Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 599825c5

History | View | Annotate | Download (77.9 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4

    
5
@documentlanguage en
6
@documentencoding UTF-8
7

    
8
@settitle QEMU Emulator User Documentation
9
@exampleindent 0
10
@paragraphindent 0
11
@c %**end of header
12

    
13
@ifinfo
14
@direntry
15
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16
@end direntry
17
@end ifinfo
18

    
19
@iftex
20
@titlepage
21
@sp 7
22
@center @titlefont{QEMU Emulator}
23
@sp 1
24
@center @titlefont{User Documentation}
25
@sp 3
26
@end titlepage
27
@end iftex
28

    
29
@ifnottex
30
@node Top
31
@top
32

    
33
@menu
34
* Introduction::
35
* Installation::
36
* QEMU PC System emulator::
37
* QEMU System emulator for non PC targets::
38
* QEMU User space emulator::
39
* compilation:: Compilation from the sources
40
* License::
41
* Index::
42
@end menu
43
@end ifnottex
44

    
45
@contents
46

    
47
@node Introduction
48
@chapter Introduction
49

    
50
@menu
51
* intro_features:: Features
52
@end menu
53

    
54
@node intro_features
55
@section Features
56

    
57
QEMU is a FAST! processor emulator using dynamic translation to
58
achieve good emulation speed.
59

    
60
QEMU has two operating modes:
61

    
62
@itemize
63
@cindex operating modes
64

    
65
@item
66
@cindex system emulation
67
Full system emulation. In this mode, QEMU emulates a full system (for
68
example a PC), including one or several processors and various
69
peripherals. It can be used to launch different Operating Systems
70
without rebooting the PC or to debug system code.
71

    
72
@item
73
@cindex user mode emulation
74
User mode emulation. In this mode, QEMU can launch
75
processes compiled for one CPU on another CPU. It can be used to
76
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77
to ease cross-compilation and cross-debugging.
78

    
79
@end itemize
80

    
81
QEMU can run without an host kernel driver and yet gives acceptable
82
performance.
83

    
84
For system emulation, the following hardware targets are supported:
85
@itemize
86
@cindex emulated target systems
87
@cindex supported target systems
88
@item PC (x86 or x86_64 processor)
89
@item ISA PC (old style PC without PCI bus)
90
@item PREP (PowerPC processor)
91
@item G3 Beige PowerMac (PowerPC processor)
92
@item Mac99 PowerMac (PowerPC processor, in progress)
93
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95
@item Malta board (32-bit and 64-bit MIPS processors)
96
@item MIPS Magnum (64-bit MIPS processor)
97
@item ARM Integrator/CP (ARM)
98
@item ARM Versatile baseboard (ARM)
99
@item ARM RealView Emulation/Platform baseboard (ARM)
100
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103
@item Freescale MCF5208EVB (ColdFire V2).
104
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105
@item Palm Tungsten|E PDA (OMAP310 processor)
106
@item N800 and N810 tablets (OMAP2420 processor)
107
@item MusicPal (MV88W8618 ARM processor)
108
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109
@item Siemens SX1 smartphone (OMAP310 processor)
110
@item Syborg SVP base model (ARM Cortex-A8).
111
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113
@item Avnet LX60/LX110/LX200 boards (Xtensa)
114
@end itemize
115

    
116
@cindex supported user mode targets
117
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
118
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
119
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
120

    
121
@node Installation
122
@chapter Installation
123

    
124
If you want to compile QEMU yourself, see @ref{compilation}.
125

    
126
@menu
127
* install_linux::   Linux
128
* install_windows:: Windows
129
* install_mac::     Macintosh
130
@end menu
131

    
132
@node install_linux
133
@section Linux
134
@cindex installation (Linux)
135

    
136
If a precompiled package is available for your distribution - you just
137
have to install it. Otherwise, see @ref{compilation}.
138

    
139
@node install_windows
140
@section Windows
141
@cindex installation (Windows)
142

    
143
Download the experimental binary installer at
144
@url{http://www.free.oszoo.org/@/download.html}.
145
TODO (no longer available)
146

    
147
@node install_mac
148
@section Mac OS X
149

    
150
Download the experimental binary installer at
151
@url{http://www.free.oszoo.org/@/download.html}.
152
TODO (no longer available)
153

    
154
@node QEMU PC System emulator
155
@chapter QEMU PC System emulator
156
@cindex system emulation (PC)
157

    
158
@menu
159
* pcsys_introduction:: Introduction
160
* pcsys_quickstart::   Quick Start
161
* sec_invocation::     Invocation
162
* pcsys_keys::         Keys
163
* pcsys_monitor::      QEMU Monitor
164
* disk_images::        Disk Images
165
* pcsys_network::      Network emulation
166
* pcsys_other_devs::   Other Devices
167
* direct_linux_boot::  Direct Linux Boot
168
* pcsys_usb::          USB emulation
169
* vnc_security::       VNC security
170
* gdb_usage::          GDB usage
171
* pcsys_os_specific::  Target OS specific information
172
@end menu
173

    
174
@node pcsys_introduction
175
@section Introduction
176

    
177
@c man begin DESCRIPTION
178

    
179
The QEMU PC System emulator simulates the
180
following peripherals:
181

    
182
@itemize @minus
183
@item
184
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
185
@item
186
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
187
extensions (hardware level, including all non standard modes).
188
@item
189
PS/2 mouse and keyboard
190
@item
191
2 PCI IDE interfaces with hard disk and CD-ROM support
192
@item
193
Floppy disk
194
@item
195
PCI and ISA network adapters
196
@item
197
Serial ports
198
@item
199
Creative SoundBlaster 16 sound card
200
@item
201
ENSONIQ AudioPCI ES1370 sound card
202
@item
203
Intel 82801AA AC97 Audio compatible sound card
204
@item
205
Intel HD Audio Controller and HDA codec
206
@item
207
Adlib (OPL2) - Yamaha YM3812 compatible chip
208
@item
209
Gravis Ultrasound GF1 sound card
210
@item
211
CS4231A compatible sound card
212
@item
213
PCI UHCI USB controller and a virtual USB hub.
214
@end itemize
215

    
216
SMP is supported with up to 255 CPUs.
217

    
218
Note that adlib, gus and cs4231a are only available when QEMU was
219
configured with --audio-card-list option containing the name(s) of
220
required card(s).
221

    
222
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
223
VGA BIOS.
224

    
225
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
226

    
227
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
228
by Tibor "TS" Schütz.
229

    
230
Note that, by default, GUS shares IRQ(7) with parallel ports and so
231
qemu must be told to not have parallel ports to have working GUS
232

    
233
@example
234
qemu dos.img -soundhw gus -parallel none
235
@end example
236

    
237
Alternatively:
238
@example
239
qemu dos.img -device gus,irq=5
240
@end example
241

    
242
Or some other unclaimed IRQ.
243

    
244
CS4231A is the chip used in Windows Sound System and GUSMAX products
245

    
246
@c man end
247

    
248
@node pcsys_quickstart
249
@section Quick Start
250
@cindex quick start
251

    
252
Download and uncompress the linux image (@file{linux.img}) and type:
253

    
254
@example
255
qemu linux.img
256
@end example
257

    
258
Linux should boot and give you a prompt.
259

    
260
@node sec_invocation
261
@section Invocation
262

    
263
@example
264
@c man begin SYNOPSIS
265
usage: qemu [options] [@var{disk_image}]
266
@c man end
267
@end example
268

    
269
@c man begin OPTIONS
270
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
271
targets do not need a disk image.
272

    
273
@include qemu-options.texi
274

    
275
@c man end
276

    
277
@node pcsys_keys
278
@section Keys
279

    
280
@c man begin OPTIONS
281

    
282
During the graphical emulation, you can use special key combinations to change
283
modes. The default key mappings are shown below, but if you use @code{-alt-grab}
284
then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
285
@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
286

    
287
@table @key
288
@item Ctrl-Alt-f
289
@kindex Ctrl-Alt-f
290
Toggle full screen
291

    
292
@item Ctrl-Alt-+
293
@kindex Ctrl-Alt-+
294
Enlarge the screen
295

    
296
@item Ctrl-Alt--
297
@kindex Ctrl-Alt--
298
Shrink the screen
299

    
300
@item Ctrl-Alt-u
301
@kindex Ctrl-Alt-u
302
Restore the screen's un-scaled dimensions
303

    
304
@item Ctrl-Alt-n
305
@kindex Ctrl-Alt-n
306
Switch to virtual console 'n'. Standard console mappings are:
307
@table @emph
308
@item 1
309
Target system display
310
@item 2
311
Monitor
312
@item 3
313
Serial port
314
@end table
315

    
316
@item Ctrl-Alt
317
@kindex Ctrl-Alt
318
Toggle mouse and keyboard grab.
319
@end table
320

    
321
@kindex Ctrl-Up
322
@kindex Ctrl-Down
323
@kindex Ctrl-PageUp
324
@kindex Ctrl-PageDown
325
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
326
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
327

    
328
@kindex Ctrl-a h
329
During emulation, if you are using the @option{-nographic} option, use
330
@key{Ctrl-a h} to get terminal commands:
331

    
332
@table @key
333
@item Ctrl-a h
334
@kindex Ctrl-a h
335
@item Ctrl-a ?
336
@kindex Ctrl-a ?
337
Print this help
338
@item Ctrl-a x
339
@kindex Ctrl-a x
340
Exit emulator
341
@item Ctrl-a s
342
@kindex Ctrl-a s
343
Save disk data back to file (if -snapshot)
344
@item Ctrl-a t
345
@kindex Ctrl-a t
346
Toggle console timestamps
347
@item Ctrl-a b
348
@kindex Ctrl-a b
349
Send break (magic sysrq in Linux)
350
@item Ctrl-a c
351
@kindex Ctrl-a c
352
Switch between console and monitor
353
@item Ctrl-a Ctrl-a
354
@kindex Ctrl-a a
355
Send Ctrl-a
356
@end table
357
@c man end
358

    
359
@ignore
360

    
361
@c man begin SEEALSO
362
The HTML documentation of QEMU for more precise information and Linux
363
user mode emulator invocation.
364
@c man end
365

    
366
@c man begin AUTHOR
367
Fabrice Bellard
368
@c man end
369

    
370
@end ignore
371

    
372
@node pcsys_monitor
373
@section QEMU Monitor
374
@cindex QEMU monitor
375

    
376
The QEMU monitor is used to give complex commands to the QEMU
377
emulator. You can use it to:
378

    
379
@itemize @minus
380

    
381
@item
382
Remove or insert removable media images
383
(such as CD-ROM or floppies).
384

    
385
@item
386
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
387
from a disk file.
388

    
389
@item Inspect the VM state without an external debugger.
390

    
391
@end itemize
392

    
393
@subsection Commands
394

    
395
The following commands are available:
396

    
397
@include qemu-monitor.texi
398

    
399
@subsection Integer expressions
400

    
401
The monitor understands integers expressions for every integer
402
argument. You can use register names to get the value of specifics
403
CPU registers by prefixing them with @emph{$}.
404

    
405
@node disk_images
406
@section Disk Images
407

    
408
Since version 0.6.1, QEMU supports many disk image formats, including
409
growable disk images (their size increase as non empty sectors are
410
written), compressed and encrypted disk images. Version 0.8.3 added
411
the new qcow2 disk image format which is essential to support VM
412
snapshots.
413

    
414
@menu
415
* disk_images_quickstart::    Quick start for disk image creation
416
* disk_images_snapshot_mode:: Snapshot mode
417
* vm_snapshots::              VM snapshots
418
* qemu_img_invocation::       qemu-img Invocation
419
* qemu_nbd_invocation::       qemu-nbd Invocation
420
* host_drives::               Using host drives
421
* disk_images_fat_images::    Virtual FAT disk images
422
* disk_images_nbd::           NBD access
423
* disk_images_sheepdog::      Sheepdog disk images
424
@end menu
425

    
426
@node disk_images_quickstart
427
@subsection Quick start for disk image creation
428

    
429
You can create a disk image with the command:
430
@example
431
qemu-img create myimage.img mysize
432
@end example
433
where @var{myimage.img} is the disk image filename and @var{mysize} is its
434
size in kilobytes. You can add an @code{M} suffix to give the size in
435
megabytes and a @code{G} suffix for gigabytes.
436

    
437
See @ref{qemu_img_invocation} for more information.
438

    
439
@node disk_images_snapshot_mode
440
@subsection Snapshot mode
441

    
442
If you use the option @option{-snapshot}, all disk images are
443
considered as read only. When sectors in written, they are written in
444
a temporary file created in @file{/tmp}. You can however force the
445
write back to the raw disk images by using the @code{commit} monitor
446
command (or @key{C-a s} in the serial console).
447

    
448
@node vm_snapshots
449
@subsection VM snapshots
450

    
451
VM snapshots are snapshots of the complete virtual machine including
452
CPU state, RAM, device state and the content of all the writable
453
disks. In order to use VM snapshots, you must have at least one non
454
removable and writable block device using the @code{qcow2} disk image
455
format. Normally this device is the first virtual hard drive.
456

    
457
Use the monitor command @code{savevm} to create a new VM snapshot or
458
replace an existing one. A human readable name can be assigned to each
459
snapshot in addition to its numerical ID.
460

    
461
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462
a VM snapshot. @code{info snapshots} lists the available snapshots
463
with their associated information:
464

    
465
@example
466
(qemu) info snapshots
467
Snapshot devices: hda
468
Snapshot list (from hda):
469
ID        TAG                 VM SIZE                DATE       VM CLOCK
470
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
471
2                                 40M 2006-08-06 12:43:29   00:00:18.633
472
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
473
@end example
474

    
475
A VM snapshot is made of a VM state info (its size is shown in
476
@code{info snapshots}) and a snapshot of every writable disk image.
477
The VM state info is stored in the first @code{qcow2} non removable
478
and writable block device. The disk image snapshots are stored in
479
every disk image. The size of a snapshot in a disk image is difficult
480
to evaluate and is not shown by @code{info snapshots} because the
481
associated disk sectors are shared among all the snapshots to save
482
disk space (otherwise each snapshot would need a full copy of all the
483
disk images).
484

    
485
When using the (unrelated) @code{-snapshot} option
486
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487
but they are deleted as soon as you exit QEMU.
488

    
489
VM snapshots currently have the following known limitations:
490
@itemize
491
@item
492
They cannot cope with removable devices if they are removed or
493
inserted after a snapshot is done.
494
@item
495
A few device drivers still have incomplete snapshot support so their
496
state is not saved or restored properly (in particular USB).
497
@end itemize
498

    
499
@node qemu_img_invocation
500
@subsection @code{qemu-img} Invocation
501

    
502
@include qemu-img.texi
503

    
504
@node qemu_nbd_invocation
505
@subsection @code{qemu-nbd} Invocation
506

    
507
@include qemu-nbd.texi
508

    
509
@node host_drives
510
@subsection Using host drives
511

    
512
In addition to disk image files, QEMU can directly access host
513
devices. We describe here the usage for QEMU version >= 0.8.3.
514

    
515
@subsubsection Linux
516

    
517
On Linux, you can directly use the host device filename instead of a
518
disk image filename provided you have enough privileges to access
519
it. For example, use @file{/dev/cdrom} to access to the CDROM or
520
@file{/dev/fd0} for the floppy.
521

    
522
@table @code
523
@item CD
524
You can specify a CDROM device even if no CDROM is loaded. QEMU has
525
specific code to detect CDROM insertion or removal. CDROM ejection by
526
the guest OS is supported. Currently only data CDs are supported.
527
@item Floppy
528
You can specify a floppy device even if no floppy is loaded. Floppy
529
removal is currently not detected accurately (if you change floppy
530
without doing floppy access while the floppy is not loaded, the guest
531
OS will think that the same floppy is loaded).
532
@item Hard disks
533
Hard disks can be used. Normally you must specify the whole disk
534
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535
see it as a partitioned disk. WARNING: unless you know what you do, it
536
is better to only make READ-ONLY accesses to the hard disk otherwise
537
you may corrupt your host data (use the @option{-snapshot} command
538
line option or modify the device permissions accordingly).
539
@end table
540

    
541
@subsubsection Windows
542

    
543
@table @code
544
@item CD
545
The preferred syntax is the drive letter (e.g. @file{d:}). The
546
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547
supported as an alias to the first CDROM drive.
548

    
549
Currently there is no specific code to handle removable media, so it
550
is better to use the @code{change} or @code{eject} monitor commands to
551
change or eject media.
552
@item Hard disks
553
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
554
where @var{N} is the drive number (0 is the first hard disk).
555

    
556
WARNING: unless you know what you do, it is better to only make
557
READ-ONLY accesses to the hard disk otherwise you may corrupt your
558
host data (use the @option{-snapshot} command line so that the
559
modifications are written in a temporary file).
560
@end table
561

    
562

    
563
@subsubsection Mac OS X
564

    
565
@file{/dev/cdrom} is an alias to the first CDROM.
566

    
567
Currently there is no specific code to handle removable media, so it
568
is better to use the @code{change} or @code{eject} monitor commands to
569
change or eject media.
570

    
571
@node disk_images_fat_images
572
@subsection Virtual FAT disk images
573

    
574
QEMU can automatically create a virtual FAT disk image from a
575
directory tree. In order to use it, just type:
576

    
577
@example
578
qemu linux.img -hdb fat:/my_directory
579
@end example
580

    
581
Then you access access to all the files in the @file{/my_directory}
582
directory without having to copy them in a disk image or to export
583
them via SAMBA or NFS. The default access is @emph{read-only}.
584

    
585
Floppies can be emulated with the @code{:floppy:} option:
586

    
587
@example
588
qemu linux.img -fda fat:floppy:/my_directory
589
@end example
590

    
591
A read/write support is available for testing (beta stage) with the
592
@code{:rw:} option:
593

    
594
@example
595
qemu linux.img -fda fat:floppy:rw:/my_directory
596
@end example
597

    
598
What you should @emph{never} do:
599
@itemize
600
@item use non-ASCII filenames ;
601
@item use "-snapshot" together with ":rw:" ;
602
@item expect it to work when loadvm'ing ;
603
@item write to the FAT directory on the host system while accessing it with the guest system.
604
@end itemize
605

    
606
@node disk_images_nbd
607
@subsection NBD access
608

    
609
QEMU can access directly to block device exported using the Network Block Device
610
protocol.
611

    
612
@example
613
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
614
@end example
615

    
616
If the NBD server is located on the same host, you can use an unix socket instead
617
of an inet socket:
618

    
619
@example
620
qemu linux.img -hdb nbd:unix:/tmp/my_socket
621
@end example
622

    
623
In this case, the block device must be exported using qemu-nbd:
624

    
625
@example
626
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627
@end example
628

    
629
The use of qemu-nbd allows to share a disk between several guests:
630
@example
631
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632
@end example
633

    
634
and then you can use it with two guests:
635
@example
636
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
637
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
638
@end example
639

    
640
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641
"exportname" option:
642
@example
643
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
645
@end example
646

    
647
@node disk_images_sheepdog
648
@subsection Sheepdog disk images
649

    
650
Sheepdog is a distributed storage system for QEMU.  It provides highly
651
available block level storage volumes that can be attached to
652
QEMU-based virtual machines.
653

    
654
You can create a Sheepdog disk image with the command:
655
@example
656
qemu-img create sheepdog:@var{image} @var{size}
657
@end example
658
where @var{image} is the Sheepdog image name and @var{size} is its
659
size.
660

    
661
To import the existing @var{filename} to Sheepdog, you can use a
662
convert command.
663
@example
664
qemu-img convert @var{filename} sheepdog:@var{image}
665
@end example
666

    
667
You can boot from the Sheepdog disk image with the command:
668
@example
669
qemu sheepdog:@var{image}
670
@end example
671

    
672
You can also create a snapshot of the Sheepdog image like qcow2.
673
@example
674
qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675
@end example
676
where @var{tag} is a tag name of the newly created snapshot.
677

    
678
To boot from the Sheepdog snapshot, specify the tag name of the
679
snapshot.
680
@example
681
qemu sheepdog:@var{image}:@var{tag}
682
@end example
683

    
684
You can create a cloned image from the existing snapshot.
685
@example
686
qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687
@end example
688
where @var{base} is a image name of the source snapshot and @var{tag}
689
is its tag name.
690

    
691
If the Sheepdog daemon doesn't run on the local host, you need to
692
specify one of the Sheepdog servers to connect to.
693
@example
694
qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
695
qemu sheepdog:@var{hostname}:@var{port}:@var{image}
696
@end example
697

    
698
@node pcsys_network
699
@section Network emulation
700

    
701
QEMU can simulate several network cards (PCI or ISA cards on the PC
702
target) and can connect them to an arbitrary number of Virtual Local
703
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
704
VLAN. VLAN can be connected between separate instances of QEMU to
705
simulate large networks. For simpler usage, a non privileged user mode
706
network stack can replace the TAP device to have a basic network
707
connection.
708

    
709
@subsection VLANs
710

    
711
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
712
connection between several network devices. These devices can be for
713
example QEMU virtual Ethernet cards or virtual Host ethernet devices
714
(TAP devices).
715

    
716
@subsection Using TAP network interfaces
717

    
718
This is the standard way to connect QEMU to a real network. QEMU adds
719
a virtual network device on your host (called @code{tapN}), and you
720
can then configure it as if it was a real ethernet card.
721

    
722
@subsubsection Linux host
723

    
724
As an example, you can download the @file{linux-test-xxx.tar.gz}
725
archive and copy the script @file{qemu-ifup} in @file{/etc} and
726
configure properly @code{sudo} so that the command @code{ifconfig}
727
contained in @file{qemu-ifup} can be executed as root. You must verify
728
that your host kernel supports the TAP network interfaces: the
729
device @file{/dev/net/tun} must be present.
730

    
731
See @ref{sec_invocation} to have examples of command lines using the
732
TAP network interfaces.
733

    
734
@subsubsection Windows host
735

    
736
There is a virtual ethernet driver for Windows 2000/XP systems, called
737
TAP-Win32. But it is not included in standard QEMU for Windows,
738
so you will need to get it separately. It is part of OpenVPN package,
739
so download OpenVPN from : @url{http://openvpn.net/}.
740

    
741
@subsection Using the user mode network stack
742

    
743
By using the option @option{-net user} (default configuration if no
744
@option{-net} option is specified), QEMU uses a completely user mode
745
network stack (you don't need root privilege to use the virtual
746
network). The virtual network configuration is the following:
747

    
748
@example
749

    
750
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
751
                           |          (10.0.2.2)
752
                           |
753
                           ---->  DNS server (10.0.2.3)
754
                           |
755
                           ---->  SMB server (10.0.2.4)
756
@end example
757

    
758
The QEMU VM behaves as if it was behind a firewall which blocks all
759
incoming connections. You can use a DHCP client to automatically
760
configure the network in the QEMU VM. The DHCP server assign addresses
761
to the hosts starting from 10.0.2.15.
762

    
763
In order to check that the user mode network is working, you can ping
764
the address 10.0.2.2 and verify that you got an address in the range
765
10.0.2.x from the QEMU virtual DHCP server.
766

    
767
Note that @code{ping} is not supported reliably to the internet as it
768
would require root privileges. It means you can only ping the local
769
router (10.0.2.2).
770

    
771
When using the built-in TFTP server, the router is also the TFTP
772
server.
773

    
774
When using the @option{-redir} option, TCP or UDP connections can be
775
redirected from the host to the guest. It allows for example to
776
redirect X11, telnet or SSH connections.
777

    
778
@subsection Connecting VLANs between QEMU instances
779

    
780
Using the @option{-net socket} option, it is possible to make VLANs
781
that span several QEMU instances. See @ref{sec_invocation} to have a
782
basic example.
783

    
784
@node pcsys_other_devs
785
@section Other Devices
786

    
787
@subsection Inter-VM Shared Memory device
788

    
789
With KVM enabled on a Linux host, a shared memory device is available.  Guests
790
map a POSIX shared memory region into the guest as a PCI device that enables
791
zero-copy communication to the application level of the guests.  The basic
792
syntax is:
793

    
794
@example
795
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
796
@end example
797

    
798
If desired, interrupts can be sent between guest VMs accessing the same shared
799
memory region.  Interrupt support requires using a shared memory server and
800
using a chardev socket to connect to it.  The code for the shared memory server
801
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
802
memory server is:
803

    
804
@example
805
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
806
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
807
qemu -chardev socket,path=<path>,id=<id>
808
@end example
809

    
810
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
811
using the same server to communicate via interrupts.  Guests can read their
812
VM ID from a device register (see example code).  Since receiving the shared
813
memory region from the server is asynchronous, there is a (small) chance the
814
guest may boot before the shared memory is attached.  To allow an application
815
to ensure shared memory is attached, the VM ID register will return -1 (an
816
invalid VM ID) until the memory is attached.  Once the shared memory is
817
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
818
the guest application can check to ensure the shared memory is attached to the
819
guest before proceeding.
820

    
821
The @option{role} argument can be set to either master or peer and will affect
822
how the shared memory is migrated.  With @option{role=master}, the guest will
823
copy the shared memory on migration to the destination host.  With
824
@option{role=peer}, the guest will not be able to migrate with the device attached.
825
With the @option{peer} case, the device should be detached and then reattached
826
after migration using the PCI hotplug support.
827

    
828
@node direct_linux_boot
829
@section Direct Linux Boot
830

    
831
This section explains how to launch a Linux kernel inside QEMU without
832
having to make a full bootable image. It is very useful for fast Linux
833
kernel testing.
834

    
835
The syntax is:
836
@example
837
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
838
@end example
839

    
840
Use @option{-kernel} to provide the Linux kernel image and
841
@option{-append} to give the kernel command line arguments. The
842
@option{-initrd} option can be used to provide an INITRD image.
843

    
844
When using the direct Linux boot, a disk image for the first hard disk
845
@file{hda} is required because its boot sector is used to launch the
846
Linux kernel.
847

    
848
If you do not need graphical output, you can disable it and redirect
849
the virtual serial port and the QEMU monitor to the console with the
850
@option{-nographic} option. The typical command line is:
851
@example
852
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
853
     -append "root=/dev/hda console=ttyS0" -nographic
854
@end example
855

    
856
Use @key{Ctrl-a c} to switch between the serial console and the
857
monitor (@pxref{pcsys_keys}).
858

    
859
@node pcsys_usb
860
@section USB emulation
861

    
862
QEMU emulates a PCI UHCI USB controller. You can virtually plug
863
virtual USB devices or real host USB devices (experimental, works only
864
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
865
as necessary to connect multiple USB devices.
866

    
867
@menu
868
* usb_devices::
869
* host_usb_devices::
870
@end menu
871
@node usb_devices
872
@subsection Connecting USB devices
873

    
874
USB devices can be connected with the @option{-usbdevice} commandline option
875
or the @code{usb_add} monitor command.  Available devices are:
876

    
877
@table @code
878
@item mouse
879
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
880
@item tablet
881
Pointer device that uses absolute coordinates (like a touchscreen).
882
This means qemu is able to report the mouse position without having
883
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
884
@item disk:@var{file}
885
Mass storage device based on @var{file} (@pxref{disk_images})
886
@item host:@var{bus.addr}
887
Pass through the host device identified by @var{bus.addr}
888
(Linux only)
889
@item host:@var{vendor_id:product_id}
890
Pass through the host device identified by @var{vendor_id:product_id}
891
(Linux only)
892
@item wacom-tablet
893
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
894
above but it can be used with the tslib library because in addition to touch
895
coordinates it reports touch pressure.
896
@item keyboard
897
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
898
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
899
Serial converter. This emulates an FTDI FT232BM chip connected to host character
900
device @var{dev}. The available character devices are the same as for the
901
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
902
used to override the default 0403:6001. For instance,
903
@example
904
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
905
@end example
906
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
907
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
908
@item braille
909
Braille device.  This will use BrlAPI to display the braille output on a real
910
or fake device.
911
@item net:@var{options}
912
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
913
specifies NIC options as with @code{-net nic,}@var{options} (see description).
914
For instance, user-mode networking can be used with
915
@example
916
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
917
@end example
918
Currently this cannot be used in machines that support PCI NICs.
919
@item bt[:@var{hci-type}]
920
Bluetooth dongle whose type is specified in the same format as with
921
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
922
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
923
This USB device implements the USB Transport Layer of HCI.  Example
924
usage:
925
@example
926
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
927
@end example
928
@end table
929

    
930
@node host_usb_devices
931
@subsection Using host USB devices on a Linux host
932

    
933
WARNING: this is an experimental feature. QEMU will slow down when
934
using it. USB devices requiring real time streaming (i.e. USB Video
935
Cameras) are not supported yet.
936

    
937
@enumerate
938
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
939
is actually using the USB device. A simple way to do that is simply to
940
disable the corresponding kernel module by renaming it from @file{mydriver.o}
941
to @file{mydriver.o.disabled}.
942

    
943
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
944
@example
945
ls /proc/bus/usb
946
001  devices  drivers
947
@end example
948

    
949
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
950
@example
951
chown -R myuid /proc/bus/usb
952
@end example
953

    
954
@item Launch QEMU and do in the monitor:
955
@example
956
info usbhost
957
  Device 1.2, speed 480 Mb/s
958
    Class 00: USB device 1234:5678, USB DISK
959
@end example
960
You should see the list of the devices you can use (Never try to use
961
hubs, it won't work).
962

    
963
@item Add the device in QEMU by using:
964
@example
965
usb_add host:1234:5678
966
@end example
967

    
968
Normally the guest OS should report that a new USB device is
969
plugged. You can use the option @option{-usbdevice} to do the same.
970

    
971
@item Now you can try to use the host USB device in QEMU.
972

    
973
@end enumerate
974

    
975
When relaunching QEMU, you may have to unplug and plug again the USB
976
device to make it work again (this is a bug).
977

    
978
@node vnc_security
979
@section VNC security
980

    
981
The VNC server capability provides access to the graphical console
982
of the guest VM across the network. This has a number of security
983
considerations depending on the deployment scenarios.
984

    
985
@menu
986
* vnc_sec_none::
987
* vnc_sec_password::
988
* vnc_sec_certificate::
989
* vnc_sec_certificate_verify::
990
* vnc_sec_certificate_pw::
991
* vnc_sec_sasl::
992
* vnc_sec_certificate_sasl::
993
* vnc_generate_cert::
994
* vnc_setup_sasl::
995
@end menu
996
@node vnc_sec_none
997
@subsection Without passwords
998

    
999
The simplest VNC server setup does not include any form of authentication.
1000
For this setup it is recommended to restrict it to listen on a UNIX domain
1001
socket only. For example
1002

    
1003
@example
1004
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1005
@end example
1006

    
1007
This ensures that only users on local box with read/write access to that
1008
path can access the VNC server. To securely access the VNC server from a
1009
remote machine, a combination of netcat+ssh can be used to provide a secure
1010
tunnel.
1011

    
1012
@node vnc_sec_password
1013
@subsection With passwords
1014

    
1015
The VNC protocol has limited support for password based authentication. Since
1016
the protocol limits passwords to 8 characters it should not be considered
1017
to provide high security. The password can be fairly easily brute-forced by
1018
a client making repeat connections. For this reason, a VNC server using password
1019
authentication should be restricted to only listen on the loopback interface
1020
or UNIX domain sockets. Password authentication is requested with the @code{password}
1021
option, and then once QEMU is running the password is set with the monitor. Until
1022
the monitor is used to set the password all clients will be rejected.
1023

    
1024
@example
1025
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1026
(qemu) change vnc password
1027
Password: ********
1028
(qemu)
1029
@end example
1030

    
1031
@node vnc_sec_certificate
1032
@subsection With x509 certificates
1033

    
1034
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1035
TLS for encryption of the session, and x509 certificates for authentication.
1036
The use of x509 certificates is strongly recommended, because TLS on its
1037
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1038
support provides a secure session, but no authentication. This allows any
1039
client to connect, and provides an encrypted session.
1040

    
1041
@example
1042
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1043
@end example
1044

    
1045
In the above example @code{/etc/pki/qemu} should contain at least three files,
1046
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1047
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1048
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1049
only be readable by the user owning it.
1050

    
1051
@node vnc_sec_certificate_verify
1052
@subsection With x509 certificates and client verification
1053

    
1054
Certificates can also provide a means to authenticate the client connecting.
1055
The server will request that the client provide a certificate, which it will
1056
then validate against the CA certificate. This is a good choice if deploying
1057
in an environment with a private internal certificate authority.
1058

    
1059
@example
1060
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1061
@end example
1062

    
1063

    
1064
@node vnc_sec_certificate_pw
1065
@subsection With x509 certificates, client verification and passwords
1066

    
1067
Finally, the previous method can be combined with VNC password authentication
1068
to provide two layers of authentication for clients.
1069

    
1070
@example
1071
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1072
(qemu) change vnc password
1073
Password: ********
1074
(qemu)
1075
@end example
1076

    
1077

    
1078
@node vnc_sec_sasl
1079
@subsection With SASL authentication
1080

    
1081
The SASL authentication method is a VNC extension, that provides an
1082
easily extendable, pluggable authentication method. This allows for
1083
integration with a wide range of authentication mechanisms, such as
1084
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1085
The strength of the authentication depends on the exact mechanism
1086
configured. If the chosen mechanism also provides a SSF layer, then
1087
it will encrypt the datastream as well.
1088

    
1089
Refer to the later docs on how to choose the exact SASL mechanism
1090
used for authentication, but assuming use of one supporting SSF,
1091
then QEMU can be launched with:
1092

    
1093
@example
1094
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1095
@end example
1096

    
1097
@node vnc_sec_certificate_sasl
1098
@subsection With x509 certificates and SASL authentication
1099

    
1100
If the desired SASL authentication mechanism does not supported
1101
SSF layers, then it is strongly advised to run it in combination
1102
with TLS and x509 certificates. This provides securely encrypted
1103
data stream, avoiding risk of compromising of the security
1104
credentials. This can be enabled, by combining the 'sasl' option
1105
with the aforementioned TLS + x509 options:
1106

    
1107
@example
1108
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1109
@end example
1110

    
1111

    
1112
@node vnc_generate_cert
1113
@subsection Generating certificates for VNC
1114

    
1115
The GNU TLS packages provides a command called @code{certtool} which can
1116
be used to generate certificates and keys in PEM format. At a minimum it
1117
is necessary to setup a certificate authority, and issue certificates to
1118
each server. If using certificates for authentication, then each client
1119
will also need to be issued a certificate. The recommendation is for the
1120
server to keep its certificates in either @code{/etc/pki/qemu} or for
1121
unprivileged users in @code{$HOME/.pki/qemu}.
1122

    
1123
@menu
1124
* vnc_generate_ca::
1125
* vnc_generate_server::
1126
* vnc_generate_client::
1127
@end menu
1128
@node vnc_generate_ca
1129
@subsubsection Setup the Certificate Authority
1130

    
1131
This step only needs to be performed once per organization / organizational
1132
unit. First the CA needs a private key. This key must be kept VERY secret
1133
and secure. If this key is compromised the entire trust chain of the certificates
1134
issued with it is lost.
1135

    
1136
@example
1137
# certtool --generate-privkey > ca-key.pem
1138
@end example
1139

    
1140
A CA needs to have a public certificate. For simplicity it can be a self-signed
1141
certificate, or one issue by a commercial certificate issuing authority. To
1142
generate a self-signed certificate requires one core piece of information, the
1143
name of the organization.
1144

    
1145
@example
1146
# cat > ca.info <<EOF
1147
cn = Name of your organization
1148
ca
1149
cert_signing_key
1150
EOF
1151
# certtool --generate-self-signed \
1152
           --load-privkey ca-key.pem
1153
           --template ca.info \
1154
           --outfile ca-cert.pem
1155
@end example
1156

    
1157
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1158
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1159

    
1160
@node vnc_generate_server
1161
@subsubsection Issuing server certificates
1162

    
1163
Each server (or host) needs to be issued with a key and certificate. When connecting
1164
the certificate is sent to the client which validates it against the CA certificate.
1165
The core piece of information for a server certificate is the hostname. This should
1166
be the fully qualified hostname that the client will connect with, since the client
1167
will typically also verify the hostname in the certificate. On the host holding the
1168
secure CA private key:
1169

    
1170
@example
1171
# cat > server.info <<EOF
1172
organization = Name  of your organization
1173
cn = server.foo.example.com
1174
tls_www_server
1175
encryption_key
1176
signing_key
1177
EOF
1178
# certtool --generate-privkey > server-key.pem
1179
# certtool --generate-certificate \
1180
           --load-ca-certificate ca-cert.pem \
1181
           --load-ca-privkey ca-key.pem \
1182
           --load-privkey server server-key.pem \
1183
           --template server.info \
1184
           --outfile server-cert.pem
1185
@end example
1186

    
1187
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1188
to the server for which they were generated. The @code{server-key.pem} is security
1189
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1190

    
1191
@node vnc_generate_client
1192
@subsubsection Issuing client certificates
1193

    
1194
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1195
certificates as its authentication mechanism, each client also needs to be issued
1196
a certificate. The client certificate contains enough metadata to uniquely identify
1197
the client, typically organization, state, city, building, etc. On the host holding
1198
the secure CA private key:
1199

    
1200
@example
1201
# cat > client.info <<EOF
1202
country = GB
1203
state = London
1204
locality = London
1205
organiazation = Name of your organization
1206
cn = client.foo.example.com
1207
tls_www_client
1208
encryption_key
1209
signing_key
1210
EOF
1211
# certtool --generate-privkey > client-key.pem
1212
# certtool --generate-certificate \
1213
           --load-ca-certificate ca-cert.pem \
1214
           --load-ca-privkey ca-key.pem \
1215
           --load-privkey client-key.pem \
1216
           --template client.info \
1217
           --outfile client-cert.pem
1218
@end example
1219

    
1220
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1221
copied to the client for which they were generated.
1222

    
1223

    
1224
@node vnc_setup_sasl
1225

    
1226
@subsection Configuring SASL mechanisms
1227

    
1228
The following documentation assumes use of the Cyrus SASL implementation on a
1229
Linux host, but the principals should apply to any other SASL impl. When SASL
1230
is enabled, the mechanism configuration will be loaded from system default
1231
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1232
unprivileged user, an environment variable SASL_CONF_PATH can be used
1233
to make it search alternate locations for the service config.
1234

    
1235
The default configuration might contain
1236

    
1237
@example
1238
mech_list: digest-md5
1239
sasldb_path: /etc/qemu/passwd.db
1240
@end example
1241

    
1242
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1243
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1244
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1245
command. While this mechanism is easy to configure and use, it is not
1246
considered secure by modern standards, so only suitable for developers /
1247
ad-hoc testing.
1248

    
1249
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1250
mechanism
1251

    
1252
@example
1253
mech_list: gssapi
1254
keytab: /etc/qemu/krb5.tab
1255
@end example
1256

    
1257
For this to work the administrator of your KDC must generate a Kerberos
1258
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1259
replacing 'somehost.example.com' with the fully qualified host name of the
1260
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1261

    
1262
Other configurations will be left as an exercise for the reader. It should
1263
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1264
encryption. For all other mechanisms, VNC should always be configured to
1265
use TLS and x509 certificates to protect security credentials from snooping.
1266

    
1267
@node gdb_usage
1268
@section GDB usage
1269

    
1270
QEMU has a primitive support to work with gdb, so that you can do
1271
'Ctrl-C' while the virtual machine is running and inspect its state.
1272

    
1273
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1274
gdb connection:
1275
@example
1276
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1277
       -append "root=/dev/hda"
1278
Connected to host network interface: tun0
1279
Waiting gdb connection on port 1234
1280
@end example
1281

    
1282
Then launch gdb on the 'vmlinux' executable:
1283
@example
1284
> gdb vmlinux
1285
@end example
1286

    
1287
In gdb, connect to QEMU:
1288
@example
1289
(gdb) target remote localhost:1234
1290
@end example
1291

    
1292
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1293
@example
1294
(gdb) c
1295
@end example
1296

    
1297
Here are some useful tips in order to use gdb on system code:
1298

    
1299
@enumerate
1300
@item
1301
Use @code{info reg} to display all the CPU registers.
1302
@item
1303
Use @code{x/10i $eip} to display the code at the PC position.
1304
@item
1305
Use @code{set architecture i8086} to dump 16 bit code. Then use
1306
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1307
@end enumerate
1308

    
1309
Advanced debugging options:
1310

    
1311
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1312
@table @code
1313
@item maintenance packet qqemu.sstepbits
1314

    
1315
This will display the MASK bits used to control the single stepping IE:
1316
@example
1317
(gdb) maintenance packet qqemu.sstepbits
1318
sending: "qqemu.sstepbits"
1319
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1320
@end example
1321
@item maintenance packet qqemu.sstep
1322

    
1323
This will display the current value of the mask used when single stepping IE:
1324
@example
1325
(gdb) maintenance packet qqemu.sstep
1326
sending: "qqemu.sstep"
1327
received: "0x7"
1328
@end example
1329
@item maintenance packet Qqemu.sstep=HEX_VALUE
1330

    
1331
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1332
@example
1333
(gdb) maintenance packet Qqemu.sstep=0x5
1334
sending: "qemu.sstep=0x5"
1335
received: "OK"
1336
@end example
1337
@end table
1338

    
1339
@node pcsys_os_specific
1340
@section Target OS specific information
1341

    
1342
@subsection Linux
1343

    
1344
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1345
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1346
color depth in the guest and the host OS.
1347

    
1348
When using a 2.6 guest Linux kernel, you should add the option
1349
@code{clock=pit} on the kernel command line because the 2.6 Linux
1350
kernels make very strict real time clock checks by default that QEMU
1351
cannot simulate exactly.
1352

    
1353
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1354
not activated because QEMU is slower with this patch. The QEMU
1355
Accelerator Module is also much slower in this case. Earlier Fedora
1356
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1357
patch by default. Newer kernels don't have it.
1358

    
1359
@subsection Windows
1360

    
1361
If you have a slow host, using Windows 95 is better as it gives the
1362
best speed. Windows 2000 is also a good choice.
1363

    
1364
@subsubsection SVGA graphic modes support
1365

    
1366
QEMU emulates a Cirrus Logic GD5446 Video
1367
card. All Windows versions starting from Windows 95 should recognize
1368
and use this graphic card. For optimal performances, use 16 bit color
1369
depth in the guest and the host OS.
1370

    
1371
If you are using Windows XP as guest OS and if you want to use high
1372
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1373
1280x1024x16), then you should use the VESA VBE virtual graphic card
1374
(option @option{-std-vga}).
1375

    
1376
@subsubsection CPU usage reduction
1377

    
1378
Windows 9x does not correctly use the CPU HLT
1379
instruction. The result is that it takes host CPU cycles even when
1380
idle. You can install the utility from
1381
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1382
problem. Note that no such tool is needed for NT, 2000 or XP.
1383

    
1384
@subsubsection Windows 2000 disk full problem
1385

    
1386
Windows 2000 has a bug which gives a disk full problem during its
1387
installation. When installing it, use the @option{-win2k-hack} QEMU
1388
option to enable a specific workaround. After Windows 2000 is
1389
installed, you no longer need this option (this option slows down the
1390
IDE transfers).
1391

    
1392
@subsubsection Windows 2000 shutdown
1393

    
1394
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1395
can. It comes from the fact that Windows 2000 does not automatically
1396
use the APM driver provided by the BIOS.
1397

    
1398
In order to correct that, do the following (thanks to Struan
1399
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1400
Add/Troubleshoot a device => Add a new device & Next => No, select the
1401
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1402
(again) a few times. Now the driver is installed and Windows 2000 now
1403
correctly instructs QEMU to shutdown at the appropriate moment.
1404

    
1405
@subsubsection Share a directory between Unix and Windows
1406

    
1407
See @ref{sec_invocation} about the help of the option @option{-smb}.
1408

    
1409
@subsubsection Windows XP security problem
1410

    
1411
Some releases of Windows XP install correctly but give a security
1412
error when booting:
1413
@example
1414
A problem is preventing Windows from accurately checking the
1415
license for this computer. Error code: 0x800703e6.
1416
@end example
1417

    
1418
The workaround is to install a service pack for XP after a boot in safe
1419
mode. Then reboot, and the problem should go away. Since there is no
1420
network while in safe mode, its recommended to download the full
1421
installation of SP1 or SP2 and transfer that via an ISO or using the
1422
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1423

    
1424
@subsection MS-DOS and FreeDOS
1425

    
1426
@subsubsection CPU usage reduction
1427

    
1428
DOS does not correctly use the CPU HLT instruction. The result is that
1429
it takes host CPU cycles even when idle. You can install the utility
1430
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1431
problem.
1432

    
1433
@node QEMU System emulator for non PC targets
1434
@chapter QEMU System emulator for non PC targets
1435

    
1436
QEMU is a generic emulator and it emulates many non PC
1437
machines. Most of the options are similar to the PC emulator. The
1438
differences are mentioned in the following sections.
1439

    
1440
@menu
1441
* PowerPC System emulator::
1442
* Sparc32 System emulator::
1443
* Sparc64 System emulator::
1444
* MIPS System emulator::
1445
* ARM System emulator::
1446
* ColdFire System emulator::
1447
* Cris System emulator::
1448
* Microblaze System emulator::
1449
* SH4 System emulator::
1450
* Xtensa System emulator::
1451
@end menu
1452

    
1453
@node PowerPC System emulator
1454
@section PowerPC System emulator
1455
@cindex system emulation (PowerPC)
1456

    
1457
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1458
or PowerMac PowerPC system.
1459

    
1460
QEMU emulates the following PowerMac peripherals:
1461

    
1462
@itemize @minus
1463
@item
1464
UniNorth or Grackle PCI Bridge
1465
@item
1466
PCI VGA compatible card with VESA Bochs Extensions
1467
@item
1468
2 PMAC IDE interfaces with hard disk and CD-ROM support
1469
@item
1470
NE2000 PCI adapters
1471
@item
1472
Non Volatile RAM
1473
@item
1474
VIA-CUDA with ADB keyboard and mouse.
1475
@end itemize
1476

    
1477
QEMU emulates the following PREP peripherals:
1478

    
1479
@itemize @minus
1480
@item
1481
PCI Bridge
1482
@item
1483
PCI VGA compatible card with VESA Bochs Extensions
1484
@item
1485
2 IDE interfaces with hard disk and CD-ROM support
1486
@item
1487
Floppy disk
1488
@item
1489
NE2000 network adapters
1490
@item
1491
Serial port
1492
@item
1493
PREP Non Volatile RAM
1494
@item
1495
PC compatible keyboard and mouse.
1496
@end itemize
1497

    
1498
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1499
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1500

    
1501
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1502
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1503
v2) portable firmware implementation. The goal is to implement a 100%
1504
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1505

    
1506
@c man begin OPTIONS
1507

    
1508
The following options are specific to the PowerPC emulation:
1509

    
1510
@table @option
1511

    
1512
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1513

    
1514
Set the initial VGA graphic mode. The default is 800x600x15.
1515

    
1516
@item -prom-env @var{string}
1517

    
1518
Set OpenBIOS variables in NVRAM, for example:
1519

    
1520
@example
1521
qemu-system-ppc -prom-env 'auto-boot?=false' \
1522
 -prom-env 'boot-device=hd:2,\yaboot' \
1523
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1524
@end example
1525

    
1526
These variables are not used by Open Hack'Ware.
1527

    
1528
@end table
1529

    
1530
@c man end
1531

    
1532

    
1533
More information is available at
1534
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1535

    
1536
@node Sparc32 System emulator
1537
@section Sparc32 System emulator
1538
@cindex system emulation (Sparc32)
1539

    
1540
Use the executable @file{qemu-system-sparc} to simulate the following
1541
Sun4m architecture machines:
1542
@itemize @minus
1543
@item
1544
SPARCstation 4
1545
@item
1546
SPARCstation 5
1547
@item
1548
SPARCstation 10
1549
@item
1550
SPARCstation 20
1551
@item
1552
SPARCserver 600MP
1553
@item
1554
SPARCstation LX
1555
@item
1556
SPARCstation Voyager
1557
@item
1558
SPARCclassic
1559
@item
1560
SPARCbook
1561
@end itemize
1562

    
1563
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1564
but Linux limits the number of usable CPUs to 4.
1565

    
1566
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1567
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1568
emulators are not usable yet.
1569

    
1570
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1571

    
1572
@itemize @minus
1573
@item
1574
IOMMU or IO-UNITs
1575
@item
1576
TCX Frame buffer
1577
@item
1578
Lance (Am7990) Ethernet
1579
@item
1580
Non Volatile RAM M48T02/M48T08
1581
@item
1582
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1583
and power/reset logic
1584
@item
1585
ESP SCSI controller with hard disk and CD-ROM support
1586
@item
1587
Floppy drive (not on SS-600MP)
1588
@item
1589
CS4231 sound device (only on SS-5, not working yet)
1590
@end itemize
1591

    
1592
The number of peripherals is fixed in the architecture.  Maximum
1593
memory size depends on the machine type, for SS-5 it is 256MB and for
1594
others 2047MB.
1595

    
1596
Since version 0.8.2, QEMU uses OpenBIOS
1597
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1598
firmware implementation. The goal is to implement a 100% IEEE
1599
1275-1994 (referred to as Open Firmware) compliant firmware.
1600

    
1601
A sample Linux 2.6 series kernel and ram disk image are available on
1602
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1603
some kernel versions work. Please note that currently Solaris kernels
1604
don't work probably due to interface issues between OpenBIOS and
1605
Solaris.
1606

    
1607
@c man begin OPTIONS
1608

    
1609
The following options are specific to the Sparc32 emulation:
1610

    
1611
@table @option
1612

    
1613
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1614

    
1615
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1616
the only other possible mode is 1024x768x24.
1617

    
1618
@item -prom-env @var{string}
1619

    
1620
Set OpenBIOS variables in NVRAM, for example:
1621

    
1622
@example
1623
qemu-system-sparc -prom-env 'auto-boot?=false' \
1624
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1625
@end example
1626

    
1627
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1628

    
1629
Set the emulated machine type. Default is SS-5.
1630

    
1631
@end table
1632

    
1633
@c man end
1634

    
1635
@node Sparc64 System emulator
1636
@section Sparc64 System emulator
1637
@cindex system emulation (Sparc64)
1638

    
1639
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1640
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1641
Niagara (T1) machine. The emulator is not usable for anything yet, but
1642
it can launch some kernels.
1643

    
1644
QEMU emulates the following peripherals:
1645

    
1646
@itemize @minus
1647
@item
1648
UltraSparc IIi APB PCI Bridge
1649
@item
1650
PCI VGA compatible card with VESA Bochs Extensions
1651
@item
1652
PS/2 mouse and keyboard
1653
@item
1654
Non Volatile RAM M48T59
1655
@item
1656
PC-compatible serial ports
1657
@item
1658
2 PCI IDE interfaces with hard disk and CD-ROM support
1659
@item
1660
Floppy disk
1661
@end itemize
1662

    
1663
@c man begin OPTIONS
1664

    
1665
The following options are specific to the Sparc64 emulation:
1666

    
1667
@table @option
1668

    
1669
@item -prom-env @var{string}
1670

    
1671
Set OpenBIOS variables in NVRAM, for example:
1672

    
1673
@example
1674
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1675
@end example
1676

    
1677
@item -M [sun4u|sun4v|Niagara]
1678

    
1679
Set the emulated machine type. The default is sun4u.
1680

    
1681
@end table
1682

    
1683
@c man end
1684

    
1685
@node MIPS System emulator
1686
@section MIPS System emulator
1687
@cindex system emulation (MIPS)
1688

    
1689
Four executables cover simulation of 32 and 64-bit MIPS systems in
1690
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1691
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1692
Five different machine types are emulated:
1693

    
1694
@itemize @minus
1695
@item
1696
A generic ISA PC-like machine "mips"
1697
@item
1698
The MIPS Malta prototype board "malta"
1699
@item
1700
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1701
@item
1702
MIPS emulator pseudo board "mipssim"
1703
@item
1704
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1705
@end itemize
1706

    
1707
The generic emulation is supported by Debian 'Etch' and is able to
1708
install Debian into a virtual disk image. The following devices are
1709
emulated:
1710

    
1711
@itemize @minus
1712
@item
1713
A range of MIPS CPUs, default is the 24Kf
1714
@item
1715
PC style serial port
1716
@item
1717
PC style IDE disk
1718
@item
1719
NE2000 network card
1720
@end itemize
1721

    
1722
The Malta emulation supports the following devices:
1723

    
1724
@itemize @minus
1725
@item
1726
Core board with MIPS 24Kf CPU and Galileo system controller
1727
@item
1728
PIIX4 PCI/USB/SMbus controller
1729
@item
1730
The Multi-I/O chip's serial device
1731
@item
1732
PCI network cards (PCnet32 and others)
1733
@item
1734
Malta FPGA serial device
1735
@item
1736
Cirrus (default) or any other PCI VGA graphics card
1737
@end itemize
1738

    
1739
The ACER Pica emulation supports:
1740

    
1741
@itemize @minus
1742
@item
1743
MIPS R4000 CPU
1744
@item
1745
PC-style IRQ and DMA controllers
1746
@item
1747
PC Keyboard
1748
@item
1749
IDE controller
1750
@end itemize
1751

    
1752
The mipssim pseudo board emulation provides an environment similiar
1753
to what the proprietary MIPS emulator uses for running Linux.
1754
It supports:
1755

    
1756
@itemize @minus
1757
@item
1758
A range of MIPS CPUs, default is the 24Kf
1759
@item
1760
PC style serial port
1761
@item
1762
MIPSnet network emulation
1763
@end itemize
1764

    
1765
The MIPS Magnum R4000 emulation supports:
1766

    
1767
@itemize @minus
1768
@item
1769
MIPS R4000 CPU
1770
@item
1771
PC-style IRQ controller
1772
@item
1773
PC Keyboard
1774
@item
1775
SCSI controller
1776
@item
1777
G364 framebuffer
1778
@end itemize
1779

    
1780

    
1781
@node ARM System emulator
1782
@section ARM System emulator
1783
@cindex system emulation (ARM)
1784

    
1785
Use the executable @file{qemu-system-arm} to simulate a ARM
1786
machine. The ARM Integrator/CP board is emulated with the following
1787
devices:
1788

    
1789
@itemize @minus
1790
@item
1791
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1792
@item
1793
Two PL011 UARTs
1794
@item
1795
SMC 91c111 Ethernet adapter
1796
@item
1797
PL110 LCD controller
1798
@item
1799
PL050 KMI with PS/2 keyboard and mouse.
1800
@item
1801
PL181 MultiMedia Card Interface with SD card.
1802
@end itemize
1803

    
1804
The ARM Versatile baseboard is emulated with the following devices:
1805

    
1806
@itemize @minus
1807
@item
1808
ARM926E, ARM1136 or Cortex-A8 CPU
1809
@item
1810
PL190 Vectored Interrupt Controller
1811
@item
1812
Four PL011 UARTs
1813
@item
1814
SMC 91c111 Ethernet adapter
1815
@item
1816
PL110 LCD controller
1817
@item
1818
PL050 KMI with PS/2 keyboard and mouse.
1819
@item
1820
PCI host bridge.  Note the emulated PCI bridge only provides access to
1821
PCI memory space.  It does not provide access to PCI IO space.
1822
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1823
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1824
mapped control registers.
1825
@item
1826
PCI OHCI USB controller.
1827
@item
1828
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1829
@item
1830
PL181 MultiMedia Card Interface with SD card.
1831
@end itemize
1832

    
1833
Several variants of the ARM RealView baseboard are emulated,
1834
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1835
bootloader, only certain Linux kernel configurations work out
1836
of the box on these boards.
1837

    
1838
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1839
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1840
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1841
disabled and expect 1024M RAM.
1842

    
1843
The following devices are emulated:
1844

    
1845
@itemize @minus
1846
@item
1847
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1848
@item
1849
ARM AMBA Generic/Distributed Interrupt Controller
1850
@item
1851
Four PL011 UARTs
1852
@item
1853
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1854
@item
1855
PL110 LCD controller
1856
@item
1857
PL050 KMI with PS/2 keyboard and mouse
1858
@item
1859
PCI host bridge
1860
@item
1861
PCI OHCI USB controller
1862
@item
1863
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1864
@item
1865
PL181 MultiMedia Card Interface with SD card.
1866
@end itemize
1867

    
1868
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1869
and "Terrier") emulation includes the following peripherals:
1870

    
1871
@itemize @minus
1872
@item
1873
Intel PXA270 System-on-chip (ARM V5TE core)
1874
@item
1875
NAND Flash memory
1876
@item
1877
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1878
@item
1879
On-chip OHCI USB controller
1880
@item
1881
On-chip LCD controller
1882
@item
1883
On-chip Real Time Clock
1884
@item
1885
TI ADS7846 touchscreen controller on SSP bus
1886
@item
1887
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1888
@item
1889
GPIO-connected keyboard controller and LEDs
1890
@item
1891
Secure Digital card connected to PXA MMC/SD host
1892
@item
1893
Three on-chip UARTs
1894
@item
1895
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1896
@end itemize
1897

    
1898
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1899
following elements:
1900

    
1901
@itemize @minus
1902
@item
1903
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1904
@item
1905
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1906
@item
1907
On-chip LCD controller
1908
@item
1909
On-chip Real Time Clock
1910
@item
1911
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1912
CODEC, connected through MicroWire and I@math{^2}S busses
1913
@item
1914
GPIO-connected matrix keypad
1915
@item
1916
Secure Digital card connected to OMAP MMC/SD host
1917
@item
1918
Three on-chip UARTs
1919
@end itemize
1920

    
1921
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1922
emulation supports the following elements:
1923

    
1924
@itemize @minus
1925
@item
1926
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1927
@item
1928
RAM and non-volatile OneNAND Flash memories
1929
@item
1930
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1931
display controller and a LS041y3 MIPI DBI-C controller
1932
@item
1933
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1934
driven through SPI bus
1935
@item
1936
National Semiconductor LM8323-controlled qwerty keyboard driven
1937
through I@math{^2}C bus
1938
@item
1939
Secure Digital card connected to OMAP MMC/SD host
1940
@item
1941
Three OMAP on-chip UARTs and on-chip STI debugging console
1942
@item
1943
A Bluetooth(R) transceiver and HCI connected to an UART
1944
@item
1945
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1946
TUSB6010 chip - only USB host mode is supported
1947
@item
1948
TI TMP105 temperature sensor driven through I@math{^2}C bus
1949
@item
1950
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1951
@item
1952
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1953
through CBUS
1954
@end itemize
1955

    
1956
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1957
devices:
1958

    
1959
@itemize @minus
1960
@item
1961
Cortex-M3 CPU core.
1962
@item
1963
64k Flash and 8k SRAM.
1964
@item
1965
Timers, UARTs, ADC and I@math{^2}C interface.
1966
@item
1967
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1968
@end itemize
1969

    
1970
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1971
devices:
1972

    
1973
@itemize @minus
1974
@item
1975
Cortex-M3 CPU core.
1976
@item
1977
256k Flash and 64k SRAM.
1978
@item
1979
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1980
@item
1981
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1982
@end itemize
1983

    
1984
The Freecom MusicPal internet radio emulation includes the following
1985
elements:
1986

    
1987
@itemize @minus
1988
@item
1989
Marvell MV88W8618 ARM core.
1990
@item
1991
32 MB RAM, 256 KB SRAM, 8 MB flash.
1992
@item
1993
Up to 2 16550 UARTs
1994
@item
1995
MV88W8xx8 Ethernet controller
1996
@item
1997
MV88W8618 audio controller, WM8750 CODEC and mixer
1998
@item
1999
128×64 display with brightness control
2000
@item
2001
2 buttons, 2 navigation wheels with button function
2002
@end itemize
2003

    
2004
The Siemens SX1 models v1 and v2 (default) basic emulation.
2005
The emulation includes the following elements:
2006

    
2007
@itemize @minus
2008
@item
2009
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2010
@item
2011
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2012
V1
2013
1 Flash of 16MB and 1 Flash of 8MB
2014
V2
2015
1 Flash of 32MB
2016
@item
2017
On-chip LCD controller
2018
@item
2019
On-chip Real Time Clock
2020
@item
2021
Secure Digital card connected to OMAP MMC/SD host
2022
@item
2023
Three on-chip UARTs
2024
@end itemize
2025

    
2026
The "Syborg" Symbian Virtual Platform base model includes the following
2027
elements:
2028

    
2029
@itemize @minus
2030
@item
2031
ARM Cortex-A8 CPU
2032
@item
2033
Interrupt controller
2034
@item
2035
Timer
2036
@item
2037
Real Time Clock
2038
@item
2039
Keyboard
2040
@item
2041
Framebuffer
2042
@item
2043
Touchscreen
2044
@item
2045
UARTs
2046
@end itemize
2047

    
2048
A Linux 2.6 test image is available on the QEMU web site. More
2049
information is available in the QEMU mailing-list archive.
2050

    
2051
@c man begin OPTIONS
2052

    
2053
The following options are specific to the ARM emulation:
2054

    
2055
@table @option
2056

    
2057
@item -semihosting
2058
Enable semihosting syscall emulation.
2059

    
2060
On ARM this implements the "Angel" interface.
2061

    
2062
Note that this allows guest direct access to the host filesystem,
2063
so should only be used with trusted guest OS.
2064

    
2065
@end table
2066

    
2067
@node ColdFire System emulator
2068
@section ColdFire System emulator
2069
@cindex system emulation (ColdFire)
2070
@cindex system emulation (M68K)
2071

    
2072
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2073
The emulator is able to boot a uClinux kernel.
2074

    
2075
The M5208EVB emulation includes the following devices:
2076

    
2077
@itemize @minus
2078
@item
2079
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2080
@item
2081
Three Two on-chip UARTs.
2082
@item
2083
Fast Ethernet Controller (FEC)
2084
@end itemize
2085

    
2086
The AN5206 emulation includes the following devices:
2087

    
2088
@itemize @minus
2089
@item
2090
MCF5206 ColdFire V2 Microprocessor.
2091
@item
2092
Two on-chip UARTs.
2093
@end itemize
2094

    
2095
@c man begin OPTIONS
2096

    
2097
The following options are specific to the ColdFire emulation:
2098

    
2099
@table @option
2100

    
2101
@item -semihosting
2102
Enable semihosting syscall emulation.
2103

    
2104
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2105

    
2106
Note that this allows guest direct access to the host filesystem,
2107
so should only be used with trusted guest OS.
2108

    
2109
@end table
2110

    
2111
@node Cris System emulator
2112
@section Cris System emulator
2113
@cindex system emulation (Cris)
2114

    
2115
TODO
2116

    
2117
@node Microblaze System emulator
2118
@section Microblaze System emulator
2119
@cindex system emulation (Microblaze)
2120

    
2121
TODO
2122

    
2123
@node SH4 System emulator
2124
@section SH4 System emulator
2125
@cindex system emulation (SH4)
2126

    
2127
TODO
2128

    
2129
@node Xtensa System emulator
2130
@section Xtensa System emulator
2131
@cindex system emulation (Xtensa)
2132

    
2133
Two executables cover simulation of both Xtensa endian options,
2134
@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2135
Two different machine types are emulated:
2136

    
2137
@itemize @minus
2138
@item
2139
Xtensa emulator pseudo board "sim"
2140
@item
2141
Avnet LX60/LX110/LX200 board
2142
@end itemize
2143

    
2144
The sim pseudo board emulation provides an environment similiar
2145
to one provided by the proprietary Tensilica ISS.
2146
It supports:
2147

    
2148
@itemize @minus
2149
@item
2150
A range of Xtensa CPUs, default is the DC232B
2151
@item
2152
Console and filesystem access via semihosting calls
2153
@end itemize
2154

    
2155
The Avnet LX60/LX110/LX200 emulation supports:
2156

    
2157
@itemize @minus
2158
@item
2159
A range of Xtensa CPUs, default is the DC232B
2160
@item
2161
16550 UART
2162
@item
2163
OpenCores 10/100 Mbps Ethernet MAC
2164
@end itemize
2165

    
2166
@c man begin OPTIONS
2167

    
2168
The following options are specific to the Xtensa emulation:
2169

    
2170
@table @option
2171

    
2172
@item -semihosting
2173
Enable semihosting syscall emulation.
2174

    
2175
Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2176
Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2177

    
2178
Note that this allows guest direct access to the host filesystem,
2179
so should only be used with trusted guest OS.
2180

    
2181
@end table
2182
@node QEMU User space emulator
2183
@chapter QEMU User space emulator
2184

    
2185
@menu
2186
* Supported Operating Systems ::
2187
* Linux User space emulator::
2188
* Mac OS X/Darwin User space emulator ::
2189
* BSD User space emulator ::
2190
@end menu
2191

    
2192
@node Supported Operating Systems
2193
@section Supported Operating Systems
2194

    
2195
The following OS are supported in user space emulation:
2196

    
2197
@itemize @minus
2198
@item
2199
Linux (referred as qemu-linux-user)
2200
@item
2201
Mac OS X/Darwin (referred as qemu-darwin-user)
2202
@item
2203
BSD (referred as qemu-bsd-user)
2204
@end itemize
2205

    
2206
@node Linux User space emulator
2207
@section Linux User space emulator
2208

    
2209
@menu
2210
* Quick Start::
2211
* Wine launch::
2212
* Command line options::
2213
* Other binaries::
2214
@end menu
2215

    
2216
@node Quick Start
2217
@subsection Quick Start
2218

    
2219
In order to launch a Linux process, QEMU needs the process executable
2220
itself and all the target (x86) dynamic libraries used by it.
2221

    
2222
@itemize
2223

    
2224
@item On x86, you can just try to launch any process by using the native
2225
libraries:
2226

    
2227
@example
2228
qemu-i386 -L / /bin/ls
2229
@end example
2230

    
2231
@code{-L /} tells that the x86 dynamic linker must be searched with a
2232
@file{/} prefix.
2233

    
2234
@item Since QEMU is also a linux process, you can launch qemu with
2235
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2236

    
2237
@example
2238
qemu-i386 -L / qemu-i386 -L / /bin/ls
2239
@end example
2240

    
2241
@item On non x86 CPUs, you need first to download at least an x86 glibc
2242
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2243
@code{LD_LIBRARY_PATH} is not set:
2244

    
2245
@example
2246
unset LD_LIBRARY_PATH
2247
@end example
2248

    
2249
Then you can launch the precompiled @file{ls} x86 executable:
2250

    
2251
@example
2252
qemu-i386 tests/i386/ls
2253
@end example
2254
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2255
QEMU is automatically launched by the Linux kernel when you try to
2256
launch x86 executables. It requires the @code{binfmt_misc} module in the
2257
Linux kernel.
2258

    
2259
@item The x86 version of QEMU is also included. You can try weird things such as:
2260
@example
2261
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2262
          /usr/local/qemu-i386/bin/ls-i386
2263
@end example
2264

    
2265
@end itemize
2266

    
2267
@node Wine launch
2268
@subsection Wine launch
2269

    
2270
@itemize
2271

    
2272
@item Ensure that you have a working QEMU with the x86 glibc
2273
distribution (see previous section). In order to verify it, you must be
2274
able to do:
2275

    
2276
@example
2277
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2278
@end example
2279

    
2280
@item Download the binary x86 Wine install
2281
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2282

    
2283
@item Configure Wine on your account. Look at the provided script
2284
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2285
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2286

    
2287
@item Then you can try the example @file{putty.exe}:
2288

    
2289
@example
2290
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2291
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2292
@end example
2293

    
2294
@end itemize
2295

    
2296
@node Command line options
2297
@subsection Command line options
2298

    
2299
@example
2300
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2301
@end example
2302

    
2303
@table @option
2304
@item -h
2305
Print the help
2306
@item -L path
2307
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2308
@item -s size
2309
Set the x86 stack size in bytes (default=524288)
2310
@item -cpu model
2311
Select CPU model (-cpu ? for list and additional feature selection)
2312
@item -ignore-environment
2313
Start with an empty environment. Without this option,
2314
the initial environment is a copy of the caller's environment.
2315
@item -E @var{var}=@var{value}
2316
Set environment @var{var} to @var{value}.
2317
@item -U @var{var}
2318
Remove @var{var} from the environment.
2319
@item -B offset
2320
Offset guest address by the specified number of bytes.  This is useful when
2321
the address region required by guest applications is reserved on the host.
2322
This option is currently only supported on some hosts.
2323
@item -R size
2324
Pre-allocate a guest virtual address space of the given size (in bytes).
2325
"G", "M", and "k" suffixes may be used when specifying the size.
2326
@end table
2327

    
2328
Debug options:
2329

    
2330
@table @option
2331
@item -d
2332
Activate log (logfile=/tmp/qemu.log)
2333
@item -p pagesize
2334
Act as if the host page size was 'pagesize' bytes
2335
@item -g port
2336
Wait gdb connection to port
2337
@item -singlestep
2338
Run the emulation in single step mode.
2339
@end table
2340

    
2341
Environment variables:
2342

    
2343
@table @env
2344
@item QEMU_STRACE
2345
Print system calls and arguments similar to the 'strace' program
2346
(NOTE: the actual 'strace' program will not work because the user
2347
space emulator hasn't implemented ptrace).  At the moment this is
2348
incomplete.  All system calls that don't have a specific argument
2349
format are printed with information for six arguments.  Many
2350
flag-style arguments don't have decoders and will show up as numbers.
2351
@end table
2352

    
2353
@node Other binaries
2354
@subsection Other binaries
2355

    
2356
@cindex user mode (Alpha)
2357
@command{qemu-alpha} TODO.
2358

    
2359
@cindex user mode (ARM)
2360
@command{qemu-armeb} TODO.
2361

    
2362
@cindex user mode (ARM)
2363
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2364
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2365
configurations), and arm-uclinux bFLT format binaries.
2366

    
2367
@cindex user mode (ColdFire)
2368
@cindex user mode (M68K)
2369
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2370
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2371
coldfire uClinux bFLT format binaries.
2372

    
2373
The binary format is detected automatically.
2374

    
2375
@cindex user mode (Cris)
2376
@command{qemu-cris} TODO.
2377

    
2378
@cindex user mode (i386)
2379
@command{qemu-i386} TODO.
2380
@command{qemu-x86_64} TODO.
2381

    
2382
@cindex user mode (Microblaze)
2383
@command{qemu-microblaze} TODO.
2384

    
2385
@cindex user mode (MIPS)
2386
@command{qemu-mips} TODO.
2387
@command{qemu-mipsel} TODO.
2388

    
2389
@cindex user mode (PowerPC)
2390
@command{qemu-ppc64abi32} TODO.
2391
@command{qemu-ppc64} TODO.
2392
@command{qemu-ppc} TODO.
2393

    
2394
@cindex user mode (SH4)
2395
@command{qemu-sh4eb} TODO.
2396
@command{qemu-sh4} TODO.
2397

    
2398
@cindex user mode (SPARC)
2399
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2400

    
2401
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2402
(Sparc64 CPU, 32 bit ABI).
2403

    
2404
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2405
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2406

    
2407
@node Mac OS X/Darwin User space emulator
2408
@section Mac OS X/Darwin User space emulator
2409

    
2410
@menu
2411
* Mac OS X/Darwin Status::
2412
* Mac OS X/Darwin Quick Start::
2413
* Mac OS X/Darwin Command line options::
2414
@end menu
2415

    
2416
@node Mac OS X/Darwin Status
2417
@subsection Mac OS X/Darwin Status
2418

    
2419
@itemize @minus
2420
@item
2421
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2422
@item
2423
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2424
@item
2425
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2426
@item
2427
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2428
@end itemize
2429

    
2430
[1] If you're host commpage can be executed by qemu.
2431

    
2432
@node Mac OS X/Darwin Quick Start
2433
@subsection Quick Start
2434

    
2435
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2436
itself and all the target dynamic libraries used by it. If you don't have the FAT
2437
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2438
CD or compile them by hand.
2439

    
2440
@itemize
2441

    
2442
@item On x86, you can just try to launch any process by using the native
2443
libraries:
2444

    
2445
@example
2446
qemu-i386 /bin/ls
2447
@end example
2448

    
2449
or to run the ppc version of the executable:
2450

    
2451
@example
2452
qemu-ppc /bin/ls
2453
@end example
2454

    
2455
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2456
are installed:
2457

    
2458
@example
2459
qemu-i386 -L /opt/x86_root/ /bin/ls
2460
@end example
2461

    
2462
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2463
@file{/opt/x86_root/usr/bin/dyld}.
2464

    
2465
@end itemize
2466

    
2467
@node Mac OS X/Darwin Command line options
2468
@subsection Command line options
2469

    
2470
@example
2471
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2472
@end example
2473

    
2474
@table @option
2475
@item -h
2476
Print the help
2477
@item -L path
2478
Set the library root path (default=/)
2479
@item -s size
2480
Set the stack size in bytes (default=524288)
2481
@end table
2482

    
2483
Debug options:
2484

    
2485
@table @option
2486
@item -d
2487
Activate log (logfile=/tmp/qemu.log)
2488
@item -p pagesize
2489
Act as if the host page size was 'pagesize' bytes
2490
@item -singlestep
2491
Run the emulation in single step mode.
2492
@end table
2493

    
2494
@node BSD User space emulator
2495
@section BSD User space emulator
2496

    
2497
@menu
2498
* BSD Status::
2499
* BSD Quick Start::
2500
* BSD Command line options::
2501
@end menu
2502

    
2503
@node BSD Status
2504
@subsection BSD Status
2505

    
2506
@itemize @minus
2507
@item
2508
target Sparc64 on Sparc64: Some trivial programs work.
2509
@end itemize
2510

    
2511
@node BSD Quick Start
2512
@subsection Quick Start
2513

    
2514
In order to launch a BSD process, QEMU needs the process executable
2515
itself and all the target dynamic libraries used by it.
2516

    
2517
@itemize
2518

    
2519
@item On Sparc64, you can just try to launch any process by using the native
2520
libraries:
2521

    
2522
@example
2523
qemu-sparc64 /bin/ls
2524
@end example
2525

    
2526
@end itemize
2527

    
2528
@node BSD Command line options
2529
@subsection Command line options
2530

    
2531
@example
2532
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2533
@end example
2534

    
2535
@table @option
2536
@item -h
2537
Print the help
2538
@item -L path
2539
Set the library root path (default=/)
2540
@item -s size
2541
Set the stack size in bytes (default=524288)
2542
@item -ignore-environment
2543
Start with an empty environment. Without this option,
2544
the initial environment is a copy of the caller's environment.
2545
@item -E @var{var}=@var{value}
2546
Set environment @var{var} to @var{value}.
2547
@item -U @var{var}
2548
Remove @var{var} from the environment.
2549
@item -bsd type
2550
Set the type of the emulated BSD Operating system. Valid values are
2551
FreeBSD, NetBSD and OpenBSD (default).
2552
@end table
2553

    
2554
Debug options:
2555

    
2556
@table @option
2557
@item -d
2558
Activate log (logfile=/tmp/qemu.log)
2559
@item -p pagesize
2560
Act as if the host page size was 'pagesize' bytes
2561
@item -singlestep
2562
Run the emulation in single step mode.
2563
@end table
2564

    
2565
@node compilation
2566
@chapter Compilation from the sources
2567

    
2568
@menu
2569
* Linux/Unix::
2570
* Windows::
2571
* Cross compilation for Windows with Linux::
2572
* Mac OS X::
2573
* Make targets::
2574
@end menu
2575

    
2576
@node Linux/Unix
2577
@section Linux/Unix
2578

    
2579
@subsection Compilation
2580

    
2581
First you must decompress the sources:
2582
@example
2583
cd /tmp
2584
tar zxvf qemu-x.y.z.tar.gz
2585
cd qemu-x.y.z
2586
@end example
2587

    
2588
Then you configure QEMU and build it (usually no options are needed):
2589
@example
2590
./configure
2591
make
2592
@end example
2593

    
2594
Then type as root user:
2595
@example
2596
make install
2597
@end example
2598
to install QEMU in @file{/usr/local}.
2599

    
2600
@node Windows
2601
@section Windows
2602

    
2603
@itemize
2604
@item Install the current versions of MSYS and MinGW from
2605
@url{http://www.mingw.org/}. You can find detailed installation
2606
instructions in the download section and the FAQ.
2607

    
2608
@item Download
2609
the MinGW development library of SDL 1.2.x
2610
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2611
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2612
edit the @file{sdl-config} script so that it gives the
2613
correct SDL directory when invoked.
2614

    
2615
@item Install the MinGW version of zlib and make sure
2616
@file{zlib.h} and @file{libz.dll.a} are in
2617
MinGW's default header and linker search paths.
2618

    
2619
@item Extract the current version of QEMU.
2620

    
2621
@item Start the MSYS shell (file @file{msys.bat}).
2622

    
2623
@item Change to the QEMU directory. Launch @file{./configure} and
2624
@file{make}.  If you have problems using SDL, verify that
2625
@file{sdl-config} can be launched from the MSYS command line.
2626

    
2627
@item You can install QEMU in @file{Program Files/Qemu} by typing
2628
@file{make install}. Don't forget to copy @file{SDL.dll} in
2629
@file{Program Files/Qemu}.
2630

    
2631
@end itemize
2632

    
2633
@node Cross compilation for Windows with Linux
2634
@section Cross compilation for Windows with Linux
2635

    
2636
@itemize
2637
@item
2638
Install the MinGW cross compilation tools available at
2639
@url{http://www.mingw.org/}.
2640

    
2641
@item Download
2642
the MinGW development library of SDL 1.2.x
2643
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2644
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2645
edit the @file{sdl-config} script so that it gives the
2646
correct SDL directory when invoked.  Set up the @code{PATH} environment
2647
variable so that @file{sdl-config} can be launched by
2648
the QEMU configuration script.
2649

    
2650
@item Install the MinGW version of zlib and make sure
2651
@file{zlib.h} and @file{libz.dll.a} are in
2652
MinGW's default header and linker search paths.
2653

    
2654
@item
2655
Configure QEMU for Windows cross compilation:
2656
@example
2657
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2658
@end example
2659
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2660
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2661
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2662
use --cross-prefix to specify the name of the cross compiler.
2663
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2664

    
2665
Under Fedora Linux, you can run:
2666
@example
2667
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2668
@end example
2669
to get a suitable cross compilation environment.
2670

    
2671
@item You can install QEMU in the installation directory by typing
2672
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2673
installation directory.
2674

    
2675
@end itemize
2676

    
2677
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2678

    
2679
@node Mac OS X
2680
@section Mac OS X
2681

    
2682
The Mac OS X patches are not fully merged in QEMU, so you should look
2683
at the QEMU mailing list archive to have all the necessary
2684
information.
2685

    
2686
@node Make targets
2687
@section Make targets
2688

    
2689
@table @code
2690

    
2691
@item make
2692
@item make all
2693
Make everything which is typically needed.
2694

    
2695
@item install
2696
TODO
2697

    
2698
@item install-doc
2699
TODO
2700

    
2701
@item make clean
2702
Remove most files which were built during make.
2703

    
2704
@item make distclean
2705
Remove everything which was built during make.
2706

    
2707
@item make dvi
2708
@item make html
2709
@item make info
2710
@item make pdf
2711
Create documentation in dvi, html, info or pdf format.
2712

    
2713
@item make cscope
2714
TODO
2715

    
2716
@item make defconfig
2717
(Re-)create some build configuration files.
2718
User made changes will be overwritten.
2719

    
2720
@item tar
2721
@item tarbin
2722
TODO
2723

    
2724
@end table
2725

    
2726
@node License
2727
@appendix License
2728

    
2729
QEMU is a trademark of Fabrice Bellard.
2730

    
2731
QEMU is released under the GNU General Public License (TODO: add link).
2732
Parts of QEMU have specific licenses, see file LICENSE.
2733

    
2734
TODO (refer to file LICENSE, include it, include the GPL?)
2735

    
2736
@node Index
2737
@appendix Index
2738
@menu
2739
* Concept Index::
2740
* Function Index::
2741
* Keystroke Index::
2742
* Program Index::
2743
* Data Type Index::
2744
* Variable Index::
2745
@end menu
2746

    
2747
@node Concept Index
2748
@section Concept Index
2749
This is the main index. Should we combine all keywords in one index? TODO
2750
@printindex cp
2751

    
2752
@node Function Index
2753
@section Function Index
2754
This index could be used for command line options and monitor functions.
2755
@printindex fn
2756

    
2757
@node Keystroke Index
2758
@section Keystroke Index
2759

    
2760
This is a list of all keystrokes which have a special function
2761
in system emulation.
2762

    
2763
@printindex ky
2764

    
2765
@node Program Index
2766
@section Program Index
2767
@printindex pg
2768

    
2769
@node Data Type Index
2770
@section Data Type Index
2771

    
2772
This index could be used for qdev device names and options.
2773

    
2774
@printindex tp
2775

    
2776
@node Variable Index
2777
@section Variable Index
2778
@printindex vr
2779

    
2780
@bye