Statistics
| Branch: | Revision:

root / exec-i386.c @ 5a91de8c

History | View | Annotate | Download (11.6 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec-i386.h"
21
#include "disas.h"
22

    
23
//#define DEBUG_EXEC
24
//#define DEBUG_SIGNAL
25

    
26
/* main execution loop */
27

    
28
/* thread support */
29

    
30
spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
31

    
32
void cpu_lock(void)
33
{
34
    spin_lock(&global_cpu_lock);
35
}
36

    
37
void cpu_unlock(void)
38
{
39
    spin_unlock(&global_cpu_lock);
40
}
41

    
42
/* exception support */
43
/* NOTE: not static to force relocation generation by GCC */
44
void raise_exception_err(int exception_index, int error_code)
45
{
46
    /* NOTE: the register at this point must be saved by hand because
47
       longjmp restore them */
48
#ifdef __sparc__
49
        /* We have to stay in the same register window as our caller,
50
         * thus this trick.
51
         */
52
        __asm__ __volatile__("restore\n\t"
53
                             "mov\t%o0, %i0");
54
#endif
55
#ifdef reg_EAX
56
    env->regs[R_EAX] = EAX;
57
#endif
58
#ifdef reg_ECX
59
    env->regs[R_ECX] = ECX;
60
#endif
61
#ifdef reg_EDX
62
    env->regs[R_EDX] = EDX;
63
#endif
64
#ifdef reg_EBX
65
    env->regs[R_EBX] = EBX;
66
#endif
67
#ifdef reg_ESP
68
    env->regs[R_ESP] = ESP;
69
#endif
70
#ifdef reg_EBP
71
    env->regs[R_EBP] = EBP;
72
#endif
73
#ifdef reg_ESI
74
    env->regs[R_ESI] = ESI;
75
#endif
76
#ifdef reg_EDI
77
    env->regs[R_EDI] = EDI;
78
#endif
79
    env->exception_index = exception_index;
80
    env->error_code = error_code;
81
    longjmp(env->jmp_env, 1);
82
}
83

    
84
/* short cut if error_code is 0 or not present */
85
void raise_exception(int exception_index)
86
{
87
    raise_exception_err(exception_index, 0);
88
}
89

    
90
int cpu_x86_exec(CPUX86State *env1)
91
{
92
    int saved_T0, saved_T1, saved_A0;
93
    CPUX86State *saved_env;
94
#ifdef reg_EAX
95
    int saved_EAX;
96
#endif
97
#ifdef reg_ECX
98
    int saved_ECX;
99
#endif
100
#ifdef reg_EDX
101
    int saved_EDX;
102
#endif
103
#ifdef reg_EBX
104
    int saved_EBX;
105
#endif
106
#ifdef reg_ESP
107
    int saved_ESP;
108
#endif
109
#ifdef reg_EBP
110
    int saved_EBP;
111
#endif
112
#ifdef reg_ESI
113
    int saved_ESI;
114
#endif
115
#ifdef reg_EDI
116
    int saved_EDI;
117
#endif
118
    int code_gen_size, ret, code_size;
119
    void (*gen_func)(void);
120
    TranslationBlock *tb, **ptb;
121
    uint8_t *tc_ptr, *cs_base, *pc;
122
    unsigned int flags;
123
    
124
    /* first we save global registers */
125
    saved_T0 = T0;
126
    saved_T1 = T1;
127
    saved_A0 = A0;
128
    saved_env = env;
129
    env = env1;
130
#ifdef reg_EAX
131
    saved_EAX = EAX;
132
    EAX = env->regs[R_EAX];
133
#endif
134
#ifdef reg_ECX
135
    saved_ECX = ECX;
136
    ECX = env->regs[R_ECX];
137
#endif
138
#ifdef reg_EDX
139
    saved_EDX = EDX;
140
    EDX = env->regs[R_EDX];
141
#endif
142
#ifdef reg_EBX
143
    saved_EBX = EBX;
144
    EBX = env->regs[R_EBX];
145
#endif
146
#ifdef reg_ESP
147
    saved_ESP = ESP;
148
    ESP = env->regs[R_ESP];
149
#endif
150
#ifdef reg_EBP
151
    saved_EBP = EBP;
152
    EBP = env->regs[R_EBP];
153
#endif
154
#ifdef reg_ESI
155
    saved_ESI = ESI;
156
    ESI = env->regs[R_ESI];
157
#endif
158
#ifdef reg_EDI
159
    saved_EDI = EDI;
160
    EDI = env->regs[R_EDI];
161
#endif
162
    
163
    /* put eflags in CPU temporary format */
164
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
165
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
166
    CC_OP = CC_OP_EFLAGS;
167
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
168
    env->interrupt_request = 0;
169

    
170
    /* prepare setjmp context for exception handling */
171
    if (setjmp(env->jmp_env) == 0) {
172
        T0 = 0; /* force lookup of first TB */
173
        for(;;) {
174
            if (env->interrupt_request) {
175
                raise_exception(EXCP_INTERRUPT);
176
            }
177
#ifdef DEBUG_EXEC
178
            if (loglevel) {
179
                /* XXX: save all volatile state in cpu state */
180
                /* restore flags in standard format */
181
                env->regs[R_EAX] = EAX;
182
                env->regs[R_EBX] = EBX;
183
                env->regs[R_ECX] = ECX;
184
                env->regs[R_EDX] = EDX;
185
                env->regs[R_ESI] = ESI;
186
                env->regs[R_EDI] = EDI;
187
                env->regs[R_EBP] = EBP;
188
                env->regs[R_ESP] = ESP;
189
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
190
                cpu_x86_dump_state(env, logfile, 0);
191
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
192
            }
193
#endif
194
            /* we compute the CPU state. We assume it will not
195
               change during the whole generated block. */
196
            flags = env->seg_cache[R_CS].seg_32bit << GEN_FLAG_CODE32_SHIFT;
197
            flags |= env->seg_cache[R_SS].seg_32bit << GEN_FLAG_SS32_SHIFT;
198
            flags |= (((unsigned long)env->seg_cache[R_DS].base | 
199
                       (unsigned long)env->seg_cache[R_ES].base |
200
                       (unsigned long)env->seg_cache[R_SS].base) != 0) << 
201
                GEN_FLAG_ADDSEG_SHIFT;
202
            if (!(env->eflags & VM_MASK)) {
203
                flags |= (env->segs[R_CS] & 3) << GEN_FLAG_CPL_SHIFT;
204
            } else {
205
                /* NOTE: a dummy CPL is kept */
206
                flags |= (1 << GEN_FLAG_VM_SHIFT);
207
                flags |= (3 << GEN_FLAG_CPL_SHIFT);
208
            }
209
            flags |= (env->eflags & (IOPL_MASK | TF_MASK));
210
            cs_base = env->seg_cache[R_CS].base;
211
            pc = cs_base + env->eip;
212
            tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
213
                         flags);
214
            if (!tb) {
215
                spin_lock(&tb_lock);
216
                /* if no translated code available, then translate it now */
217
                tb = tb_alloc((unsigned long)pc);
218
                if (!tb) {
219
                    /* flush must be done */
220
                    tb_flush();
221
                    /* cannot fail at this point */
222
                    tb = tb_alloc((unsigned long)pc);
223
                    /* don't forget to invalidate previous TB info */
224
                    ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
225
                    T0 = 0;
226
                }
227
                tc_ptr = code_gen_ptr;
228
                tb->tc_ptr = tc_ptr;
229
                ret = cpu_x86_gen_code(code_gen_ptr, CODE_GEN_MAX_SIZE, 
230
                                       &code_gen_size, pc, cs_base, flags,
231
                                       &code_size, tb);
232
                /* if invalid instruction, signal it */
233
                if (ret != 0) {
234
                    /* NOTE: the tb is allocated but not linked, so we
235
                       can leave it */
236
                    spin_unlock(&tb_lock);
237
                    raise_exception(EXCP06_ILLOP);
238
                }
239
                *ptb = tb;
240
                tb->size = code_size;
241
                tb->cs_base = (unsigned long)cs_base;
242
                tb->flags = flags;
243
                tb->hash_next = NULL;
244
                tb_link(tb);
245
                code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
246
                spin_unlock(&tb_lock);
247
            }
248
#ifdef DEBUG_EXEC
249
            if (loglevel) {
250
                fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
251
                        (long)tb->tc_ptr, (long)tb->pc,
252
                        lookup_symbol((void *)tb->pc));
253
            }
254
#endif
255
            /* see if we can patch the calling TB */
256
            if (T0 != 0 && !(env->eflags & TF_MASK)) {
257
                spin_lock(&tb_lock);
258
                tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
259
                spin_unlock(&tb_lock);
260
            }
261

    
262
            tc_ptr = tb->tc_ptr;
263

    
264
            /* execute the generated code */
265
            gen_func = (void *)tc_ptr;
266
#ifdef __sparc__
267
            __asm__ __volatile__("call        %0\n\t"
268
                                 " mov        %%o7,%%i0"
269
                                 : /* no outputs */
270
                                 : "r" (gen_func) 
271
                                 : "i0", "i1", "i2", "i3", "i4", "i5");
272
#else
273
            gen_func();
274
#endif
275
        }
276
    }
277
    ret = env->exception_index;
278

    
279
    /* restore flags in standard format */
280
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
281

    
282
    /* restore global registers */
283
#ifdef reg_EAX
284
    EAX = saved_EAX;
285
#endif
286
#ifdef reg_ECX
287
    ECX = saved_ECX;
288
#endif
289
#ifdef reg_EDX
290
    EDX = saved_EDX;
291
#endif
292
#ifdef reg_EBX
293
    EBX = saved_EBX;
294
#endif
295
#ifdef reg_ESP
296
    ESP = saved_ESP;
297
#endif
298
#ifdef reg_EBP
299
    EBP = saved_EBP;
300
#endif
301
#ifdef reg_ESI
302
    ESI = saved_ESI;
303
#endif
304
#ifdef reg_EDI
305
    EDI = saved_EDI;
306
#endif
307
    T0 = saved_T0;
308
    T1 = saved_T1;
309
    A0 = saved_A0;
310
    env = saved_env;
311
    return ret;
312
}
313

    
314
void cpu_x86_interrupt(CPUX86State *s)
315
{
316
    s->interrupt_request = 1;
317
}
318

    
319

    
320
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
321
{
322
    CPUX86State *saved_env;
323

    
324
    saved_env = env;
325
    env = s;
326
    load_seg(seg_reg, selector);
327
    env = saved_env;
328
}
329

    
330
#undef EAX
331
#undef ECX
332
#undef EDX
333
#undef EBX
334
#undef ESP
335
#undef EBP
336
#undef ESI
337
#undef EDI
338
#undef EIP
339
#include <signal.h>
340
#include <sys/ucontext.h>
341

    
342
/* 'pc' is the host PC at which the exception was raised. 'address' is
343
   the effective address of the memory exception. 'is_write' is 1 if a
344
   write caused the exception and otherwise 0'. 'old_set' is the
345
   signal set which should be restored */
346
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
347
                                    int is_write, sigset_t *old_set)
348
{
349
#if defined(DEBUG_SIGNAL)
350
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx wr=%d oldset=0x%08lx\n", 
351
           pc, address, is_write, *(unsigned long *)old_set);
352
#endif
353
    /* XXX: locking issue */
354
    if (is_write && page_unprotect(address)) {
355
        return 1;
356
    }
357
    if (pc >= (unsigned long)code_gen_buffer &&
358
        pc < (unsigned long)code_gen_buffer + CODE_GEN_BUFFER_SIZE) {
359
        /* the PC is inside the translated code. It means that we have
360
           a virtual CPU fault */
361
        /* we restore the process signal mask as the sigreturn should
362
           do it */
363
        sigprocmask(SIG_SETMASK, old_set, NULL);
364
        /* XXX: need to compute virtual pc position by retranslating
365
           code. The rest of the CPU state should be correct. */
366
        env->cr2 = address;
367
        raise_exception_err(EXCP0E_PAGE, 4 | (is_write << 1));
368
        /* never comes here */
369
        return 1;
370
    } else {
371
        return 0;
372
    }
373
}
374

    
375
#if defined(__i386__)
376

    
377
int cpu_x86_signal_handler(int host_signum, struct siginfo *info, 
378
                           void *puc)
379
{
380
    struct ucontext *uc = puc;
381
    unsigned long pc;
382
    
383
#ifndef REG_EIP
384
/* for glibc 2.1 */
385
#define REG_EIP    EIP
386
#define REG_ERR    ERR
387
#define REG_TRAPNO TRAPNO
388
#endif
389
    pc = uc->uc_mcontext.gregs[REG_EIP];
390
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
391
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
392
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
393
                             &uc->uc_sigmask);
394
}
395

    
396
#elif defined(__powerpc)
397

    
398
int cpu_x86_signal_handler(int host_signum, struct siginfo *info, 
399
                           void *puc)
400
{
401
    struct ucontext *uc = puc;
402
    struct pt_regs *regs = uc->uc_mcontext.regs;
403
    unsigned long pc;
404
    int is_write;
405

    
406
    pc = regs->nip;
407
    is_write = 0;
408
#if 0
409
    /* ppc 4xx case */
410
    if (regs->dsisr & 0x00800000)
411
        is_write = 1;
412
#else
413
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
414
        is_write = 1;
415
#endif
416
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
417
                             is_write, &uc->uc_sigmask);
418
}
419

    
420
#else
421

    
422
#error CPU specific signal handler needed
423

    
424
#endif