptr, env->pregs[0]);
914
  ptr += cris_save_8 (ptr, env->pregs[1]);
915
  ptr += cris_save_32 (ptr, env->pregs[2]);
916
  ptr += cris_save_8 (ptr, srs);
917
  ptr += cris_save_16 (ptr, env->pregs[4]);
918

    
919
  for (i = 5; i < 16; i++)
920
          ptr += cris_save_32 (ptr, env->pregs[i]);
921

    
922
  ptr += cris_save_32 (ptr, env->pc);
923

    
924
  for (i = 0; i < 16; i++)
925
          ptr += cris_save_32 (ptr, env->sregs[srs][i]);
926

    
927
  return ((uint8_t *)ptr - mem_buf);
928
}
929

    
930
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
931
{
932
  uint32_t *ptr = (uint32_t *)mem_buf;
933
  int i;
934

    
935
#define LOAD(x) (x)=*ptr++;
936
  for (i = 0; i < 16; i++) LOAD(env->regs[i]);
937
  LOAD (env->pc);
938
}
939
#else
940
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
941
{
942
    return 0;
943
}
944

    
945
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
946
{
947
}
948

    
949
#endif
950

    
951
static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
952
{
953
    const char *p;
954
    int ch, reg_size, type;
955
    char buf[4096];
956
    uint8_t mem_buf[4096];
957
    uint32_t *registers;
958
    target_ulong addr, len;
959

    
960
#ifdef DEBUG_GDB
961
    printf("command='%s'\n", line_buf);
962
#endif
963
    p = line_buf;
964
    ch = *p++;
965
    switch(ch) {
966
    case '?':
967
        /* TODO: Make this return the correct value for user-mode.  */
968
        snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
969
        put_packet(s, buf);
970
        /* Remove all the breakpoints when this query is issued,
971
         * because gdb is doing and initial connect and the state
972
         * should be cleaned up.
973
         */
974
        cpu_breakpoint_remove_all(env);
975
        cpu_watchpoint_remove_all(env);
976
        break;
977
    case 'c':
978
        if (*p != '\0') {
979
            addr = strtoull(p, (char **)&p, 16);
980
#if defined(TARGET_I386)
981
            env->eip = addr;
982
#elif defined (TARGET_PPC)
983
            env->nip = addr;
984
#elif defined (TARGET_SPARC)
985
            env->pc = addr;
986
            env->npc = addr + 4;
987
#elif defined (TARGET_ARM)
988
            env->regs[15] = addr;
989
#elif defined (TARGET_SH4)
990
            env->pc = addr;
991
#elif defined (TARGET_MIPS)
992
            env->PC[env->current_tc] = addr;
993
#elif defined (TARGET_CRIS)
994
            env->pc = addr;
995
#endif
996
        }
997
        gdb_continue(s);
998
        return RS_IDLE;
999
    case 'C':
1000
        s->signal = strtoul(p, (char **)&p, 16);
1001
        gdb_continue(s);
1002
        return RS_IDLE;
1003
    case 'k':
1004
        /* Kill the target */
1005
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1006
        exit(0);
1007
    case 'D':
1008
        /* Detach packet */
1009
        cpu_breakpoint_remove_all(env);
1010
        cpu_watchpoint_remove_all(env);
1011
        gdb_continue(s);
1012
        put_packet(s, "OK");
1013
        break;
1014
    case 's':
1015
        if (*p != '\0') {
1016
            addr = strtoull(p, (char **)&p, 16);
1017
#if defined(TARGET_I386)
1018
            env->eip = addr;
1019
#elif defined (TARGET_PPC)
1020
            env->nip = addr;
1021
#elif defined (TARGET_SPARC)
1022
            env->pc = addr;
1023
            env->npc = addr + 4;
1024
#elif defined (TARGET_ARM)
1025
            env->regs[15] = addr;
1026
#elif defined (TARGET_SH4)
1027
            env->pc = addr;
1028
#elif defined (TARGET_MIPS)
1029
            env->PC[env->current_tc] = addr;
1030
#elif defined (TARGET_CRIS)
1031
            env->pc = addr;
1032
#endif
1033
        }
1034
        cpu_single_step(env, sstep_flags);
1035
        gdb_continue(s);
1036
        return RS_IDLE;
1037
    case 'F':
1038
        {
1039
            target_ulong ret;
1040
            target_ulong err;
1041

    
1042
            ret = strtoull(p, (char **)&p, 16);
1043
            if (*p == ',') {
1044
                p++;
1045
                err = strtoull(p, (char **)&p, 16);
1046
            } else {
1047
                err = 0;
1048
            }
1049
            if (*p == ',')
1050
                p++;
1051
            type = *p;
1052
            if (gdb_current_syscall_cb)
1053
                gdb_current_syscall_cb(s->env, ret, err);
1054
            if (type == 'C') {
1055
                put_packet(s, "T02");
1056
            } else {
1057
                gdb_continue(s);
1058
            }
1059
        }
1060
        break;
1061
    case 'g':
1062
        reg_size = cpu_gdb_read_registers(env, mem_buf);
1063
        memtohex(buf, mem_buf, reg_size);
1064
        put_packet(s, buf);
1065
        break;
1066
    case 'G':
1067
        registers = (void *)mem_buf;
1068
        len = strlen(p) / 2;
1069
        hextomem((uint8_t *)registers, p, len);
1070
        cpu_gdb_write_registers(env, mem_buf, len);
1071
        put_packet(s, "OK");
1072
        break;
1073
    case 'm':
1074
        addr = strtoull(p, (char **)&p, 16);
1075
        if (*p == ',')
1076
            p++;
1077
        len = strtoull(p, NULL, 16);
1078
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1079
            put_packet (s, "E14");
1080
        } else {
1081
            memtohex(buf, mem_buf, len);
1082
            put_packet(s, buf);
1083
        }
1084
        break;
1085
    case 'M':
1086
        addr = strtoull(p, (char **)&p, 16);
1087
        if (*p == ',')
1088
            p++;
1089
        len = strtoull(p, (char **)&p, 16);
1090
        if (*p == ':')
1091
            p++;
1092
        hextomem(mem_buf, p, len);
1093
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1094
            put_packet(s, "E14");
1095
        else
1096
            put_packet(s, "OK");
1097
        break;
1098
    case 'Z':
1099
        type = strtoul(p, (char **)&p, 16);
1100
        if (*p == ',')
1101
            p++;
1102
        addr = strtoull(p, (char **)&p, 16);
1103
        if (*p == ',')
1104
            p++;
1105
        len = strtoull(p, (char **)&p, 16);
1106
        if (type == 0 || type == 1) {
1107
            if (cpu_breakpoint_insert(env, addr) < 0)
1108
                goto breakpoint_error;
1109
            put_packet(s, "OK");
1110
#ifndef CONFIG_USER_ONLY
1111
        } else if (type == 2) {
1112
            if (cpu_watchpoint_insert(env, addr) < 0)
1113
                goto breakpoint_error;
1114
            put_packet(s, "OK");
1115
#endif
1116
        } else {
1117
        breakpoint_error:
1118
            put_packet(s, "E22");
1119
        }
1120
        break;
1121
    case 'z':
1122
        type = strtoul(p, (char **)&p, 16);
1123
        if (*p == ',')
1124
            p++;
1125
        addr = strtoull(p, (char **)&p, 16);
1126
        if (*p == ',')
1127
            p++;
1128
        len = strtoull(p, (char **)&p, 16);
1129
        if (type == 0 || type == 1) {
1130
            cpu_breakpoint_remove(env, addr);
1131
            put_packet(s, "OK");
1132
#ifndef CONFIG_USER_ONLY
1133
        } else if (type == 2) {
1134
            cpu_watchpoint_remove(env, addr);
1135
            put_packet(s, "OK");
1136
#endif
1137
        } else {
1138
            goto breakpoint_error;
1139
        }
1140
        break;
1141
    case 'q':
1142
    case 'Q':
1143
        /* parse any 'q' packets here */
1144
        if (!strcmp(p,"qemu.sstepbits")) {
1145
            /* Query Breakpoint bit definitions */
1146
            sprintf(buf,"ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1147
                    SSTEP_ENABLE,
1148
                    SSTEP_NOIRQ,
1149
                    SSTEP_NOTIMER);
1150
            put_packet(s, buf);
1151
            break;
1152
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
1153
            /* Display or change the sstep_flags */
1154
            p += 10;
1155
            if (*p != '=') {
1156
                /* Display current setting */
1157
                sprintf(buf,"0x%x", sstep_flags);
1158
                put_packet(s, buf);
1159
                break;
1160
            }
1161
            p++;
1162
            type = strtoul(p, (char **)&p, 16);
1163
            sstep_flags = type;
1164
            put_packet(s, "OK");
1165
            break;
1166
        }
1167
#ifdef CONFIG_LINUX_USER
1168
        else if (strncmp(p, "Offsets", 7) == 0) {
1169
            TaskState *ts = env->opaque;
1170

    
1171
            sprintf(buf,
1172
                    "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1173
                    ";Bss=" TARGET_ABI_FMT_lx,
1174
                    ts->info->code_offset,
1175
                    ts->info->data_offset,
1176
                    ts->info->data_offset);
1177
            put_packet(s, buf);
1178
            break;
1179
        }
1180
#endif
1181
        /* Fall through.  */
1182
    default:
1183
        /* put empty packet */
1184
        buf[0] = '\0';
1185
        put_packet(s, buf);
1186
        break;
1187
    }
1188
    return RS_IDLE;
1189
}
1190

    
1191
extern void tb_flush(CPUState *env);
1192

    
1193
#ifndef CONFIG_USER_ONLY
1194
static void gdb_vm_stopped(void *opaque, int reason)
1195
{
1196
    GDBState *s = opaque;
1197
    char buf[256];
1198
    int ret;
1199

    
1200
    if (s->state == RS_SYSCALL)
1201
        return;
1202

    
1203
    /* disable single step if it was enable */
1204
    cpu_single_step(s->env, 0);
1205

    
1206
    if (reason == EXCP_DEBUG) {
1207
        if (s->env->watchpoint_hit) {
1208
            snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1209
                     SIGTRAP,
1210
                     s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1211
            put_packet(s, buf);
1212
            s->env->watchpoint_hit = 0;
1213
            return;
1214
        }
1215
        tb_flush(s->env);
1216
        ret = SIGTRAP;
1217
    } else if (reason == EXCP_INTERRUPT) {
1218
        ret = SIGINT;
1219
    } else {
1220
        ret = 0;
1221
    }
1222
    snprintf(buf, sizeof(buf), "S%02x", ret);
1223
    put_packet(s, buf);
1224
}
1225
#endif
1226

    
1227
/* Send a gdb syscall request.
1228
   This accepts limited printf-style format specifiers, specifically:
1229
    %x  - target_ulong argument printed in hex.
1230
    %lx - 64-bit argument printed in hex.
1231
    %s  - string pointer (target_ulong) and length (int) pair.  */
1232
void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1233
{
1234
    va_list va;
1235
    char buf[256];
1236
    char *p;
1237
    target_ulong addr;
1238
    uint64_t i64;
1239
    GDBState *s;
1240

    
1241
    s = gdb_syscall_state;
1242
    if (!s)
1243
        return;
1244
    gdb_current_syscall_cb = cb;
1245
    s->state = RS_SYSCALL;
1246
#ifndef CONFIG_USER_ONLY
1247
    vm_stop(EXCP_DEBUG);
1248
#endif
1249
    s->state = RS_IDLE;
1250
    va_start(va, fmt);
1251
    p = buf;
1252
    *(p++) = 'F';
1253
    while (*fmt) {
1254
        if (*fmt == '%') {
1255
            fmt++;
1256
            switch (*fmt++) {
1257
            case 'x':
1258
                addr = va_arg(va, target_ulong);
1259
                p += sprintf(p, TARGET_FMT_lx, addr);
1260
                break;
1261
            case 'l':
1262
                if (*(fmt++) != 'x')
1263
                    goto bad_format;
1264
                i64 = va_arg(va, uint64_t);
1265
                p += sprintf(p, "%" PRIx64, i64);
1266
                break;
1267
            case 's':
1268
                addr = va_arg(va, target_ulong);
1269
                p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1270
                break;
1271
            default:
1272
            bad_format:
1273
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1274
                        fmt - 1);
1275
                break;
1276
            }
1277
        } else {
1278
            *(p++) = *(fmt++);
1279
        }
1280
    }
1281
    *p = 0;
1282
    va_end(va);
1283
    put_packet(s, buf);
1284
#ifdef CONFIG_USER_ONLY
1285
    gdb_handlesig(s->env, 0);
1286
#else
1287
    cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1288
#endif
1289
}
1290

    
1291
static void gdb_read_byte(GDBState *s, int ch)
1292
{
1293
    CPUState *env = s->env;
1294
    int i, csum;
1295
    uint8_t reply;
1296

    
1297
#ifndef CONFIG_USER_ONLY
1298
    if (s->last_packet_len) {
1299
        /* Waiting for a response to the last packet.  If we see the start
1300
           of a new command then abandon the previous response.  */
1301
        if (ch == '-') {
1302
#ifdef DEBUG_GDB
1303
            printf("Got NACK, retransmitting\n");
1304
#endif
1305
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1306
        }
1307
#ifdef DEBUG_GDB
1308
        else if (ch == '+')
1309
            printf("Got ACK\n");
1310
        else
1311
            printf("Got '%c' when expecting ACK/NACK\n", ch);
1312
#endif
1313
        if (ch == '+' || ch == '$')
1314
            s->last_packet_len = 0;
1315
        if (ch != '$')
1316
            return;
1317
    }
1318
    if (vm_running) {
1319
        /* when the CPU is running, we cannot do anything except stop
1320
           it when receiving a char */
1321
        vm_stop(EXCP_INTERRUPT);
1322
    } else
1323
#endif
1324
    {
1325
        switch(s->state) {
1326
        case RS_IDLE:
1327
            if (ch == '$') {
1328
                s->line_buf_index = 0;
1329
                s->state = RS_GETLINE;
1330
            }
1331
            break;
1332
        case RS_GETLINE:
1333
            if (ch == '#') {
1334
            s->state = RS_CHKSUM1;
1335
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1336
                s->state = RS_IDLE;
1337
            } else {
1338
            s->line_buf[s->line_buf_index++] = ch;
1339
            }
1340
            break;
1341
        case RS_CHKSUM1:
1342
            s->line_buf[s->line_buf_index] = '\0';
1343
            s->line_csum = fromhex(ch) << 4;
1344
            s->state = RS_CHKSUM2;
1345
            break;
1346
        case RS_CHKSUM2:
1347
            s->line_csum |= fromhex(ch);
1348
            csum = 0;
1349
            for(i = 0; i < s->line_buf_index; i++) {
1350
                csum += s->line_buf[i];
1351
            }
1352
            if (s->line_csum != (csum & 0xff)) {
1353
                reply = '-';
1354
                put_buffer(s, &reply, 1);
1355
                s->state = RS_IDLE;
1356
            } else {
1357
                reply = '+';
1358
                put_buffer(s, &reply, 1);
1359
                s->state = gdb_handle_packet(s, env, s->line_buf);
1360
            }
1361
            break;
1362
        default:
1363
            abort();
1364
        }
1365
    }
1366
}
1367

    
1368
#ifdef CONFIG_USER_ONLY
1369
int
1370
gdb_handlesig (CPUState *env, int sig)
1371
{
1372
  GDBState *s;
1373
  char buf[256];
1374
  int n;
1375

    
1376
  s = &gdbserver_state;
1377
  if (gdbserver_fd < 0 || s->fd < 0)
1378
    return sig;
1379

    
1380
  /* disable single step if it was enabled */
1381
  cpu_single_step(env, 0);
1382
  tb_flush(env);
1383

    
1384
  if (sig != 0)
1385
    {
1386
      snprintf(buf, sizeof(buf), "S%02x", sig);
1387
      put_packet(s, buf);
1388
    }
1389
  /* put_packet() might have detected that the peer terminated the 
1390
     connection.  */
1391
  if (s->fd < 0)
1392
      return sig;
1393

    
1394
  sig = 0;
1395
  s->state = RS_IDLE;
1396
  s->running_state = 0;
1397
  while (s->running_state == 0) {
1398
      n = read (s->fd, buf, 256);
1399
      if (n > 0)
1400
        {
1401
          int i;
1402

    
1403
          for (i = 0; i < n; i++)
1404
            gdb_read_byte (s, buf[i]);
1405
        }
1406
      else if (n == 0 || errno != EAGAIN)
1407
        {
1408
          /* XXX: Connection closed.  Should probably wait for annother
1409
             connection before continuing.  */
1410
          return sig;
1411
        }
1412
  }
1413
  sig = s->signal;
1414
  s->signal = 0;
1415
  return sig;
1416
}
1417

    
1418
/* Tell the remote gdb that the process has exited.  */
1419
void gdb_exit(CPUState *env, int code)
1420
{
1421
  GDBState *s;
1422
  char buf[4];
1423

    
1424
  s = &gdbserver_state;
1425
  if (gdbserver_fd < 0 || s->fd < 0)
1426
    return;
1427

    
1428
  snprintf(buf, sizeof(buf), "W%02x", code);
1429
  put_packet(s, buf);
1430
}
1431

    
1432

    
1433
static void gdb_accept(void *opaque)
1434
{
1435
    GDBState *s;
1436
    struct sockaddr_in sockaddr;
1437
    socklen_t len;
1438
    int val, fd;
1439

    
1440
    for(;;) {
1441
        len = sizeof(sockaddr);
1442
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1443
        if (fd < 0 && errno != EINTR) {
1444
            perror("accept");
1445
            return;
1446
        } else if (fd >= 0) {
1447
            break;
1448
        }
1449
    }
1450

    
1451
    /* set short latency */
1452
    val = 1;
1453
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1454

    
1455
    s = &gdbserver_state;
1456
    memset (s, 0, sizeof (GDBState));
1457
    s->env = first_cpu; /* XXX: allow to change CPU */
1458
    s->fd = fd;
1459

    
1460
    gdb_syscall_state = s;
1461

    
1462
    fcntl(fd, F_SETFL, O_NONBLOCK);
1463
}
1464

    
1465
static int gdbserver_open(int port)
1466
{
1467
    struct sockaddr_in sockaddr;
1468
    int fd, val, ret;
1469

    
1470
    fd = socket(PF_INET, SOCK_STREAM, 0);
1471
    if (fd < 0) {
1472
        perror("socket");
1473
        return -1;
1474
    }
1475

    
1476
    /* allow fast reuse */
1477
    val = 1;
1478
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1479

    
1480
    sockaddr.sin_family = AF_INET;
1481
    sockaddr.sin_port = htons(port);
1482
    sockaddr.sin_addr.s_addr = 0;
1483
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1484
    if (ret < 0) {
1485
        perror("bind");
1486
        return -1;
1487
    }
1488
    ret = listen(fd, 0);
1489
    if (ret < 0) {
1490
        perror("listen");
1491
        return -1;
1492
    }
1493
    return fd;
1494
}
1495

    
1496
int gdbserver_start(int port)
1497
{
1498
    gdbserver_fd = gdbserver_open(port);
1499
    if (gdbserver_fd < 0)
1500
        return -1;
1501
    /* accept connections */
1502
    gdb_accept (NULL);
1503
    return 0;
1504
}
1505
#else
1506
static int gdb_chr_can_receive(void *opaque)
1507
{
1508
  return 1;
1509
}
1510

    
1511
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1512
{
1513
    GDBState *s = opaque;
1514
    int i;
1515

    
1516
    for (i = 0; i < size; i++) {
1517
        gdb_read_byte(s, buf[i]);
1518
    }
1519
}
1520

    
1521
static void gdb_chr_event(void *opaque, int event)
1522
{
1523
    switch (event) {
1524
    case CHR_EVENT_RESET:
1525
        vm_stop(EXCP_INTERRUPT);
1526
        gdb_syscall_state = opaque;
1527
        break;
1528
    default:
1529
        break;
1530
    }
1531
}
1532

    
1533
int gdbserver_start(const char *port)
1534
{
1535
    GDBState *s;
1536
    char gdbstub_port_name[128];
1537
    int port_num;
1538
    char *p;
1539
    CharDriverState *chr;
1540

    
1541
    if (!port || !*port)
1542
      return -1;
1543

    
1544
    port_num = strtol(port, &p, 10);
1545
    if (*p == 0) {
1546
        /* A numeric value is interpreted as a port number.  */
1547
        snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1548
                 "tcp::%d,nowait,nodelay,server", port_num);
1549
        port = gdbstub_port_name;
1550
    }
1551

    
1552
    chr = qemu_chr_open(port);
1553
    if (!chr)
1554
        return -1;
1555

    
1556
    s = qemu_mallocz(sizeof(GDBState));
1557
    if (!s) {
1558
        return -1;
1559
    }
1560
    s->env = first_cpu; /* XXX: allow to change CPU */
1561
    s->chr = chr;
1562
    qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1563
                          gdb_chr_event, s);
1564
    qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1565
    return 0;
1566
}
1567
#endif