Statistics
| Branch: | Revision:

root / vl.c @ 5a1e8ffb

History | View | Annotate | Download (201.4 kB)

1
/*
2
 * QEMU System Emulator
3
 * 
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32
#include <zlib.h>
33

    
34
#ifndef _WIN32
35
#include <sys/times.h>
36
#include <sys/wait.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <sys/mman.h>
40
#include <sys/ioctl.h>
41
#include <sys/socket.h>
42
#include <netinet/in.h>
43
#include <dirent.h>
44
#include <netdb.h>
45
#ifdef _BSD
46
#include <sys/stat.h>
47
#ifndef __APPLE__
48
#include <libutil.h>
49
#endif
50
#else
51
#ifndef __sun__
52
#include <linux/if.h>
53
#include <linux/if_tun.h>
54
#include <pty.h>
55
#include <malloc.h>
56
#include <linux/rtc.h>
57
#include <linux/ppdev.h>
58
#include <linux/parport.h>
59
#else
60
#include <sys/stat.h>
61
#include <sys/ethernet.h>
62
#include <sys/sockio.h>
63
#include <arpa/inet.h>
64
#include <netinet/arp.h>
65
#include <netinet/in.h>
66
#include <netinet/in_systm.h>
67
#include <netinet/ip.h>
68
#include <netinet/ip_icmp.h> // must come after ip.h
69
#include <netinet/udp.h>
70
#include <netinet/tcp.h>
71
#include <net/if.h>
72
#include <syslog.h>
73
#include <stropts.h>
74
#endif
75
#endif
76
#endif
77

    
78
#if defined(CONFIG_SLIRP)
79
#include "libslirp.h"
80
#endif
81

    
82
#ifdef _WIN32
83
#include <malloc.h>
84
#include <sys/timeb.h>
85
#include <windows.h>
86
#define getopt_long_only getopt_long
87
#define memalign(align, size) malloc(size)
88
#endif
89

    
90
#include "qemu_socket.h"
91

    
92
#ifdef CONFIG_SDL
93
#ifdef __APPLE__
94
#include <SDL/SDL.h>
95
#endif
96
#endif /* CONFIG_SDL */
97

    
98
#ifdef CONFIG_COCOA
99
#undef main
100
#define main qemu_main
101
#endif /* CONFIG_COCOA */
102

    
103
#include "disas.h"
104

    
105
#include "exec-all.h"
106

    
107
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108
#ifdef __sun__
109
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110
#else
111
#define SMBD_COMMAND "/usr/sbin/smbd"
112
#endif
113

    
114
//#define DEBUG_UNUSED_IOPORT
115
//#define DEBUG_IOPORT
116

    
117
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
118

    
119
#ifdef TARGET_PPC
120
#define DEFAULT_RAM_SIZE 144
121
#else
122
#define DEFAULT_RAM_SIZE 128
123
#endif
124
/* in ms */
125
#define GUI_REFRESH_INTERVAL 30
126

    
127
/* Max number of USB devices that can be specified on the commandline.  */
128
#define MAX_USB_CMDLINE 8
129

    
130
/* XXX: use a two level table to limit memory usage */
131
#define MAX_IOPORTS 65536
132

    
133
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134
char phys_ram_file[1024];
135
void *ioport_opaque[MAX_IOPORTS];
136
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139
   to store the VM snapshots */
140
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141
BlockDriverState *pflash_table[MAX_PFLASH];
142
BlockDriverState *sd_bdrv;
143
BlockDriverState *mtd_bdrv;
144
/* point to the block driver where the snapshots are managed */
145
BlockDriverState *bs_snapshots;
146
int vga_ram_size;
147
static DisplayState display_state;
148
int nographic;
149
const char* keyboard_layout = NULL;
150
int64_t ticks_per_sec;
151
int boot_device = 'c';
152
int ram_size;
153
int pit_min_timer_count = 0;
154
int nb_nics;
155
NICInfo nd_table[MAX_NICS];
156
QEMUTimer *gui_timer;
157
int vm_running;
158
int rtc_utc = 1;
159
int cirrus_vga_enabled = 1;
160
int vmsvga_enabled = 0;
161
#ifdef TARGET_SPARC
162
int graphic_width = 1024;
163
int graphic_height = 768;
164
int graphic_depth = 8;
165
#else
166
int graphic_width = 800;
167
int graphic_height = 600;
168
int graphic_depth = 15;
169
#endif
170
int full_screen = 0;
171
int no_frame = 0;
172
int no_quit = 0;
173
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
174
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
175
#ifdef TARGET_I386
176
int win2k_install_hack = 0;
177
#endif
178
int usb_enabled = 0;
179
static VLANState *first_vlan;
180
int smp_cpus = 1;
181
const char *vnc_display;
182
#if defined(TARGET_SPARC)
183
#define MAX_CPUS 16
184
#elif defined(TARGET_I386)
185
#define MAX_CPUS 255
186
#else
187
#define MAX_CPUS 1
188
#endif
189
int acpi_enabled = 1;
190
int fd_bootchk = 1;
191
int no_reboot = 0;
192
int cursor_hide = 1;
193
int graphic_rotate = 0;
194
int daemonize = 0;
195
const char *option_rom[MAX_OPTION_ROMS];
196
int nb_option_roms;
197
int semihosting_enabled = 0;
198
int autostart = 1;
199
const char *qemu_name;
200
#ifdef TARGET_SPARC
201
unsigned int nb_prom_envs = 0;
202
const char *prom_envs[MAX_PROM_ENVS];
203
#endif
204

    
205
/***********************************************************/
206
/* x86 ISA bus support */
207

    
208
target_phys_addr_t isa_mem_base = 0;
209
PicState2 *isa_pic;
210

    
211
uint32_t default_ioport_readb(void *opaque, uint32_t address)
212
{
213
#ifdef DEBUG_UNUSED_IOPORT
214
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
215
#endif
216
    return 0xff;
217
}
218

    
219
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
220
{
221
#ifdef DEBUG_UNUSED_IOPORT
222
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
223
#endif
224
}
225

    
226
/* default is to make two byte accesses */
227
uint32_t default_ioport_readw(void *opaque, uint32_t address)
228
{
229
    uint32_t data;
230
    data = ioport_read_table[0][address](ioport_opaque[address], address);
231
    address = (address + 1) & (MAX_IOPORTS - 1);
232
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
233
    return data;
234
}
235

    
236
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
237
{
238
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
239
    address = (address + 1) & (MAX_IOPORTS - 1);
240
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
241
}
242

    
243
uint32_t default_ioport_readl(void *opaque, uint32_t address)
244
{
245
#ifdef DEBUG_UNUSED_IOPORT
246
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
247
#endif
248
    return 0xffffffff;
249
}
250

    
251
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
252
{
253
#ifdef DEBUG_UNUSED_IOPORT
254
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
255
#endif
256
}
257

    
258
void init_ioports(void)
259
{
260
    int i;
261

    
262
    for(i = 0; i < MAX_IOPORTS; i++) {
263
        ioport_read_table[0][i] = default_ioport_readb;
264
        ioport_write_table[0][i] = default_ioport_writeb;
265
        ioport_read_table[1][i] = default_ioport_readw;
266
        ioport_write_table[1][i] = default_ioport_writew;
267
        ioport_read_table[2][i] = default_ioport_readl;
268
        ioport_write_table[2][i] = default_ioport_writel;
269
    }
270
}
271

    
272
/* size is the word size in byte */
273
int register_ioport_read(int start, int length, int size, 
274
                         IOPortReadFunc *func, void *opaque)
275
{
276
    int i, bsize;
277

    
278
    if (size == 1) {
279
        bsize = 0;
280
    } else if (size == 2) {
281
        bsize = 1;
282
    } else if (size == 4) {
283
        bsize = 2;
284
    } else {
285
        hw_error("register_ioport_read: invalid size");
286
        return -1;
287
    }
288
    for(i = start; i < start + length; i += size) {
289
        ioport_read_table[bsize][i] = func;
290
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
291
            hw_error("register_ioport_read: invalid opaque");
292
        ioport_opaque[i] = opaque;
293
    }
294
    return 0;
295
}
296

    
297
/* size is the word size in byte */
298
int register_ioport_write(int start, int length, int size, 
299
                          IOPortWriteFunc *func, void *opaque)
300
{
301
    int i, bsize;
302

    
303
    if (size == 1) {
304
        bsize = 0;
305
    } else if (size == 2) {
306
        bsize = 1;
307
    } else if (size == 4) {
308
        bsize = 2;
309
    } else {
310
        hw_error("register_ioport_write: invalid size");
311
        return -1;
312
    }
313
    for(i = start; i < start + length; i += size) {
314
        ioport_write_table[bsize][i] = func;
315
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
316
            hw_error("register_ioport_write: invalid opaque");
317
        ioport_opaque[i] = opaque;
318
    }
319
    return 0;
320
}
321

    
322
void isa_unassign_ioport(int start, int length)
323
{
324
    int i;
325

    
326
    for(i = start; i < start + length; i++) {
327
        ioport_read_table[0][i] = default_ioport_readb;
328
        ioport_read_table[1][i] = default_ioport_readw;
329
        ioport_read_table[2][i] = default_ioport_readl;
330

    
331
        ioport_write_table[0][i] = default_ioport_writeb;
332
        ioport_write_table[1][i] = default_ioport_writew;
333
        ioport_write_table[2][i] = default_ioport_writel;
334
    }
335
}
336

    
337
/***********************************************************/
338

    
339
void cpu_outb(CPUState *env, int addr, int val)
340
{
341
#ifdef DEBUG_IOPORT
342
    if (loglevel & CPU_LOG_IOPORT)
343
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
344
#endif    
345
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
346
#ifdef USE_KQEMU
347
    if (env)
348
        env->last_io_time = cpu_get_time_fast();
349
#endif
350
}
351

    
352
void cpu_outw(CPUState *env, int addr, int val)
353
{
354
#ifdef DEBUG_IOPORT
355
    if (loglevel & CPU_LOG_IOPORT)
356
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
357
#endif    
358
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
359
#ifdef USE_KQEMU
360
    if (env)
361
        env->last_io_time = cpu_get_time_fast();
362
#endif
363
}
364

    
365
void cpu_outl(CPUState *env, int addr, int val)
366
{
367
#ifdef DEBUG_IOPORT
368
    if (loglevel & CPU_LOG_IOPORT)
369
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
370
#endif
371
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
372
#ifdef USE_KQEMU
373
    if (env)
374
        env->last_io_time = cpu_get_time_fast();
375
#endif
376
}
377

    
378
int cpu_inb(CPUState *env, int addr)
379
{
380
    int val;
381
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
382
#ifdef DEBUG_IOPORT
383
    if (loglevel & CPU_LOG_IOPORT)
384
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
385
#endif
386
#ifdef USE_KQEMU
387
    if (env)
388
        env->last_io_time = cpu_get_time_fast();
389
#endif
390
    return val;
391
}
392

    
393
int cpu_inw(CPUState *env, int addr)
394
{
395
    int val;
396
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
397
#ifdef DEBUG_IOPORT
398
    if (loglevel & CPU_LOG_IOPORT)
399
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
400
#endif
401
#ifdef USE_KQEMU
402
    if (env)
403
        env->last_io_time = cpu_get_time_fast();
404
#endif
405
    return val;
406
}
407

    
408
int cpu_inl(CPUState *env, int addr)
409
{
410
    int val;
411
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
412
#ifdef DEBUG_IOPORT
413
    if (loglevel & CPU_LOG_IOPORT)
414
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
415
#endif
416
#ifdef USE_KQEMU
417
    if (env)
418
        env->last_io_time = cpu_get_time_fast();
419
#endif
420
    return val;
421
}
422

    
423
/***********************************************************/
424
void hw_error(const char *fmt, ...)
425
{
426
    va_list ap;
427
    CPUState *env;
428

    
429
    va_start(ap, fmt);
430
    fprintf(stderr, "qemu: hardware error: ");
431
    vfprintf(stderr, fmt, ap);
432
    fprintf(stderr, "\n");
433
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
434
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
435
#ifdef TARGET_I386
436
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
437
#else
438
        cpu_dump_state(env, stderr, fprintf, 0);
439
#endif
440
    }
441
    va_end(ap);
442
    abort();
443
}
444

    
445
/***********************************************************/
446
/* keyboard/mouse */
447

    
448
static QEMUPutKBDEvent *qemu_put_kbd_event;
449
static void *qemu_put_kbd_event_opaque;
450
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
451
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
452

    
453
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
454
{
455
    qemu_put_kbd_event_opaque = opaque;
456
    qemu_put_kbd_event = func;
457
}
458

    
459
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
460
                                                void *opaque, int absolute,
461
                                                const char *name)
462
{
463
    QEMUPutMouseEntry *s, *cursor;
464

    
465
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
466
    if (!s)
467
        return NULL;
468

    
469
    s->qemu_put_mouse_event = func;
470
    s->qemu_put_mouse_event_opaque = opaque;
471
    s->qemu_put_mouse_event_absolute = absolute;
472
    s->qemu_put_mouse_event_name = qemu_strdup(name);
473
    s->next = NULL;
474

    
475
    if (!qemu_put_mouse_event_head) {
476
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
477
        return s;
478
    }
479

    
480
    cursor = qemu_put_mouse_event_head;
481
    while (cursor->next != NULL)
482
        cursor = cursor->next;
483

    
484
    cursor->next = s;
485
    qemu_put_mouse_event_current = s;
486

    
487
    return s;
488
}
489

    
490
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
491
{
492
    QEMUPutMouseEntry *prev = NULL, *cursor;
493

    
494
    if (!qemu_put_mouse_event_head || entry == NULL)
495
        return;
496

    
497
    cursor = qemu_put_mouse_event_head;
498
    while (cursor != NULL && cursor != entry) {
499
        prev = cursor;
500
        cursor = cursor->next;
501
    }
502

    
503
    if (cursor == NULL) // does not exist or list empty
504
        return;
505
    else if (prev == NULL) { // entry is head
506
        qemu_put_mouse_event_head = cursor->next;
507
        if (qemu_put_mouse_event_current == entry)
508
            qemu_put_mouse_event_current = cursor->next;
509
        qemu_free(entry->qemu_put_mouse_event_name);
510
        qemu_free(entry);
511
        return;
512
    }
513

    
514
    prev->next = entry->next;
515

    
516
    if (qemu_put_mouse_event_current == entry)
517
        qemu_put_mouse_event_current = prev;
518

    
519
    qemu_free(entry->qemu_put_mouse_event_name);
520
    qemu_free(entry);
521
}
522

    
523
void kbd_put_keycode(int keycode)
524
{
525
    if (qemu_put_kbd_event) {
526
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
527
    }
528
}
529

    
530
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
531
{
532
    QEMUPutMouseEvent *mouse_event;
533
    void *mouse_event_opaque;
534
    int width;
535

    
536
    if (!qemu_put_mouse_event_current) {
537
        return;
538
    }
539

    
540
    mouse_event =
541
        qemu_put_mouse_event_current->qemu_put_mouse_event;
542
    mouse_event_opaque =
543
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
544

    
545
    if (mouse_event) {
546
        if (graphic_rotate) {
547
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
548
                width = 0x7fff;
549
            else
550
                width = graphic_width;
551
            mouse_event(mouse_event_opaque,
552
                                 width - dy, dx, dz, buttons_state);
553
        } else
554
            mouse_event(mouse_event_opaque,
555
                                 dx, dy, dz, buttons_state);
556
    }
557
}
558

    
559
int kbd_mouse_is_absolute(void)
560
{
561
    if (!qemu_put_mouse_event_current)
562
        return 0;
563

    
564
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
565
}
566

    
567
void do_info_mice(void)
568
{
569
    QEMUPutMouseEntry *cursor;
570
    int index = 0;
571

    
572
    if (!qemu_put_mouse_event_head) {
573
        term_printf("No mouse devices connected\n");
574
        return;
575
    }
576

    
577
    term_printf("Mouse devices available:\n");
578
    cursor = qemu_put_mouse_event_head;
579
    while (cursor != NULL) {
580
        term_printf("%c Mouse #%d: %s\n",
581
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
582
                    index, cursor->qemu_put_mouse_event_name);
583
        index++;
584
        cursor = cursor->next;
585
    }
586
}
587

    
588
void do_mouse_set(int index)
589
{
590
    QEMUPutMouseEntry *cursor;
591
    int i = 0;
592

    
593
    if (!qemu_put_mouse_event_head) {
594
        term_printf("No mouse devices connected\n");
595
        return;
596
    }
597

    
598
    cursor = qemu_put_mouse_event_head;
599
    while (cursor != NULL && index != i) {
600
        i++;
601
        cursor = cursor->next;
602
    }
603

    
604
    if (cursor != NULL)
605
        qemu_put_mouse_event_current = cursor;
606
    else
607
        term_printf("Mouse at given index not found\n");
608
}
609

    
610
/* compute with 96 bit intermediate result: (a*b)/c */
611
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
612
{
613
    union {
614
        uint64_t ll;
615
        struct {
616
#ifdef WORDS_BIGENDIAN
617
            uint32_t high, low;
618
#else
619
            uint32_t low, high;
620
#endif            
621
        } l;
622
    } u, res;
623
    uint64_t rl, rh;
624

    
625
    u.ll = a;
626
    rl = (uint64_t)u.l.low * (uint64_t)b;
627
    rh = (uint64_t)u.l.high * (uint64_t)b;
628
    rh += (rl >> 32);
629
    res.l.high = rh / c;
630
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
631
    return res.ll;
632
}
633

    
634
/***********************************************************/
635
/* real time host monotonic timer */
636

    
637
#define QEMU_TIMER_BASE 1000000000LL
638

    
639
#ifdef WIN32
640

    
641
static int64_t clock_freq;
642

    
643
static void init_get_clock(void)
644
{
645
    LARGE_INTEGER freq;
646
    int ret;
647
    ret = QueryPerformanceFrequency(&freq);
648
    if (ret == 0) {
649
        fprintf(stderr, "Could not calibrate ticks\n");
650
        exit(1);
651
    }
652
    clock_freq = freq.QuadPart;
653
}
654

    
655
static int64_t get_clock(void)
656
{
657
    LARGE_INTEGER ti;
658
    QueryPerformanceCounter(&ti);
659
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
660
}
661

    
662
#else
663

    
664
static int use_rt_clock;
665

    
666
static void init_get_clock(void)
667
{
668
    use_rt_clock = 0;
669
#if defined(__linux__)
670
    {
671
        struct timespec ts;
672
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
673
            use_rt_clock = 1;
674
        }
675
    }
676
#endif
677
}
678

    
679
static int64_t get_clock(void)
680
{
681
#if defined(__linux__)
682
    if (use_rt_clock) {
683
        struct timespec ts;
684
        clock_gettime(CLOCK_MONOTONIC, &ts);
685
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
686
    } else 
687
#endif
688
    {
689
        /* XXX: using gettimeofday leads to problems if the date
690
           changes, so it should be avoided. */
691
        struct timeval tv;
692
        gettimeofday(&tv, NULL);
693
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
694
    }
695
}
696

    
697
#endif
698

    
699
/***********************************************************/
700
/* guest cycle counter */
701

    
702
static int64_t cpu_ticks_prev;
703
static int64_t cpu_ticks_offset;
704
static int64_t cpu_clock_offset;
705
static int cpu_ticks_enabled;
706

    
707
/* return the host CPU cycle counter and handle stop/restart */
708
int64_t cpu_get_ticks(void)
709
{
710
    if (!cpu_ticks_enabled) {
711
        return cpu_ticks_offset;
712
    } else {
713
        int64_t ticks;
714
        ticks = cpu_get_real_ticks();
715
        if (cpu_ticks_prev > ticks) {
716
            /* Note: non increasing ticks may happen if the host uses
717
               software suspend */
718
            cpu_ticks_offset += cpu_ticks_prev - ticks;
719
        }
720
        cpu_ticks_prev = ticks;
721
        return ticks + cpu_ticks_offset;
722
    }
723
}
724

    
725
/* return the host CPU monotonic timer and handle stop/restart */
726
static int64_t cpu_get_clock(void)
727
{
728
    int64_t ti;
729
    if (!cpu_ticks_enabled) {
730
        return cpu_clock_offset;
731
    } else {
732
        ti = get_clock();
733
        return ti + cpu_clock_offset;
734
    }
735
}
736

    
737
/* enable cpu_get_ticks() */
738
void cpu_enable_ticks(void)
739
{
740
    if (!cpu_ticks_enabled) {
741
        cpu_ticks_offset -= cpu_get_real_ticks();
742
        cpu_clock_offset -= get_clock();
743
        cpu_ticks_enabled = 1;
744
    }
745
}
746

    
747
/* disable cpu_get_ticks() : the clock is stopped. You must not call
748
   cpu_get_ticks() after that.  */
749
void cpu_disable_ticks(void)
750
{
751
    if (cpu_ticks_enabled) {
752
        cpu_ticks_offset = cpu_get_ticks();
753
        cpu_clock_offset = cpu_get_clock();
754
        cpu_ticks_enabled = 0;
755
    }
756
}
757

    
758
/***********************************************************/
759
/* timers */
760
 
761
#define QEMU_TIMER_REALTIME 0
762
#define QEMU_TIMER_VIRTUAL  1
763

    
764
struct QEMUClock {
765
    int type;
766
    /* XXX: add frequency */
767
};
768

    
769
struct QEMUTimer {
770
    QEMUClock *clock;
771
    int64_t expire_time;
772
    QEMUTimerCB *cb;
773
    void *opaque;
774
    struct QEMUTimer *next;
775
};
776

    
777
QEMUClock *rt_clock;
778
QEMUClock *vm_clock;
779

    
780
static QEMUTimer *active_timers[2];
781
#ifdef _WIN32
782
static MMRESULT timerID;
783
static HANDLE host_alarm = NULL;
784
static unsigned int period = 1;
785
#else
786
/* frequency of the times() clock tick */
787
static int timer_freq;
788
#endif
789

    
790
QEMUClock *qemu_new_clock(int type)
791
{
792
    QEMUClock *clock;
793
    clock = qemu_mallocz(sizeof(QEMUClock));
794
    if (!clock)
795
        return NULL;
796
    clock->type = type;
797
    return clock;
798
}
799

    
800
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
801
{
802
    QEMUTimer *ts;
803

    
804
    ts = qemu_mallocz(sizeof(QEMUTimer));
805
    ts->clock = clock;
806
    ts->cb = cb;
807
    ts->opaque = opaque;
808
    return ts;
809
}
810

    
811
void qemu_free_timer(QEMUTimer *ts)
812
{
813
    qemu_free(ts);
814
}
815

    
816
/* stop a timer, but do not dealloc it */
817
void qemu_del_timer(QEMUTimer *ts)
818
{
819
    QEMUTimer **pt, *t;
820

    
821
    /* NOTE: this code must be signal safe because
822
       qemu_timer_expired() can be called from a signal. */
823
    pt = &active_timers[ts->clock->type];
824
    for(;;) {
825
        t = *pt;
826
        if (!t)
827
            break;
828
        if (t == ts) {
829
            *pt = t->next;
830
            break;
831
        }
832
        pt = &t->next;
833
    }
834
}
835

    
836
/* modify the current timer so that it will be fired when current_time
837
   >= expire_time. The corresponding callback will be called. */
838
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
839
{
840
    QEMUTimer **pt, *t;
841

    
842
    qemu_del_timer(ts);
843

    
844
    /* add the timer in the sorted list */
845
    /* NOTE: this code must be signal safe because
846
       qemu_timer_expired() can be called from a signal. */
847
    pt = &active_timers[ts->clock->type];
848
    for(;;) {
849
        t = *pt;
850
        if (!t)
851
            break;
852
        if (t->expire_time > expire_time) 
853
            break;
854
        pt = &t->next;
855
    }
856
    ts->expire_time = expire_time;
857
    ts->next = *pt;
858
    *pt = ts;
859
}
860

    
861
int qemu_timer_pending(QEMUTimer *ts)
862
{
863
    QEMUTimer *t;
864
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
865
        if (t == ts)
866
            return 1;
867
    }
868
    return 0;
869
}
870

    
871
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
872
{
873
    if (!timer_head)
874
        return 0;
875
    return (timer_head->expire_time <= current_time);
876
}
877

    
878
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
879
{
880
    QEMUTimer *ts;
881
    
882
    for(;;) {
883
        ts = *ptimer_head;
884
        if (!ts || ts->expire_time > current_time)
885
            break;
886
        /* remove timer from the list before calling the callback */
887
        *ptimer_head = ts->next;
888
        ts->next = NULL;
889
        
890
        /* run the callback (the timer list can be modified) */
891
        ts->cb(ts->opaque);
892
    }
893
}
894

    
895
int64_t qemu_get_clock(QEMUClock *clock)
896
{
897
    switch(clock->type) {
898
    case QEMU_TIMER_REALTIME:
899
        return get_clock() / 1000000;
900
    default:
901
    case QEMU_TIMER_VIRTUAL:
902
        return cpu_get_clock();
903
    }
904
}
905

    
906
static void init_timers(void)
907
{
908
    init_get_clock();
909
    ticks_per_sec = QEMU_TIMER_BASE;
910
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
911
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
912
}
913

    
914
/* save a timer */
915
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
916
{
917
    uint64_t expire_time;
918

    
919
    if (qemu_timer_pending(ts)) {
920
        expire_time = ts->expire_time;
921
    } else {
922
        expire_time = -1;
923
    }
924
    qemu_put_be64(f, expire_time);
925
}
926

    
927
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
928
{
929
    uint64_t expire_time;
930

    
931
    expire_time = qemu_get_be64(f);
932
    if (expire_time != -1) {
933
        qemu_mod_timer(ts, expire_time);
934
    } else {
935
        qemu_del_timer(ts);
936
    }
937
}
938

    
939
static void timer_save(QEMUFile *f, void *opaque)
940
{
941
    if (cpu_ticks_enabled) {
942
        hw_error("cannot save state if virtual timers are running");
943
    }
944
    qemu_put_be64s(f, &cpu_ticks_offset);
945
    qemu_put_be64s(f, &ticks_per_sec);
946
    qemu_put_be64s(f, &cpu_clock_offset);
947
}
948

    
949
static int timer_load(QEMUFile *f, void *opaque, int version_id)
950
{
951
    if (version_id != 1 && version_id != 2)
952
        return -EINVAL;
953
    if (cpu_ticks_enabled) {
954
        return -EINVAL;
955
    }
956
    qemu_get_be64s(f, &cpu_ticks_offset);
957
    qemu_get_be64s(f, &ticks_per_sec);
958
    if (version_id == 2) {
959
        qemu_get_be64s(f, &cpu_clock_offset);
960
    }
961
    return 0;
962
}
963

    
964
#ifdef _WIN32
965
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, 
966
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
967
#else
968
static void host_alarm_handler(int host_signum)
969
#endif
970
{
971
#if 0
972
#define DISP_FREQ 1000
973
    {
974
        static int64_t delta_min = INT64_MAX;
975
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
976
        static int count;
977
        ti = qemu_get_clock(vm_clock);
978
        if (last_clock != 0) {
979
            delta = ti - last_clock;
980
            if (delta < delta_min)
981
                delta_min = delta;
982
            if (delta > delta_max)
983
                delta_max = delta;
984
            delta_cum += delta;
985
            if (++count == DISP_FREQ) {
986
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
987
                       muldiv64(delta_min, 1000000, ticks_per_sec),
988
                       muldiv64(delta_max, 1000000, ticks_per_sec),
989
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
990
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
991
                count = 0;
992
                delta_min = INT64_MAX;
993
                delta_max = 0;
994
                delta_cum = 0;
995
            }
996
        }
997
        last_clock = ti;
998
    }
999
#endif
1000
    if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1001
                           qemu_get_clock(vm_clock)) ||
1002
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1003
                           qemu_get_clock(rt_clock))) {
1004
#ifdef _WIN32
1005
        SetEvent(host_alarm);
1006
#endif
1007
        CPUState *env = cpu_single_env;
1008
        if (env) {
1009
            /* stop the currently executing cpu because a timer occured */
1010
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1011
#ifdef USE_KQEMU
1012
            if (env->kqemu_enabled) {
1013
                kqemu_cpu_interrupt(env);
1014
            }
1015
#endif
1016
        }
1017
    }
1018
}
1019

    
1020
#ifndef _WIN32
1021

    
1022
#if defined(__linux__)
1023

    
1024
#define RTC_FREQ 1024
1025

    
1026
static int rtc_fd;
1027

    
1028
static int start_rtc_timer(void)
1029
{
1030
    rtc_fd = open("/dev/rtc", O_RDONLY);
1031
    if (rtc_fd < 0)
1032
        return -1;
1033
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1034
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1035
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1036
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1037
        goto fail;
1038
    }
1039
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1040
    fail:
1041
        close(rtc_fd);
1042
        return -1;
1043
    }
1044
    pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1045
    return 0;
1046
}
1047

    
1048
#else
1049

    
1050
static int start_rtc_timer(void)
1051
{
1052
    return -1;
1053
}
1054

    
1055
#endif /* !defined(__linux__) */
1056

    
1057
#endif /* !defined(_WIN32) */
1058

    
1059
static void init_timer_alarm(void)
1060
{
1061
#ifdef _WIN32
1062
    {
1063
        int count=0;
1064
        TIMECAPS tc;
1065

    
1066
        ZeroMemory(&tc, sizeof(TIMECAPS));
1067
        timeGetDevCaps(&tc, sizeof(TIMECAPS));
1068
        if (period < tc.wPeriodMin)
1069
            period = tc.wPeriodMin;
1070
        timeBeginPeriod(period);
1071
        timerID = timeSetEvent(1,     // interval (ms)
1072
                               period,     // resolution
1073
                               host_alarm_handler, // function
1074
                               (DWORD)&count,  // user parameter
1075
                               TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1076
         if( !timerID ) {
1077
            perror("failed timer alarm");
1078
            exit(1);
1079
         }
1080
        host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1081
        if (!host_alarm) {
1082
            perror("failed CreateEvent");
1083
            exit(1);
1084
        }
1085
        qemu_add_wait_object(host_alarm, NULL, NULL);
1086
    }
1087
    pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1088
#else
1089
    {
1090
        struct sigaction act;
1091
        struct itimerval itv;
1092
        
1093
        /* get times() syscall frequency */
1094
        timer_freq = sysconf(_SC_CLK_TCK);
1095
        
1096
        /* timer signal */
1097
        sigfillset(&act.sa_mask);
1098
       act.sa_flags = 0;
1099
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1100
        act.sa_flags |= SA_ONSTACK;
1101
#endif
1102
        act.sa_handler = host_alarm_handler;
1103
        sigaction(SIGALRM, &act, NULL);
1104

    
1105
        itv.it_interval.tv_sec = 0;
1106
        itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1107
        itv.it_value.tv_sec = 0;
1108
        itv.it_value.tv_usec = 10 * 1000;
1109
        setitimer(ITIMER_REAL, &itv, NULL);
1110
        /* we probe the tick duration of the kernel to inform the user if
1111
           the emulated kernel requested a too high timer frequency */
1112
        getitimer(ITIMER_REAL, &itv);
1113

    
1114
#if defined(__linux__)
1115
        /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1116
           have timers with 1 ms resolution. The correct solution will
1117
           be to use the POSIX real time timers available in recent
1118
           2.6 kernels */
1119
        if (itv.it_interval.tv_usec > 1000 || 1) {
1120
            /* try to use /dev/rtc to have a faster timer */
1121
            if (start_rtc_timer() < 0)
1122
                goto use_itimer;
1123
            /* disable itimer */
1124
            itv.it_interval.tv_sec = 0;
1125
            itv.it_interval.tv_usec = 0;
1126
            itv.it_value.tv_sec = 0;
1127
            itv.it_value.tv_usec = 0;
1128
            setitimer(ITIMER_REAL, &itv, NULL);
1129

    
1130
            /* use the RTC */
1131
            sigaction(SIGIO, &act, NULL);
1132
            fcntl(rtc_fd, F_SETFL, O_ASYNC);
1133
            fcntl(rtc_fd, F_SETOWN, getpid());
1134
        } else 
1135
#endif /* defined(__linux__) */
1136
        {
1137
        use_itimer:
1138
            pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * 
1139
                                   PIT_FREQ) / 1000000;
1140
        }
1141
    }
1142
#endif
1143
}
1144

    
1145
void quit_timers(void)
1146
{
1147
#ifdef _WIN32
1148
    timeKillEvent(timerID);
1149
    timeEndPeriod(period);
1150
    if (host_alarm) {
1151
        CloseHandle(host_alarm);
1152
        host_alarm = NULL;
1153
    }
1154
#endif
1155
}
1156

    
1157
/***********************************************************/
1158
/* character device */
1159

    
1160
static void qemu_chr_event(CharDriverState *s, int event)
1161
{
1162
    if (!s->chr_event)
1163
        return;
1164
    s->chr_event(s->handler_opaque, event);
1165
}
1166

    
1167
static void qemu_chr_reset_bh(void *opaque)
1168
{
1169
    CharDriverState *s = opaque;
1170
    qemu_chr_event(s, CHR_EVENT_RESET);
1171
    qemu_bh_delete(s->bh);
1172
    s->bh = NULL;
1173
}
1174

    
1175
void qemu_chr_reset(CharDriverState *s)
1176
{
1177
    if (s->bh == NULL) {
1178
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1179
        qemu_bh_schedule(s->bh);
1180
    }
1181
}
1182

    
1183
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1184
{
1185
    return s->chr_write(s, buf, len);
1186
}
1187

    
1188
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1189
{
1190
    if (!s->chr_ioctl)
1191
        return -ENOTSUP;
1192
    return s->chr_ioctl(s, cmd, arg);
1193
}
1194

    
1195
int qemu_chr_can_read(CharDriverState *s)
1196
{
1197
    if (!s->chr_can_read)
1198
        return 0;
1199
    return s->chr_can_read(s->handler_opaque);
1200
}
1201

    
1202
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1203
{
1204
    s->chr_read(s->handler_opaque, buf, len);
1205
}
1206

    
1207

    
1208
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1209
{
1210
    char buf[4096];
1211
    va_list ap;
1212
    va_start(ap, fmt);
1213
    vsnprintf(buf, sizeof(buf), fmt, ap);
1214
    qemu_chr_write(s, buf, strlen(buf));
1215
    va_end(ap);
1216
}
1217

    
1218
void qemu_chr_send_event(CharDriverState *s, int event)
1219
{
1220
    if (s->chr_send_event)
1221
        s->chr_send_event(s, event);
1222
}
1223

    
1224
void qemu_chr_add_handlers(CharDriverState *s, 
1225
                           IOCanRWHandler *fd_can_read, 
1226
                           IOReadHandler *fd_read,
1227
                           IOEventHandler *fd_event,
1228
                           void *opaque)
1229
{
1230
    s->chr_can_read = fd_can_read;
1231
    s->chr_read = fd_read;
1232
    s->chr_event = fd_event;
1233
    s->handler_opaque = opaque;
1234
    if (s->chr_update_read_handler)
1235
        s->chr_update_read_handler(s);
1236
}
1237
             
1238
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1239
{
1240
    return len;
1241
}
1242

    
1243
static CharDriverState *qemu_chr_open_null(void)
1244
{
1245
    CharDriverState *chr;
1246

    
1247
    chr = qemu_mallocz(sizeof(CharDriverState));
1248
    if (!chr)
1249
        return NULL;
1250
    chr->chr_write = null_chr_write;
1251
    return chr;
1252
}
1253

    
1254
/* MUX driver for serial I/O splitting */
1255
static int term_timestamps;
1256
static int64_t term_timestamps_start;
1257
#define MAX_MUX 4
1258
typedef struct {
1259
    IOCanRWHandler *chr_can_read[MAX_MUX];
1260
    IOReadHandler *chr_read[MAX_MUX];
1261
    IOEventHandler *chr_event[MAX_MUX];
1262
    void *ext_opaque[MAX_MUX];
1263
    CharDriverState *drv;
1264
    int mux_cnt;
1265
    int term_got_escape;
1266
    int max_size;
1267
} MuxDriver;
1268

    
1269

    
1270
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1271
{
1272
    MuxDriver *d = chr->opaque;
1273
    int ret;
1274
    if (!term_timestamps) {
1275
        ret = d->drv->chr_write(d->drv, buf, len);
1276
    } else {
1277
        int i;
1278

    
1279
        ret = 0;
1280
        for(i = 0; i < len; i++) {
1281
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1282
            if (buf[i] == '\n') {
1283
                char buf1[64];
1284
                int64_t ti;
1285
                int secs;
1286

    
1287
                ti = get_clock();
1288
                if (term_timestamps_start == -1)
1289
                    term_timestamps_start = ti;
1290
                ti -= term_timestamps_start;
1291
                secs = ti / 1000000000;
1292
                snprintf(buf1, sizeof(buf1),
1293
                         "[%02d:%02d:%02d.%03d] ",
1294
                         secs / 3600,
1295
                         (secs / 60) % 60,
1296
                         secs % 60,
1297
                         (int)((ti / 1000000) % 1000));
1298
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1299
            }
1300
        }
1301
    }
1302
    return ret;
1303
}
1304

    
1305
static char *mux_help[] = {
1306
    "% h    print this help\n\r",
1307
    "% x    exit emulator\n\r",
1308
    "% s    save disk data back to file (if -snapshot)\n\r",
1309
    "% t    toggle console timestamps\n\r"
1310
    "% b    send break (magic sysrq)\n\r",
1311
    "% c    switch between console and monitor\n\r",
1312
    "% %  sends %\n\r",
1313
    NULL
1314
};
1315

    
1316
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1317
static void mux_print_help(CharDriverState *chr)
1318
{
1319
    int i, j;
1320
    char ebuf[15] = "Escape-Char";
1321
    char cbuf[50] = "\n\r";
1322

    
1323
    if (term_escape_char > 0 && term_escape_char < 26) {
1324
        sprintf(cbuf,"\n\r");
1325
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1326
    } else {
1327
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1328
    }
1329
    chr->chr_write(chr, cbuf, strlen(cbuf));
1330
    for (i = 0; mux_help[i] != NULL; i++) {
1331
        for (j=0; mux_help[i][j] != '\0'; j++) {
1332
            if (mux_help[i][j] == '%')
1333
                chr->chr_write(chr, ebuf, strlen(ebuf));
1334
            else
1335
                chr->chr_write(chr, &mux_help[i][j], 1);
1336
        }
1337
    }
1338
}
1339

    
1340
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1341
{
1342
    if (d->term_got_escape) {
1343
        d->term_got_escape = 0;
1344
        if (ch == term_escape_char)
1345
            goto send_char;
1346
        switch(ch) {
1347
        case '?':
1348
        case 'h':
1349
            mux_print_help(chr);
1350
            break;
1351
        case 'x':
1352
            {
1353
                 char *term =  "QEMU: Terminated\n\r";
1354
                 chr->chr_write(chr,term,strlen(term));
1355
                 exit(0);
1356
                 break;
1357
            }
1358
        case 's':
1359
            {
1360
                int i;
1361
                for (i = 0; i < MAX_DISKS; i++) {
1362
                    if (bs_table[i])
1363
                        bdrv_commit(bs_table[i]);
1364
                }
1365
            }
1366
            break;
1367
        case 'b':
1368
            if (chr->chr_event)
1369
                chr->chr_event(chr->opaque, CHR_EVENT_BREAK);
1370
            break;
1371
        case 'c':
1372
            /* Switch to the next registered device */
1373
            chr->focus++;
1374
            if (chr->focus >= d->mux_cnt)
1375
                chr->focus = 0;
1376
            break;
1377
       case 't':
1378
           term_timestamps = !term_timestamps;
1379
           term_timestamps_start = -1;
1380
           break;
1381
        }
1382
    } else if (ch == term_escape_char) {
1383
        d->term_got_escape = 1;
1384
    } else {
1385
    send_char:
1386
        return 1;
1387
    }
1388
    return 0;
1389
}
1390

    
1391
static int mux_chr_can_read(void *opaque)
1392
{
1393
    CharDriverState *chr = opaque;
1394
    MuxDriver *d = chr->opaque;
1395
    if (d->chr_can_read[chr->focus])
1396
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1397
    return 0;
1398
}
1399

    
1400
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1401
{
1402
    CharDriverState *chr = opaque;
1403
    MuxDriver *d = chr->opaque;
1404
    int i;
1405
    for(i = 0; i < size; i++)
1406
        if (mux_proc_byte(chr, d, buf[i]))
1407
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1408
}
1409

    
1410
static void mux_chr_event(void *opaque, int event)
1411
{
1412
    CharDriverState *chr = opaque;
1413
    MuxDriver *d = chr->opaque;
1414
    int i;
1415

    
1416
    /* Send the event to all registered listeners */
1417
    for (i = 0; i < d->mux_cnt; i++)
1418
        if (d->chr_event[i])
1419
            d->chr_event[i](d->ext_opaque[i], event);
1420
}
1421

    
1422
static void mux_chr_update_read_handler(CharDriverState *chr)
1423
{
1424
    MuxDriver *d = chr->opaque;
1425

    
1426
    if (d->mux_cnt >= MAX_MUX) {
1427
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1428
        return;
1429
    }
1430
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1431
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1432
    d->chr_read[d->mux_cnt] = chr->chr_read;
1433
    d->chr_event[d->mux_cnt] = chr->chr_event;
1434
    /* Fix up the real driver with mux routines */
1435
    if (d->mux_cnt == 0) {
1436
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1437
                              mux_chr_event, chr);
1438
    }
1439
    chr->focus = d->mux_cnt;
1440
    d->mux_cnt++;
1441
}
1442

    
1443
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1444
{
1445
    CharDriverState *chr;
1446
    MuxDriver *d;
1447

    
1448
    chr = qemu_mallocz(sizeof(CharDriverState));
1449
    if (!chr)
1450
        return NULL;
1451
    d = qemu_mallocz(sizeof(MuxDriver));
1452
    if (!d) {
1453
        free(chr);
1454
        return NULL;
1455
    }
1456

    
1457
    chr->opaque = d;
1458
    d->drv = drv;
1459
    chr->focus = -1;
1460
    chr->chr_write = mux_chr_write;
1461
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1462
    return chr;
1463
}
1464

    
1465

    
1466
#ifdef _WIN32
1467

    
1468
static void socket_cleanup(void)
1469
{
1470
    WSACleanup();
1471
}
1472

    
1473
static int socket_init(void)
1474
{
1475
    WSADATA Data;
1476
    int ret, err;
1477

    
1478
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1479
    if (ret != 0) {
1480
        err = WSAGetLastError();
1481
        fprintf(stderr, "WSAStartup: %d\n", err);
1482
        return -1;
1483
    }
1484
    atexit(socket_cleanup);
1485
    return 0;
1486
}
1487

    
1488
static int send_all(int fd, const uint8_t *buf, int len1)
1489
{
1490
    int ret, len;
1491
    
1492
    len = len1;
1493
    while (len > 0) {
1494
        ret = send(fd, buf, len, 0);
1495
        if (ret < 0) {
1496
            int errno;
1497
            errno = WSAGetLastError();
1498
            if (errno != WSAEWOULDBLOCK) {
1499
                return -1;
1500
            }
1501
        } else if (ret == 0) {
1502
            break;
1503
        } else {
1504
            buf += ret;
1505
            len -= ret;
1506
        }
1507
    }
1508
    return len1 - len;
1509
}
1510

    
1511
void socket_set_nonblock(int fd)
1512
{
1513
    unsigned long opt = 1;
1514
    ioctlsocket(fd, FIONBIO, &opt);
1515
}
1516

    
1517
#else
1518

    
1519
static int unix_write(int fd, const uint8_t *buf, int len1)
1520
{
1521
    int ret, len;
1522

    
1523
    len = len1;
1524
    while (len > 0) {
1525
        ret = write(fd, buf, len);
1526
        if (ret < 0) {
1527
            if (errno != EINTR && errno != EAGAIN)
1528
                return -1;
1529
        } else if (ret == 0) {
1530
            break;
1531
        } else {
1532
            buf += ret;
1533
            len -= ret;
1534
        }
1535
    }
1536
    return len1 - len;
1537
}
1538

    
1539
static inline int send_all(int fd, const uint8_t *buf, int len1)
1540
{
1541
    return unix_write(fd, buf, len1);
1542
}
1543

    
1544
void socket_set_nonblock(int fd)
1545
{
1546
    fcntl(fd, F_SETFL, O_NONBLOCK);
1547
}
1548
#endif /* !_WIN32 */
1549

    
1550
#ifndef _WIN32
1551

    
1552
typedef struct {
1553
    int fd_in, fd_out;
1554
    int max_size;
1555
} FDCharDriver;
1556

    
1557
#define STDIO_MAX_CLIENTS 1
1558
static int stdio_nb_clients = 0;
1559

    
1560
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1561
{
1562
    FDCharDriver *s = chr->opaque;
1563
    return unix_write(s->fd_out, buf, len);
1564
}
1565

    
1566
static int fd_chr_read_poll(void *opaque)
1567
{
1568
    CharDriverState *chr = opaque;
1569
    FDCharDriver *s = chr->opaque;
1570

    
1571
    s->max_size = qemu_chr_can_read(chr);
1572
    return s->max_size;
1573
}
1574

    
1575
static void fd_chr_read(void *opaque)
1576
{
1577
    CharDriverState *chr = opaque;
1578
    FDCharDriver *s = chr->opaque;
1579
    int size, len;
1580
    uint8_t buf[1024];
1581
    
1582
    len = sizeof(buf);
1583
    if (len > s->max_size)
1584
        len = s->max_size;
1585
    if (len == 0)
1586
        return;
1587
    size = read(s->fd_in, buf, len);
1588
    if (size == 0) {
1589
        /* FD has been closed. Remove it from the active list.  */
1590
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1591
        return;
1592
    }
1593
    if (size > 0) {
1594
        qemu_chr_read(chr, buf, size);
1595
    }
1596
}
1597

    
1598
static void fd_chr_update_read_handler(CharDriverState *chr)
1599
{
1600
    FDCharDriver *s = chr->opaque;
1601

    
1602
    if (s->fd_in >= 0) {
1603
        if (nographic && s->fd_in == 0) {
1604
        } else {
1605
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll, 
1606
                                 fd_chr_read, NULL, chr);
1607
        }
1608
    }
1609
}
1610

    
1611
/* open a character device to a unix fd */
1612
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1613
{
1614
    CharDriverState *chr;
1615
    FDCharDriver *s;
1616

    
1617
    chr = qemu_mallocz(sizeof(CharDriverState));
1618
    if (!chr)
1619
        return NULL;
1620
    s = qemu_mallocz(sizeof(FDCharDriver));
1621
    if (!s) {
1622
        free(chr);
1623
        return NULL;
1624
    }
1625
    s->fd_in = fd_in;
1626
    s->fd_out = fd_out;
1627
    chr->opaque = s;
1628
    chr->chr_write = fd_chr_write;
1629
    chr->chr_update_read_handler = fd_chr_update_read_handler;
1630

    
1631
    qemu_chr_reset(chr);
1632

    
1633
    return chr;
1634
}
1635

    
1636
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1637
{
1638
    int fd_out;
1639

    
1640
    fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1641
    if (fd_out < 0)
1642
        return NULL;
1643
    return qemu_chr_open_fd(-1, fd_out);
1644
}
1645

    
1646
static CharDriverState *qemu_chr_open_pipe(const char *filename)
1647
{
1648
    int fd_in, fd_out;
1649
    char filename_in[256], filename_out[256];
1650

    
1651
    snprintf(filename_in, 256, "%s.in", filename);
1652
    snprintf(filename_out, 256, "%s.out", filename);
1653
    fd_in = open(filename_in, O_RDWR | O_BINARY);
1654
    fd_out = open(filename_out, O_RDWR | O_BINARY);
1655
    if (fd_in < 0 || fd_out < 0) {
1656
        if (fd_in >= 0)
1657
            close(fd_in);
1658
        if (fd_out >= 0)
1659
            close(fd_out);
1660
        fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1661
        if (fd_in < 0)
1662
            return NULL;
1663
    }
1664
    return qemu_chr_open_fd(fd_in, fd_out);
1665
}
1666

    
1667

    
1668
/* for STDIO, we handle the case where several clients use it
1669
   (nographic mode) */
1670

    
1671
#define TERM_FIFO_MAX_SIZE 1
1672

    
1673
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1674
static int term_fifo_size;
1675

    
1676
static int stdio_read_poll(void *opaque)
1677
{
1678
    CharDriverState *chr = opaque;
1679

    
1680
    /* try to flush the queue if needed */
1681
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1682
        qemu_chr_read(chr, term_fifo, 1);
1683
        term_fifo_size = 0;
1684
    }
1685
    /* see if we can absorb more chars */
1686
    if (term_fifo_size == 0)
1687
        return 1;
1688
    else
1689
        return 0;
1690
}
1691

    
1692
static void stdio_read(void *opaque)
1693
{
1694
    int size;
1695
    uint8_t buf[1];
1696
    CharDriverState *chr = opaque;
1697

    
1698
    size = read(0, buf, 1);
1699
    if (size == 0) {
1700
        /* stdin has been closed. Remove it from the active list.  */
1701
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1702
        return;
1703
    }
1704
    if (size > 0) {
1705
        if (qemu_chr_can_read(chr) > 0) {
1706
            qemu_chr_read(chr, buf, 1);
1707
        } else if (term_fifo_size == 0) {
1708
            term_fifo[term_fifo_size++] = buf[0];
1709
        }
1710
    }
1711
}
1712

    
1713
/* init terminal so that we can grab keys */
1714
static struct termios oldtty;
1715
static int old_fd0_flags;
1716

    
1717
static void term_exit(void)
1718
{
1719
    tcsetattr (0, TCSANOW, &oldtty);
1720
    fcntl(0, F_SETFL, old_fd0_flags);
1721
}
1722

    
1723
static void term_init(void)
1724
{
1725
    struct termios tty;
1726

    
1727
    tcgetattr (0, &tty);
1728
    oldtty = tty;
1729
    old_fd0_flags = fcntl(0, F_GETFL);
1730

    
1731
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1732
                          |INLCR|IGNCR|ICRNL|IXON);
1733
    tty.c_oflag |= OPOST;
1734
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1735
    /* if graphical mode, we allow Ctrl-C handling */
1736
    if (nographic)
1737
        tty.c_lflag &= ~ISIG;
1738
    tty.c_cflag &= ~(CSIZE|PARENB);
1739
    tty.c_cflag |= CS8;
1740
    tty.c_cc[VMIN] = 1;
1741
    tty.c_cc[VTIME] = 0;
1742
    
1743
    tcsetattr (0, TCSANOW, &tty);
1744

    
1745
    atexit(term_exit);
1746

    
1747
    fcntl(0, F_SETFL, O_NONBLOCK);
1748
}
1749

    
1750
static CharDriverState *qemu_chr_open_stdio(void)
1751
{
1752
    CharDriverState *chr;
1753

    
1754
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1755
        return NULL;
1756
    chr = qemu_chr_open_fd(0, 1);
1757
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1758
    stdio_nb_clients++;
1759
    term_init();
1760

    
1761
    return chr;
1762
}
1763

    
1764
#if defined(__linux__)
1765
static CharDriverState *qemu_chr_open_pty(void)
1766
{
1767
    struct termios tty;
1768
    char slave_name[1024];
1769
    int master_fd, slave_fd;
1770
    
1771
    /* Not satisfying */
1772
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1773
        return NULL;
1774
    }
1775
    
1776
    /* Disabling local echo and line-buffered output */
1777
    tcgetattr (master_fd, &tty);
1778
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1779
    tty.c_cc[VMIN] = 1;
1780
    tty.c_cc[VTIME] = 0;
1781
    tcsetattr (master_fd, TCSAFLUSH, &tty);
1782

    
1783
    fprintf(stderr, "char device redirected to %s\n", slave_name);
1784
    return qemu_chr_open_fd(master_fd, master_fd);
1785
}
1786

    
1787
static void tty_serial_init(int fd, int speed, 
1788
                            int parity, int data_bits, int stop_bits)
1789
{
1790
    struct termios tty;
1791
    speed_t spd;
1792

    
1793
#if 0
1794
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n", 
1795
           speed, parity, data_bits, stop_bits);
1796
#endif
1797
    tcgetattr (fd, &tty);
1798

    
1799
    switch(speed) {
1800
    case 50:
1801
        spd = B50;
1802
        break;
1803
    case 75:
1804
        spd = B75;
1805
        break;
1806
    case 300:
1807
        spd = B300;
1808
        break;
1809
    case 600:
1810
        spd = B600;
1811
        break;
1812
    case 1200:
1813
        spd = B1200;
1814
        break;
1815
    case 2400:
1816
        spd = B2400;
1817
        break;
1818
    case 4800:
1819
        spd = B4800;
1820
        break;
1821
    case 9600:
1822
        spd = B9600;
1823
        break;
1824
    case 19200:
1825
        spd = B19200;
1826
        break;
1827
    case 38400:
1828
        spd = B38400;
1829
        break;
1830
    case 57600:
1831
        spd = B57600;
1832
        break;
1833
    default:
1834
    case 115200:
1835
        spd = B115200;
1836
        break;
1837
    }
1838

    
1839
    cfsetispeed(&tty, spd);
1840
    cfsetospeed(&tty, spd);
1841

    
1842
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1843
                          |INLCR|IGNCR|ICRNL|IXON);
1844
    tty.c_oflag |= OPOST;
1845
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1846
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1847
    switch(data_bits) {
1848
    default:
1849
    case 8:
1850
        tty.c_cflag |= CS8;
1851
        break;
1852
    case 7:
1853
        tty.c_cflag |= CS7;
1854
        break;
1855
    case 6:
1856
        tty.c_cflag |= CS6;
1857
        break;
1858
    case 5:
1859
        tty.c_cflag |= CS5;
1860
        break;
1861
    }
1862
    switch(parity) {
1863
    default:
1864
    case 'N':
1865
        break;
1866
    case 'E':
1867
        tty.c_cflag |= PARENB;
1868
        break;
1869
    case 'O':
1870
        tty.c_cflag |= PARENB | PARODD;
1871
        break;
1872
    }
1873
    if (stop_bits == 2)
1874
        tty.c_cflag |= CSTOPB;
1875
    
1876
    tcsetattr (fd, TCSANOW, &tty);
1877
}
1878

    
1879
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1880
{
1881
    FDCharDriver *s = chr->opaque;
1882
    
1883
    switch(cmd) {
1884
    case CHR_IOCTL_SERIAL_SET_PARAMS:
1885
        {
1886
            QEMUSerialSetParams *ssp = arg;
1887
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity, 
1888
                            ssp->data_bits, ssp->stop_bits);
1889
        }
1890
        break;
1891
    case CHR_IOCTL_SERIAL_SET_BREAK:
1892
        {
1893
            int enable = *(int *)arg;
1894
            if (enable)
1895
                tcsendbreak(s->fd_in, 1);
1896
        }
1897
        break;
1898
    default:
1899
        return -ENOTSUP;
1900
    }
1901
    return 0;
1902
}
1903

    
1904
static CharDriverState *qemu_chr_open_tty(const char *filename)
1905
{
1906
    CharDriverState *chr;
1907
    int fd;
1908

    
1909
    fd = open(filename, O_RDWR | O_NONBLOCK);
1910
    if (fd < 0)
1911
        return NULL;
1912
    fcntl(fd, F_SETFL, O_NONBLOCK);
1913
    tty_serial_init(fd, 115200, 'N', 8, 1);
1914
    chr = qemu_chr_open_fd(fd, fd);
1915
    if (!chr)
1916
        return NULL;
1917
    chr->chr_ioctl = tty_serial_ioctl;
1918
    qemu_chr_reset(chr);
1919
    return chr;
1920
}
1921

    
1922
typedef struct {
1923
    int fd;
1924
    int mode;
1925
} ParallelCharDriver;
1926

    
1927
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1928
{
1929
    if (s->mode != mode) {
1930
        int m = mode;
1931
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
1932
            return 0;
1933
        s->mode = mode;
1934
    }
1935
    return 1;
1936
}
1937

    
1938
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1939
{
1940
    ParallelCharDriver *drv = chr->opaque;
1941
    int fd = drv->fd;
1942
    uint8_t b;
1943

    
1944
    switch(cmd) {
1945
    case CHR_IOCTL_PP_READ_DATA:
1946
        if (ioctl(fd, PPRDATA, &b) < 0)
1947
            return -ENOTSUP;
1948
        *(uint8_t *)arg = b;
1949
        break;
1950
    case CHR_IOCTL_PP_WRITE_DATA:
1951
        b = *(uint8_t *)arg;
1952
        if (ioctl(fd, PPWDATA, &b) < 0)
1953
            return -ENOTSUP;
1954
        break;
1955
    case CHR_IOCTL_PP_READ_CONTROL:
1956
        if (ioctl(fd, PPRCONTROL, &b) < 0)
1957
            return -ENOTSUP;
1958
        /* Linux gives only the lowest bits, and no way to know data
1959
           direction! For better compatibility set the fixed upper
1960
           bits. */
1961
        *(uint8_t *)arg = b | 0xc0;
1962
        break;
1963
    case CHR_IOCTL_PP_WRITE_CONTROL:
1964
        b = *(uint8_t *)arg;
1965
        if (ioctl(fd, PPWCONTROL, &b) < 0)
1966
            return -ENOTSUP;
1967
        break;
1968
    case CHR_IOCTL_PP_READ_STATUS:
1969
        if (ioctl(fd, PPRSTATUS, &b) < 0)
1970
            return -ENOTSUP;
1971
        *(uint8_t *)arg = b;
1972
        break;
1973
    case CHR_IOCTL_PP_EPP_READ_ADDR:
1974
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1975
            struct ParallelIOArg *parg = arg;
1976
            int n = read(fd, parg->buffer, parg->count);
1977
            if (n != parg->count) {
1978
                return -EIO;
1979
            }
1980
        }
1981
        break;
1982
    case CHR_IOCTL_PP_EPP_READ:
1983
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1984
            struct ParallelIOArg *parg = arg;
1985
            int n = read(fd, parg->buffer, parg->count);
1986
            if (n != parg->count) {
1987
                return -EIO;
1988
            }
1989
        }
1990
        break;
1991
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1992
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1993
            struct ParallelIOArg *parg = arg;
1994
            int n = write(fd, parg->buffer, parg->count);
1995
            if (n != parg->count) {
1996
                return -EIO;
1997
            }
1998
        }
1999
        break;
2000
    case CHR_IOCTL_PP_EPP_WRITE:
2001
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2002
            struct ParallelIOArg *parg = arg;
2003
            int n = write(fd, parg->buffer, parg->count);
2004
            if (n != parg->count) {
2005
                return -EIO;
2006
            }
2007
        }
2008
        break;
2009
    default:
2010
        return -ENOTSUP;
2011
    }
2012
    return 0;
2013
}
2014

    
2015
static void pp_close(CharDriverState *chr)
2016
{
2017
    ParallelCharDriver *drv = chr->opaque;
2018
    int fd = drv->fd;
2019

    
2020
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2021
    ioctl(fd, PPRELEASE);
2022
    close(fd);
2023
    qemu_free(drv);
2024
}
2025

    
2026
static CharDriverState *qemu_chr_open_pp(const char *filename)
2027
{
2028
    CharDriverState *chr;
2029
    ParallelCharDriver *drv;
2030
    int fd;
2031

    
2032
    fd = open(filename, O_RDWR);
2033
    if (fd < 0)
2034
        return NULL;
2035

    
2036
    if (ioctl(fd, PPCLAIM) < 0) {
2037
        close(fd);
2038
        return NULL;
2039
    }
2040

    
2041
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2042
    if (!drv) {
2043
        close(fd);
2044
        return NULL;
2045
    }
2046
    drv->fd = fd;
2047
    drv->mode = IEEE1284_MODE_COMPAT;
2048

    
2049
    chr = qemu_mallocz(sizeof(CharDriverState));
2050
    if (!chr) {
2051
        qemu_free(drv);
2052
        close(fd);
2053
        return NULL;
2054
    }
2055
    chr->chr_write = null_chr_write;
2056
    chr->chr_ioctl = pp_ioctl;
2057
    chr->chr_close = pp_close;
2058
    chr->opaque = drv;
2059

    
2060
    qemu_chr_reset(chr);
2061

    
2062
    return chr;
2063
}
2064

    
2065
#else
2066
static CharDriverState *qemu_chr_open_pty(void)
2067
{
2068
    return NULL;
2069
}
2070
#endif
2071

    
2072
#endif /* !defined(_WIN32) */
2073

    
2074
#ifdef _WIN32
2075
typedef struct {
2076
    int max_size;
2077
    HANDLE hcom, hrecv, hsend;
2078
    OVERLAPPED orecv, osend;
2079
    BOOL fpipe;
2080
    DWORD len;
2081
} WinCharState;
2082

    
2083
#define NSENDBUF 2048
2084
#define NRECVBUF 2048
2085
#define MAXCONNECT 1
2086
#define NTIMEOUT 5000
2087

    
2088
static int win_chr_poll(void *opaque);
2089
static int win_chr_pipe_poll(void *opaque);
2090

    
2091
static void win_chr_close(CharDriverState *chr)
2092
{
2093
    WinCharState *s = chr->opaque;
2094

    
2095
    if (s->hsend) {
2096
        CloseHandle(s->hsend);
2097
        s->hsend = NULL;
2098
    }
2099
    if (s->hrecv) {
2100
        CloseHandle(s->hrecv);
2101
        s->hrecv = NULL;
2102
    }
2103
    if (s->hcom) {
2104
        CloseHandle(s->hcom);
2105
        s->hcom = NULL;
2106
    }
2107
    if (s->fpipe)
2108
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2109
    else
2110
        qemu_del_polling_cb(win_chr_poll, chr);
2111
}
2112

    
2113
static int win_chr_init(CharDriverState *chr, const char *filename)
2114
{
2115
    WinCharState *s = chr->opaque;
2116
    COMMCONFIG comcfg;
2117
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2118
    COMSTAT comstat;
2119
    DWORD size;
2120
    DWORD err;
2121
    
2122
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2123
    if (!s->hsend) {
2124
        fprintf(stderr, "Failed CreateEvent\n");
2125
        goto fail;
2126
    }
2127
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2128
    if (!s->hrecv) {
2129
        fprintf(stderr, "Failed CreateEvent\n");
2130
        goto fail;
2131
    }
2132

    
2133
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2134
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2135
    if (s->hcom == INVALID_HANDLE_VALUE) {
2136
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2137
        s->hcom = NULL;
2138
        goto fail;
2139
    }
2140
    
2141
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2142
        fprintf(stderr, "Failed SetupComm\n");
2143
        goto fail;
2144
    }
2145
    
2146
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2147
    size = sizeof(COMMCONFIG);
2148
    GetDefaultCommConfig(filename, &comcfg, &size);
2149
    comcfg.dcb.DCBlength = sizeof(DCB);
2150
    CommConfigDialog(filename, NULL, &comcfg);
2151

    
2152
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2153
        fprintf(stderr, "Failed SetCommState\n");
2154
        goto fail;
2155
    }
2156

    
2157
    if (!SetCommMask(s->hcom, EV_ERR)) {
2158
        fprintf(stderr, "Failed SetCommMask\n");
2159
        goto fail;
2160
    }
2161

    
2162
    cto.ReadIntervalTimeout = MAXDWORD;
2163
    if (!SetCommTimeouts(s->hcom, &cto)) {
2164
        fprintf(stderr, "Failed SetCommTimeouts\n");
2165
        goto fail;
2166
    }
2167
    
2168
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2169
        fprintf(stderr, "Failed ClearCommError\n");
2170
        goto fail;
2171
    }
2172
    qemu_add_polling_cb(win_chr_poll, chr);
2173
    return 0;
2174

    
2175
 fail:
2176
    win_chr_close(chr);
2177
    return -1;
2178
}
2179

    
2180
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2181
{
2182
    WinCharState *s = chr->opaque;
2183
    DWORD len, ret, size, err;
2184

    
2185
    len = len1;
2186
    ZeroMemory(&s->osend, sizeof(s->osend));
2187
    s->osend.hEvent = s->hsend;
2188
    while (len > 0) {
2189
        if (s->hsend)
2190
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2191
        else
2192
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2193
        if (!ret) {
2194
            err = GetLastError();
2195
            if (err == ERROR_IO_PENDING) {
2196
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2197
                if (ret) {
2198
                    buf += size;
2199
                    len -= size;
2200
                } else {
2201
                    break;
2202
                }
2203
            } else {
2204
                break;
2205
            }
2206
        } else {
2207
            buf += size;
2208
            len -= size;
2209
        }
2210
    }
2211
    return len1 - len;
2212
}
2213

    
2214
static int win_chr_read_poll(CharDriverState *chr)
2215
{
2216
    WinCharState *s = chr->opaque;
2217

    
2218
    s->max_size = qemu_chr_can_read(chr);
2219
    return s->max_size;
2220
}
2221

    
2222
static void win_chr_readfile(CharDriverState *chr)
2223
{
2224
    WinCharState *s = chr->opaque;
2225
    int ret, err;
2226
    uint8_t buf[1024];
2227
    DWORD size;
2228
    
2229
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2230
    s->orecv.hEvent = s->hrecv;
2231
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2232
    if (!ret) {
2233
        err = GetLastError();
2234
        if (err == ERROR_IO_PENDING) {
2235
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2236
        }
2237
    }
2238

    
2239
    if (size > 0) {
2240
        qemu_chr_read(chr, buf, size);
2241
    }
2242
}
2243

    
2244
static void win_chr_read(CharDriverState *chr)
2245
{
2246
    WinCharState *s = chr->opaque;
2247

    
2248
    if (s->len > s->max_size)
2249
        s->len = s->max_size;
2250
    if (s->len == 0)
2251
        return;
2252
    
2253
    win_chr_readfile(chr);
2254
}
2255

    
2256
static int win_chr_poll(void *opaque)
2257
{
2258
    CharDriverState *chr = opaque;
2259
    WinCharState *s = chr->opaque;
2260
    COMSTAT status;
2261
    DWORD comerr;
2262
    
2263
    ClearCommError(s->hcom, &comerr, &status);
2264
    if (status.cbInQue > 0) {
2265
        s->len = status.cbInQue;
2266
        win_chr_read_poll(chr);
2267
        win_chr_read(chr);
2268
        return 1;
2269
    }
2270
    return 0;
2271
}
2272

    
2273
static CharDriverState *qemu_chr_open_win(const char *filename)
2274
{
2275
    CharDriverState *chr;
2276
    WinCharState *s;
2277
    
2278
    chr = qemu_mallocz(sizeof(CharDriverState));
2279
    if (!chr)
2280
        return NULL;
2281
    s = qemu_mallocz(sizeof(WinCharState));
2282
    if (!s) {
2283
        free(chr);
2284
        return NULL;
2285
    }
2286
    chr->opaque = s;
2287
    chr->chr_write = win_chr_write;
2288
    chr->chr_close = win_chr_close;
2289

    
2290
    if (win_chr_init(chr, filename) < 0) {
2291
        free(s);
2292
        free(chr);
2293
        return NULL;
2294
    }
2295
    qemu_chr_reset(chr);
2296
    return chr;
2297
}
2298

    
2299
static int win_chr_pipe_poll(void *opaque)
2300
{
2301
    CharDriverState *chr = opaque;
2302
    WinCharState *s = chr->opaque;
2303
    DWORD size;
2304

    
2305
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2306
    if (size > 0) {
2307
        s->len = size;
2308
        win_chr_read_poll(chr);
2309
        win_chr_read(chr);
2310
        return 1;
2311
    }
2312
    return 0;
2313
}
2314

    
2315
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2316
{
2317
    WinCharState *s = chr->opaque;
2318
    OVERLAPPED ov;
2319
    int ret;
2320
    DWORD size;
2321
    char openname[256];
2322
    
2323
    s->fpipe = TRUE;
2324

    
2325
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2326
    if (!s->hsend) {
2327
        fprintf(stderr, "Failed CreateEvent\n");
2328
        goto fail;
2329
    }
2330
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2331
    if (!s->hrecv) {
2332
        fprintf(stderr, "Failed CreateEvent\n");
2333
        goto fail;
2334
    }
2335
    
2336
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2337
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2338
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2339
                              PIPE_WAIT,
2340
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2341
    if (s->hcom == INVALID_HANDLE_VALUE) {
2342
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2343
        s->hcom = NULL;
2344
        goto fail;
2345
    }
2346

    
2347
    ZeroMemory(&ov, sizeof(ov));
2348
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2349
    ret = ConnectNamedPipe(s->hcom, &ov);
2350
    if (ret) {
2351
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2352
        goto fail;
2353
    }
2354

    
2355
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2356
    if (!ret) {
2357
        fprintf(stderr, "Failed GetOverlappedResult\n");
2358
        if (ov.hEvent) {
2359
            CloseHandle(ov.hEvent);
2360
            ov.hEvent = NULL;
2361
        }
2362
        goto fail;
2363
    }
2364

    
2365
    if (ov.hEvent) {
2366
        CloseHandle(ov.hEvent);
2367
        ov.hEvent = NULL;
2368
    }
2369
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2370
    return 0;
2371

    
2372
 fail:
2373
    win_chr_close(chr);
2374
    return -1;
2375
}
2376

    
2377

    
2378
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2379
{
2380
    CharDriverState *chr;
2381
    WinCharState *s;
2382

    
2383
    chr = qemu_mallocz(sizeof(CharDriverState));
2384
    if (!chr)
2385
        return NULL;
2386
    s = qemu_mallocz(sizeof(WinCharState));
2387
    if (!s) {
2388
        free(chr);
2389
        return NULL;
2390
    }
2391
    chr->opaque = s;
2392
    chr->chr_write = win_chr_write;
2393
    chr->chr_close = win_chr_close;
2394
    
2395
    if (win_chr_pipe_init(chr, filename) < 0) {
2396
        free(s);
2397
        free(chr);
2398
        return NULL;
2399
    }
2400
    qemu_chr_reset(chr);
2401
    return chr;
2402
}
2403

    
2404
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2405
{
2406
    CharDriverState *chr;
2407
    WinCharState *s;
2408

    
2409
    chr = qemu_mallocz(sizeof(CharDriverState));
2410
    if (!chr)
2411
        return NULL;
2412
    s = qemu_mallocz(sizeof(WinCharState));
2413
    if (!s) {
2414
        free(chr);
2415
        return NULL;
2416
    }
2417
    s->hcom = fd_out;
2418
    chr->opaque = s;
2419
    chr->chr_write = win_chr_write;
2420
    qemu_chr_reset(chr);
2421
    return chr;
2422
}
2423
    
2424
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2425
{
2426
    HANDLE fd_out;
2427
    
2428
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2429
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2430
    if (fd_out == INVALID_HANDLE_VALUE)
2431
        return NULL;
2432

    
2433
    return qemu_chr_open_win_file(fd_out);
2434
}
2435
#endif
2436

    
2437
/***********************************************************/
2438
/* UDP Net console */
2439

    
2440
typedef struct {
2441
    int fd;
2442
    struct sockaddr_in daddr;
2443
    char buf[1024];
2444
    int bufcnt;
2445
    int bufptr;
2446
    int max_size;
2447
} NetCharDriver;
2448

    
2449
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2450
{
2451
    NetCharDriver *s = chr->opaque;
2452

    
2453
    return sendto(s->fd, buf, len, 0,
2454
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2455
}
2456

    
2457
static int udp_chr_read_poll(void *opaque)
2458
{
2459
    CharDriverState *chr = opaque;
2460
    NetCharDriver *s = chr->opaque;
2461

    
2462
    s->max_size = qemu_chr_can_read(chr);
2463

    
2464
    /* If there were any stray characters in the queue process them
2465
     * first
2466
     */
2467
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2468
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2469
        s->bufptr++;
2470
        s->max_size = qemu_chr_can_read(chr);
2471
    }
2472
    return s->max_size;
2473
}
2474

    
2475
static void udp_chr_read(void *opaque)
2476
{
2477
    CharDriverState *chr = opaque;
2478
    NetCharDriver *s = chr->opaque;
2479

    
2480
    if (s->max_size == 0)
2481
        return;
2482
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2483
    s->bufptr = s->bufcnt;
2484
    if (s->bufcnt <= 0)
2485
        return;
2486

    
2487
    s->bufptr = 0;
2488
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2489
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2490
        s->bufptr++;
2491
        s->max_size = qemu_chr_can_read(chr);
2492
    }
2493
}
2494

    
2495
static void udp_chr_update_read_handler(CharDriverState *chr)
2496
{
2497
    NetCharDriver *s = chr->opaque;
2498

    
2499
    if (s->fd >= 0) {
2500
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2501
                             udp_chr_read, NULL, chr);
2502
    }
2503
}
2504

    
2505
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2506
#ifndef _WIN32
2507
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2508
#endif
2509
int parse_host_src_port(struct sockaddr_in *haddr,
2510
                        struct sockaddr_in *saddr,
2511
                        const char *str);
2512

    
2513
static CharDriverState *qemu_chr_open_udp(const char *def)
2514
{
2515
    CharDriverState *chr = NULL;
2516
    NetCharDriver *s = NULL;
2517
    int fd = -1;
2518
    struct sockaddr_in saddr;
2519

    
2520
    chr = qemu_mallocz(sizeof(CharDriverState));
2521
    if (!chr)
2522
        goto return_err;
2523
    s = qemu_mallocz(sizeof(NetCharDriver));
2524
    if (!s)
2525
        goto return_err;
2526

    
2527
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2528
    if (fd < 0) {
2529
        perror("socket(PF_INET, SOCK_DGRAM)");
2530
        goto return_err;
2531
    }
2532

    
2533
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2534
        printf("Could not parse: %s\n", def);
2535
        goto return_err;
2536
    }
2537

    
2538
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2539
    {
2540
        perror("bind");
2541
        goto return_err;
2542
    }
2543

    
2544
    s->fd = fd;
2545
    s->bufcnt = 0;
2546
    s->bufptr = 0;
2547
    chr->opaque = s;
2548
    chr->chr_write = udp_chr_write;
2549
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2550
    return chr;
2551

    
2552
return_err:
2553
    if (chr)
2554
        free(chr);
2555
    if (s)
2556
        free(s);
2557
    if (fd >= 0)
2558
        closesocket(fd);
2559
    return NULL;
2560
}
2561

    
2562
/***********************************************************/
2563
/* TCP Net console */
2564

    
2565
typedef struct {
2566
    int fd, listen_fd;
2567
    int connected;
2568
    int max_size;
2569
    int do_telnetopt;
2570
    int do_nodelay;
2571
    int is_unix;
2572
} TCPCharDriver;
2573

    
2574
static void tcp_chr_accept(void *opaque);
2575

    
2576
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2577
{
2578
    TCPCharDriver *s = chr->opaque;
2579
    if (s->connected) {
2580
        return send_all(s->fd, buf, len);
2581
    } else {
2582
        /* XXX: indicate an error ? */
2583
        return len;
2584
    }
2585
}
2586

    
2587
static int tcp_chr_read_poll(void *opaque)
2588
{
2589
    CharDriverState *chr = opaque;
2590
    TCPCharDriver *s = chr->opaque;
2591
    if (!s->connected)
2592
        return 0;
2593
    s->max_size = qemu_chr_can_read(chr);
2594
    return s->max_size;
2595
}
2596

    
2597
#define IAC 255
2598
#define IAC_BREAK 243
2599
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2600
                                      TCPCharDriver *s,
2601
                                      char *buf, int *size)
2602
{
2603
    /* Handle any telnet client's basic IAC options to satisfy char by
2604
     * char mode with no echo.  All IAC options will be removed from
2605
     * the buf and the do_telnetopt variable will be used to track the
2606
     * state of the width of the IAC information.
2607
     *
2608
     * IAC commands come in sets of 3 bytes with the exception of the
2609
     * "IAC BREAK" command and the double IAC.
2610
     */
2611

    
2612
    int i;
2613
    int j = 0;
2614

    
2615
    for (i = 0; i < *size; i++) {
2616
        if (s->do_telnetopt > 1) {
2617
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2618
                /* Double IAC means send an IAC */
2619
                if (j != i)
2620
                    buf[j] = buf[i];
2621
                j++;
2622
                s->do_telnetopt = 1;
2623
            } else {
2624
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2625
                    /* Handle IAC break commands by sending a serial break */
2626
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
2627
                    s->do_telnetopt++;
2628
                }
2629
                s->do_telnetopt++;
2630
            }
2631
            if (s->do_telnetopt >= 4) {
2632
                s->do_telnetopt = 1;
2633
            }
2634
        } else {
2635
            if ((unsigned char)buf[i] == IAC) {
2636
                s->do_telnetopt = 2;
2637
            } else {
2638
                if (j != i)
2639
                    buf[j] = buf[i];
2640
                j++;
2641
            }
2642
        }
2643
    }
2644
    *size = j;
2645
}
2646

    
2647
static void tcp_chr_read(void *opaque)
2648
{
2649
    CharDriverState *chr = opaque;
2650
    TCPCharDriver *s = chr->opaque;
2651
    uint8_t buf[1024];
2652
    int len, size;
2653

    
2654
    if (!s->connected || s->max_size <= 0)
2655
        return;
2656
    len = sizeof(buf);
2657
    if (len > s->max_size)
2658
        len = s->max_size;
2659
    size = recv(s->fd, buf, len, 0);
2660
    if (size == 0) {
2661
        /* connection closed */
2662
        s->connected = 0;
2663
        if (s->listen_fd >= 0) {
2664
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2665
        }
2666
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2667
        closesocket(s->fd);
2668
        s->fd = -1;
2669
    } else if (size > 0) {
2670
        if (s->do_telnetopt)
2671
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2672
        if (size > 0)
2673
            qemu_chr_read(chr, buf, size);
2674
    }
2675
}
2676

    
2677
static void tcp_chr_connect(void *opaque)
2678
{
2679
    CharDriverState *chr = opaque;
2680
    TCPCharDriver *s = chr->opaque;
2681

    
2682
    s->connected = 1;
2683
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2684
                         tcp_chr_read, NULL, chr);
2685
    qemu_chr_reset(chr);
2686
}
2687

    
2688
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2689
static void tcp_chr_telnet_init(int fd)
2690
{
2691
    char buf[3];
2692
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2693
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
2694
    send(fd, (char *)buf, 3, 0);
2695
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
2696
    send(fd, (char *)buf, 3, 0);
2697
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
2698
    send(fd, (char *)buf, 3, 0);
2699
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
2700
    send(fd, (char *)buf, 3, 0);
2701
}
2702

    
2703
static void socket_set_nodelay(int fd)
2704
{
2705
    int val = 1;
2706
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2707
}
2708

    
2709
static void tcp_chr_accept(void *opaque)
2710
{
2711
    CharDriverState *chr = opaque;
2712
    TCPCharDriver *s = chr->opaque;
2713
    struct sockaddr_in saddr;
2714
#ifndef _WIN32
2715
    struct sockaddr_un uaddr;
2716
#endif
2717
    struct sockaddr *addr;
2718
    socklen_t len;
2719
    int fd;
2720

    
2721
    for(;;) {
2722
#ifndef _WIN32
2723
        if (s->is_unix) {
2724
            len = sizeof(uaddr);
2725
            addr = (struct sockaddr *)&uaddr;
2726
        } else
2727
#endif
2728
        {
2729
            len = sizeof(saddr);
2730
            addr = (struct sockaddr *)&saddr;
2731
        }
2732
        fd = accept(s->listen_fd, addr, &len);
2733
        if (fd < 0 && errno != EINTR) {
2734
            return;
2735
        } else if (fd >= 0) {
2736
            if (s->do_telnetopt)
2737
                tcp_chr_telnet_init(fd);
2738
            break;
2739
        }
2740
    }
2741
    socket_set_nonblock(fd);
2742
    if (s->do_nodelay)
2743
        socket_set_nodelay(fd);
2744
    s->fd = fd;
2745
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2746
    tcp_chr_connect(chr);
2747
}
2748

    
2749
static void tcp_chr_close(CharDriverState *chr)
2750
{
2751
    TCPCharDriver *s = chr->opaque;
2752
    if (s->fd >= 0)
2753
        closesocket(s->fd);
2754
    if (s->listen_fd >= 0)
2755
        closesocket(s->listen_fd);
2756
    qemu_free(s);
2757
}
2758

    
2759
static CharDriverState *qemu_chr_open_tcp(const char *host_str, 
2760
                                          int is_telnet,
2761
                                          int is_unix)
2762
{
2763
    CharDriverState *chr = NULL;
2764
    TCPCharDriver *s = NULL;
2765
    int fd = -1, ret, err, val;
2766
    int is_listen = 0;
2767
    int is_waitconnect = 1;
2768
    int do_nodelay = 0;
2769
    const char *ptr;
2770
    struct sockaddr_in saddr;
2771
#ifndef _WIN32
2772
    struct sockaddr_un uaddr;
2773
#endif
2774
    struct sockaddr *addr;
2775
    socklen_t addrlen;
2776

    
2777
#ifndef _WIN32
2778
    if (is_unix) {
2779
        addr = (struct sockaddr *)&uaddr;
2780
        addrlen = sizeof(uaddr);
2781
        if (parse_unix_path(&uaddr, host_str) < 0)
2782
            goto fail;
2783
    } else
2784
#endif
2785
    {
2786
        addr = (struct sockaddr *)&saddr;
2787
        addrlen = sizeof(saddr);
2788
        if (parse_host_port(&saddr, host_str) < 0)
2789
            goto fail;
2790
    }
2791

    
2792
    ptr = host_str;
2793
    while((ptr = strchr(ptr,','))) {
2794
        ptr++;
2795
        if (!strncmp(ptr,"server",6)) {
2796
            is_listen = 1;
2797
        } else if (!strncmp(ptr,"nowait",6)) {
2798
            is_waitconnect = 0;
2799
        } else if (!strncmp(ptr,"nodelay",6)) {
2800
            do_nodelay = 1;
2801
        } else {
2802
            printf("Unknown option: %s\n", ptr);
2803
            goto fail;
2804
        }
2805
    }
2806
    if (!is_listen)
2807
        is_waitconnect = 0;
2808

    
2809
    chr = qemu_mallocz(sizeof(CharDriverState));
2810
    if (!chr)
2811
        goto fail;
2812
    s = qemu_mallocz(sizeof(TCPCharDriver));
2813
    if (!s)
2814
        goto fail;
2815

    
2816
#ifndef _WIN32
2817
    if (is_unix)
2818
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
2819
    else
2820
#endif
2821
        fd = socket(PF_INET, SOCK_STREAM, 0);
2822
        
2823
    if (fd < 0) 
2824
        goto fail;
2825

    
2826
    if (!is_waitconnect)
2827
        socket_set_nonblock(fd);
2828

    
2829
    s->connected = 0;
2830
    s->fd = -1;
2831
    s->listen_fd = -1;
2832
    s->is_unix = is_unix;
2833
    s->do_nodelay = do_nodelay && !is_unix;
2834

    
2835
    chr->opaque = s;
2836
    chr->chr_write = tcp_chr_write;
2837
    chr->chr_close = tcp_chr_close;
2838

    
2839
    if (is_listen) {
2840
        /* allow fast reuse */
2841
#ifndef _WIN32
2842
        if (is_unix) {
2843
            char path[109];
2844
            strncpy(path, uaddr.sun_path, 108);
2845
            path[108] = 0;
2846
            unlink(path);
2847
        } else
2848
#endif
2849
        {
2850
            val = 1;
2851
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2852
        }
2853
        
2854
        ret = bind(fd, addr, addrlen);
2855
        if (ret < 0)
2856
            goto fail;
2857

    
2858
        ret = listen(fd, 0);
2859
        if (ret < 0)
2860
            goto fail;
2861

    
2862
        s->listen_fd = fd;
2863
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2864
        if (is_telnet)
2865
            s->do_telnetopt = 1;
2866
    } else {
2867
        for(;;) {
2868
            ret = connect(fd, addr, addrlen);
2869
            if (ret < 0) {
2870
                err = socket_error();
2871
                if (err == EINTR || err == EWOULDBLOCK) {
2872
                } else if (err == EINPROGRESS) {
2873
                    break;
2874
#ifdef _WIN32
2875
                } else if (err == WSAEALREADY) {
2876
                    break;
2877
#endif
2878
                } else {
2879
                    goto fail;
2880
                }
2881
            } else {
2882
                s->connected = 1;
2883
                break;
2884
            }
2885
        }
2886
        s->fd = fd;
2887
        socket_set_nodelay(fd);
2888
        if (s->connected)
2889
            tcp_chr_connect(chr);
2890
        else
2891
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2892
    }
2893
    
2894
    if (is_listen && is_waitconnect) {
2895
        printf("QEMU waiting for connection on: %s\n", host_str);
2896
        tcp_chr_accept(chr);
2897
        socket_set_nonblock(s->listen_fd);
2898
    }
2899

    
2900
    return chr;
2901
 fail:
2902
    if (fd >= 0)
2903
        closesocket(fd);
2904
    qemu_free(s);
2905
    qemu_free(chr);
2906
    return NULL;
2907
}
2908

    
2909
CharDriverState *qemu_chr_open(const char *filename)
2910
{
2911
    const char *p;
2912

    
2913
    if (!strcmp(filename, "vc")) {
2914
        return text_console_init(&display_state);
2915
    } else if (!strcmp(filename, "null")) {
2916
        return qemu_chr_open_null();
2917
    } else 
2918
    if (strstart(filename, "tcp:", &p)) {
2919
        return qemu_chr_open_tcp(p, 0, 0);
2920
    } else
2921
    if (strstart(filename, "telnet:", &p)) {
2922
        return qemu_chr_open_tcp(p, 1, 0);
2923
    } else
2924
    if (strstart(filename, "udp:", &p)) {
2925
        return qemu_chr_open_udp(p);
2926
    } else
2927
    if (strstart(filename, "mon:", &p)) {
2928
        CharDriverState *drv = qemu_chr_open(p);
2929
        if (drv) {
2930
            drv = qemu_chr_open_mux(drv);
2931
            monitor_init(drv, !nographic);
2932
            return drv;
2933
        }
2934
        printf("Unable to open driver: %s\n", p);
2935
        return 0;
2936
    } else
2937
#ifndef _WIN32
2938
    if (strstart(filename, "unix:", &p)) {
2939
        return qemu_chr_open_tcp(p, 0, 1);
2940
    } else if (strstart(filename, "file:", &p)) {
2941
        return qemu_chr_open_file_out(p);
2942
    } else if (strstart(filename, "pipe:", &p)) {
2943
        return qemu_chr_open_pipe(p);
2944
    } else if (!strcmp(filename, "pty")) {
2945
        return qemu_chr_open_pty();
2946
    } else if (!strcmp(filename, "stdio")) {
2947
        return qemu_chr_open_stdio();
2948
    } else 
2949
#endif
2950
#if defined(__linux__)
2951
    if (strstart(filename, "/dev/parport", NULL)) {
2952
        return qemu_chr_open_pp(filename);
2953
    } else 
2954
    if (strstart(filename, "/dev/", NULL)) {
2955
        return qemu_chr_open_tty(filename);
2956
    } else 
2957
#endif
2958
#ifdef _WIN32
2959
    if (strstart(filename, "COM", NULL)) {
2960
        return qemu_chr_open_win(filename);
2961
    } else
2962
    if (strstart(filename, "pipe:", &p)) {
2963
        return qemu_chr_open_win_pipe(p);
2964
    } else
2965
    if (strstart(filename, "file:", &p)) {
2966
        return qemu_chr_open_win_file_out(p);
2967
    }
2968
#endif
2969
    {
2970
        return NULL;
2971
    }
2972
}
2973

    
2974
void qemu_chr_close(CharDriverState *chr)
2975
{
2976
    if (chr->chr_close)
2977
        chr->chr_close(chr);
2978
}
2979

    
2980
/***********************************************************/
2981
/* network device redirectors */
2982

    
2983
void hex_dump(FILE *f, const uint8_t *buf, int size)
2984
{
2985
    int len, i, j, c;
2986

    
2987
    for(i=0;i<size;i+=16) {
2988
        len = size - i;
2989
        if (len > 16)
2990
            len = 16;
2991
        fprintf(f, "%08x ", i);
2992
        for(j=0;j<16;j++) {
2993
            if (j < len)
2994
                fprintf(f, " %02x", buf[i+j]);
2995
            else
2996
                fprintf(f, "   ");
2997
        }
2998
        fprintf(f, " ");
2999
        for(j=0;j<len;j++) {
3000
            c = buf[i+j];
3001
            if (c < ' ' || c > '~')
3002
                c = '.';
3003
            fprintf(f, "%c", c);
3004
        }
3005
        fprintf(f, "\n");
3006
    }
3007
}
3008

    
3009
static int parse_macaddr(uint8_t *macaddr, const char *p)
3010
{
3011
    int i;
3012
    for(i = 0; i < 6; i++) {
3013
        macaddr[i] = strtol(p, (char **)&p, 16);
3014
        if (i == 5) {
3015
            if (*p != '\0') 
3016
                return -1;
3017
        } else {
3018
            if (*p != ':') 
3019
                return -1;
3020
            p++;
3021
        }
3022
    }
3023
    return 0;
3024
}
3025

    
3026
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3027
{
3028
    const char *p, *p1;
3029
    int len;
3030
    p = *pp;
3031
    p1 = strchr(p, sep);
3032
    if (!p1)
3033
        return -1;
3034
    len = p1 - p;
3035
    p1++;
3036
    if (buf_size > 0) {
3037
        if (len > buf_size - 1)
3038
            len = buf_size - 1;
3039
        memcpy(buf, p, len);
3040
        buf[len] = '\0';
3041
    }
3042
    *pp = p1;
3043
    return 0;
3044
}
3045

    
3046
int parse_host_src_port(struct sockaddr_in *haddr,
3047
                        struct sockaddr_in *saddr,
3048
                        const char *input_str)
3049
{
3050
    char *str = strdup(input_str);
3051
    char *host_str = str;
3052
    char *src_str;
3053
    char *ptr;
3054

    
3055
    /*
3056
     * Chop off any extra arguments at the end of the string which
3057
     * would start with a comma, then fill in the src port information
3058
     * if it was provided else use the "any address" and "any port".
3059
     */
3060
    if ((ptr = strchr(str,',')))
3061
        *ptr = '\0';
3062

    
3063
    if ((src_str = strchr(input_str,'@'))) {
3064
        *src_str = '\0';
3065
        src_str++;
3066
    }
3067

    
3068
    if (parse_host_port(haddr, host_str) < 0)
3069
        goto fail;
3070

    
3071
    if (!src_str || *src_str == '\0')
3072
        src_str = ":0";
3073

    
3074
    if (parse_host_port(saddr, src_str) < 0)
3075
        goto fail;
3076

    
3077
    free(str);
3078
    return(0);
3079

    
3080
fail:
3081
    free(str);
3082
    return -1;
3083
}
3084

    
3085
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3086
{
3087
    char buf[512];
3088
    struct hostent *he;
3089
    const char *p, *r;
3090
    int port;
3091

    
3092
    p = str;
3093
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3094
        return -1;
3095
    saddr->sin_family = AF_INET;
3096
    if (buf[0] == '\0') {
3097
        saddr->sin_addr.s_addr = 0;
3098
    } else {
3099
        if (isdigit(buf[0])) {
3100
            if (!inet_aton(buf, &saddr->sin_addr))
3101
                return -1;
3102
        } else {
3103
            if ((he = gethostbyname(buf)) == NULL)
3104
                return - 1;
3105
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3106
        }
3107
    }
3108
    port = strtol(p, (char **)&r, 0);
3109
    if (r == p)
3110
        return -1;
3111
    saddr->sin_port = htons(port);
3112
    return 0;
3113
}
3114

    
3115
#ifndef _WIN32
3116
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3117
{
3118
    const char *p;
3119
    int len;
3120

    
3121
    len = MIN(108, strlen(str));
3122
    p = strchr(str, ',');
3123
    if (p)
3124
        len = MIN(len, p - str);
3125

    
3126
    memset(uaddr, 0, sizeof(*uaddr));
3127

    
3128
    uaddr->sun_family = AF_UNIX;
3129
    memcpy(uaddr->sun_path, str, len);
3130

    
3131
    return 0;
3132
}
3133
#endif
3134

    
3135
/* find or alloc a new VLAN */
3136
VLANState *qemu_find_vlan(int id)
3137
{
3138
    VLANState **pvlan, *vlan;
3139
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3140
        if (vlan->id == id)
3141
            return vlan;
3142
    }
3143
    vlan = qemu_mallocz(sizeof(VLANState));
3144
    if (!vlan)
3145
        return NULL;
3146
    vlan->id = id;
3147
    vlan->next = NULL;
3148
    pvlan = &first_vlan;
3149
    while (*pvlan != NULL)
3150
        pvlan = &(*pvlan)->next;
3151
    *pvlan = vlan;
3152
    return vlan;
3153
}
3154

    
3155
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3156
                                      IOReadHandler *fd_read,
3157
                                      IOCanRWHandler *fd_can_read,
3158
                                      void *opaque)
3159
{
3160
    VLANClientState *vc, **pvc;
3161
    vc = qemu_mallocz(sizeof(VLANClientState));
3162
    if (!vc)
3163
        return NULL;
3164
    vc->fd_read = fd_read;
3165
    vc->fd_can_read = fd_can_read;
3166
    vc->opaque = opaque;
3167
    vc->vlan = vlan;
3168

    
3169
    vc->next = NULL;
3170
    pvc = &vlan->first_client;
3171
    while (*pvc != NULL)
3172
        pvc = &(*pvc)->next;
3173
    *pvc = vc;
3174
    return vc;
3175
}
3176

    
3177
int qemu_can_send_packet(VLANClientState *vc1)
3178
{
3179
    VLANState *vlan = vc1->vlan;
3180
    VLANClientState *vc;
3181

    
3182
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3183
        if (vc != vc1) {
3184
            if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3185
                return 0;
3186
        }
3187
    }
3188
    return 1;
3189
}
3190

    
3191
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3192
{
3193
    VLANState *vlan = vc1->vlan;
3194
    VLANClientState *vc;
3195

    
3196
#if 0
3197
    printf("vlan %d send:\n", vlan->id);
3198
    hex_dump(stdout, buf, size);
3199
#endif
3200
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3201
        if (vc != vc1) {
3202
            vc->fd_read(vc->opaque, buf, size);
3203
        }
3204
    }
3205
}
3206

    
3207
#if defined(CONFIG_SLIRP)
3208

    
3209
/* slirp network adapter */
3210

    
3211
static int slirp_inited;
3212
static VLANClientState *slirp_vc;
3213

    
3214
int slirp_can_output(void)
3215
{
3216
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3217
}
3218

    
3219
void slirp_output(const uint8_t *pkt, int pkt_len)
3220
{
3221
#if 0
3222
    printf("slirp output:\n");
3223
    hex_dump(stdout, pkt, pkt_len);
3224
#endif
3225
    if (!slirp_vc)
3226
        return;
3227
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3228
}
3229

    
3230
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3231
{
3232
#if 0
3233
    printf("slirp input:\n");
3234
    hex_dump(stdout, buf, size);
3235
#endif
3236
    slirp_input(buf, size);
3237
}
3238

    
3239
static int net_slirp_init(VLANState *vlan)
3240
{
3241
    if (!slirp_inited) {
3242
        slirp_inited = 1;
3243
        slirp_init();
3244
    }
3245
    slirp_vc = qemu_new_vlan_client(vlan, 
3246
                                    slirp_receive, NULL, NULL);
3247
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3248
    return 0;
3249
}
3250

    
3251
static void net_slirp_redir(const char *redir_str)
3252
{
3253
    int is_udp;
3254
    char buf[256], *r;
3255
    const char *p;
3256
    struct in_addr guest_addr;
3257
    int host_port, guest_port;
3258
    
3259
    if (!slirp_inited) {
3260
        slirp_inited = 1;
3261
        slirp_init();
3262
    }
3263

    
3264
    p = redir_str;
3265
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3266
        goto fail;
3267
    if (!strcmp(buf, "tcp")) {
3268
        is_udp = 0;
3269
    } else if (!strcmp(buf, "udp")) {
3270
        is_udp = 1;
3271
    } else {
3272
        goto fail;
3273
    }
3274

    
3275
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3276
        goto fail;
3277
    host_port = strtol(buf, &r, 0);
3278
    if (r == buf)
3279
        goto fail;
3280

    
3281
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3282
        goto fail;
3283
    if (buf[0] == '\0') {
3284
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3285
    }
3286
    if (!inet_aton(buf, &guest_addr))
3287
        goto fail;
3288
    
3289
    guest_port = strtol(p, &r, 0);
3290
    if (r == p)
3291
        goto fail;
3292
    
3293
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3294
        fprintf(stderr, "qemu: could not set up redirection\n");
3295
        exit(1);
3296
    }
3297
    return;
3298
 fail:
3299
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3300
    exit(1);
3301
}
3302
    
3303
#ifndef _WIN32
3304

    
3305
char smb_dir[1024];
3306

    
3307
static void smb_exit(void)
3308
{
3309
    DIR *d;
3310
    struct dirent *de;
3311
    char filename[1024];
3312

    
3313
    /* erase all the files in the directory */
3314
    d = opendir(smb_dir);
3315
    for(;;) {
3316
        de = readdir(d);
3317
        if (!de)
3318
            break;
3319
        if (strcmp(de->d_name, ".") != 0 &&
3320
            strcmp(de->d_name, "..") != 0) {
3321
            snprintf(filename, sizeof(filename), "%s/%s", 
3322
                     smb_dir, de->d_name);
3323
            unlink(filename);
3324
        }
3325
    }
3326
    closedir(d);
3327
    rmdir(smb_dir);
3328
}
3329

    
3330
/* automatic user mode samba server configuration */
3331
void net_slirp_smb(const char *exported_dir)
3332
{
3333
    char smb_conf[1024];
3334
    char smb_cmdline[1024];
3335
    FILE *f;
3336

    
3337
    if (!slirp_inited) {
3338
        slirp_inited = 1;
3339
        slirp_init();
3340
    }
3341

    
3342
    /* XXX: better tmp dir construction */
3343
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3344
    if (mkdir(smb_dir, 0700) < 0) {
3345
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3346
        exit(1);
3347
    }
3348
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3349
    
3350
    f = fopen(smb_conf, "w");
3351
    if (!f) {
3352
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3353
        exit(1);
3354
    }
3355
    fprintf(f, 
3356
            "[global]\n"
3357
            "private dir=%s\n"
3358
            "smb ports=0\n"
3359
            "socket address=127.0.0.1\n"
3360
            "pid directory=%s\n"
3361
            "lock directory=%s\n"
3362
            "log file=%s/log.smbd\n"
3363
            "smb passwd file=%s/smbpasswd\n"
3364
            "security = share\n"
3365
            "[qemu]\n"
3366
            "path=%s\n"
3367
            "read only=no\n"
3368
            "guest ok=yes\n",
3369
            smb_dir,
3370
            smb_dir,
3371
            smb_dir,
3372
            smb_dir,
3373
            smb_dir,
3374
            exported_dir
3375
            );
3376
    fclose(f);
3377
    atexit(smb_exit);
3378

    
3379
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3380
             SMBD_COMMAND, smb_conf);
3381
    
3382
    slirp_add_exec(0, smb_cmdline, 4, 139);
3383
}
3384

    
3385
#endif /* !defined(_WIN32) */
3386

    
3387
#endif /* CONFIG_SLIRP */
3388

    
3389
#if !defined(_WIN32)
3390

    
3391
typedef struct TAPState {
3392
    VLANClientState *vc;
3393
    int fd;
3394
} TAPState;
3395

    
3396
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3397
{
3398
    TAPState *s = opaque;
3399
    int ret;
3400
    for(;;) {
3401
        ret = write(s->fd, buf, size);
3402
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3403
        } else {
3404
            break;
3405
        }
3406
    }
3407
}
3408

    
3409
static void tap_send(void *opaque)
3410
{
3411
    TAPState *s = opaque;
3412
    uint8_t buf[4096];
3413
    int size;
3414

    
3415
#ifdef __sun__
3416
    struct strbuf sbuf;
3417
    int f = 0;
3418
    sbuf.maxlen = sizeof(buf);
3419
    sbuf.buf = buf;
3420
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3421
#else
3422
    size = read(s->fd, buf, sizeof(buf));
3423
#endif
3424
    if (size > 0) {
3425
        qemu_send_packet(s->vc, buf, size);
3426
    }
3427
}
3428

    
3429
/* fd support */
3430

    
3431
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3432
{
3433
    TAPState *s;
3434

    
3435
    s = qemu_mallocz(sizeof(TAPState));
3436
    if (!s)
3437
        return NULL;
3438
    s->fd = fd;
3439
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3440
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3441
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3442
    return s;
3443
}
3444

    
3445
#ifdef _BSD
3446
static int tap_open(char *ifname, int ifname_size)
3447
{
3448
    int fd;
3449
    char *dev;
3450
    struct stat s;
3451

    
3452
    fd = open("/dev/tap", O_RDWR);
3453
    if (fd < 0) {
3454
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3455
        return -1;
3456
    }
3457

    
3458
    fstat(fd, &s);
3459
    dev = devname(s.st_rdev, S_IFCHR);
3460
    pstrcpy(ifname, ifname_size, dev);
3461

    
3462
    fcntl(fd, F_SETFL, O_NONBLOCK);
3463
    return fd;
3464
}
3465
#elif defined(__sun__)
3466
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3467
/* 
3468
 * Allocate TAP device, returns opened fd. 
3469
 * Stores dev name in the first arg(must be large enough).
3470
 */  
3471
int tap_alloc(char *dev)
3472
{
3473
    int tap_fd, if_fd, ppa = -1;
3474
    static int ip_fd = 0;
3475
    char *ptr;
3476

    
3477
    static int arp_fd = 0;
3478
    int ip_muxid, arp_muxid;
3479
    struct strioctl  strioc_if, strioc_ppa;
3480
    int link_type = I_PLINK;;
3481
    struct lifreq ifr;
3482
    char actual_name[32] = "";
3483

    
3484
    memset(&ifr, 0x0, sizeof(ifr));
3485

    
3486
    if( *dev ){
3487
       ptr = dev;        
3488
       while( *ptr && !isdigit((int)*ptr) ) ptr++; 
3489
       ppa = atoi(ptr);
3490
    }
3491

    
3492
    /* Check if IP device was opened */
3493
    if( ip_fd )
3494
       close(ip_fd);
3495

    
3496
    if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3497
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3498
       return -1;
3499
    }
3500

    
3501
    if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3502
       syslog(LOG_ERR, "Can't open /dev/tap");
3503
       return -1;
3504
    }
3505

    
3506
    /* Assign a new PPA and get its unit number. */
3507
    strioc_ppa.ic_cmd = TUNNEWPPA;
3508
    strioc_ppa.ic_timout = 0;
3509
    strioc_ppa.ic_len = sizeof(ppa);
3510
    strioc_ppa.ic_dp = (char *)&ppa;
3511
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3512
       syslog (LOG_ERR, "Can't assign new interface");
3513

    
3514
    if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3515
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3516
       return -1;
3517
    }
3518
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3519
       syslog(LOG_ERR, "Can't push IP module");
3520
       return -1;
3521
    }
3522

    
3523
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3524
        syslog(LOG_ERR, "Can't get flags\n");
3525

    
3526
    snprintf (actual_name, 32, "tap%d", ppa);
3527
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3528

    
3529
    ifr.lifr_ppa = ppa;
3530
    /* Assign ppa according to the unit number returned by tun device */
3531

    
3532
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3533
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3534
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3535
        syslog (LOG_ERR, "Can't get flags\n");
3536
    /* Push arp module to if_fd */
3537
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3538
        syslog (LOG_ERR, "Can't push ARP module (2)");
3539

    
3540
    /* Push arp module to ip_fd */
3541
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3542
        syslog (LOG_ERR, "I_POP failed\n");
3543
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3544
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3545
    /* Open arp_fd */
3546
    if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3547
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3548

    
3549
    /* Set ifname to arp */
3550
    strioc_if.ic_cmd = SIOCSLIFNAME;
3551
    strioc_if.ic_timout = 0;
3552
    strioc_if.ic_len = sizeof(ifr);
3553
    strioc_if.ic_dp = (char *)&ifr;
3554
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3555
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3556
    }
3557

    
3558
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3559
       syslog(LOG_ERR, "Can't link TAP device to IP");
3560
       return -1;
3561
    }
3562

    
3563
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3564
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3565

    
3566
    close (if_fd);
3567

    
3568
    memset(&ifr, 0x0, sizeof(ifr));
3569
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3570
    ifr.lifr_ip_muxid  = ip_muxid;
3571
    ifr.lifr_arp_muxid = arp_muxid;
3572

    
3573
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3574
    {
3575
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3576
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3577
      syslog (LOG_ERR, "Can't set multiplexor id");
3578
    }
3579

    
3580
    sprintf(dev, "tap%d", ppa);
3581
    return tap_fd;
3582
}
3583

    
3584
static int tap_open(char *ifname, int ifname_size)
3585
{
3586
    char  dev[10]="";
3587
    int fd;
3588
    if( (fd = tap_alloc(dev)) < 0 ){
3589
       fprintf(stderr, "Cannot allocate TAP device\n");
3590
       return -1;
3591
    }
3592
    pstrcpy(ifname, ifname_size, dev);
3593
    fcntl(fd, F_SETFL, O_NONBLOCK);
3594
    return fd;
3595
}
3596
#else
3597
static int tap_open(char *ifname, int ifname_size)
3598
{
3599
    struct ifreq ifr;
3600
    int fd, ret;
3601
    
3602
    fd = open("/dev/net/tun", O_RDWR);
3603
    if (fd < 0) {
3604
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3605
        return -1;
3606
    }
3607
    memset(&ifr, 0, sizeof(ifr));
3608
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3609
    if (ifname[0] != '\0')
3610
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3611
    else
3612
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3613
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3614
    if (ret != 0) {
3615
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3616
        close(fd);
3617
        return -1;
3618
    }
3619
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
3620
    fcntl(fd, F_SETFL, O_NONBLOCK);
3621
    return fd;
3622
}
3623
#endif
3624

    
3625
static int net_tap_init(VLANState *vlan, const char *ifname1,
3626
                        const char *setup_script)
3627
{
3628
    TAPState *s;
3629
    int pid, status, fd;
3630
    char *args[3];
3631
    char **parg;
3632
    char ifname[128];
3633

    
3634
    if (ifname1 != NULL)
3635
        pstrcpy(ifname, sizeof(ifname), ifname1);
3636
    else
3637
        ifname[0] = '\0';
3638
    fd = tap_open(ifname, sizeof(ifname));
3639
    if (fd < 0)
3640
        return -1;
3641

    
3642
    if (!setup_script || !strcmp(setup_script, "no"))
3643
        setup_script = "";
3644
    if (setup_script[0] != '\0') {
3645
        /* try to launch network init script */
3646
        pid = fork();
3647
        if (pid >= 0) {
3648
            if (pid == 0) {
3649
                int open_max = sysconf (_SC_OPEN_MAX), i;
3650
                for (i = 0; i < open_max; i++)
3651
                    if (i != STDIN_FILENO &&
3652
                        i != STDOUT_FILENO &&
3653
                        i != STDERR_FILENO &&
3654
                        i != fd)
3655
                        close(i);
3656

    
3657
                parg = args;
3658
                *parg++ = (char *)setup_script;
3659
                *parg++ = ifname;
3660
                *parg++ = NULL;
3661
                execv(setup_script, args);
3662
                _exit(1);
3663
            }
3664
            while (waitpid(pid, &status, 0) != pid);
3665
            if (!WIFEXITED(status) ||
3666
                WEXITSTATUS(status) != 0) {
3667
                fprintf(stderr, "%s: could not launch network script\n",
3668
                        setup_script);
3669
                return -1;
3670
            }
3671
        }
3672
    }
3673
    s = net_tap_fd_init(vlan, fd);
3674
    if (!s)
3675
        return -1;
3676
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), 
3677
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
3678
    return 0;
3679
}
3680

    
3681
#endif /* !_WIN32 */
3682

    
3683
/* network connection */
3684
typedef struct NetSocketState {
3685
    VLANClientState *vc;
3686
    int fd;
3687
    int state; /* 0 = getting length, 1 = getting data */
3688
    int index;
3689
    int packet_len;
3690
    uint8_t buf[4096];
3691
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3692
} NetSocketState;
3693

    
3694
typedef struct NetSocketListenState {
3695
    VLANState *vlan;
3696
    int fd;
3697
} NetSocketListenState;
3698

    
3699
/* XXX: we consider we can send the whole packet without blocking */
3700
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3701
{
3702
    NetSocketState *s = opaque;
3703
    uint32_t len;
3704
    len = htonl(size);
3705

    
3706
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3707
    send_all(s->fd, buf, size);
3708
}
3709

    
3710
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3711
{
3712
    NetSocketState *s = opaque;
3713
    sendto(s->fd, buf, size, 0, 
3714
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3715
}
3716

    
3717
static void net_socket_send(void *opaque)
3718
{
3719
    NetSocketState *s = opaque;
3720
    int l, size, err;
3721
    uint8_t buf1[4096];
3722
    const uint8_t *buf;
3723

    
3724
    size = recv(s->fd, buf1, sizeof(buf1), 0);
3725
    if (size < 0) {
3726
        err = socket_error();
3727
        if (err != EWOULDBLOCK) 
3728
            goto eoc;
3729
    } else if (size == 0) {
3730
        /* end of connection */
3731
    eoc:
3732
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3733
        closesocket(s->fd);
3734
        return;
3735
    }
3736
    buf = buf1;
3737
    while (size > 0) {
3738
        /* reassemble a packet from the network */
3739
        switch(s->state) {
3740
        case 0:
3741
            l = 4 - s->index;
3742
            if (l > size)
3743
                l = size;
3744
            memcpy(s->buf + s->index, buf, l);
3745
            buf += l;
3746
            size -= l;
3747
            s->index += l;
3748
            if (s->index == 4) {
3749
                /* got length */
3750
                s->packet_len = ntohl(*(uint32_t *)s->buf);
3751
                s->index = 0;
3752
                s->state = 1;
3753
            }
3754
            break;
3755
        case 1:
3756
            l = s->packet_len - s->index;
3757
            if (l > size)
3758
                l = size;
3759
            memcpy(s->buf + s->index, buf, l);
3760
            s->index += l;
3761
            buf += l;
3762
            size -= l;
3763
            if (s->index >= s->packet_len) {
3764
                qemu_send_packet(s->vc, s->buf, s->packet_len);
3765
                s->index = 0;
3766
                s->state = 0;
3767
            }
3768
            break;
3769
        }
3770
    }
3771
}
3772

    
3773
static void net_socket_send_dgram(void *opaque)
3774
{
3775
    NetSocketState *s = opaque;
3776
    int size;
3777

    
3778
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3779
    if (size < 0) 
3780
        return;
3781
    if (size == 0) {
3782
        /* end of connection */
3783
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3784
        return;
3785
    }
3786
    qemu_send_packet(s->vc, s->buf, size);
3787
}
3788

    
3789
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3790
{
3791
    struct ip_mreq imr;
3792
    int fd;
3793
    int val, ret;
3794
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3795
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3796
                inet_ntoa(mcastaddr->sin_addr), 
3797
                (int)ntohl(mcastaddr->sin_addr.s_addr));
3798
        return -1;
3799

    
3800
    }
3801
    fd = socket(PF_INET, SOCK_DGRAM, 0);
3802
    if (fd < 0) {
3803
        perror("socket(PF_INET, SOCK_DGRAM)");
3804
        return -1;
3805
    }
3806

    
3807
    val = 1;
3808
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, 
3809
                   (const char *)&val, sizeof(val));
3810
    if (ret < 0) {
3811
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3812
        goto fail;
3813
    }
3814

    
3815
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3816
    if (ret < 0) {
3817
        perror("bind");
3818
        goto fail;
3819
    }
3820
    
3821
    /* Add host to multicast group */
3822
    imr.imr_multiaddr = mcastaddr->sin_addr;
3823
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
3824

    
3825
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, 
3826
                     (const char *)&imr, sizeof(struct ip_mreq));
3827
    if (ret < 0) {
3828
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
3829
        goto fail;
3830
    }
3831

    
3832
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3833
    val = 1;
3834
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, 
3835
                   (const char *)&val, sizeof(val));
3836
    if (ret < 0) {
3837
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3838
        goto fail;
3839
    }
3840

    
3841
    socket_set_nonblock(fd);
3842
    return fd;
3843
fail:
3844
    if (fd >= 0) 
3845
        closesocket(fd);
3846
    return -1;
3847
}
3848

    
3849
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd, 
3850
                                          int is_connected)
3851
{
3852
    struct sockaddr_in saddr;
3853
    int newfd;
3854
    socklen_t saddr_len;
3855
    NetSocketState *s;
3856

    
3857
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3858
     * Because this may be "shared" socket from a "master" process, datagrams would be recv() 
3859
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
3860
     */
3861

    
3862
    if (is_connected) {
3863
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3864
            /* must be bound */
3865
            if (saddr.sin_addr.s_addr==0) {
3866
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3867
                        fd);
3868
                return NULL;
3869
            }
3870
            /* clone dgram socket */
3871
            newfd = net_socket_mcast_create(&saddr);
3872
            if (newfd < 0) {
3873
                /* error already reported by net_socket_mcast_create() */
3874
                close(fd);
3875
                return NULL;
3876
            }
3877
            /* clone newfd to fd, close newfd */
3878
            dup2(newfd, fd);
3879
            close(newfd);
3880
        
3881
        } else {
3882
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3883
                    fd, strerror(errno));
3884
            return NULL;
3885
        }
3886
    }
3887

    
3888
    s = qemu_mallocz(sizeof(NetSocketState));
3889
    if (!s)
3890
        return NULL;
3891
    s->fd = fd;
3892

    
3893
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3894
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3895

    
3896
    /* mcast: save bound address as dst */
3897
    if (is_connected) s->dgram_dst=saddr;
3898

    
3899
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3900
            "socket: fd=%d (%s mcast=%s:%d)", 
3901
            fd, is_connected? "cloned" : "",
3902
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3903
    return s;
3904
}
3905

    
3906
static void net_socket_connect(void *opaque)
3907
{
3908
    NetSocketState *s = opaque;
3909
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3910
}
3911

    
3912
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd, 
3913
                                          int is_connected)
3914
{
3915
    NetSocketState *s;
3916
    s = qemu_mallocz(sizeof(NetSocketState));
3917
    if (!s)
3918
        return NULL;
3919
    s->fd = fd;
3920
    s->vc = qemu_new_vlan_client(vlan, 
3921
                                 net_socket_receive, NULL, s);
3922
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3923
             "socket: fd=%d", fd);
3924
    if (is_connected) {
3925
        net_socket_connect(s);
3926
    } else {
3927
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3928
    }
3929
    return s;
3930
}
3931

    
3932
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd, 
3933
                                          int is_connected)
3934
{
3935
    int so_type=-1, optlen=sizeof(so_type);
3936

    
3937
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3938
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
3939
        return NULL;
3940
    }
3941
    switch(so_type) {
3942
    case SOCK_DGRAM:
3943
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
3944
    case SOCK_STREAM:
3945
        return net_socket_fd_init_stream(vlan, fd, is_connected);
3946
    default:
3947
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3948
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3949
        return net_socket_fd_init_stream(vlan, fd, is_connected);
3950
    }
3951
    return NULL;
3952
}
3953

    
3954
static void net_socket_accept(void *opaque)
3955
{
3956
    NetSocketListenState *s = opaque;    
3957
    NetSocketState *s1;
3958
    struct sockaddr_in saddr;
3959
    socklen_t len;
3960
    int fd;
3961

    
3962
    for(;;) {
3963
        len = sizeof(saddr);
3964
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3965
        if (fd < 0 && errno != EINTR) {
3966
            return;
3967
        } else if (fd >= 0) {
3968
            break;
3969
        }
3970
    }
3971
    s1 = net_socket_fd_init(s->vlan, fd, 1); 
3972
    if (!s1) {
3973
        closesocket(fd);
3974
    } else {
3975
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3976
                 "socket: connection from %s:%d", 
3977
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3978
    }
3979
}
3980

    
3981
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3982
{
3983
    NetSocketListenState *s;
3984
    int fd, val, ret;
3985
    struct sockaddr_in saddr;
3986

    
3987
    if (parse_host_port(&saddr, host_str) < 0)
3988
        return -1;
3989
    
3990
    s = qemu_mallocz(sizeof(NetSocketListenState));
3991
    if (!s)
3992
        return -1;
3993

    
3994
    fd = socket(PF_INET, SOCK_STREAM, 0);
3995
    if (fd < 0) {
3996
        perror("socket");
3997
        return -1;
3998
    }
3999
    socket_set_nonblock(fd);
4000

    
4001
    /* allow fast reuse */
4002
    val = 1;
4003
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4004
    
4005
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4006
    if (ret < 0) {
4007
        perror("bind");
4008
        return -1;
4009
    }
4010
    ret = listen(fd, 0);
4011
    if (ret < 0) {
4012
        perror("listen");
4013
        return -1;
4014
    }
4015
    s->vlan = vlan;
4016
    s->fd = fd;
4017
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4018
    return 0;
4019
}
4020

    
4021
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4022
{
4023
    NetSocketState *s;
4024
    int fd, connected, ret, err;
4025
    struct sockaddr_in saddr;
4026

    
4027
    if (parse_host_port(&saddr, host_str) < 0)
4028
        return -1;
4029

    
4030
    fd = socket(PF_INET, SOCK_STREAM, 0);
4031
    if (fd < 0) {
4032
        perror("socket");
4033
        return -1;
4034
    }
4035
    socket_set_nonblock(fd);
4036

    
4037
    connected = 0;
4038
    for(;;) {
4039
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4040
        if (ret < 0) {
4041
            err = socket_error();
4042
            if (err == EINTR || err == EWOULDBLOCK) {
4043
            } else if (err == EINPROGRESS) {
4044
                break;
4045
#ifdef _WIN32
4046
            } else if (err == WSAEALREADY) {
4047
                break;
4048
#endif
4049
            } else {
4050
                perror("connect");
4051
                closesocket(fd);
4052
                return -1;
4053
            }
4054
        } else {
4055
            connected = 1;
4056
            break;
4057
        }
4058
    }
4059
    s = net_socket_fd_init(vlan, fd, connected);
4060
    if (!s)
4061
        return -1;
4062
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4063
             "socket: connect to %s:%d", 
4064
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4065
    return 0;
4066
}
4067

    
4068
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4069
{
4070
    NetSocketState *s;
4071
    int fd;
4072
    struct sockaddr_in saddr;
4073

    
4074
    if (parse_host_port(&saddr, host_str) < 0)
4075
        return -1;
4076

    
4077

    
4078
    fd = net_socket_mcast_create(&saddr);
4079
    if (fd < 0)
4080
        return -1;
4081

    
4082
    s = net_socket_fd_init(vlan, fd, 0);
4083
    if (!s)
4084
        return -1;
4085

    
4086
    s->dgram_dst = saddr;
4087
    
4088
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4089
             "socket: mcast=%s:%d", 
4090
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4091
    return 0;
4092

    
4093
}
4094

    
4095
static int get_param_value(char *buf, int buf_size,
4096
                           const char *tag, const char *str)
4097
{
4098
    const char *p;
4099
    char *q;
4100
    char option[128];
4101

    
4102
    p = str;
4103
    for(;;) {
4104
        q = option;
4105
        while (*p != '\0' && *p != '=') {
4106
            if ((q - option) < sizeof(option) - 1)
4107
                *q++ = *p;
4108
            p++;
4109
        }
4110
        *q = '\0';
4111
        if (*p != '=')
4112
            break;
4113
        p++;
4114
        if (!strcmp(tag, option)) {
4115
            q = buf;
4116
            while (*p != '\0' && *p != ',') {
4117
                if ((q - buf) < buf_size - 1)
4118
                    *q++ = *p;
4119
                p++;
4120
            }
4121
            *q = '\0';
4122
            return q - buf;
4123
        } else {
4124
            while (*p != '\0' && *p != ',') {
4125
                p++;
4126
            }
4127
        }
4128
        if (*p != ',')
4129
            break;
4130
        p++;
4131
    }
4132
    return 0;
4133
}
4134

    
4135
static int net_client_init(const char *str)
4136
{
4137
    const char *p;
4138
    char *q;
4139
    char device[64];
4140
    char buf[1024];
4141
    int vlan_id, ret;
4142
    VLANState *vlan;
4143

    
4144
    p = str;
4145
    q = device;
4146
    while (*p != '\0' && *p != ',') {
4147
        if ((q - device) < sizeof(device) - 1)
4148
            *q++ = *p;
4149
        p++;
4150
    }
4151
    *q = '\0';
4152
    if (*p == ',')
4153
        p++;
4154
    vlan_id = 0;
4155
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4156
        vlan_id = strtol(buf, NULL, 0);
4157
    }
4158
    vlan = qemu_find_vlan(vlan_id);
4159
    if (!vlan) {
4160
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4161
        return -1;
4162
    }
4163
    if (!strcmp(device, "nic")) {
4164
        NICInfo *nd;
4165
        uint8_t *macaddr;
4166

    
4167
        if (nb_nics >= MAX_NICS) {
4168
            fprintf(stderr, "Too Many NICs\n");
4169
            return -1;
4170
        }
4171
        nd = &nd_table[nb_nics];
4172
        macaddr = nd->macaddr;
4173
        macaddr[0] = 0x52;
4174
        macaddr[1] = 0x54;
4175
        macaddr[2] = 0x00;
4176
        macaddr[3] = 0x12;
4177
        macaddr[4] = 0x34;
4178
        macaddr[5] = 0x56 + nb_nics;
4179

    
4180
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4181
            if (parse_macaddr(macaddr, buf) < 0) {
4182
                fprintf(stderr, "invalid syntax for ethernet address\n");
4183
                return -1;
4184
            }
4185
        }
4186
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4187
            nd->model = strdup(buf);
4188
        }
4189
        nd->vlan = vlan;
4190
        nb_nics++;
4191
        ret = 0;
4192
    } else
4193
    if (!strcmp(device, "none")) {
4194
        /* does nothing. It is needed to signal that no network cards
4195
           are wanted */
4196
        ret = 0;
4197
    } else
4198
#ifdef CONFIG_SLIRP
4199
    if (!strcmp(device, "user")) {
4200
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4201
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4202
        }
4203
        ret = net_slirp_init(vlan);
4204
    } else
4205
#endif
4206
#ifdef _WIN32
4207
    if (!strcmp(device, "tap")) {
4208
        char ifname[64];
4209
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4210
            fprintf(stderr, "tap: no interface name\n");
4211
            return -1;
4212
        }
4213
        ret = tap_win32_init(vlan, ifname);
4214
    } else
4215
#else
4216
    if (!strcmp(device, "tap")) {
4217
        char ifname[64];
4218
        char setup_script[1024];
4219
        int fd;
4220
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4221
            fd = strtol(buf, NULL, 0);
4222
            ret = -1;
4223
            if (net_tap_fd_init(vlan, fd))
4224
                ret = 0;
4225
        } else {
4226
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4227
                ifname[0] = '\0';
4228
            }
4229
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4230
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4231
            }
4232
            ret = net_tap_init(vlan, ifname, setup_script);
4233
        }
4234
    } else
4235
#endif
4236
    if (!strcmp(device, "socket")) {
4237
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4238
            int fd;
4239
            fd = strtol(buf, NULL, 0);
4240
            ret = -1;
4241
            if (net_socket_fd_init(vlan, fd, 1))
4242
                ret = 0;
4243
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4244
            ret = net_socket_listen_init(vlan, buf);
4245
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4246
            ret = net_socket_connect_init(vlan, buf);
4247
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4248
            ret = net_socket_mcast_init(vlan, buf);
4249
        } else {
4250
            fprintf(stderr, "Unknown socket options: %s\n", p);
4251
            return -1;
4252
        }
4253
    } else
4254
    {
4255
        fprintf(stderr, "Unknown network device: %s\n", device);
4256
        return -1;
4257
    }
4258
    if (ret < 0) {
4259
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4260
    }
4261
    
4262
    return ret;
4263
}
4264

    
4265
void do_info_network(void)
4266
{
4267
    VLANState *vlan;
4268
    VLANClientState *vc;
4269

    
4270
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4271
        term_printf("VLAN %d devices:\n", vlan->id);
4272
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4273
            term_printf("  %s\n", vc->info_str);
4274
    }
4275
}
4276

    
4277
/***********************************************************/
4278
/* USB devices */
4279

    
4280
static USBPort *used_usb_ports;
4281
static USBPort *free_usb_ports;
4282

    
4283
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4284
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4285
                            usb_attachfn attach)
4286
{
4287
    port->opaque = opaque;
4288
    port->index = index;
4289
    port->attach = attach;
4290
    port->next = free_usb_ports;
4291
    free_usb_ports = port;
4292
}
4293

    
4294
static int usb_device_add(const char *devname)
4295
{
4296
    const char *p;
4297
    USBDevice *dev;
4298
    USBPort *port;
4299

    
4300
    if (!free_usb_ports)
4301
        return -1;
4302

    
4303
    if (strstart(devname, "host:", &p)) {
4304
        dev = usb_host_device_open(p);
4305
    } else if (!strcmp(devname, "mouse")) {
4306
        dev = usb_mouse_init();
4307
    } else if (!strcmp(devname, "tablet")) {
4308
        dev = usb_tablet_init();
4309
    } else if (strstart(devname, "disk:", &p)) {
4310
        dev = usb_msd_init(p);
4311
    } else {
4312
        return -1;
4313
    }
4314
    if (!dev)
4315
        return -1;
4316

    
4317
    /* Find a USB port to add the device to.  */
4318
    port = free_usb_ports;
4319
    if (!port->next) {
4320
        USBDevice *hub;
4321

    
4322
        /* Create a new hub and chain it on.  */
4323
        free_usb_ports = NULL;
4324
        port->next = used_usb_ports;
4325
        used_usb_ports = port;
4326

    
4327
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4328
        usb_attach(port, hub);
4329
        port = free_usb_ports;
4330
    }
4331

    
4332
    free_usb_ports = port->next;
4333
    port->next = used_usb_ports;
4334
    used_usb_ports = port;
4335
    usb_attach(port, dev);
4336
    return 0;
4337
}
4338

    
4339
static int usb_device_del(const char *devname)
4340
{
4341
    USBPort *port;
4342
    USBPort **lastp;
4343
    USBDevice *dev;
4344
    int bus_num, addr;
4345
    const char *p;
4346

    
4347
    if (!used_usb_ports)
4348
        return -1;
4349

    
4350
    p = strchr(devname, '.');
4351
    if (!p) 
4352
        return -1;
4353
    bus_num = strtoul(devname, NULL, 0);
4354
    addr = strtoul(p + 1, NULL, 0);
4355
    if (bus_num != 0)
4356
        return -1;
4357

    
4358
    lastp = &used_usb_ports;
4359
    port = used_usb_ports;
4360
    while (port && port->dev->addr != addr) {
4361
        lastp = &port->next;
4362
        port = port->next;
4363
    }
4364

    
4365
    if (!port)
4366
        return -1;
4367

    
4368
    dev = port->dev;
4369
    *lastp = port->next;
4370
    usb_attach(port, NULL);
4371
    dev->handle_destroy(dev);
4372
    port->next = free_usb_ports;
4373
    free_usb_ports = port;
4374
    return 0;
4375
}
4376

    
4377
void do_usb_add(const char *devname)
4378
{
4379
    int ret;
4380
    ret = usb_device_add(devname);
4381
    if (ret < 0) 
4382
        term_printf("Could not add USB device '%s'\n", devname);
4383
}
4384

    
4385
void do_usb_del(const char *devname)
4386
{
4387
    int ret;
4388
    ret = usb_device_del(devname);
4389
    if (ret < 0) 
4390
        term_printf("Could not remove USB device '%s'\n", devname);
4391
}
4392

    
4393
void usb_info(void)
4394
{
4395
    USBDevice *dev;
4396
    USBPort *port;
4397
    const char *speed_str;
4398

    
4399
    if (!usb_enabled) {
4400
        term_printf("USB support not enabled\n");
4401
        return;
4402
    }
4403

    
4404
    for (port = used_usb_ports; port; port = port->next) {
4405
        dev = port->dev;
4406
        if (!dev)
4407
            continue;
4408
        switch(dev->speed) {
4409
        case USB_SPEED_LOW: 
4410
            speed_str = "1.5"; 
4411
            break;
4412
        case USB_SPEED_FULL: 
4413
            speed_str = "12"; 
4414
            break;
4415
        case USB_SPEED_HIGH: 
4416
            speed_str = "480"; 
4417
            break;
4418
        default:
4419
            speed_str = "?"; 
4420
            break;
4421
        }
4422
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n", 
4423
                    0, dev->addr, speed_str, dev->devname);
4424
    }
4425
}
4426

    
4427
/***********************************************************/
4428
/* PCMCIA/Cardbus */
4429

    
4430
static struct pcmcia_socket_entry_s {
4431
    struct pcmcia_socket_s *socket;
4432
    struct pcmcia_socket_entry_s *next;
4433
} *pcmcia_sockets = 0;
4434

    
4435
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4436
{
4437
    struct pcmcia_socket_entry_s *entry;
4438

    
4439
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4440
    entry->socket = socket;
4441
    entry->next = pcmcia_sockets;
4442
    pcmcia_sockets = entry;
4443
}
4444

    
4445
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4446
{
4447
    struct pcmcia_socket_entry_s *entry, **ptr;
4448

    
4449
    ptr = &pcmcia_sockets;
4450
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4451
        if (entry->socket == socket) {
4452
            *ptr = entry->next;
4453
            qemu_free(entry);
4454
        }
4455
}
4456

    
4457
void pcmcia_info(void)
4458
{
4459
    struct pcmcia_socket_entry_s *iter;
4460
    if (!pcmcia_sockets)
4461
        term_printf("No PCMCIA sockets\n");
4462

    
4463
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4464
        term_printf("%s: %s\n", iter->socket->slot_string,
4465
                    iter->socket->attached ? iter->socket->card_string :
4466
                    "Empty");
4467
}
4468

    
4469
/***********************************************************/
4470
/* dumb display */
4471

    
4472
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4473
{
4474
}
4475

    
4476
static void dumb_resize(DisplayState *ds, int w, int h)
4477
{
4478
}
4479

    
4480
static void dumb_refresh(DisplayState *ds)
4481
{
4482
    vga_hw_update();
4483
}
4484

    
4485
void dumb_display_init(DisplayState *ds)
4486
{
4487
    ds->data = NULL;
4488
    ds->linesize = 0;
4489
    ds->depth = 0;
4490
    ds->dpy_update = dumb_update;
4491
    ds->dpy_resize = dumb_resize;
4492
    ds->dpy_refresh = dumb_refresh;
4493
}
4494

    
4495
/***********************************************************/
4496
/* I/O handling */
4497

    
4498
#define MAX_IO_HANDLERS 64
4499

    
4500
typedef struct IOHandlerRecord {
4501
    int fd;
4502
    IOCanRWHandler *fd_read_poll;
4503
    IOHandler *fd_read;
4504
    IOHandler *fd_write;
4505
    int deleted;
4506
    void *opaque;
4507
    /* temporary data */
4508
    struct pollfd *ufd;
4509
    struct IOHandlerRecord *next;
4510
} IOHandlerRecord;
4511

    
4512
static IOHandlerRecord *first_io_handler;
4513

    
4514
/* XXX: fd_read_poll should be suppressed, but an API change is
4515
   necessary in the character devices to suppress fd_can_read(). */
4516
int qemu_set_fd_handler2(int fd, 
4517
                         IOCanRWHandler *fd_read_poll, 
4518
                         IOHandler *fd_read, 
4519
                         IOHandler *fd_write, 
4520
                         void *opaque)
4521
{
4522
    IOHandlerRecord **pioh, *ioh;
4523

    
4524
    if (!fd_read && !fd_write) {
4525
        pioh = &first_io_handler;
4526
        for(;;) {
4527
            ioh = *pioh;
4528
            if (ioh == NULL)
4529
                break;
4530
            if (ioh->fd == fd) {
4531
                ioh->deleted = 1;
4532
                break;
4533
            }
4534
            pioh = &ioh->next;
4535
        }
4536
    } else {
4537
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4538
            if (ioh->fd == fd)
4539
                goto found;
4540
        }
4541
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4542
        if (!ioh)
4543
            return -1;
4544
        ioh->next = first_io_handler;
4545
        first_io_handler = ioh;
4546
    found:
4547
        ioh->fd = fd;
4548
        ioh->fd_read_poll = fd_read_poll;
4549
        ioh->fd_read = fd_read;
4550
        ioh->fd_write = fd_write;
4551
        ioh->opaque = opaque;
4552
        ioh->deleted = 0;
4553
    }
4554
    return 0;
4555
}
4556

    
4557
int qemu_set_fd_handler(int fd, 
4558
                        IOHandler *fd_read, 
4559
                        IOHandler *fd_write, 
4560
                        void *opaque)
4561
{
4562
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4563
}
4564

    
4565
/***********************************************************/
4566
/* Polling handling */
4567

    
4568
typedef struct PollingEntry {
4569
    PollingFunc *func;
4570
    void *opaque;
4571
    struct PollingEntry *next;
4572
} PollingEntry;
4573

    
4574
static PollingEntry *first_polling_entry;
4575

    
4576
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4577
{
4578
    PollingEntry **ppe, *pe;
4579
    pe = qemu_mallocz(sizeof(PollingEntry));
4580
    if (!pe)
4581
        return -1;
4582
    pe->func = func;
4583
    pe->opaque = opaque;
4584
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4585
    *ppe = pe;
4586
    return 0;
4587
}
4588

    
4589
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4590
{
4591
    PollingEntry **ppe, *pe;
4592
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4593
        pe = *ppe;
4594
        if (pe->func == func && pe->opaque == opaque) {
4595
            *ppe = pe->next;
4596
            qemu_free(pe);
4597
            break;
4598
        }
4599
    }
4600
}
4601

    
4602
#ifdef _WIN32
4603
/***********************************************************/
4604
/* Wait objects support */
4605
typedef struct WaitObjects {
4606
    int num;
4607
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4608
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4609
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4610
} WaitObjects;
4611

    
4612
static WaitObjects wait_objects = {0};
4613
    
4614
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4615
{
4616
    WaitObjects *w = &wait_objects;
4617

    
4618
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
4619
        return -1;
4620
    w->events[w->num] = handle;
4621
    w->func[w->num] = func;
4622
    w->opaque[w->num] = opaque;
4623
    w->num++;
4624
    return 0;
4625
}
4626

    
4627
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4628
{
4629
    int i, found;
4630
    WaitObjects *w = &wait_objects;
4631

    
4632
    found = 0;
4633
    for (i = 0; i < w->num; i++) {
4634
        if (w->events[i] == handle)
4635
            found = 1;
4636
        if (found) {
4637
            w->events[i] = w->events[i + 1];
4638
            w->func[i] = w->func[i + 1];
4639
            w->opaque[i] = w->opaque[i + 1];
4640
        }            
4641
    }
4642
    if (found)
4643
        w->num--;
4644
}
4645
#endif
4646

    
4647
/***********************************************************/
4648
/* savevm/loadvm support */
4649

    
4650
#define IO_BUF_SIZE 32768
4651

    
4652
struct QEMUFile {
4653
    FILE *outfile;
4654
    BlockDriverState *bs;
4655
    int is_file;
4656
    int is_writable;
4657
    int64_t base_offset;
4658
    int64_t buf_offset; /* start of buffer when writing, end of buffer
4659
                           when reading */
4660
    int buf_index;
4661
    int buf_size; /* 0 when writing */
4662
    uint8_t buf[IO_BUF_SIZE];
4663
};
4664

    
4665
QEMUFile *qemu_fopen(const char *filename, const char *mode)
4666
{
4667
    QEMUFile *f;
4668

    
4669
    f = qemu_mallocz(sizeof(QEMUFile));
4670
    if (!f)
4671
        return NULL;
4672
    if (!strcmp(mode, "wb")) {
4673
        f->is_writable = 1;
4674
    } else if (!strcmp(mode, "rb")) {
4675
        f->is_writable = 0;
4676
    } else {
4677
        goto fail;
4678
    }
4679
    f->outfile = fopen(filename, mode);
4680
    if (!f->outfile)
4681
        goto fail;
4682
    f->is_file = 1;
4683
    return f;
4684
 fail:
4685
    if (f->outfile)
4686
        fclose(f->outfile);
4687
    qemu_free(f);
4688
    return NULL;
4689
}
4690

    
4691
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4692
{
4693
    QEMUFile *f;
4694

    
4695
    f = qemu_mallocz(sizeof(QEMUFile));
4696
    if (!f)
4697
        return NULL;
4698
    f->is_file = 0;
4699
    f->bs = bs;
4700
    f->is_writable = is_writable;
4701
    f->base_offset = offset;
4702
    return f;
4703
}
4704

    
4705
void qemu_fflush(QEMUFile *f)
4706
{
4707
    if (!f->is_writable)
4708
        return;
4709
    if (f->buf_index > 0) {
4710
        if (f->is_file) {
4711
            fseek(f->outfile, f->buf_offset, SEEK_SET);
4712
            fwrite(f->buf, 1, f->buf_index, f->outfile);
4713
        } else {
4714
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset, 
4715
                        f->buf, f->buf_index);
4716
        }
4717
        f->buf_offset += f->buf_index;
4718
        f->buf_index = 0;
4719
    }
4720
}
4721

    
4722
static void qemu_fill_buffer(QEMUFile *f)
4723
{
4724
    int len;
4725

    
4726
    if (f->is_writable)
4727
        return;
4728
    if (f->is_file) {
4729
        fseek(f->outfile, f->buf_offset, SEEK_SET);
4730
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4731
        if (len < 0)
4732
            len = 0;
4733
    } else {
4734
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset, 
4735
                         f->buf, IO_BUF_SIZE);
4736
        if (len < 0)
4737
            len = 0;
4738
    }
4739
    f->buf_index = 0;
4740
    f->buf_size = len;
4741
    f->buf_offset += len;
4742
}
4743

    
4744
void qemu_fclose(QEMUFile *f)
4745
{
4746
    if (f->is_writable)
4747
        qemu_fflush(f);
4748
    if (f->is_file) {
4749
        fclose(f->outfile);
4750
    }
4751
    qemu_free(f);
4752
}
4753

    
4754
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4755
{
4756
    int l;
4757
    while (size > 0) {
4758
        l = IO_BUF_SIZE - f->buf_index;
4759
        if (l > size)
4760
            l = size;
4761
        memcpy(f->buf + f->buf_index, buf, l);
4762
        f->buf_index += l;
4763
        buf += l;
4764
        size -= l;
4765
        if (f->buf_index >= IO_BUF_SIZE)
4766
            qemu_fflush(f);
4767
    }
4768
}
4769

    
4770
void qemu_put_byte(QEMUFile *f, int v)
4771
{
4772
    f->buf[f->buf_index++] = v;
4773
    if (f->buf_index >= IO_BUF_SIZE)
4774
        qemu_fflush(f);
4775
}
4776

    
4777
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4778
{
4779
    int size, l;
4780

    
4781
    size = size1;
4782
    while (size > 0) {
4783
        l = f->buf_size - f->buf_index;
4784
        if (l == 0) {
4785
            qemu_fill_buffer(f);
4786
            l = f->buf_size - f->buf_index;
4787
            if (l == 0)
4788
                break;
4789
        }
4790
        if (l > size)
4791
            l = size;
4792
        memcpy(buf, f->buf + f->buf_index, l);
4793
        f->buf_index += l;
4794
        buf += l;
4795
        size -= l;
4796
    }
4797
    return size1 - size;
4798
}
4799

    
4800
int qemu_get_byte(QEMUFile *f)
4801
{
4802
    if (f->buf_index >= f->buf_size) {
4803
        qemu_fill_buffer(f);
4804
        if (f->buf_index >= f->buf_size)
4805
            return 0;
4806
    }
4807
    return f->buf[f->buf_index++];
4808
}
4809

    
4810
int64_t qemu_ftell(QEMUFile *f)
4811
{
4812
    return f->buf_offset - f->buf_size + f->buf_index;
4813
}
4814

    
4815
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4816
{
4817
    if (whence == SEEK_SET) {
4818
        /* nothing to do */
4819
    } else if (whence == SEEK_CUR) {
4820
        pos += qemu_ftell(f);
4821
    } else {
4822
        /* SEEK_END not supported */
4823
        return -1;
4824
    }
4825
    if (f->is_writable) {
4826
        qemu_fflush(f);
4827
        f->buf_offset = pos;
4828
    } else {
4829
        f->buf_offset = pos;
4830
        f->buf_index = 0;
4831
        f->buf_size = 0;
4832
    }
4833
    return pos;
4834
}
4835

    
4836
void qemu_put_be16(QEMUFile *f, unsigned int v)
4837
{
4838
    qemu_put_byte(f, v >> 8);
4839
    qemu_put_byte(f, v);
4840
}
4841

    
4842
void qemu_put_be32(QEMUFile *f, unsigned int v)
4843
{
4844
    qemu_put_byte(f, v >> 24);
4845
    qemu_put_byte(f, v >> 16);
4846
    qemu_put_byte(f, v >> 8);
4847
    qemu_put_byte(f, v);
4848
}
4849

    
4850
void qemu_put_be64(QEMUFile *f, uint64_t v)
4851
{
4852
    qemu_put_be32(f, v >> 32);
4853
    qemu_put_be32(f, v);
4854
}
4855

    
4856
unsigned int qemu_get_be16(QEMUFile *f)
4857
{
4858
    unsigned int v;
4859
    v = qemu_get_byte(f) << 8;
4860
    v |= qemu_get_byte(f);
4861
    return v;
4862
}
4863

    
4864
unsigned int qemu_get_be32(QEMUFile *f)
4865
{
4866
    unsigned int v;
4867
    v = qemu_get_byte(f) << 24;
4868
    v |= qemu_get_byte(f) << 16;
4869
    v |= qemu_get_byte(f) << 8;
4870
    v |= qemu_get_byte(f);
4871
    return v;
4872
}
4873

    
4874
uint64_t qemu_get_be64(QEMUFile *f)
4875
{
4876
    uint64_t v;
4877
    v = (uint64_t)qemu_get_be32(f) << 32;
4878
    v |= qemu_get_be32(f);
4879
    return v;
4880
}
4881

    
4882
typedef struct SaveStateEntry {
4883
    char idstr[256];
4884
    int instance_id;
4885
    int version_id;
4886
    SaveStateHandler *save_state;
4887
    LoadStateHandler *load_state;
4888
    void *opaque;
4889
    struct SaveStateEntry *next;
4890
} SaveStateEntry;
4891

    
4892
static SaveStateEntry *first_se;
4893

    
4894
int register_savevm(const char *idstr, 
4895
                    int instance_id, 
4896
                    int version_id,
4897
                    SaveStateHandler *save_state,
4898
                    LoadStateHandler *load_state,
4899
                    void *opaque)
4900
{
4901
    SaveStateEntry *se, **pse;
4902

    
4903
    se = qemu_malloc(sizeof(SaveStateEntry));
4904
    if (!se)
4905
        return -1;
4906
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4907
    se->instance_id = instance_id;
4908
    se->version_id = version_id;
4909
    se->save_state = save_state;
4910
    se->load_state = load_state;
4911
    se->opaque = opaque;
4912
    se->next = NULL;
4913

    
4914
    /* add at the end of list */
4915
    pse = &first_se;
4916
    while (*pse != NULL)
4917
        pse = &(*pse)->next;
4918
    *pse = se;
4919
    return 0;
4920
}
4921

    
4922
#define QEMU_VM_FILE_MAGIC   0x5145564d
4923
#define QEMU_VM_FILE_VERSION 0x00000002
4924

    
4925
int qemu_savevm_state(QEMUFile *f)
4926
{
4927
    SaveStateEntry *se;
4928
    int len, ret;
4929
    int64_t cur_pos, len_pos, total_len_pos;
4930

    
4931
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4932
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4933
    total_len_pos = qemu_ftell(f);
4934
    qemu_put_be64(f, 0); /* total size */
4935

    
4936
    for(se = first_se; se != NULL; se = se->next) {
4937
        /* ID string */
4938
        len = strlen(se->idstr);
4939
        qemu_put_byte(f, len);
4940
        qemu_put_buffer(f, se->idstr, len);
4941

    
4942
        qemu_put_be32(f, se->instance_id);
4943
        qemu_put_be32(f, se->version_id);
4944

    
4945
        /* record size: filled later */
4946
        len_pos = qemu_ftell(f);
4947
        qemu_put_be32(f, 0);
4948
        
4949
        se->save_state(f, se->opaque);
4950

    
4951
        /* fill record size */
4952
        cur_pos = qemu_ftell(f);
4953
        len = cur_pos - len_pos - 4;
4954
        qemu_fseek(f, len_pos, SEEK_SET);
4955
        qemu_put_be32(f, len);
4956
        qemu_fseek(f, cur_pos, SEEK_SET);
4957
    }
4958
    cur_pos = qemu_ftell(f);
4959
    qemu_fseek(f, total_len_pos, SEEK_SET);
4960
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
4961
    qemu_fseek(f, cur_pos, SEEK_SET);
4962

    
4963
    ret = 0;
4964
    return ret;
4965
}
4966

    
4967
static SaveStateEntry *find_se(const char *idstr, int instance_id)
4968
{
4969
    SaveStateEntry *se;
4970

    
4971
    for(se = first_se; se != NULL; se = se->next) {
4972
        if (!strcmp(se->idstr, idstr) && 
4973
            instance_id == se->instance_id)
4974
            return se;
4975
    }
4976
    return NULL;
4977
}
4978

    
4979
int qemu_loadvm_state(QEMUFile *f)
4980
{
4981
    SaveStateEntry *se;
4982
    int len, ret, instance_id, record_len, version_id;
4983
    int64_t total_len, end_pos, cur_pos;
4984
    unsigned int v;
4985
    char idstr[256];
4986
    
4987
    v = qemu_get_be32(f);
4988
    if (v != QEMU_VM_FILE_MAGIC)
4989
        goto fail;
4990
    v = qemu_get_be32(f);
4991
    if (v != QEMU_VM_FILE_VERSION) {
4992
    fail:
4993
        ret = -1;
4994
        goto the_end;
4995
    }
4996
    total_len = qemu_get_be64(f);
4997
    end_pos = total_len + qemu_ftell(f);
4998
    for(;;) {
4999
        if (qemu_ftell(f) >= end_pos)
5000
            break;
5001
        len = qemu_get_byte(f);
5002
        qemu_get_buffer(f, idstr, len);
5003
        idstr[len] = '\0';
5004
        instance_id = qemu_get_be32(f);
5005
        version_id = qemu_get_be32(f);
5006
        record_len = qemu_get_be32(f);
5007
#if 0
5008
        printf("idstr=%s instance=0x%x version=%d len=%d\n", 
5009
               idstr, instance_id, version_id, record_len);
5010
#endif
5011
        cur_pos = qemu_ftell(f);
5012
        se = find_se(idstr, instance_id);
5013
        if (!se) {
5014
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", 
5015
                    instance_id, idstr);
5016
        } else {
5017
            ret = se->load_state(f, se->opaque, version_id);
5018
            if (ret < 0) {
5019
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", 
5020
                        instance_id, idstr);
5021
            }
5022
        }
5023
        /* always seek to exact end of record */
5024
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5025
    }
5026
    ret = 0;
5027
 the_end:
5028
    return ret;
5029
}
5030

    
5031
/* device can contain snapshots */
5032
static int bdrv_can_snapshot(BlockDriverState *bs)
5033
{
5034
    return (bs &&
5035
            !bdrv_is_removable(bs) &&
5036
            !bdrv_is_read_only(bs));
5037
}
5038

    
5039
/* device must be snapshots in order to have a reliable snapshot */
5040
static int bdrv_has_snapshot(BlockDriverState *bs)
5041
{
5042
    return (bs &&
5043
            !bdrv_is_removable(bs) &&
5044
            !bdrv_is_read_only(bs));
5045
}
5046

    
5047
static BlockDriverState *get_bs_snapshots(void)
5048
{
5049
    BlockDriverState *bs;
5050
    int i;
5051

    
5052
    if (bs_snapshots)
5053
        return bs_snapshots;
5054
    for(i = 0; i <= MAX_DISKS; i++) {
5055
        bs = bs_table[i];
5056
        if (bdrv_can_snapshot(bs))
5057
            goto ok;
5058
    }
5059
    return NULL;
5060
 ok:
5061
    bs_snapshots = bs;
5062
    return bs;
5063
}
5064

    
5065
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5066
                              const char *name)
5067
{
5068
    QEMUSnapshotInfo *sn_tab, *sn;
5069
    int nb_sns, i, ret;
5070
    
5071
    ret = -ENOENT;
5072
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5073
    if (nb_sns < 0)
5074
        return ret;
5075
    for(i = 0; i < nb_sns; i++) {
5076
        sn = &sn_tab[i];
5077
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5078
            *sn_info = *sn;
5079
            ret = 0;
5080
            break;
5081
        }
5082
    }
5083
    qemu_free(sn_tab);
5084
    return ret;
5085
}
5086

    
5087
void do_savevm(const char *name)
5088
{
5089
    BlockDriverState *bs, *bs1;
5090
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5091
    int must_delete, ret, i;
5092
    BlockDriverInfo bdi1, *bdi = &bdi1;
5093
    QEMUFile *f;
5094
    int saved_vm_running;
5095
#ifdef _WIN32
5096
    struct _timeb tb;
5097
#else
5098
    struct timeval tv;
5099
#endif
5100

    
5101
    bs = get_bs_snapshots();
5102
    if (!bs) {
5103
        term_printf("No block device can accept snapshots\n");
5104
        return;
5105
    }
5106

    
5107
    /* ??? Should this occur after vm_stop?  */
5108
    qemu_aio_flush();
5109

    
5110
    saved_vm_running = vm_running;
5111
    vm_stop(0);
5112
    
5113
    must_delete = 0;
5114
    if (name) {
5115
        ret = bdrv_snapshot_find(bs, old_sn, name);
5116
        if (ret >= 0) {
5117
            must_delete = 1;
5118
        }
5119
    }
5120
    memset(sn, 0, sizeof(*sn));
5121
    if (must_delete) {
5122
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5123
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5124
    } else {
5125
        if (name)
5126
            pstrcpy(sn->name, sizeof(sn->name), name);
5127
    }
5128

    
5129
    /* fill auxiliary fields */
5130
#ifdef _WIN32
5131
    _ftime(&tb);
5132
    sn->date_sec = tb.time;
5133
    sn->date_nsec = tb.millitm * 1000000;
5134
#else
5135
    gettimeofday(&tv, NULL);
5136
    sn->date_sec = tv.tv_sec;
5137
    sn->date_nsec = tv.tv_usec * 1000;
5138
#endif
5139
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5140
    
5141
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5142
        term_printf("Device %s does not support VM state snapshots\n",
5143
                    bdrv_get_device_name(bs));
5144
        goto the_end;
5145
    }
5146
    
5147
    /* save the VM state */
5148
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5149
    if (!f) {
5150
        term_printf("Could not open VM state file\n");
5151
        goto the_end;
5152
    }
5153
    ret = qemu_savevm_state(f);
5154
    sn->vm_state_size = qemu_ftell(f);
5155
    qemu_fclose(f);
5156
    if (ret < 0) {
5157
        term_printf("Error %d while writing VM\n", ret);
5158
        goto the_end;
5159
    }
5160
    
5161
    /* create the snapshots */
5162

    
5163
    for(i = 0; i < MAX_DISKS; i++) {
5164
        bs1 = bs_table[i];
5165
        if (bdrv_has_snapshot(bs1)) {
5166
            if (must_delete) {
5167
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5168
                if (ret < 0) {
5169
                    term_printf("Error while deleting snapshot on '%s'\n",
5170
                                bdrv_get_device_name(bs1));
5171
                }
5172
            }
5173
            ret = bdrv_snapshot_create(bs1, sn);
5174
            if (ret < 0) {
5175
                term_printf("Error while creating snapshot on '%s'\n",
5176
                            bdrv_get_device_name(bs1));
5177
            }
5178
        }
5179
    }
5180

    
5181
 the_end:
5182
    if (saved_vm_running)
5183
        vm_start();
5184
}
5185

    
5186
void do_loadvm(const char *name)
5187
{
5188
    BlockDriverState *bs, *bs1;
5189
    BlockDriverInfo bdi1, *bdi = &bdi1;
5190
    QEMUFile *f;
5191
    int i, ret;
5192
    int saved_vm_running;
5193

    
5194
    bs = get_bs_snapshots();
5195
    if (!bs) {
5196
        term_printf("No block device supports snapshots\n");
5197
        return;
5198
    }
5199
    
5200
    /* Flush all IO requests so they don't interfere with the new state.  */
5201
    qemu_aio_flush();
5202

    
5203
    saved_vm_running = vm_running;
5204
    vm_stop(0);
5205

    
5206
    for(i = 0; i <= MAX_DISKS; i++) {
5207
        bs1 = bs_table[i];
5208
        if (bdrv_has_snapshot(bs1)) {
5209
            ret = bdrv_snapshot_goto(bs1, name);
5210
            if (ret < 0) {
5211
                if (bs != bs1)
5212
                    term_printf("Warning: ");
5213
                switch(ret) {
5214
                case -ENOTSUP:
5215
                    term_printf("Snapshots not supported on device '%s'\n",
5216
                                bdrv_get_device_name(bs1));
5217
                    break;
5218
                case -ENOENT:
5219
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5220
                                name, bdrv_get_device_name(bs1));
5221
                    break;
5222
                default:
5223
                    term_printf("Error %d while activating snapshot on '%s'\n",
5224
                                ret, bdrv_get_device_name(bs1));
5225
                    break;
5226
                }
5227
                /* fatal on snapshot block device */
5228
                if (bs == bs1)
5229
                    goto the_end;
5230
            }
5231
        }
5232
    }
5233

    
5234
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5235
        term_printf("Device %s does not support VM state snapshots\n",
5236
                    bdrv_get_device_name(bs));
5237
        return;
5238
    }
5239
    
5240
    /* restore the VM state */
5241
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5242
    if (!f) {
5243
        term_printf("Could not open VM state file\n");
5244
        goto the_end;
5245
    }
5246
    ret = qemu_loadvm_state(f);
5247
    qemu_fclose(f);
5248
    if (ret < 0) {
5249
        term_printf("Error %d while loading VM state\n", ret);
5250
    }
5251
 the_end:
5252
    if (saved_vm_running)
5253
        vm_start();
5254
}
5255

    
5256
void do_delvm(const char *name)
5257
{
5258
    BlockDriverState *bs, *bs1;
5259
    int i, ret;
5260

    
5261
    bs = get_bs_snapshots();
5262
    if (!bs) {
5263
        term_printf("No block device supports snapshots\n");
5264
        return;
5265
    }
5266
    
5267
    for(i = 0; i <= MAX_DISKS; i++) {
5268
        bs1 = bs_table[i];
5269
        if (bdrv_has_snapshot(bs1)) {
5270
            ret = bdrv_snapshot_delete(bs1, name);
5271
            if (ret < 0) {
5272
                if (ret == -ENOTSUP)
5273
                    term_printf("Snapshots not supported on device '%s'\n",
5274
                                bdrv_get_device_name(bs1));
5275
                else
5276
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5277
                                ret, bdrv_get_device_name(bs1));
5278
            }
5279
        }
5280
    }
5281
}
5282

    
5283
void do_info_snapshots(void)
5284
{
5285
    BlockDriverState *bs, *bs1;
5286
    QEMUSnapshotInfo *sn_tab, *sn;
5287
    int nb_sns, i;
5288
    char buf[256];
5289

    
5290
    bs = get_bs_snapshots();
5291
    if (!bs) {
5292
        term_printf("No available block device supports snapshots\n");
5293
        return;
5294
    }
5295
    term_printf("Snapshot devices:");
5296
    for(i = 0; i <= MAX_DISKS; i++) {
5297
        bs1 = bs_table[i];
5298
        if (bdrv_has_snapshot(bs1)) {
5299
            if (bs == bs1)
5300
                term_printf(" %s", bdrv_get_device_name(bs1));
5301
        }
5302
    }
5303
    term_printf("\n");
5304

    
5305
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5306
    if (nb_sns < 0) {
5307
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5308
        return;
5309
    }
5310
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5311
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5312
    for(i = 0; i < nb_sns; i++) {
5313
        sn = &sn_tab[i];
5314
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5315
    }
5316
    qemu_free(sn_tab);
5317
}
5318

    
5319
/***********************************************************/
5320
/* cpu save/restore */
5321

    
5322
#if defined(TARGET_I386)
5323

    
5324
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5325
{
5326
    qemu_put_be32(f, dt->selector);
5327
    qemu_put_betl(f, dt->base);
5328
    qemu_put_be32(f, dt->limit);
5329
    qemu_put_be32(f, dt->flags);
5330
}
5331

    
5332
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5333
{
5334
    dt->selector = qemu_get_be32(f);
5335
    dt->base = qemu_get_betl(f);
5336
    dt->limit = qemu_get_be32(f);
5337
    dt->flags = qemu_get_be32(f);
5338
}
5339

    
5340
void cpu_save(QEMUFile *f, void *opaque)
5341
{
5342
    CPUState *env = opaque;
5343
    uint16_t fptag, fpus, fpuc, fpregs_format;
5344
    uint32_t hflags;
5345
    int i;
5346
    
5347
    for(i = 0; i < CPU_NB_REGS; i++)
5348
        qemu_put_betls(f, &env->regs[i]);
5349
    qemu_put_betls(f, &env->eip);
5350
    qemu_put_betls(f, &env->eflags);
5351
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5352
    qemu_put_be32s(f, &hflags);
5353
    
5354
    /* FPU */
5355
    fpuc = env->fpuc;
5356
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5357
    fptag = 0;
5358
    for(i = 0; i < 8; i++) {
5359
        fptag |= ((!env->fptags[i]) << i);
5360
    }
5361
    
5362
    qemu_put_be16s(f, &fpuc);
5363
    qemu_put_be16s(f, &fpus);
5364
    qemu_put_be16s(f, &fptag);
5365

    
5366
#ifdef USE_X86LDOUBLE
5367
    fpregs_format = 0;
5368
#else
5369
    fpregs_format = 1;
5370
#endif
5371
    qemu_put_be16s(f, &fpregs_format);
5372
    
5373
    for(i = 0; i < 8; i++) {
5374
#ifdef USE_X86LDOUBLE
5375
        {
5376
            uint64_t mant;
5377
            uint16_t exp;
5378
            /* we save the real CPU data (in case of MMX usage only 'mant'
5379
               contains the MMX register */
5380
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5381
            qemu_put_be64(f, mant);
5382
            qemu_put_be16(f, exp);
5383
        }
5384
#else
5385
        /* if we use doubles for float emulation, we save the doubles to
5386
           avoid losing information in case of MMX usage. It can give
5387
           problems if the image is restored on a CPU where long
5388
           doubles are used instead. */
5389
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5390
#endif
5391
    }
5392

    
5393
    for(i = 0; i < 6; i++)
5394
        cpu_put_seg(f, &env->segs[i]);
5395
    cpu_put_seg(f, &env->ldt);
5396
    cpu_put_seg(f, &env->tr);
5397
    cpu_put_seg(f, &env->gdt);
5398
    cpu_put_seg(f, &env->idt);
5399
    
5400
    qemu_put_be32s(f, &env->sysenter_cs);
5401
    qemu_put_be32s(f, &env->sysenter_esp);
5402
    qemu_put_be32s(f, &env->sysenter_eip);
5403
    
5404
    qemu_put_betls(f, &env->cr[0]);
5405
    qemu_put_betls(f, &env->cr[2]);
5406
    qemu_put_betls(f, &env->cr[3]);
5407
    qemu_put_betls(f, &env->cr[4]);
5408
    
5409
    for(i = 0; i < 8; i++)
5410
        qemu_put_betls(f, &env->dr[i]);
5411

    
5412
    /* MMU */
5413
    qemu_put_be32s(f, &env->a20_mask);
5414

    
5415
    /* XMM */
5416
    qemu_put_be32s(f, &env->mxcsr);
5417
    for(i = 0; i < CPU_NB_REGS; i++) {
5418
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5419
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5420
    }
5421

    
5422
#ifdef TARGET_X86_64
5423
    qemu_put_be64s(f, &env->efer);
5424
    qemu_put_be64s(f, &env->star);
5425
    qemu_put_be64s(f, &env->lstar);
5426
    qemu_put_be64s(f, &env->cstar);
5427
    qemu_put_be64s(f, &env->fmask);
5428
    qemu_put_be64s(f, &env->kernelgsbase);
5429
#endif
5430
    qemu_put_be32s(f, &env->smbase);
5431
}
5432

    
5433
#ifdef USE_X86LDOUBLE
5434
/* XXX: add that in a FPU generic layer */
5435
union x86_longdouble {
5436
    uint64_t mant;
5437
    uint16_t exp;
5438
};
5439

    
5440
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5441
#define EXPBIAS1 1023
5442
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5443
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5444

    
5445
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5446
{
5447
    int e;
5448
    /* mantissa */
5449
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5450
    /* exponent + sign */
5451
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5452
    e |= SIGND1(temp) >> 16;
5453
    p->exp = e;
5454
}
5455
#endif
5456

    
5457
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5458
{
5459
    CPUState *env = opaque;
5460
    int i, guess_mmx;
5461
    uint32_t hflags;
5462
    uint16_t fpus, fpuc, fptag, fpregs_format;
5463

    
5464
    if (version_id != 3 && version_id != 4)
5465
        return -EINVAL;
5466
    for(i = 0; i < CPU_NB_REGS; i++)
5467
        qemu_get_betls(f, &env->regs[i]);
5468
    qemu_get_betls(f, &env->eip);
5469
    qemu_get_betls(f, &env->eflags);
5470
    qemu_get_be32s(f, &hflags);
5471

    
5472
    qemu_get_be16s(f, &fpuc);
5473
    qemu_get_be16s(f, &fpus);
5474
    qemu_get_be16s(f, &fptag);
5475
    qemu_get_be16s(f, &fpregs_format);
5476
    
5477
    /* NOTE: we cannot always restore the FPU state if the image come
5478
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5479
       if we are in an MMX state to restore correctly in that case. */
5480
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5481
    for(i = 0; i < 8; i++) {
5482
        uint64_t mant;
5483
        uint16_t exp;
5484
        
5485
        switch(fpregs_format) {
5486
        case 0:
5487
            mant = qemu_get_be64(f);
5488
            exp = qemu_get_be16(f);
5489
#ifdef USE_X86LDOUBLE
5490
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5491
#else
5492
            /* difficult case */
5493
            if (guess_mmx)
5494
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5495
            else
5496
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5497
#endif
5498
            break;
5499
        case 1:
5500
            mant = qemu_get_be64(f);
5501
#ifdef USE_X86LDOUBLE
5502
            {
5503
                union x86_longdouble *p;
5504
                /* difficult case */
5505
                p = (void *)&env->fpregs[i];
5506
                if (guess_mmx) {
5507
                    p->mant = mant;
5508
                    p->exp = 0xffff;
5509
                } else {
5510
                    fp64_to_fp80(p, mant);
5511
                }
5512
            }
5513
#else
5514
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5515
#endif            
5516
            break;
5517
        default:
5518
            return -EINVAL;
5519
        }
5520
    }
5521

    
5522
    env->fpuc = fpuc;
5523
    /* XXX: restore FPU round state */
5524
    env->fpstt = (fpus >> 11) & 7;
5525
    env->fpus = fpus & ~0x3800;
5526
    fptag ^= 0xff;
5527
    for(i = 0; i < 8; i++) {
5528
        env->fptags[i] = (fptag >> i) & 1;
5529
    }
5530
    
5531
    for(i = 0; i < 6; i++)
5532
        cpu_get_seg(f, &env->segs[i]);
5533
    cpu_get_seg(f, &env->ldt);
5534
    cpu_get_seg(f, &env->tr);
5535
    cpu_get_seg(f, &env->gdt);
5536
    cpu_get_seg(f, &env->idt);
5537
    
5538
    qemu_get_be32s(f, &env->sysenter_cs);
5539
    qemu_get_be32s(f, &env->sysenter_esp);
5540
    qemu_get_be32s(f, &env->sysenter_eip);
5541
    
5542
    qemu_get_betls(f, &env->cr[0]);
5543
    qemu_get_betls(f, &env->cr[2]);
5544
    qemu_get_betls(f, &env->cr[3]);
5545
    qemu_get_betls(f, &env->cr[4]);
5546
    
5547
    for(i = 0; i < 8; i++)
5548
        qemu_get_betls(f, &env->dr[i]);
5549

    
5550
    /* MMU */
5551
    qemu_get_be32s(f, &env->a20_mask);
5552

    
5553
    qemu_get_be32s(f, &env->mxcsr);
5554
    for(i = 0; i < CPU_NB_REGS; i++) {
5555
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5556
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5557
    }
5558

    
5559
#ifdef TARGET_X86_64
5560
    qemu_get_be64s(f, &env->efer);
5561
    qemu_get_be64s(f, &env->star);
5562
    qemu_get_be64s(f, &env->lstar);
5563
    qemu_get_be64s(f, &env->cstar);
5564
    qemu_get_be64s(f, &env->fmask);
5565
    qemu_get_be64s(f, &env->kernelgsbase);
5566
#endif
5567
    if (version_id >= 4) 
5568
        qemu_get_be32s(f, &env->smbase);
5569

    
5570
    /* XXX: compute hflags from scratch, except for CPL and IIF */
5571
    env->hflags = hflags;
5572
    tlb_flush(env, 1);
5573
    return 0;
5574
}
5575

    
5576
#elif defined(TARGET_PPC)
5577
void cpu_save(QEMUFile *f, void *opaque)
5578
{
5579
}
5580

    
5581
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5582
{
5583
    return 0;
5584
}
5585

    
5586
#elif defined(TARGET_MIPS)
5587
void cpu_save(QEMUFile *f, void *opaque)
5588
{
5589
}
5590

    
5591
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5592
{
5593
    return 0;
5594
}
5595

    
5596
#elif defined(TARGET_SPARC)
5597
void cpu_save(QEMUFile *f, void *opaque)
5598
{
5599
    CPUState *env = opaque;
5600
    int i;
5601
    uint32_t tmp;
5602

    
5603
    for(i = 0; i < 8; i++)
5604
        qemu_put_betls(f, &env->gregs[i]);
5605
    for(i = 0; i < NWINDOWS * 16; i++)
5606
        qemu_put_betls(f, &env->regbase[i]);
5607

    
5608
    /* FPU */
5609
    for(i = 0; i < TARGET_FPREGS; i++) {
5610
        union {
5611
            float32 f;
5612
            uint32_t i;
5613
        } u;
5614
        u.f = env->fpr[i];
5615
        qemu_put_be32(f, u.i);
5616
    }
5617

    
5618
    qemu_put_betls(f, &env->pc);
5619
    qemu_put_betls(f, &env->npc);
5620
    qemu_put_betls(f, &env->y);
5621
    tmp = GET_PSR(env);
5622
    qemu_put_be32(f, tmp);
5623
    qemu_put_betls(f, &env->fsr);
5624
    qemu_put_betls(f, &env->tbr);
5625
#ifndef TARGET_SPARC64
5626
    qemu_put_be32s(f, &env->wim);
5627
    /* MMU */
5628
    for(i = 0; i < 16; i++)
5629
        qemu_put_be32s(f, &env->mmuregs[i]);
5630
#endif
5631
}
5632

    
5633
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5634
{
5635
    CPUState *env = opaque;
5636
    int i;
5637
    uint32_t tmp;
5638

    
5639
    for(i = 0; i < 8; i++)
5640
        qemu_get_betls(f, &env->gregs[i]);
5641
    for(i = 0; i < NWINDOWS * 16; i++)
5642
        qemu_get_betls(f, &env->regbase[i]);
5643

    
5644
    /* FPU */
5645
    for(i = 0; i < TARGET_FPREGS; i++) {
5646
        union {
5647
            float32 f;
5648
            uint32_t i;
5649
        } u;
5650
        u.i = qemu_get_be32(f);
5651
        env->fpr[i] = u.f;
5652
    }
5653

    
5654
    qemu_get_betls(f, &env->pc);
5655
    qemu_get_betls(f, &env->npc);
5656
    qemu_get_betls(f, &env->y);
5657
    tmp = qemu_get_be32(f);
5658
    env->cwp = 0; /* needed to ensure that the wrapping registers are
5659
                     correctly updated */
5660
    PUT_PSR(env, tmp);
5661
    qemu_get_betls(f, &env->fsr);
5662
    qemu_get_betls(f, &env->tbr);
5663
#ifndef TARGET_SPARC64
5664
    qemu_get_be32s(f, &env->wim);
5665
    /* MMU */
5666
    for(i = 0; i < 16; i++)
5667
        qemu_get_be32s(f, &env->mmuregs[i]);
5668
#endif
5669
    tlb_flush(env, 1);
5670
    return 0;
5671
}
5672

    
5673
#elif defined(TARGET_ARM)
5674

    
5675
/* ??? Need to implement these.  */
5676
void cpu_save(QEMUFile *f, void *opaque)
5677
{
5678
}
5679

    
5680
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5681
{
5682
    return 0;
5683
}
5684

    
5685
#else
5686

    
5687
#warning No CPU save/restore functions
5688

    
5689
#endif
5690

    
5691
/***********************************************************/
5692
/* ram save/restore */
5693

    
5694
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5695
{
5696
    int v;
5697

    
5698
    v = qemu_get_byte(f);
5699
    switch(v) {
5700
    case 0:
5701
        if (qemu_get_buffer(f, buf, len) != len)
5702
            return -EIO;
5703
        break;
5704
    case 1:
5705
        v = qemu_get_byte(f);
5706
        memset(buf, v, len);
5707
        break;
5708
    default:
5709
        return -EINVAL;
5710
    }
5711
    return 0;
5712
}
5713

    
5714
static int ram_load_v1(QEMUFile *f, void *opaque)
5715
{
5716
    int i, ret;
5717

    
5718
    if (qemu_get_be32(f) != phys_ram_size)
5719
        return -EINVAL;
5720
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5721
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5722
        if (ret)
5723
            return ret;
5724
    }
5725
    return 0;
5726
}
5727

    
5728
#define BDRV_HASH_BLOCK_SIZE 1024
5729
#define IOBUF_SIZE 4096
5730
#define RAM_CBLOCK_MAGIC 0xfabe
5731

    
5732
typedef struct RamCompressState {
5733
    z_stream zstream;
5734
    QEMUFile *f;
5735
    uint8_t buf[IOBUF_SIZE];
5736
} RamCompressState;
5737

    
5738
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5739
{
5740
    int ret;
5741
    memset(s, 0, sizeof(*s));
5742
    s->f = f;
5743
    ret = deflateInit2(&s->zstream, 1,
5744
                       Z_DEFLATED, 15, 
5745
                       9, Z_DEFAULT_STRATEGY);
5746
    if (ret != Z_OK)
5747
        return -1;
5748
    s->zstream.avail_out = IOBUF_SIZE;
5749
    s->zstream.next_out = s->buf;
5750
    return 0;
5751
}
5752

    
5753
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5754
{
5755
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5756
    qemu_put_be16(s->f, len);
5757
    qemu_put_buffer(s->f, buf, len);
5758
}
5759

    
5760
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5761
{
5762
    int ret;
5763

    
5764
    s->zstream.avail_in = len;
5765
    s->zstream.next_in = (uint8_t *)buf;
5766
    while (s->zstream.avail_in > 0) {
5767
        ret = deflate(&s->zstream, Z_NO_FLUSH);
5768
        if (ret != Z_OK)
5769
            return -1;
5770
        if (s->zstream.avail_out == 0) {
5771
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
5772
            s->zstream.avail_out = IOBUF_SIZE;
5773
            s->zstream.next_out = s->buf;
5774
        }
5775
    }
5776
    return 0;
5777
}
5778

    
5779
static void ram_compress_close(RamCompressState *s)
5780
{
5781
    int len, ret;
5782

    
5783
    /* compress last bytes */
5784
    for(;;) {
5785
        ret = deflate(&s->zstream, Z_FINISH);
5786
        if (ret == Z_OK || ret == Z_STREAM_END) {
5787
            len = IOBUF_SIZE - s->zstream.avail_out;
5788
            if (len > 0) {
5789
                ram_put_cblock(s, s->buf, len);
5790
            }
5791
            s->zstream.avail_out = IOBUF_SIZE;
5792
            s->zstream.next_out = s->buf;
5793
            if (ret == Z_STREAM_END)
5794
                break;
5795
        } else {
5796
            goto fail;
5797
        }
5798
    }
5799
fail:
5800
    deflateEnd(&s->zstream);
5801
}
5802

    
5803
typedef struct RamDecompressState {
5804
    z_stream zstream;
5805
    QEMUFile *f;
5806
    uint8_t buf[IOBUF_SIZE];
5807
} RamDecompressState;
5808

    
5809
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5810
{
5811
    int ret;
5812
    memset(s, 0, sizeof(*s));
5813
    s->f = f;
5814
    ret = inflateInit(&s->zstream);
5815
    if (ret != Z_OK)
5816
        return -1;
5817
    return 0;
5818
}
5819

    
5820
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5821
{
5822
    int ret, clen;
5823

    
5824
    s->zstream.avail_out = len;
5825
    s->zstream.next_out = buf;
5826
    while (s->zstream.avail_out > 0) {
5827
        if (s->zstream.avail_in == 0) {
5828
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5829
                return -1;
5830
            clen = qemu_get_be16(s->f);
5831
            if (clen > IOBUF_SIZE)
5832
                return -1;
5833
            qemu_get_buffer(s->f, s->buf, clen);
5834
            s->zstream.avail_in = clen;
5835
            s->zstream.next_in = s->buf;
5836
        }
5837
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5838
        if (ret != Z_OK && ret != Z_STREAM_END) {
5839
            return -1;
5840
        }
5841
    }
5842
    return 0;
5843
}
5844

    
5845
static void ram_decompress_close(RamDecompressState *s)
5846
{
5847
    inflateEnd(&s->zstream);
5848
}
5849

    
5850
static void ram_save(QEMUFile *f, void *opaque)
5851
{
5852
    int i;
5853
    RamCompressState s1, *s = &s1;
5854
    uint8_t buf[10];
5855
    
5856
    qemu_put_be32(f, phys_ram_size);
5857
    if (ram_compress_open(s, f) < 0)
5858
        return;
5859
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5860
#if 0
5861
        if (tight_savevm_enabled) {
5862
            int64_t sector_num;
5863
            int j;
5864

5865
            /* find if the memory block is available on a virtual
5866
               block device */
5867
            sector_num = -1;
5868
            for(j = 0; j < MAX_DISKS; j++) {
5869
                if (bs_table[j]) {
5870
                    sector_num = bdrv_hash_find(bs_table[j], 
5871
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5872
                    if (sector_num >= 0)
5873
                        break;
5874
                }
5875
            }
5876
            if (j == MAX_DISKS)
5877
                goto normal_compress;
5878
            buf[0] = 1;
5879
            buf[1] = j;
5880
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
5881
            ram_compress_buf(s, buf, 10);
5882
        } else 
5883
#endif
5884
        {
5885
            //        normal_compress:
5886
            buf[0] = 0;
5887
            ram_compress_buf(s, buf, 1);
5888
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5889
        }
5890
    }
5891
    ram_compress_close(s);
5892
}
5893

    
5894
static int ram_load(QEMUFile *f, void *opaque, int version_id)
5895
{
5896
    RamDecompressState s1, *s = &s1;
5897
    uint8_t buf[10];
5898
    int i;
5899

    
5900
    if (version_id == 1)
5901
        return ram_load_v1(f, opaque);
5902
    if (version_id != 2)
5903
        return -EINVAL;
5904
    if (qemu_get_be32(f) != phys_ram_size)
5905
        return -EINVAL;
5906
    if (ram_decompress_open(s, f) < 0)
5907
        return -EINVAL;
5908
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5909
        if (ram_decompress_buf(s, buf, 1) < 0) {
5910
            fprintf(stderr, "Error while reading ram block header\n");
5911
            goto error;
5912
        }
5913
        if (buf[0] == 0) {
5914
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
5915
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
5916
                goto error;
5917
            }
5918
        } else 
5919
#if 0
5920
        if (buf[0] == 1) {
5921
            int bs_index;
5922
            int64_t sector_num;
5923

5924
            ram_decompress_buf(s, buf + 1, 9);
5925
            bs_index = buf[1];
5926
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
5927
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
5928
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
5929
                goto error;
5930
            }
5931
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i, 
5932
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
5933
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n", 
5934
                        bs_index, sector_num);
5935
                goto error;
5936
            }
5937
        } else 
5938
#endif
5939
        {
5940
        error:
5941
            printf("Error block header\n");
5942
            return -EINVAL;
5943
        }
5944
    }
5945
    ram_decompress_close(s);
5946
    return 0;
5947
}
5948

    
5949
/***********************************************************/
5950
/* bottom halves (can be seen as timers which expire ASAP) */
5951

    
5952
struct QEMUBH {
5953
    QEMUBHFunc *cb;
5954
    void *opaque;
5955
    int scheduled;
5956
    QEMUBH *next;
5957
};
5958

    
5959
static QEMUBH *first_bh = NULL;
5960

    
5961
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
5962
{
5963
    QEMUBH *bh;
5964
    bh = qemu_mallocz(sizeof(QEMUBH));
5965
    if (!bh)
5966
        return NULL;
5967
    bh->cb = cb;
5968
    bh->opaque = opaque;
5969
    return bh;
5970
}
5971

    
5972
int qemu_bh_poll(void)
5973
{
5974
    QEMUBH *bh, **pbh;
5975
    int ret;
5976

    
5977
    ret = 0;
5978
    for(;;) {
5979
        pbh = &first_bh;
5980
        bh = *pbh;
5981
        if (!bh)
5982
            break;
5983
        ret = 1;
5984
        *pbh = bh->next;
5985
        bh->scheduled = 0;
5986
        bh->cb(bh->opaque);
5987
    }
5988
    return ret;
5989
}
5990

    
5991
void qemu_bh_schedule(QEMUBH *bh)
5992
{
5993
    CPUState *env = cpu_single_env;
5994
    if (bh->scheduled)
5995
        return;
5996
    bh->scheduled = 1;
5997
    bh->next = first_bh;
5998
    first_bh = bh;
5999

    
6000
    /* stop the currently executing CPU to execute the BH ASAP */
6001
    if (env) {
6002
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6003
    }
6004
}
6005

    
6006
void qemu_bh_cancel(QEMUBH *bh)
6007
{
6008
    QEMUBH **pbh;
6009
    if (bh->scheduled) {
6010
        pbh = &first_bh;
6011
        while (*pbh != bh)
6012
            pbh = &(*pbh)->next;
6013
        *pbh = bh->next;
6014
        bh->scheduled = 0;
6015
    }
6016
}
6017

    
6018
void qemu_bh_delete(QEMUBH *bh)
6019
{
6020
    qemu_bh_cancel(bh);
6021
    qemu_free(bh);
6022
}
6023

    
6024
/***********************************************************/
6025
/* machine registration */
6026

    
6027
QEMUMachine *first_machine = NULL;
6028

    
6029
int qemu_register_machine(QEMUMachine *m)
6030
{
6031
    QEMUMachine **pm;
6032
    pm = &first_machine;
6033
    while (*pm != NULL)
6034
        pm = &(*pm)->next;
6035
    m->next = NULL;
6036
    *pm = m;
6037
    return 0;
6038
}
6039

    
6040
QEMUMachine *find_machine(const char *name)
6041
{
6042
    QEMUMachine *m;
6043

    
6044
    for(m = first_machine; m != NULL; m = m->next) {
6045
        if (!strcmp(m->name, name))
6046
            return m;
6047
    }
6048
    return NULL;
6049
}
6050

    
6051
/***********************************************************/
6052
/* main execution loop */
6053

    
6054
void gui_update(void *opaque)
6055
{
6056
    display_state.dpy_refresh(&display_state);
6057
    qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6058
}
6059

    
6060
struct vm_change_state_entry {
6061
    VMChangeStateHandler *cb;
6062
    void *opaque;
6063
    LIST_ENTRY (vm_change_state_entry) entries;
6064
};
6065

    
6066
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6067

    
6068
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6069
                                                     void *opaque)
6070
{
6071
    VMChangeStateEntry *e;
6072

    
6073
    e = qemu_mallocz(sizeof (*e));
6074
    if (!e)
6075
        return NULL;
6076

    
6077
    e->cb = cb;
6078
    e->opaque = opaque;
6079
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6080
    return e;
6081
}
6082

    
6083
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6084
{
6085
    LIST_REMOVE (e, entries);
6086
    qemu_free (e);
6087
}
6088

    
6089
static void vm_state_notify(int running)
6090
{
6091
    VMChangeStateEntry *e;
6092

    
6093
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6094
        e->cb(e->opaque, running);
6095
    }
6096
}
6097

    
6098
/* XXX: support several handlers */
6099
static VMStopHandler *vm_stop_cb;
6100
static void *vm_stop_opaque;
6101

    
6102
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6103
{
6104
    vm_stop_cb = cb;
6105
    vm_stop_opaque = opaque;
6106
    return 0;
6107
}
6108

    
6109
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6110
{
6111
    vm_stop_cb = NULL;
6112
}
6113

    
6114
void vm_start(void)
6115
{
6116
    if (!vm_running) {
6117
        cpu_enable_ticks();
6118
        vm_running = 1;
6119
        vm_state_notify(1);
6120
    }
6121
}
6122

    
6123
void vm_stop(int reason) 
6124
{
6125
    if (vm_running) {
6126
        cpu_disable_ticks();
6127
        vm_running = 0;
6128
        if (reason != 0) {
6129
            if (vm_stop_cb) {
6130
                vm_stop_cb(vm_stop_opaque, reason);
6131
            }
6132
        }
6133
        vm_state_notify(0);
6134
    }
6135
}
6136

    
6137
/* reset/shutdown handler */
6138

    
6139
typedef struct QEMUResetEntry {
6140
    QEMUResetHandler *func;
6141
    void *opaque;
6142
    struct QEMUResetEntry *next;
6143
} QEMUResetEntry;
6144

    
6145
static QEMUResetEntry *first_reset_entry;
6146
static int reset_requested;
6147
static int shutdown_requested;
6148
static int powerdown_requested;
6149

    
6150
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6151
{
6152
    QEMUResetEntry **pre, *re;
6153

    
6154
    pre = &first_reset_entry;
6155
    while (*pre != NULL)
6156
        pre = &(*pre)->next;
6157
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6158
    re->func = func;
6159
    re->opaque = opaque;
6160
    re->next = NULL;
6161
    *pre = re;
6162
}
6163

    
6164
static void qemu_system_reset(void)
6165
{
6166
    QEMUResetEntry *re;
6167

    
6168
    /* reset all devices */
6169
    for(re = first_reset_entry; re != NULL; re = re->next) {
6170
        re->func(re->opaque);
6171
    }
6172
}
6173

    
6174
void qemu_system_reset_request(void)
6175
{
6176
    if (no_reboot) {
6177
        shutdown_requested = 1;
6178
    } else {
6179
        reset_requested = 1;
6180
    }
6181
    if (cpu_single_env)
6182
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6183
}
6184

    
6185
void qemu_system_shutdown_request(void)
6186
{
6187
    shutdown_requested = 1;
6188
    if (cpu_single_env)
6189
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6190
}
6191

    
6192
void qemu_system_powerdown_request(void)
6193
{
6194
    powerdown_requested = 1;
6195
    if (cpu_single_env)
6196
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6197
}
6198

    
6199
void main_loop_wait(int timeout)
6200
{
6201
    IOHandlerRecord *ioh;
6202
    fd_set rfds, wfds, xfds;
6203
    int ret, nfds;
6204
#ifdef _WIN32
6205
    int ret2, i;
6206
#endif
6207
    struct timeval tv;
6208
    PollingEntry *pe;
6209

    
6210

    
6211
    /* XXX: need to suppress polling by better using win32 events */
6212
    ret = 0;
6213
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6214
        ret |= pe->func(pe->opaque);
6215
    }
6216
#ifdef _WIN32
6217
    if (ret == 0) {
6218
        int err;
6219
        WaitObjects *w = &wait_objects;
6220
        
6221
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6222
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6223
            if (w->func[ret - WAIT_OBJECT_0])
6224
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6225
                
6226
            /* Check for additional signaled events */ 
6227
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6228
                                
6229
                /* Check if event is signaled */
6230
                ret2 = WaitForSingleObject(w->events[i], 0);
6231
                if(ret2 == WAIT_OBJECT_0) {
6232
                    if (w->func[i])
6233
                        w->func[i](w->opaque[i]);
6234
                } else if (ret2 == WAIT_TIMEOUT) {
6235
                } else {
6236
                    err = GetLastError();
6237
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6238
                }                
6239
            }                 
6240
        } else if (ret == WAIT_TIMEOUT) {
6241
        } else {
6242
            err = GetLastError();
6243
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6244
        }
6245
    }
6246
#endif
6247
    /* poll any events */
6248
    /* XXX: separate device handlers from system ones */
6249
    nfds = -1;
6250
    FD_ZERO(&rfds);
6251
    FD_ZERO(&wfds);
6252
    FD_ZERO(&xfds);
6253
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6254
        if (ioh->deleted)
6255
            continue;
6256
        if (ioh->fd_read &&
6257
            (!ioh->fd_read_poll ||
6258
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6259
            FD_SET(ioh->fd, &rfds);
6260
            if (ioh->fd > nfds)
6261
                nfds = ioh->fd;
6262
        }
6263
        if (ioh->fd_write) {
6264
            FD_SET(ioh->fd, &wfds);
6265
            if (ioh->fd > nfds)
6266
                nfds = ioh->fd;
6267
        }
6268
    }
6269
    
6270
    tv.tv_sec = 0;
6271
#ifdef _WIN32
6272
    tv.tv_usec = 0;
6273
#else
6274
    tv.tv_usec = timeout * 1000;
6275
#endif
6276
#if defined(CONFIG_SLIRP)
6277
    if (slirp_inited) {
6278
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6279
    }
6280
#endif
6281
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6282
    if (ret > 0) {
6283
        IOHandlerRecord **pioh;
6284

    
6285
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6286
            if (ioh->deleted)
6287
                continue;
6288
            if (FD_ISSET(ioh->fd, &rfds)) {
6289
                ioh->fd_read(ioh->opaque);
6290
            }
6291
            if (FD_ISSET(ioh->fd, &wfds)) {
6292
                ioh->fd_write(ioh->opaque);
6293
            }
6294
        }
6295

    
6296
        /* remove deleted IO handlers */
6297
        pioh = &first_io_handler;
6298
        while (*pioh) {
6299
            ioh = *pioh;
6300
            if (ioh->deleted) {
6301
                *pioh = ioh->next;
6302
                qemu_free(ioh);
6303
            } else 
6304
                pioh = &ioh->next;
6305
        }
6306
    }
6307
#if defined(CONFIG_SLIRP)
6308
    if (slirp_inited) {
6309
        if (ret < 0) {
6310
            FD_ZERO(&rfds);
6311
            FD_ZERO(&wfds);
6312
            FD_ZERO(&xfds);
6313
        }
6314
        slirp_select_poll(&rfds, &wfds, &xfds);
6315
    }
6316
#endif
6317
    qemu_aio_poll();
6318
    qemu_bh_poll();
6319

    
6320
    if (vm_running) {
6321
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], 
6322
                        qemu_get_clock(vm_clock));
6323
        /* run dma transfers, if any */
6324
        DMA_run();
6325
    }
6326
    
6327
    /* real time timers */
6328
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], 
6329
                    qemu_get_clock(rt_clock));
6330
}
6331

    
6332
static CPUState *cur_cpu;
6333

    
6334
int main_loop(void)
6335
{
6336
    int ret, timeout;
6337
#ifdef CONFIG_PROFILER
6338
    int64_t ti;
6339
#endif
6340
    CPUState *env;
6341

    
6342
    cur_cpu = first_cpu;
6343
    for(;;) {
6344
        if (vm_running) {
6345

    
6346
            env = cur_cpu;
6347
            for(;;) {
6348
                /* get next cpu */
6349
                env = env->next_cpu;
6350
                if (!env)
6351
                    env = first_cpu;
6352
#ifdef CONFIG_PROFILER
6353
                ti = profile_getclock();
6354
#endif
6355
                ret = cpu_exec(env);
6356
#ifdef CONFIG_PROFILER
6357
                qemu_time += profile_getclock() - ti;
6358
#endif
6359
                if (ret == EXCP_HLT) {
6360
                    /* Give the next CPU a chance to run.  */
6361
                    cur_cpu = env;
6362
                    continue;
6363
                }
6364
                if (ret != EXCP_HALTED)
6365
                    break;
6366
                /* all CPUs are halted ? */
6367
                if (env == cur_cpu)
6368
                    break;
6369
            }
6370
            cur_cpu = env;
6371

    
6372
            if (shutdown_requested) {
6373
                ret = EXCP_INTERRUPT;
6374
                break;
6375
            }
6376
            if (reset_requested) {
6377
                reset_requested = 0;
6378
                qemu_system_reset();
6379
                ret = EXCP_INTERRUPT;
6380
            }
6381
            if (powerdown_requested) {
6382
                powerdown_requested = 0;
6383
                qemu_system_powerdown();
6384
                ret = EXCP_INTERRUPT;
6385
            }
6386
            if (ret == EXCP_DEBUG) {
6387
                vm_stop(EXCP_DEBUG);
6388
            }
6389
            /* If all cpus are halted then wait until the next IRQ */
6390
            /* XXX: use timeout computed from timers */
6391
            if (ret == EXCP_HALTED)
6392
                timeout = 10;
6393
            else
6394
                timeout = 0;
6395
        } else {
6396
            timeout = 10;
6397
        }
6398
#ifdef CONFIG_PROFILER
6399
        ti = profile_getclock();
6400
#endif
6401
        main_loop_wait(timeout);
6402
#ifdef CONFIG_PROFILER
6403
        dev_time += profile_getclock() - ti;
6404
#endif
6405
    }
6406
    cpu_disable_ticks();
6407
    return ret;
6408
}
6409

    
6410
void help(void)
6411
{
6412
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6413
           "usage: %s [options] [disk_image]\n"
6414
           "\n"
6415
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6416
           "\n"
6417
           "Standard options:\n"
6418
           "-M machine      select emulated machine (-M ? for list)\n"
6419
           "-cpu cpu        select CPU (-cpu ? for list)\n"
6420
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
6421
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
6422
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
6423
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6424
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
6425
           "-sd file        use 'file' as SecureDigital card image\n"
6426
           "-pflash file    use 'file' as a parallel flash image\n"
6427
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6428
           "-snapshot       write to temporary files instead of disk image files\n"
6429
#ifdef CONFIG_SDL
6430
           "-no-frame       open SDL window without a frame and window decorations\n"
6431
           "-no-quit        disable SDL window close capability\n"
6432
#endif
6433
#ifdef TARGET_I386
6434
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
6435
#endif
6436
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
6437
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
6438
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
6439
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
6440
#ifndef _WIN32
6441
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
6442
#endif
6443
#ifdef HAS_AUDIO
6444
           "-audio-help     print list of audio drivers and their options\n"
6445
           "-soundhw c1,... enable audio support\n"
6446
           "                and only specified sound cards (comma separated list)\n"
6447
           "                use -soundhw ? to get the list of supported cards\n"
6448
           "                use -soundhw all to enable all of them\n"
6449
#endif
6450
           "-localtime      set the real time clock to local time [default=utc]\n"
6451
           "-full-screen    start in full screen\n"
6452
#ifdef TARGET_I386
6453
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
6454
#endif
6455
           "-usb            enable the USB driver (will be the default soon)\n"
6456
           "-usbdevice name add the host or guest USB device 'name'\n"
6457
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
6458
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
6459
#endif
6460
           "-name string    set the name of the guest\n"
6461
           "\n"
6462
           "Network options:\n"
6463
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6464
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
6465
#ifdef CONFIG_SLIRP
6466
           "-net user[,vlan=n][,hostname=host]\n"
6467
           "                connect the user mode network stack to VLAN 'n' and send\n"
6468
           "                hostname 'host' to DHCP clients\n"
6469
#endif
6470
#ifdef _WIN32
6471
           "-net tap[,vlan=n],ifname=name\n"
6472
           "                connect the host TAP network interface to VLAN 'n'\n"
6473
#else
6474
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6475
           "                connect the host TAP network interface to VLAN 'n' and use\n"
6476
           "                the network script 'file' (default=%s);\n"
6477
           "                use 'script=no' to disable script execution;\n"
6478
           "                use 'fd=h' to connect to an already opened TAP interface\n"
6479
#endif
6480
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6481
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
6482
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6483
           "                connect the vlan 'n' to multicast maddr and port\n"
6484
           "-net none       use it alone to have zero network devices; if no -net option\n"
6485
           "                is provided, the default is '-net nic -net user'\n"
6486
           "\n"
6487
#ifdef CONFIG_SLIRP
6488
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
6489
           "-bootp file     advertise file in BOOTP replies\n"
6490
#ifndef _WIN32
6491
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
6492
#endif
6493
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6494
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
6495
#endif
6496
           "\n"
6497
           "Linux boot specific:\n"
6498
           "-kernel bzImage use 'bzImage' as kernel image\n"
6499
           "-append cmdline use 'cmdline' as kernel command line\n"
6500
           "-initrd file    use 'file' as initial ram disk\n"
6501
           "\n"
6502
           "Debug/Expert options:\n"
6503
           "-monitor dev    redirect the monitor to char device 'dev'\n"
6504
           "-serial dev     redirect the serial port to char device 'dev'\n"
6505
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
6506
           "-pidfile file   Write PID to 'file'\n"
6507
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
6508
           "-s              wait gdb connection to port\n"
6509
           "-p port         set gdb connection port [default=%s]\n"
6510
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
6511
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
6512
           "                translation (t=none or lba) (usually qemu can guess them)\n"
6513
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
6514
#ifdef USE_KQEMU
6515
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
6516
           "-no-kqemu       disable KQEMU kernel module usage\n"
6517
#endif
6518
#ifdef USE_CODE_COPY
6519
           "-no-code-copy   disable code copy acceleration\n"
6520
#endif
6521
#ifdef TARGET_I386
6522
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
6523
           "                (default is CL-GD5446 PCI VGA)\n"
6524
           "-no-acpi        disable ACPI\n"
6525
#endif
6526
           "-no-reboot      exit instead of rebooting\n"
6527
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
6528
           "-vnc display    start a VNC server on display\n"
6529
#ifndef _WIN32
6530
           "-daemonize      daemonize QEMU after initializing\n"
6531
#endif
6532
           "-option-rom rom load a file, rom, into the option ROM space\n"
6533
#ifdef TARGET_SPARC
6534
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
6535
#endif
6536
           "\n"
6537
           "During emulation, the following keys are useful:\n"
6538
           "ctrl-alt-f      toggle full screen\n"
6539
           "ctrl-alt-n      switch to virtual console 'n'\n"
6540
           "ctrl-alt        toggle mouse and keyboard grab\n"
6541
           "\n"
6542
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
6543
           ,
6544
           "qemu",
6545
           DEFAULT_RAM_SIZE,
6546
#ifndef _WIN32
6547
           DEFAULT_NETWORK_SCRIPT,
6548
#endif
6549
           DEFAULT_GDBSTUB_PORT,
6550
           "/tmp/qemu.log");
6551
    exit(1);
6552
}
6553

    
6554
#define HAS_ARG 0x0001
6555

    
6556
enum {
6557
    QEMU_OPTION_h,
6558

    
6559
    QEMU_OPTION_M,
6560
    QEMU_OPTION_cpu,
6561
    QEMU_OPTION_fda,
6562
    QEMU_OPTION_fdb,
6563
    QEMU_OPTION_hda,
6564
    QEMU_OPTION_hdb,
6565
    QEMU_OPTION_hdc,
6566
    QEMU_OPTION_hdd,
6567
    QEMU_OPTION_cdrom,
6568
    QEMU_OPTION_mtdblock,
6569
    QEMU_OPTION_sd,
6570
    QEMU_OPTION_pflash,
6571
    QEMU_OPTION_boot,
6572
    QEMU_OPTION_snapshot,
6573
#ifdef TARGET_I386
6574
    QEMU_OPTION_no_fd_bootchk,
6575
#endif
6576
    QEMU_OPTION_m,
6577
    QEMU_OPTION_nographic,
6578
    QEMU_OPTION_portrait,
6579
#ifdef HAS_AUDIO
6580
    QEMU_OPTION_audio_help,
6581
    QEMU_OPTION_soundhw,
6582
#endif
6583

    
6584
    QEMU_OPTION_net,
6585
    QEMU_OPTION_tftp,
6586
    QEMU_OPTION_bootp,
6587
    QEMU_OPTION_smb,
6588
    QEMU_OPTION_redir,
6589

    
6590
    QEMU_OPTION_kernel,
6591
    QEMU_OPTION_append,
6592
    QEMU_OPTION_initrd,
6593

    
6594
    QEMU_OPTION_S,
6595
    QEMU_OPTION_s,
6596
    QEMU_OPTION_p,
6597
    QEMU_OPTION_d,
6598
    QEMU_OPTION_hdachs,
6599
    QEMU_OPTION_L,
6600
    QEMU_OPTION_no_code_copy,
6601
    QEMU_OPTION_k,
6602
    QEMU_OPTION_localtime,
6603
    QEMU_OPTION_cirrusvga,
6604
    QEMU_OPTION_vmsvga,
6605
    QEMU_OPTION_g,
6606
    QEMU_OPTION_std_vga,
6607
    QEMU_OPTION_echr,
6608
    QEMU_OPTION_monitor,
6609
    QEMU_OPTION_serial,
6610
    QEMU_OPTION_parallel,
6611
    QEMU_OPTION_loadvm,
6612
    QEMU_OPTION_full_screen,
6613
    QEMU_OPTION_no_frame,
6614
    QEMU_OPTION_no_quit,
6615
    QEMU_OPTION_pidfile,
6616
    QEMU_OPTION_no_kqemu,
6617
    QEMU_OPTION_kernel_kqemu,
6618
    QEMU_OPTION_win2k_hack,
6619
    QEMU_OPTION_usb,
6620
    QEMU_OPTION_usbdevice,
6621
    QEMU_OPTION_smp,
6622
    QEMU_OPTION_vnc,
6623
    QEMU_OPTION_no_acpi,
6624
    QEMU_OPTION_no_reboot,
6625
    QEMU_OPTION_show_cursor,
6626
    QEMU_OPTION_daemonize,
6627
    QEMU_OPTION_option_rom,
6628
    QEMU_OPTION_semihosting,
6629
    QEMU_OPTION_name,
6630
    QEMU_OPTION_prom_env,
6631
};
6632

    
6633
typedef struct QEMUOption {
6634
    const char *name;
6635
    int flags;
6636
    int index;
6637
} QEMUOption;
6638

    
6639
const QEMUOption qemu_options[] = {
6640
    { "h", 0, QEMU_OPTION_h },
6641
    { "help", 0, QEMU_OPTION_h },
6642

    
6643
    { "M", HAS_ARG, QEMU_OPTION_M },
6644
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6645
    { "fda", HAS_ARG, QEMU_OPTION_fda },
6646
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6647
    { "hda", HAS_ARG, QEMU_OPTION_hda },
6648
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6649
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6650
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6651
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6652
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
6653
    { "sd", HAS_ARG, QEMU_OPTION_sd },
6654
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
6655
    { "boot", HAS_ARG, QEMU_OPTION_boot },
6656
    { "snapshot", 0, QEMU_OPTION_snapshot },
6657
#ifdef TARGET_I386
6658
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6659
#endif
6660
    { "m", HAS_ARG, QEMU_OPTION_m },
6661
    { "nographic", 0, QEMU_OPTION_nographic },
6662
    { "portrait", 0, QEMU_OPTION_portrait },
6663
    { "k", HAS_ARG, QEMU_OPTION_k },
6664
#ifdef HAS_AUDIO
6665
    { "audio-help", 0, QEMU_OPTION_audio_help },
6666
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6667
#endif
6668

    
6669
    { "net", HAS_ARG, QEMU_OPTION_net},
6670
#ifdef CONFIG_SLIRP
6671
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6672
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6673
#ifndef _WIN32
6674
    { "smb", HAS_ARG, QEMU_OPTION_smb },
6675
#endif
6676
    { "redir", HAS_ARG, QEMU_OPTION_redir },
6677
#endif
6678

    
6679
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6680
    { "append", HAS_ARG, QEMU_OPTION_append },
6681
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6682

    
6683
    { "S", 0, QEMU_OPTION_S },
6684
    { "s", 0, QEMU_OPTION_s },
6685
    { "p", HAS_ARG, QEMU_OPTION_p },
6686
    { "d", HAS_ARG, QEMU_OPTION_d },
6687
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6688
    { "L", HAS_ARG, QEMU_OPTION_L },
6689
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6690
#ifdef USE_KQEMU
6691
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6692
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6693
#endif
6694
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
6695
    { "g", 1, QEMU_OPTION_g },
6696
#endif
6697
    { "localtime", 0, QEMU_OPTION_localtime },
6698
    { "std-vga", 0, QEMU_OPTION_std_vga },
6699
    { "echr", 1, QEMU_OPTION_echr },
6700
    { "monitor", 1, QEMU_OPTION_monitor },
6701
    { "serial", 1, QEMU_OPTION_serial },
6702
    { "parallel", 1, QEMU_OPTION_parallel },
6703
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6704
    { "full-screen", 0, QEMU_OPTION_full_screen },
6705
#ifdef CONFIG_SDL
6706
    { "no-frame", 0, QEMU_OPTION_no_frame },
6707
    { "no-quit", 0, QEMU_OPTION_no_quit },
6708
#endif
6709
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6710
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6711
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6712
    { "smp", HAS_ARG, QEMU_OPTION_smp },
6713
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6714

    
6715
    /* temporary options */
6716
    { "usb", 0, QEMU_OPTION_usb },
6717
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6718
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
6719
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
6720
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
6721
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
6722
    { "daemonize", 0, QEMU_OPTION_daemonize },
6723
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6724
#if defined(TARGET_ARM)
6725
    { "semihosting", 0, QEMU_OPTION_semihosting },
6726
#endif
6727
    { "name", HAS_ARG, QEMU_OPTION_name },
6728
#if defined(TARGET_SPARC)
6729
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
6730
#endif
6731
    { NULL },
6732
};
6733

    
6734
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
6735

    
6736
/* this stack is only used during signal handling */
6737
#define SIGNAL_STACK_SIZE 32768
6738

    
6739
static uint8_t *signal_stack;
6740

    
6741
#endif
6742

    
6743
/* password input */
6744

    
6745
int qemu_key_check(BlockDriverState *bs, const char *name)
6746
{
6747
    char password[256];
6748
    int i;
6749

    
6750
    if (!bdrv_is_encrypted(bs))
6751
        return 0;
6752

    
6753
    term_printf("%s is encrypted.\n", name);
6754
    for(i = 0; i < 3; i++) {
6755
        monitor_readline("Password: ", 1, password, sizeof(password));
6756
        if (bdrv_set_key(bs, password) == 0)
6757
            return 0;
6758
        term_printf("invalid password\n");
6759
    }
6760
    return -EPERM;
6761
}
6762

    
6763
static BlockDriverState *get_bdrv(int index)
6764
{
6765
    BlockDriverState *bs;
6766

    
6767
    if (index < 4) {
6768
        bs = bs_table[index];
6769
    } else if (index < 6) {
6770
        bs = fd_table[index - 4];
6771
    } else {
6772
        bs = NULL;
6773
    }
6774
    return bs;
6775
}
6776

    
6777
static void read_passwords(void)
6778
{
6779
    BlockDriverState *bs;
6780
    int i;
6781

    
6782
    for(i = 0; i < 6; i++) {
6783
        bs = get_bdrv(i);
6784
        if (bs)
6785
            qemu_key_check(bs, bdrv_get_device_name(bs));
6786
    }
6787
}
6788

    
6789
/* XXX: currently we cannot use simultaneously different CPUs */
6790
void register_machines(void)
6791
{
6792
#if defined(TARGET_I386)
6793
    qemu_register_machine(&pc_machine);
6794
    qemu_register_machine(&isapc_machine);
6795
#elif defined(TARGET_PPC)
6796
    qemu_register_machine(&heathrow_machine);
6797
    qemu_register_machine(&core99_machine);
6798
    qemu_register_machine(&prep_machine);
6799
    qemu_register_machine(&ref405ep_machine);
6800
    qemu_register_machine(&taihu_machine);
6801
#elif defined(TARGET_MIPS)
6802
    qemu_register_machine(&mips_machine);
6803
    qemu_register_machine(&mips_malta_machine);
6804
    qemu_register_machine(&mips_pica61_machine);
6805
#elif defined(TARGET_SPARC)
6806
#ifdef TARGET_SPARC64
6807
    qemu_register_machine(&sun4u_machine);
6808
#else
6809
    qemu_register_machine(&ss5_machine);
6810
    qemu_register_machine(&ss10_machine);
6811
#endif
6812
#elif defined(TARGET_ARM)
6813
    qemu_register_machine(&integratorcp_machine);
6814
    qemu_register_machine(&versatilepb_machine);
6815
    qemu_register_machine(&versatileab_machine);
6816
    qemu_register_machine(&realview_machine);
6817
    qemu_register_machine(&akitapda_machine);
6818
    qemu_register_machine(&spitzpda_machine);
6819
    qemu_register_machine(&borzoipda_machine);
6820
    qemu_register_machine(&terrierpda_machine);
6821
#elif defined(TARGET_SH4)
6822
    qemu_register_machine(&shix_machine);
6823
#elif defined(TARGET_ALPHA)
6824
    /* XXX: TODO */
6825
#else
6826
#error unsupported CPU
6827
#endif
6828
}
6829

    
6830
#ifdef HAS_AUDIO
6831
struct soundhw soundhw[] = {
6832
#ifdef HAS_AUDIO_CHOICE
6833
#ifdef TARGET_I386
6834
    {
6835
        "pcspk",
6836
        "PC speaker",
6837
        0,
6838
        1,
6839
        { .init_isa = pcspk_audio_init }
6840
    },
6841
#endif
6842
    {
6843
        "sb16",
6844
        "Creative Sound Blaster 16",
6845
        0,
6846
        1,
6847
        { .init_isa = SB16_init }
6848
    },
6849

    
6850
#ifdef CONFIG_ADLIB
6851
    {
6852
        "adlib",
6853
#ifdef HAS_YMF262
6854
        "Yamaha YMF262 (OPL3)",
6855
#else
6856
        "Yamaha YM3812 (OPL2)",
6857
#endif
6858
        0,
6859
        1,
6860
        { .init_isa = Adlib_init }
6861
    },
6862
#endif
6863

    
6864
#ifdef CONFIG_GUS
6865
    {
6866
        "gus",
6867
        "Gravis Ultrasound GF1",
6868
        0,
6869
        1,
6870
        { .init_isa = GUS_init }
6871
    },
6872
#endif
6873

    
6874
    {
6875
        "es1370",
6876
        "ENSONIQ AudioPCI ES1370",
6877
        0,
6878
        0,
6879
        { .init_pci = es1370_init }
6880
    },
6881
#endif
6882

    
6883
    { NULL, NULL, 0, 0, { NULL } }
6884
};
6885

    
6886
static void select_soundhw (const char *optarg)
6887
{
6888
    struct soundhw *c;
6889

    
6890
    if (*optarg == '?') {
6891
    show_valid_cards:
6892

    
6893
        printf ("Valid sound card names (comma separated):\n");
6894
        for (c = soundhw; c->name; ++c) {
6895
            printf ("%-11s %s\n", c->name, c->descr);
6896
        }
6897
        printf ("\n-soundhw all will enable all of the above\n");
6898
        exit (*optarg != '?');
6899
    }
6900
    else {
6901
        size_t l;
6902
        const char *p;
6903
        char *e;
6904
        int bad_card = 0;
6905

    
6906
        if (!strcmp (optarg, "all")) {
6907
            for (c = soundhw; c->name; ++c) {
6908
                c->enabled = 1;
6909
            }
6910
            return;
6911
        }
6912

    
6913
        p = optarg;
6914
        while (*p) {
6915
            e = strchr (p, ',');
6916
            l = !e ? strlen (p) : (size_t) (e - p);
6917

    
6918
            for (c = soundhw; c->name; ++c) {
6919
                if (!strncmp (c->name, p, l)) {
6920
                    c->enabled = 1;
6921
                    break;
6922
                }
6923
            }
6924

    
6925
            if (!c->name) {
6926
                if (l > 80) {
6927
                    fprintf (stderr,
6928
                             "Unknown sound card name (too big to show)\n");
6929
                }
6930
                else {
6931
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
6932
                             (int) l, p);
6933
                }
6934
                bad_card = 1;
6935
            }
6936
            p += l + (e != NULL);
6937
        }
6938

    
6939
        if (bad_card)
6940
            goto show_valid_cards;
6941
    }
6942
}
6943
#endif
6944

    
6945
#ifdef _WIN32
6946
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
6947
{
6948
    exit(STATUS_CONTROL_C_EXIT);
6949
    return TRUE;
6950
}
6951
#endif
6952

    
6953
#define MAX_NET_CLIENTS 32
6954

    
6955
int main(int argc, char **argv)
6956
{
6957
#ifdef CONFIG_GDBSTUB
6958
    int use_gdbstub;
6959
    const char *gdbstub_port;
6960
#endif
6961
    int i, cdrom_index, pflash_index;
6962
    int snapshot, linux_boot;
6963
    const char *initrd_filename;
6964
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
6965
    const char *pflash_filename[MAX_PFLASH];
6966
    const char *sd_filename;
6967
    const char *mtd_filename;
6968
    const char *kernel_filename, *kernel_cmdline;
6969
    DisplayState *ds = &display_state;
6970
    int cyls, heads, secs, translation;
6971
    char net_clients[MAX_NET_CLIENTS][256];
6972
    int nb_net_clients;
6973
    int optind;
6974
    const char *r, *optarg;
6975
    CharDriverState *monitor_hd;
6976
    char monitor_device[128];
6977
    char serial_devices[MAX_SERIAL_PORTS][128];
6978
    int serial_device_index;
6979
    char parallel_devices[MAX_PARALLEL_PORTS][128];
6980
    int parallel_device_index;
6981
    const char *loadvm = NULL;
6982
    QEMUMachine *machine;
6983
    const char *cpu_model;
6984
    char usb_devices[MAX_USB_CMDLINE][128];
6985
    int usb_devices_index;
6986
    int fds[2];
6987
    const char *pid_file = NULL;
6988

    
6989
    LIST_INIT (&vm_change_state_head);
6990
#ifndef _WIN32
6991
    {
6992
        struct sigaction act;
6993
        sigfillset(&act.sa_mask);
6994
        act.sa_flags = 0;
6995
        act.sa_handler = SIG_IGN;
6996
        sigaction(SIGPIPE, &act, NULL);
6997
    }
6998
#else
6999
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7000
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7001
       QEMU to run on a single CPU */
7002
    {
7003
        HANDLE h;
7004
        DWORD mask, smask;
7005
        int i;
7006
        h = GetCurrentProcess();
7007
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7008
            for(i = 0; i < 32; i++) {
7009
                if (mask & (1 << i))
7010
                    break;
7011
            }
7012
            if (i != 32) {
7013
                mask = 1 << i;
7014
                SetProcessAffinityMask(h, mask);
7015
            }
7016
        }
7017
    }
7018
#endif
7019

    
7020
    register_machines();
7021
    machine = first_machine;
7022
    cpu_model = NULL;
7023
    initrd_filename = NULL;
7024
    for(i = 0; i < MAX_FD; i++)
7025
        fd_filename[i] = NULL;
7026
    for(i = 0; i < MAX_DISKS; i++)
7027
        hd_filename[i] = NULL;
7028
    for(i = 0; i < MAX_PFLASH; i++)
7029
        pflash_filename[i] = NULL;
7030
    pflash_index = 0;
7031
    sd_filename = NULL;
7032
    mtd_filename = NULL;
7033
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7034
    vga_ram_size = VGA_RAM_SIZE;
7035
#ifdef CONFIG_GDBSTUB
7036
    use_gdbstub = 0;
7037
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7038
#endif
7039
    snapshot = 0;
7040
    nographic = 0;
7041
    kernel_filename = NULL;
7042
    kernel_cmdline = "";
7043
#ifdef TARGET_PPC
7044
    cdrom_index = 1;
7045
#else
7046
    cdrom_index = 2;
7047
#endif
7048
    cyls = heads = secs = 0;
7049
    translation = BIOS_ATA_TRANSLATION_AUTO;
7050
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7051

    
7052
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7053
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7054
        serial_devices[i][0] = '\0';
7055
    serial_device_index = 0;
7056
    
7057
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7058
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7059
        parallel_devices[i][0] = '\0';
7060
    parallel_device_index = 0;
7061
    
7062
    usb_devices_index = 0;
7063
    
7064
    nb_net_clients = 0;
7065

    
7066
    nb_nics = 0;
7067
    /* default mac address of the first network interface */
7068
    
7069
    optind = 1;
7070
    for(;;) {
7071
        if (optind >= argc)
7072
            break;
7073
        r = argv[optind];
7074
        if (r[0] != '-') {
7075
            hd_filename[0] = argv[optind++];
7076
        } else {
7077
            const QEMUOption *popt;
7078

    
7079
            optind++;
7080
            /* Treat --foo the same as -foo.  */
7081
            if (r[1] == '-')
7082
                r++;
7083
            popt = qemu_options;
7084
            for(;;) {
7085
                if (!popt->name) {
7086
                    fprintf(stderr, "%s: invalid option -- '%s'\n", 
7087
                            argv[0], r);
7088
                    exit(1);
7089
                }
7090
                if (!strcmp(popt->name, r + 1))
7091
                    break;
7092
                popt++;
7093
            }
7094
            if (popt->flags & HAS_ARG) {
7095
                if (optind >= argc) {
7096
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7097
                            argv[0], r);
7098
                    exit(1);
7099
                }
7100
                optarg = argv[optind++];
7101
            } else {
7102
                optarg = NULL;
7103
            }
7104

    
7105
            switch(popt->index) {
7106
            case QEMU_OPTION_M:
7107
                machine = find_machine(optarg);
7108
                if (!machine) {
7109
                    QEMUMachine *m;
7110
                    printf("Supported machines are:\n");
7111
                    for(m = first_machine; m != NULL; m = m->next) {
7112
                        printf("%-10s %s%s\n",
7113
                               m->name, m->desc, 
7114
                               m == first_machine ? " (default)" : "");
7115
                    }
7116
                    exit(1);
7117
                }
7118
                break;
7119
            case QEMU_OPTION_cpu:
7120
                /* hw initialization will check this */
7121
                if (optarg[0] == '?') {
7122
#if defined(TARGET_PPC)
7123
                    ppc_cpu_list(stdout, &fprintf);
7124
#elif defined(TARGET_ARM)
7125
                    arm_cpu_list();
7126
#elif defined(TARGET_MIPS)
7127
                    mips_cpu_list(stdout, &fprintf);
7128
#elif defined(TARGET_SPARC)
7129
                    sparc_cpu_list(stdout, &fprintf);
7130
#endif
7131
                    exit(1);
7132
                } else {
7133
                    cpu_model = optarg;
7134
                }
7135
                break;
7136
            case QEMU_OPTION_initrd:
7137
                initrd_filename = optarg;
7138
                break;
7139
            case QEMU_OPTION_hda:
7140
            case QEMU_OPTION_hdb:
7141
            case QEMU_OPTION_hdc:
7142
            case QEMU_OPTION_hdd:
7143
                {
7144
                    int hd_index;
7145
                    hd_index = popt->index - QEMU_OPTION_hda;
7146
                    hd_filename[hd_index] = optarg;
7147
                    if (hd_index == cdrom_index)
7148
                        cdrom_index = -1;
7149
                }
7150
                break;
7151
            case QEMU_OPTION_mtdblock:
7152
                mtd_filename = optarg;
7153
                break;
7154
            case QEMU_OPTION_sd:
7155
                sd_filename = optarg;
7156
                break;
7157
            case QEMU_OPTION_pflash:
7158
                if (pflash_index >= MAX_PFLASH) {
7159
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7160
                    exit(1);
7161
                }
7162
                pflash_filename[pflash_index++] = optarg;
7163
                break;
7164
            case QEMU_OPTION_snapshot:
7165
                snapshot = 1;
7166
                break;
7167
            case QEMU_OPTION_hdachs:
7168
                {
7169
                    const char *p;
7170
                    p = optarg;
7171
                    cyls = strtol(p, (char **)&p, 0);
7172
                    if (cyls < 1 || cyls > 16383)
7173
                        goto chs_fail;
7174
                    if (*p != ',')
7175
                        goto chs_fail;
7176
                    p++;
7177
                    heads = strtol(p, (char **)&p, 0);
7178
                    if (heads < 1 || heads > 16)
7179
                        goto chs_fail;
7180
                    if (*p != ',')
7181
                        goto chs_fail;
7182
                    p++;
7183
                    secs = strtol(p, (char **)&p, 0);
7184
                    if (secs < 1 || secs > 63)
7185
                        goto chs_fail;
7186
                    if (*p == ',') {
7187
                        p++;
7188
                        if (!strcmp(p, "none"))
7189
                            translation = BIOS_ATA_TRANSLATION_NONE;
7190
                        else if (!strcmp(p, "lba"))
7191
                            translation = BIOS_ATA_TRANSLATION_LBA;
7192
                        else if (!strcmp(p, "auto"))
7193
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7194
                        else
7195
                            goto chs_fail;
7196
                    } else if (*p != '\0') {
7197
                    chs_fail:
7198
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7199
                        exit(1);
7200
                    }
7201
                }
7202
                break;
7203
            case QEMU_OPTION_nographic:
7204
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7205
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7206
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7207
                nographic = 1;
7208
                break;
7209
            case QEMU_OPTION_portrait:
7210
                graphic_rotate = 1;
7211
                break;
7212
            case QEMU_OPTION_kernel:
7213
                kernel_filename = optarg;
7214
                break;
7215
            case QEMU_OPTION_append:
7216
                kernel_cmdline = optarg;
7217
                break;
7218
            case QEMU_OPTION_cdrom:
7219
                if (cdrom_index >= 0) {
7220
                    hd_filename[cdrom_index] = optarg;
7221
                }
7222
                break;
7223
            case QEMU_OPTION_boot:
7224
                boot_device = optarg[0];
7225
                if (boot_device != 'a' && 
7226
#if defined(TARGET_SPARC) || defined(TARGET_I386)
7227
                    // Network boot
7228
                    boot_device != 'n' &&
7229
#endif
7230
                    boot_device != 'c' && boot_device != 'd') {
7231
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7232
                    exit(1);
7233
                }
7234
                break;
7235
            case QEMU_OPTION_fda:
7236
                fd_filename[0] = optarg;
7237
                break;
7238
            case QEMU_OPTION_fdb:
7239
                fd_filename[1] = optarg;
7240
                break;
7241
#ifdef TARGET_I386
7242
            case QEMU_OPTION_no_fd_bootchk:
7243
                fd_bootchk = 0;
7244
                break;
7245
#endif
7246
            case QEMU_OPTION_no_code_copy:
7247
                code_copy_enabled = 0;
7248
                break;
7249
            case QEMU_OPTION_net:
7250
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7251
                    fprintf(stderr, "qemu: too many network clients\n");
7252
                    exit(1);
7253
                }
7254
                pstrcpy(net_clients[nb_net_clients],
7255
                        sizeof(net_clients[0]),
7256
                        optarg);
7257
                nb_net_clients++;
7258
                break;
7259
#ifdef CONFIG_SLIRP
7260
            case QEMU_OPTION_tftp:
7261
                tftp_prefix = optarg;
7262
                break;
7263
            case QEMU_OPTION_bootp:
7264
                bootp_filename = optarg;
7265
                break;
7266
#ifndef _WIN32
7267
            case QEMU_OPTION_smb:
7268
                net_slirp_smb(optarg);
7269
                break;
7270
#endif
7271
            case QEMU_OPTION_redir:
7272
                net_slirp_redir(optarg);                
7273
                break;
7274
#endif
7275
#ifdef HAS_AUDIO
7276
            case QEMU_OPTION_audio_help:
7277
                AUD_help ();
7278
                exit (0);
7279
                break;
7280
            case QEMU_OPTION_soundhw:
7281
                select_soundhw (optarg);
7282
                break;
7283
#endif
7284
            case QEMU_OPTION_h:
7285
                help();
7286
                break;
7287
            case QEMU_OPTION_m:
7288
                ram_size = atoi(optarg) * 1024 * 1024;
7289
                if (ram_size <= 0)
7290
                    help();
7291
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7292
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7293
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7294
                    exit(1);
7295
                }
7296
                break;
7297
            case QEMU_OPTION_d:
7298
                {
7299
                    int mask;
7300
                    CPULogItem *item;
7301
                    
7302
                    mask = cpu_str_to_log_mask(optarg);
7303
                    if (!mask) {
7304
                        printf("Log items (comma separated):\n");
7305
                    for(item = cpu_log_items; item->mask != 0; item++) {
7306
                        printf("%-10s %s\n", item->name, item->help);
7307
                    }
7308
                    exit(1);
7309
                    }
7310
                    cpu_set_log(mask);
7311
                }
7312
                break;
7313
#ifdef CONFIG_GDBSTUB
7314
            case QEMU_OPTION_s:
7315
                use_gdbstub = 1;
7316
                break;
7317
            case QEMU_OPTION_p:
7318
                gdbstub_port = optarg;
7319
                break;
7320
#endif
7321
            case QEMU_OPTION_L:
7322
                bios_dir = optarg;
7323
                break;
7324
            case QEMU_OPTION_S:
7325
                autostart = 0;
7326
                break;
7327
            case QEMU_OPTION_k:
7328
                keyboard_layout = optarg;
7329
                break;
7330
            case QEMU_OPTION_localtime:
7331
                rtc_utc = 0;
7332
                break;
7333
            case QEMU_OPTION_cirrusvga:
7334
                cirrus_vga_enabled = 1;
7335
                vmsvga_enabled = 0;
7336
                break;
7337
            case QEMU_OPTION_vmsvga:
7338
                cirrus_vga_enabled = 0;
7339
                vmsvga_enabled = 1;
7340
                break;
7341
            case QEMU_OPTION_std_vga:
7342
                cirrus_vga_enabled = 0;
7343
                vmsvga_enabled = 0;
7344
                break;
7345
            case QEMU_OPTION_g:
7346
                {
7347
                    const char *p;
7348
                    int w, h, depth;
7349
                    p = optarg;
7350
                    w = strtol(p, (char **)&p, 10);
7351
                    if (w <= 0) {
7352
                    graphic_error:
7353
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
7354
                        exit(1);
7355
                    }
7356
                    if (*p != 'x')
7357
                        goto graphic_error;
7358
                    p++;
7359
                    h = strtol(p, (char **)&p, 10);
7360
                    if (h <= 0)
7361
                        goto graphic_error;
7362
                    if (*p == 'x') {
7363
                        p++;
7364
                        depth = strtol(p, (char **)&p, 10);
7365
                        if (depth != 8 && depth != 15 && depth != 16 && 
7366
                            depth != 24 && depth != 32)
7367
                            goto graphic_error;
7368
                    } else if (*p == '\0') {
7369
                        depth = graphic_depth;
7370
                    } else {
7371
                        goto graphic_error;
7372
                    }
7373
                    
7374
                    graphic_width = w;
7375
                    graphic_height = h;
7376
                    graphic_depth = depth;
7377
                }
7378
                break;
7379
            case QEMU_OPTION_echr:
7380
                {
7381
                    char *r;
7382
                    term_escape_char = strtol(optarg, &r, 0);
7383
                    if (r == optarg)
7384
                        printf("Bad argument to echr\n");
7385
                    break;
7386
                }
7387
            case QEMU_OPTION_monitor:
7388
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7389
                break;
7390
            case QEMU_OPTION_serial:
7391
                if (serial_device_index >= MAX_SERIAL_PORTS) {
7392
                    fprintf(stderr, "qemu: too many serial ports\n");
7393
                    exit(1);
7394
                }
7395
                pstrcpy(serial_devices[serial_device_index], 
7396
                        sizeof(serial_devices[0]), optarg);
7397
                serial_device_index++;
7398
                break;
7399
            case QEMU_OPTION_parallel:
7400
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7401
                    fprintf(stderr, "qemu: too many parallel ports\n");
7402
                    exit(1);
7403
                }
7404
                pstrcpy(parallel_devices[parallel_device_index], 
7405
                        sizeof(parallel_devices[0]), optarg);
7406
                parallel_device_index++;
7407
                break;
7408
            case QEMU_OPTION_loadvm:
7409
                loadvm = optarg;
7410
                break;
7411
            case QEMU_OPTION_full_screen:
7412
                full_screen = 1;
7413
                break;
7414
#ifdef CONFIG_SDL
7415
            case QEMU_OPTION_no_frame:
7416
                no_frame = 1;
7417
                break;
7418
            case QEMU_OPTION_no_quit:
7419
                no_quit = 1;
7420
                break;
7421
#endif
7422
            case QEMU_OPTION_pidfile:
7423
                pid_file = optarg;
7424
                break;
7425
#ifdef TARGET_I386
7426
            case QEMU_OPTION_win2k_hack:
7427
                win2k_install_hack = 1;
7428
                break;
7429
#endif
7430
#ifdef USE_KQEMU
7431
            case QEMU_OPTION_no_kqemu:
7432
                kqemu_allowed = 0;
7433
                break;
7434
            case QEMU_OPTION_kernel_kqemu:
7435
                kqemu_allowed = 2;
7436
                break;
7437
#endif
7438
            case QEMU_OPTION_usb:
7439
                usb_enabled = 1;
7440
                break;
7441
            case QEMU_OPTION_usbdevice:
7442
                usb_enabled = 1;
7443
                if (usb_devices_index >= MAX_USB_CMDLINE) {
7444
                    fprintf(stderr, "Too many USB devices\n");
7445
                    exit(1);
7446
                }
7447
                pstrcpy(usb_devices[usb_devices_index],
7448
                        sizeof(usb_devices[usb_devices_index]),
7449
                        optarg);
7450
                usb_devices_index++;
7451
                break;
7452
            case QEMU_OPTION_smp:
7453
                smp_cpus = atoi(optarg);
7454
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7455
                    fprintf(stderr, "Invalid number of CPUs\n");
7456
                    exit(1);
7457
                }
7458
                break;
7459
            case QEMU_OPTION_vnc:
7460
                vnc_display = optarg;
7461
                break;
7462
            case QEMU_OPTION_no_acpi:
7463
                acpi_enabled = 0;
7464
                break;
7465
            case QEMU_OPTION_no_reboot:
7466
                no_reboot = 1;
7467
                break;
7468
            case QEMU_OPTION_show_cursor:
7469
                cursor_hide = 0;
7470
                break;
7471
            case QEMU_OPTION_daemonize:
7472
                daemonize = 1;
7473
                break;
7474
            case QEMU_OPTION_option_rom:
7475
                if (nb_option_roms >= MAX_OPTION_ROMS) {
7476
                    fprintf(stderr, "Too many option ROMs\n");
7477
                    exit(1);
7478
                }
7479
                option_rom[nb_option_roms] = optarg;
7480
                nb_option_roms++;
7481
                break;
7482
            case QEMU_OPTION_semihosting:
7483
                semihosting_enabled = 1;
7484
                break;
7485
            case QEMU_OPTION_name:
7486
                qemu_name = optarg;
7487
                break;
7488
#ifdef TARGET_SPARC
7489
            case QEMU_OPTION_prom_env:
7490
                if (nb_prom_envs >= MAX_PROM_ENVS) {
7491
                    fprintf(stderr, "Too many prom variables\n");
7492
                    exit(1);
7493
                }
7494
                prom_envs[nb_prom_envs] = optarg;
7495
                nb_prom_envs++;
7496
                break;
7497
#endif
7498
            }
7499
        }
7500
    }
7501

    
7502
#ifndef _WIN32
7503
    if (daemonize && !nographic && vnc_display == NULL) {
7504
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7505
        daemonize = 0;
7506
    }
7507

    
7508
    if (daemonize) {
7509
        pid_t pid;
7510

    
7511
        if (pipe(fds) == -1)
7512
            exit(1);
7513

    
7514
        pid = fork();
7515
        if (pid > 0) {
7516
            uint8_t status;
7517
            ssize_t len;
7518

    
7519
            close(fds[1]);
7520

    
7521
        again:
7522
            len = read(fds[0], &status, 1);
7523
            if (len == -1 && (errno == EINTR))
7524
                goto again;
7525

    
7526
            if (len != 1)
7527
                exit(1);
7528
            else if (status == 1) {
7529
                fprintf(stderr, "Could not acquire pidfile\n");
7530
                exit(1);
7531
            } else
7532
                exit(0);
7533
        } else if (pid < 0)
7534
            exit(1);
7535

    
7536
        setsid();
7537

    
7538
        pid = fork();
7539
        if (pid > 0)
7540
            exit(0);
7541
        else if (pid < 0)
7542
            exit(1);
7543

    
7544
        umask(027);
7545
        chdir("/");
7546

    
7547
        signal(SIGTSTP, SIG_IGN);
7548
        signal(SIGTTOU, SIG_IGN);
7549
        signal(SIGTTIN, SIG_IGN);
7550
    }
7551
#endif
7552

    
7553
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7554
        if (daemonize) {
7555
            uint8_t status = 1;
7556
            write(fds[1], &status, 1);
7557
        } else
7558
            fprintf(stderr, "Could not acquire pid file\n");
7559
        exit(1);
7560
    }
7561

    
7562
#ifdef USE_KQEMU
7563
    if (smp_cpus > 1)
7564
        kqemu_allowed = 0;
7565
#endif
7566
    linux_boot = (kernel_filename != NULL);
7567

    
7568
    if (!linux_boot &&
7569
        boot_device != 'n' &&
7570
        hd_filename[0] == '\0' && 
7571
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7572
        fd_filename[0] == '\0')
7573
        help();
7574

    
7575
    /* boot to floppy or the default cd if no hard disk defined yet */
7576
    if (hd_filename[0] == '\0' && boot_device == 'c') {
7577
        if (fd_filename[0] != '\0')
7578
            boot_device = 'a';
7579
        else
7580
            boot_device = 'd';
7581
    }
7582

    
7583
    setvbuf(stdout, NULL, _IOLBF, 0);
7584
    
7585
    init_timers();
7586
    init_timer_alarm();
7587
    qemu_aio_init();
7588

    
7589
#ifdef _WIN32
7590
    socket_init();
7591
#endif
7592

    
7593
    /* init network clients */
7594
    if (nb_net_clients == 0) {
7595
        /* if no clients, we use a default config */
7596
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
7597
                "nic");
7598
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
7599
                "user");
7600
        nb_net_clients = 2;
7601
    }
7602

    
7603
    for(i = 0;i < nb_net_clients; i++) {
7604
        if (net_client_init(net_clients[i]) < 0)
7605
            exit(1);
7606
    }
7607

    
7608
#ifdef TARGET_I386
7609
    if (boot_device == 'n') {
7610
        for (i = 0; i < nb_nics; i++) {
7611
            const char *model = nd_table[i].model;
7612
            char buf[1024];
7613
            if (model == NULL)
7614
                model = "ne2k_pci";
7615
            snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7616
            if (get_image_size(buf) > 0) {
7617
                option_rom[nb_option_roms] = strdup(buf);
7618
                nb_option_roms++;
7619
                break;
7620
            }
7621
        }
7622
        if (i == nb_nics) {
7623
            fprintf(stderr, "No valid PXE rom found for network device\n");
7624
            exit(1);
7625
        }
7626
        boot_device = 'c'; /* to prevent confusion by the BIOS */
7627
    }
7628
#endif
7629

    
7630
    /* init the memory */
7631
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7632

    
7633
    phys_ram_base = qemu_vmalloc(phys_ram_size);
7634
    if (!phys_ram_base) {
7635
        fprintf(stderr, "Could not allocate physical memory\n");
7636
        exit(1);
7637
    }
7638

    
7639
    /* we always create the cdrom drive, even if no disk is there */
7640
    bdrv_init();
7641
    if (cdrom_index >= 0) {
7642
        bs_table[cdrom_index] = bdrv_new("cdrom");
7643
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7644
    }
7645

    
7646
    /* open the virtual block devices */
7647
    for(i = 0; i < MAX_DISKS; i++) {
7648
        if (hd_filename[i]) {
7649
            if (!bs_table[i]) {
7650
                char buf[64];
7651
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7652
                bs_table[i] = bdrv_new(buf);
7653
            }
7654
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7655
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7656
                        hd_filename[i]);
7657
                exit(1);
7658
            }
7659
            if (i == 0 && cyls != 0) {
7660
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7661
                bdrv_set_translation_hint(bs_table[i], translation);
7662
            }
7663
        }
7664
    }
7665

    
7666
    /* we always create at least one floppy disk */
7667
    fd_table[0] = bdrv_new("fda");
7668
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7669

    
7670
    for(i = 0; i < MAX_FD; i++) {
7671
        if (fd_filename[i]) {
7672
            if (!fd_table[i]) {
7673
                char buf[64];
7674
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7675
                fd_table[i] = bdrv_new(buf);
7676
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7677
            }
7678
            if (fd_filename[i][0] != '\0') {
7679
                if (bdrv_open(fd_table[i], fd_filename[i],
7680
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7681
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7682
                            fd_filename[i]);
7683
                    exit(1);
7684
                }
7685
            }
7686
        }
7687
    }
7688

    
7689
    /* Open the virtual parallel flash block devices */
7690
    for(i = 0; i < MAX_PFLASH; i++) {
7691
        if (pflash_filename[i]) {
7692
            if (!pflash_table[i]) {
7693
                char buf[64];
7694
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
7695
                pflash_table[i] = bdrv_new(buf);
7696
            }
7697
            if (bdrv_open(pflash_table[i], pflash_filename[i],
7698
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7699
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
7700
                        pflash_filename[i]);
7701
                exit(1);
7702
            }
7703
        }
7704
    }
7705

    
7706
    sd_bdrv = bdrv_new ("sd");
7707
    /* FIXME: This isn't really a floppy, but it's a reasonable
7708
       approximation.  */
7709
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
7710
    if (sd_filename) {
7711
        if (bdrv_open(sd_bdrv, sd_filename,
7712
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7713
            fprintf(stderr, "qemu: could not open SD card image %s\n",
7714
                    sd_filename);
7715
        } else
7716
            qemu_key_check(sd_bdrv, sd_filename);
7717
    }
7718

    
7719
    if (mtd_filename) {
7720
        mtd_bdrv = bdrv_new ("mtd");
7721
        if (bdrv_open(mtd_bdrv, mtd_filename,
7722
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
7723
            qemu_key_check(mtd_bdrv, mtd_filename)) {
7724
            fprintf(stderr, "qemu: could not open Flash image %s\n",
7725
                    mtd_filename);
7726
            bdrv_delete(mtd_bdrv);
7727
            mtd_bdrv = 0;
7728
        }
7729
    }
7730

    
7731
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7732
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7733

    
7734
    init_ioports();
7735

    
7736
    /* terminal init */
7737
    if (nographic) {
7738
        dumb_display_init(ds);
7739
    } else if (vnc_display != NULL) {
7740
        vnc_display_init(ds, vnc_display);
7741
    } else {
7742
#if defined(CONFIG_SDL)
7743
        sdl_display_init(ds, full_screen, no_frame);
7744
#elif defined(CONFIG_COCOA)
7745
        cocoa_display_init(ds, full_screen);
7746
#else
7747
        dumb_display_init(ds);
7748
#endif
7749
    }
7750

    
7751
    /* Maintain compatibility with multiple stdio monitors */
7752
    if (!strcmp(monitor_device,"stdio")) {
7753
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7754
            if (!strcmp(serial_devices[i],"mon:stdio")) {
7755
                monitor_device[0] = '\0';
7756
                break;
7757
            } else if (!strcmp(serial_devices[i],"stdio")) {
7758
                monitor_device[0] = '\0';
7759
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7760
                break;
7761
            }
7762
        }
7763
    }
7764
    if (monitor_device[0] != '\0') {
7765
        monitor_hd = qemu_chr_open(monitor_device);
7766
        if (!monitor_hd) {
7767
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7768
            exit(1);
7769
        }
7770
        monitor_init(monitor_hd, !nographic);
7771
    }
7772

    
7773
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7774
        const char *devname = serial_devices[i];
7775
        if (devname[0] != '\0' && strcmp(devname, "none")) {
7776
            serial_hds[i] = qemu_chr_open(devname);
7777
            if (!serial_hds[i]) {
7778
                fprintf(stderr, "qemu: could not open serial device '%s'\n", 
7779
                        devname);
7780
                exit(1);
7781
            }
7782
            if (!strcmp(devname, "vc"))
7783
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7784
        }
7785
    }
7786

    
7787
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7788
        const char *devname = parallel_devices[i];
7789
        if (devname[0] != '\0' && strcmp(devname, "none")) {
7790
            parallel_hds[i] = qemu_chr_open(devname);
7791
            if (!parallel_hds[i]) {
7792
                fprintf(stderr, "qemu: could not open parallel device '%s'\n", 
7793
                        devname);
7794
                exit(1);
7795
            }
7796
            if (!strcmp(devname, "vc"))
7797
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7798
        }
7799
    }
7800

    
7801
    machine->init(ram_size, vga_ram_size, boot_device,
7802
                  ds, fd_filename, snapshot,
7803
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7804

    
7805
    /* init USB devices */
7806
    if (usb_enabled) {
7807
        for(i = 0; i < usb_devices_index; i++) {
7808
            if (usb_device_add(usb_devices[i]) < 0) {
7809
                fprintf(stderr, "Warning: could not add USB device %s\n",
7810
                        usb_devices[i]);
7811
            }
7812
        }
7813
    }
7814

    
7815
    gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7816
    qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7817

    
7818
#ifdef CONFIG_GDBSTUB
7819
    if (use_gdbstub) {
7820
        /* XXX: use standard host:port notation and modify options
7821
           accordingly. */
7822
        if (gdbserver_start(gdbstub_port) < 0) {
7823
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7824
                    gdbstub_port);
7825
            exit(1);
7826
        }
7827
    } else 
7828
#endif
7829
    if (loadvm)
7830
        do_loadvm(loadvm);
7831

    
7832
    {
7833
        /* XXX: simplify init */
7834
        read_passwords();
7835
        if (autostart) {
7836
            vm_start();
7837
        }
7838
    }
7839

    
7840
    if (daemonize) {
7841
        uint8_t status = 0;
7842
        ssize_t len;
7843
        int fd;
7844

    
7845
    again1:
7846
        len = write(fds[1], &status, 1);
7847
        if (len == -1 && (errno == EINTR))
7848
            goto again1;
7849

    
7850
        if (len != 1)
7851
            exit(1);
7852

    
7853
        fd = open("/dev/null", O_RDWR);
7854
        if (fd == -1)
7855
            exit(1);
7856

    
7857
        dup2(fd, 0);
7858
        dup2(fd, 1);
7859
        dup2(fd, 2);
7860

    
7861
        close(fd);
7862
    }
7863

    
7864
    main_loop();
7865
    quit_timers();
7866
    return 0;
7867
}