Statistics
| Branch: | Revision:

root / op-i386.c @ 5a91de8c

History | View | Annotate | Download (50.9 kB)

1
/*
2
 *  i386 micro operations
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec-i386.h"
21

    
22
/* NOTE: data are not static to force relocation generation by GCC */
23

    
24
uint8_t parity_table[256] = {
25
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57
};
58

    
59
/* modulo 17 table */
60
const uint8_t rclw_table[32] = {
61
    0, 1, 2, 3, 4, 5, 6, 7, 
62
    8, 9,10,11,12,13,14,15,
63
   16, 0, 1, 2, 3, 4, 5, 6,
64
    7, 8, 9,10,11,12,13,14,
65
};
66

    
67
/* modulo 9 table */
68
const uint8_t rclb_table[32] = {
69
    0, 1, 2, 3, 4, 5, 6, 7, 
70
    8, 0, 1, 2, 3, 4, 5, 6,
71
    7, 8, 0, 1, 2, 3, 4, 5, 
72
    6, 7, 8, 0, 1, 2, 3, 4,
73
};
74

    
75
#ifdef USE_X86LDOUBLE
76
/* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77
typedef unsigned short f15ld[5];
78
const f15ld f15rk[] =
79
{
80
/*0*/        {0x0000,0x0000,0x0000,0x0000,0x0000},
81
/*1*/        {0x0000,0x0000,0x0000,0x8000,0x3fff},
82
/*pi*/        {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83
/*lg2*/        {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84
/*ln2*/        {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85
/*l2e*/        {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86
/*l2t*/        {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87
};
88
#else
89
/* the same, 64-bit version */
90
typedef unsigned short f15ld[4];
91
const f15ld f15rk[] =
92
{
93
#ifndef WORDS_BIGENDIAN
94
/*0*/        {0x0000,0x0000,0x0000,0x0000},
95
/*1*/        {0x0000,0x0000,0x0000,0x3ff0},
96
/*pi*/        {0x2d18,0x5444,0x21fb,0x4009},
97
/*lg2*/        {0x79ff,0x509f,0x4413,0x3fd3},
98
/*ln2*/        {0x39ef,0xfefa,0x2e42,0x3fe6},
99
/*l2e*/        {0x82fe,0x652b,0x1547,0x3ff7},
100
/*l2t*/        {0xa371,0x0979,0x934f,0x400a}
101
#else
102
/*0*/   {0x0000,0x0000,0x0000,0x0000},
103
/*1*/   {0x3ff0,0x0000,0x0000,0x0000},
104
/*pi*/  {0x4009,0x21fb,0x5444,0x2d18},
105
/*lg2*/        {0x3fd3,0x4413,0x509f,0x79ff},
106
/*ln2*/        {0x3fe6,0x2e42,0xfefa,0x39ef},
107
/*l2e*/        {0x3ff7,0x1547,0x652b,0x82fe},
108
/*l2t*/        {0x400a,0x934f,0x0979,0xa371}
109
#endif
110
};
111
#endif
112
    
113
/* n must be a constant to be efficient */
114
static inline int lshift(int x, int n)
115
{
116
    if (n >= 0)
117
        return x << n;
118
    else
119
        return x >> (-n);
120
}
121

    
122
/* we define the various pieces of code used by the JIT */
123

    
124
#define REG EAX
125
#define REGNAME _EAX
126
#include "opreg_template.h"
127
#undef REG
128
#undef REGNAME
129

    
130
#define REG ECX
131
#define REGNAME _ECX
132
#include "opreg_template.h"
133
#undef REG
134
#undef REGNAME
135

    
136
#define REG EDX
137
#define REGNAME _EDX
138
#include "opreg_template.h"
139
#undef REG
140
#undef REGNAME
141

    
142
#define REG EBX
143
#define REGNAME _EBX
144
#include "opreg_template.h"
145
#undef REG
146
#undef REGNAME
147

    
148
#define REG ESP
149
#define REGNAME _ESP
150
#include "opreg_template.h"
151
#undef REG
152
#undef REGNAME
153

    
154
#define REG EBP
155
#define REGNAME _EBP
156
#include "opreg_template.h"
157
#undef REG
158
#undef REGNAME
159

    
160
#define REG ESI
161
#define REGNAME _ESI
162
#include "opreg_template.h"
163
#undef REG
164
#undef REGNAME
165

    
166
#define REG EDI
167
#define REGNAME _EDI
168
#include "opreg_template.h"
169
#undef REG
170
#undef REGNAME
171

    
172
/* operations with flags */
173

    
174
void OPPROTO op_addl_T0_T1_cc(void)
175
{
176
    CC_SRC = T0;
177
    T0 += T1;
178
    CC_DST = T0;
179
}
180

    
181
void OPPROTO op_orl_T0_T1_cc(void)
182
{
183
    T0 |= T1;
184
    CC_DST = T0;
185
}
186

    
187
void OPPROTO op_andl_T0_T1_cc(void)
188
{
189
    T0 &= T1;
190
    CC_DST = T0;
191
}
192

    
193
void OPPROTO op_subl_T0_T1_cc(void)
194
{
195
    CC_SRC = T0;
196
    T0 -= T1;
197
    CC_DST = T0;
198
}
199

    
200
void OPPROTO op_xorl_T0_T1_cc(void)
201
{
202
    T0 ^= T1;
203
    CC_DST = T0;
204
}
205

    
206
void OPPROTO op_cmpl_T0_T1_cc(void)
207
{
208
    CC_SRC = T0;
209
    CC_DST = T0 - T1;
210
}
211

    
212
void OPPROTO op_negl_T0_cc(void)
213
{
214
    CC_SRC = 0;
215
    T0 = -T0;
216
    CC_DST = T0;
217
}
218

    
219
void OPPROTO op_incl_T0_cc(void)
220
{
221
    CC_SRC = cc_table[CC_OP].compute_c();
222
    T0++;
223
    CC_DST = T0;
224
}
225

    
226
void OPPROTO op_decl_T0_cc(void)
227
{
228
    CC_SRC = cc_table[CC_OP].compute_c();
229
    T0--;
230
    CC_DST = T0;
231
}
232

    
233
void OPPROTO op_testl_T0_T1_cc(void)
234
{
235
    CC_DST = T0 & T1;
236
}
237

    
238
/* operations without flags */
239

    
240
void OPPROTO op_addl_T0_T1(void)
241
{
242
    T0 += T1;
243
}
244

    
245
void OPPROTO op_orl_T0_T1(void)
246
{
247
    T0 |= T1;
248
}
249

    
250
void OPPROTO op_andl_T0_T1(void)
251
{
252
    T0 &= T1;
253
}
254

    
255
void OPPROTO op_subl_T0_T1(void)
256
{
257
    T0 -= T1;
258
}
259

    
260
void OPPROTO op_xorl_T0_T1(void)
261
{
262
    T0 ^= T1;
263
}
264

    
265
void OPPROTO op_negl_T0(void)
266
{
267
    T0 = -T0;
268
}
269

    
270
void OPPROTO op_incl_T0(void)
271
{
272
    T0++;
273
}
274

    
275
void OPPROTO op_decl_T0(void)
276
{
277
    T0--;
278
}
279

    
280
void OPPROTO op_notl_T0(void)
281
{
282
    T0 = ~T0;
283
}
284

    
285
void OPPROTO op_bswapl_T0(void)
286
{
287
    T0 = bswap32(T0);
288
}
289

    
290
/* multiply/divide */
291
void OPPROTO op_mulb_AL_T0(void)
292
{
293
    unsigned int res;
294
    res = (uint8_t)EAX * (uint8_t)T0;
295
    EAX = (EAX & 0xffff0000) | res;
296
    CC_SRC = (res & 0xff00);
297
}
298

    
299
void OPPROTO op_imulb_AL_T0(void)
300
{
301
    int res;
302
    res = (int8_t)EAX * (int8_t)T0;
303
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
304
    CC_SRC = (res != (int8_t)res);
305
}
306

    
307
void OPPROTO op_mulw_AX_T0(void)
308
{
309
    unsigned int res;
310
    res = (uint16_t)EAX * (uint16_t)T0;
311
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
312
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313
    CC_SRC = res >> 16;
314
}
315

    
316
void OPPROTO op_imulw_AX_T0(void)
317
{
318
    int res;
319
    res = (int16_t)EAX * (int16_t)T0;
320
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
321
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322
    CC_SRC = (res != (int16_t)res);
323
}
324

    
325
void OPPROTO op_mull_EAX_T0(void)
326
{
327
    uint64_t res;
328
    res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329
    EAX = res;
330
    EDX = res >> 32;
331
    CC_SRC = res >> 32;
332
}
333

    
334
void OPPROTO op_imull_EAX_T0(void)
335
{
336
    int64_t res;
337
    res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338
    EAX = res;
339
    EDX = res >> 32;
340
    CC_SRC = (res != (int32_t)res);
341
}
342

    
343
void OPPROTO op_imulw_T0_T1(void)
344
{
345
    int res;
346
    res = (int16_t)T0 * (int16_t)T1;
347
    T0 = res;
348
    CC_SRC = (res != (int16_t)res);
349
}
350

    
351
void OPPROTO op_imull_T0_T1(void)
352
{
353
    int64_t res;
354
    res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355
    T0 = res;
356
    CC_SRC = (res != (int32_t)res);
357
}
358

    
359
/* division, flags are undefined */
360
/* XXX: add exceptions for overflow */
361
void OPPROTO op_divb_AL_T0(void)
362
{
363
    unsigned int num, den, q, r;
364

    
365
    num = (EAX & 0xffff);
366
    den = (T0 & 0xff);
367
    if (den == 0)
368
        raise_exception(EXCP00_DIVZ);
369
    q = (num / den) & 0xff;
370
    r = (num % den) & 0xff;
371
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
372
}
373

    
374
void OPPROTO op_idivb_AL_T0(void)
375
{
376
    int num, den, q, r;
377

    
378
    num = (int16_t)EAX;
379
    den = (int8_t)T0;
380
    if (den == 0)
381
        raise_exception(EXCP00_DIVZ);
382
    q = (num / den) & 0xff;
383
    r = (num % den) & 0xff;
384
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
385
}
386

    
387
void OPPROTO op_divw_AX_T0(void)
388
{
389
    unsigned int num, den, q, r;
390

    
391
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392
    den = (T0 & 0xffff);
393
    if (den == 0)
394
        raise_exception(EXCP00_DIVZ);
395
    q = (num / den) & 0xffff;
396
    r = (num % den) & 0xffff;
397
    EAX = (EAX & 0xffff0000) | q;
398
    EDX = (EDX & 0xffff0000) | r;
399
}
400

    
401
void OPPROTO op_idivw_AX_T0(void)
402
{
403
    int num, den, q, r;
404

    
405
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406
    den = (int16_t)T0;
407
    if (den == 0)
408
        raise_exception(EXCP00_DIVZ);
409
    q = (num / den) & 0xffff;
410
    r = (num % den) & 0xffff;
411
    EAX = (EAX & 0xffff0000) | q;
412
    EDX = (EDX & 0xffff0000) | r;
413
}
414

    
415
#ifdef BUGGY_GCC_DIV64
416
/* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
417
   call it from another function */
418
uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
419
{
420
    *q_ptr = num / den;
421
    return num % den;
422
}
423

    
424
int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
425
{
426
    *q_ptr = num / den;
427
    return num % den;
428
}
429
#endif
430

    
431
void OPPROTO op_divl_EAX_T0(void)
432
{
433
    unsigned int den, q, r;
434
    uint64_t num;
435
    
436
    num = EAX | ((uint64_t)EDX << 32);
437
    den = T0;
438
    if (den == 0)
439
        raise_exception(EXCP00_DIVZ);
440
#ifdef BUGGY_GCC_DIV64
441
    r = div64(&q, num, den);
442
#else
443
    q = (num / den);
444
    r = (num % den);
445
#endif
446
    EAX = q;
447
    EDX = r;
448
}
449

    
450
void OPPROTO op_idivl_EAX_T0(void)
451
{
452
    int den, q, r;
453
    int64_t num;
454
    
455
    num = EAX | ((uint64_t)EDX << 32);
456
    den = T0;
457
    if (den == 0)
458
        raise_exception(EXCP00_DIVZ);
459
#ifdef BUGGY_GCC_DIV64
460
    r = idiv64(&q, num, den);
461
#else
462
    q = (num / den);
463
    r = (num % den);
464
#endif
465
    EAX = q;
466
    EDX = r;
467
}
468

    
469
/* constant load & misc op */
470

    
471
void OPPROTO op_movl_T0_im(void)
472
{
473
    T0 = PARAM1;
474
}
475

    
476
void OPPROTO op_addl_T0_im(void)
477
{
478
    T0 += PARAM1;
479
}
480

    
481
void OPPROTO op_andl_T0_ffff(void)
482
{
483
    T0 = T0 & 0xffff;
484
}
485

    
486
void OPPROTO op_movl_T0_T1(void)
487
{
488
    T0 = T1;
489
}
490

    
491
void OPPROTO op_movl_T1_im(void)
492
{
493
    T1 = PARAM1;
494
}
495

    
496
void OPPROTO op_addl_T1_im(void)
497
{
498
    T1 += PARAM1;
499
}
500

    
501
void OPPROTO op_movl_T1_A0(void)
502
{
503
    T1 = A0;
504
}
505

    
506
void OPPROTO op_movl_A0_im(void)
507
{
508
    A0 = PARAM1;
509
}
510

    
511
void OPPROTO op_addl_A0_im(void)
512
{
513
    A0 += PARAM1;
514
}
515

    
516
void OPPROTO op_addl_A0_AL(void)
517
{
518
    A0 += (EAX & 0xff);
519
}
520

    
521
void OPPROTO op_andl_A0_ffff(void)
522
{
523
    A0 = A0 & 0xffff;
524
}
525

    
526
/* memory access */
527

    
528
void OPPROTO op_ldub_T0_A0(void)
529
{
530
    T0 = ldub((uint8_t *)A0);
531
}
532

    
533
void OPPROTO op_ldsb_T0_A0(void)
534
{
535
    T0 = ldsb((int8_t *)A0);
536
}
537

    
538
void OPPROTO op_lduw_T0_A0(void)
539
{
540
    T0 = lduw((uint8_t *)A0);
541
}
542

    
543
void OPPROTO op_ldsw_T0_A0(void)
544
{
545
    T0 = ldsw((int8_t *)A0);
546
}
547

    
548
void OPPROTO op_ldl_T0_A0(void)
549
{
550
    T0 = ldl((uint8_t *)A0);
551
}
552

    
553
void OPPROTO op_ldub_T1_A0(void)
554
{
555
    T1 = ldub((uint8_t *)A0);
556
}
557

    
558
void OPPROTO op_ldsb_T1_A0(void)
559
{
560
    T1 = ldsb((int8_t *)A0);
561
}
562

    
563
void OPPROTO op_lduw_T1_A0(void)
564
{
565
    T1 = lduw((uint8_t *)A0);
566
}
567

    
568
void OPPROTO op_ldsw_T1_A0(void)
569
{
570
    T1 = ldsw((int8_t *)A0);
571
}
572

    
573
void OPPROTO op_ldl_T1_A0(void)
574
{
575
    T1 = ldl((uint8_t *)A0);
576
}
577

    
578
void OPPROTO op_stb_T0_A0(void)
579
{
580
    stb((uint8_t *)A0, T0);
581
}
582

    
583
void OPPROTO op_stw_T0_A0(void)
584
{
585
    stw((uint8_t *)A0, T0);
586
}
587

    
588
void OPPROTO op_stl_T0_A0(void)
589
{
590
    stl((uint8_t *)A0, T0);
591
}
592

    
593
/* used for bit operations */
594

    
595
void OPPROTO op_add_bitw_A0_T1(void)
596
{
597
    A0 += ((int32_t)T1 >> 4) << 1;
598
}
599

    
600
void OPPROTO op_add_bitl_A0_T1(void)
601
{
602
    A0 += ((int32_t)T1 >> 5) << 2;
603
}
604

    
605
/* indirect jump */
606

    
607
void OPPROTO op_jmp_T0(void)
608
{
609
    EIP = T0;
610
}
611

    
612
void OPPROTO op_jmp_im(void)
613
{
614
    EIP = PARAM1;
615
}
616

    
617
void OPPROTO op_int_im(void)
618
{
619
    int intno;
620
    intno = PARAM1;
621
    EIP = PARAM2;
622
    raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
623
}
624

    
625
void OPPROTO op_raise_exception(void)
626
{
627
    int exception_index;
628
    exception_index = PARAM1;
629
    raise_exception(exception_index);
630
}
631

    
632
void OPPROTO op_into(void)
633
{
634
    int eflags;
635
    eflags = cc_table[CC_OP].compute_all();
636
    if (eflags & CC_O) {
637
        EIP = PARAM1;
638
        raise_exception(EXCP04_INTO);
639
    }
640
    FORCE_RET();
641
}
642

    
643
void OPPROTO op_cli(void)
644
{
645
    env->eflags &= ~IF_MASK;
646
}
647

    
648
void OPPROTO op_sti(void)
649
{
650
    env->eflags |= IF_MASK;
651
}
652

    
653
#if 0
654
/* vm86plus instructions */
655
void OPPROTO op_cli_vm(void)
656
{
657
    env->eflags &= ~VIF_MASK;
658
}
659

660
void OPPROTO op_sti_vm(void)
661
{
662
    env->eflags |= VIF_MASK;
663
    if (env->eflags & VIP_MASK) {
664
        EIP = PARAM1;
665
        raise_exception(EXCP0D_GPF);
666
    }
667
    FORCE_RET();
668
}
669
#endif
670

    
671
void OPPROTO op_boundw(void)
672
{
673
    int low, high, v;
674
    low = ldsw((uint8_t *)A0);
675
    high = ldsw((uint8_t *)A0 + 2);
676
    v = (int16_t)T0;
677
    if (v < low || v > high)
678
        raise_exception(EXCP05_BOUND);
679
    FORCE_RET();
680
}
681

    
682
void OPPROTO op_boundl(void)
683
{
684
    int low, high, v;
685
    low = ldl((uint8_t *)A0);
686
    high = ldl((uint8_t *)A0 + 4);
687
    v = T0;
688
    if (v < low || v > high)
689
        raise_exception(EXCP05_BOUND);
690
    FORCE_RET();
691
}
692

    
693
void OPPROTO op_cmpxchg8b(void)
694
{
695
    uint64_t d;
696
    int eflags;
697

    
698
    eflags = cc_table[CC_OP].compute_all();
699
    d = ldq((uint8_t *)A0);
700
    if (d == (((uint64_t)EDX << 32) | EAX)) {
701
        stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
702
        eflags |= CC_Z;
703
    } else {
704
        EDX = d >> 32;
705
        EAX = d;
706
        eflags &= ~CC_Z;
707
    }
708
    CC_SRC = eflags;
709
    FORCE_RET();
710
}
711

    
712
#if defined(__powerpc__)
713

    
714
/* on PowerPC we patch the jump instruction directly */
715
#define JUMP_TB(tbparam, n, eip)\
716
do {\
717
    static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
718
    asm volatile ("b %0" : : "i" (&__op_jmp ## n));\
719
label ## n:\
720
    T0 = (long)(tbparam) + (n);\
721
    EIP = eip;\
722
} while (0)
723

    
724
#else
725

    
726
/* jump to next block operations (more portable code, does not need
727
   cache flushing, but slower because of indirect jump) */
728
#define JUMP_TB(tbparam, n, eip)\
729
do {\
730
    static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
731
    goto *((TranslationBlock *)tbparam)->tb_next[n];\
732
label ## n:\
733
    T0 = (long)(tbparam) + (n);\
734
    EIP = eip;\
735
} while (0)
736

    
737
#endif
738

    
739
void OPPROTO op_jmp_tb_next(void)
740
{
741
    JUMP_TB(PARAM1, 0, PARAM2);
742
}
743

    
744
void OPPROTO op_movl_T0_0(void)
745
{
746
    T0 = 0;
747
}
748

    
749
/* multiple size ops */
750

    
751
#define ldul ldl
752

    
753
#define SHIFT 0
754
#include "ops_template.h"
755
#undef SHIFT
756

    
757
#define SHIFT 1
758
#include "ops_template.h"
759
#undef SHIFT
760

    
761
#define SHIFT 2
762
#include "ops_template.h"
763
#undef SHIFT
764

    
765
/* sign extend */
766

    
767
void OPPROTO op_movsbl_T0_T0(void)
768
{
769
    T0 = (int8_t)T0;
770
}
771

    
772
void OPPROTO op_movzbl_T0_T0(void)
773
{
774
    T0 = (uint8_t)T0;
775
}
776

    
777
void OPPROTO op_movswl_T0_T0(void)
778
{
779
    T0 = (int16_t)T0;
780
}
781

    
782
void OPPROTO op_movzwl_T0_T0(void)
783
{
784
    T0 = (uint16_t)T0;
785
}
786

    
787
void OPPROTO op_movswl_EAX_AX(void)
788
{
789
    EAX = (int16_t)EAX;
790
}
791

    
792
void OPPROTO op_movsbw_AX_AL(void)
793
{
794
    EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
795
}
796

    
797
void OPPROTO op_movslq_EDX_EAX(void)
798
{
799
    EDX = (int32_t)EAX >> 31;
800
}
801

    
802
void OPPROTO op_movswl_DX_AX(void)
803
{
804
    EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
805
}
806

    
807
/* push/pop */
808

    
809
void op_pushl_T0(void)
810
{
811
    uint32_t offset;
812
    offset = ESP - 4;
813
    stl((void *)offset, T0);
814
    /* modify ESP after to handle exceptions correctly */
815
    ESP = offset;
816
}
817

    
818
void op_pushw_T0(void)
819
{
820
    uint32_t offset;
821
    offset = ESP - 2;
822
    stw((void *)offset, T0);
823
    /* modify ESP after to handle exceptions correctly */
824
    ESP = offset;
825
}
826

    
827
void op_pushl_ss32_T0(void)
828
{
829
    uint32_t offset;
830
    offset = ESP - 4;
831
    stl(env->seg_cache[R_SS].base + offset, T0);
832
    /* modify ESP after to handle exceptions correctly */
833
    ESP = offset;
834
}
835

    
836
void op_pushw_ss32_T0(void)
837
{
838
    uint32_t offset;
839
    offset = ESP - 2;
840
    stw(env->seg_cache[R_SS].base + offset, T0);
841
    /* modify ESP after to handle exceptions correctly */
842
    ESP = offset;
843
}
844

    
845
void op_pushl_ss16_T0(void)
846
{
847
    uint32_t offset;
848
    offset = (ESP - 4) & 0xffff;
849
    stl(env->seg_cache[R_SS].base + offset, T0);
850
    /* modify ESP after to handle exceptions correctly */
851
    ESP = (ESP & ~0xffff) | offset;
852
}
853

    
854
void op_pushw_ss16_T0(void)
855
{
856
    uint32_t offset;
857
    offset = (ESP - 2) & 0xffff;
858
    stw(env->seg_cache[R_SS].base + offset, T0);
859
    /* modify ESP after to handle exceptions correctly */
860
    ESP = (ESP & ~0xffff) | offset;
861
}
862

    
863
/* NOTE: ESP update is done after */
864
void op_popl_T0(void)
865
{
866
    T0 = ldl((void *)ESP);
867
}
868

    
869
void op_popw_T0(void)
870
{
871
    T0 = lduw((void *)ESP);
872
}
873

    
874
void op_popl_ss32_T0(void)
875
{
876
    T0 = ldl(env->seg_cache[R_SS].base + ESP);
877
}
878

    
879
void op_popw_ss32_T0(void)
880
{
881
    T0 = lduw(env->seg_cache[R_SS].base + ESP);
882
}
883

    
884
void op_popl_ss16_T0(void)
885
{
886
    T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
887
}
888

    
889
void op_popw_ss16_T0(void)
890
{
891
    T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
892
}
893

    
894
void op_addl_ESP_4(void)
895
{
896
    ESP += 4;
897
}
898

    
899
void op_addl_ESP_2(void)
900
{
901
    ESP += 2;
902
}
903

    
904
void op_addw_ESP_4(void)
905
{
906
    ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
907
}
908

    
909
void op_addw_ESP_2(void)
910
{
911
    ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
912
}
913

    
914
void op_addl_ESP_im(void)
915
{
916
    ESP += PARAM1;
917
}
918

    
919
void op_addw_ESP_im(void)
920
{
921
    ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
922
}
923

    
924
/* rdtsc */
925
#ifndef __i386__
926
uint64_t emu_time;
927
#endif
928

    
929
void OPPROTO op_rdtsc(void)
930
{
931
    uint64_t val;
932
#ifdef __i386__
933
    asm("rdtsc" : "=A" (val));
934
#else
935
    /* better than nothing: the time increases */
936
    val = emu_time++;
937
#endif
938
    EAX = val;
939
    EDX = val >> 32;
940
}
941

    
942
/* We simulate a pre-MMX pentium as in valgrind */
943
#define CPUID_FP87 (1 << 0)
944
#define CPUID_VME  (1 << 1)
945
#define CPUID_DE   (1 << 2)
946
#define CPUID_PSE  (1 << 3)
947
#define CPUID_TSC  (1 << 4)
948
#define CPUID_MSR  (1 << 5)
949
#define CPUID_PAE  (1 << 6)
950
#define CPUID_MCE  (1 << 7)
951
#define CPUID_CX8  (1 << 8)
952
#define CPUID_APIC (1 << 9)
953
#define CPUID_SEP  (1 << 11) /* sysenter/sysexit */
954
#define CPUID_MTRR (1 << 12)
955
#define CPUID_PGE  (1 << 13)
956
#define CPUID_MCA  (1 << 14)
957
#define CPUID_CMOV (1 << 15)
958
/* ... */
959
#define CPUID_MMX  (1 << 23)
960
#define CPUID_FXSR (1 << 24)
961
#define CPUID_SSE  (1 << 25)
962
#define CPUID_SSE2 (1 << 26)
963

    
964
void helper_cpuid(void)
965
{
966
    if (EAX == 0) {
967
        EAX = 1; /* max EAX index supported */
968
        EBX = 0x756e6547;
969
        ECX = 0x6c65746e;
970
        EDX = 0x49656e69;
971
    } else {
972
        /* EAX = 1 info */
973
        EAX = 0x52b;
974
        EBX = 0;
975
        ECX = 0;
976
        EDX = CPUID_FP87 | CPUID_DE | CPUID_PSE |
977
            CPUID_TSC | CPUID_MSR | CPUID_MCE |
978
            CPUID_CX8;
979
    }
980
}
981

    
982
void OPPROTO op_cpuid(void)
983
{
984
    helper_cpuid();
985
}
986

    
987
/* bcd */
988

    
989
/* XXX: exception */
990
void OPPROTO op_aam(void)
991
{
992
    int base = PARAM1;
993
    int al, ah;
994
    al = EAX & 0xff;
995
    ah = al / base;
996
    al = al % base;
997
    EAX = (EAX & ~0xffff) | al | (ah << 8);
998
    CC_DST = al;
999
}
1000

    
1001
void OPPROTO op_aad(void)
1002
{
1003
    int base = PARAM1;
1004
    int al, ah;
1005
    al = EAX & 0xff;
1006
    ah = (EAX >> 8) & 0xff;
1007
    al = ((ah * base) + al) & 0xff;
1008
    EAX = (EAX & ~0xffff) | al;
1009
    CC_DST = al;
1010
}
1011

    
1012
void OPPROTO op_aaa(void)
1013
{
1014
    int icarry;
1015
    int al, ah, af;
1016
    int eflags;
1017

    
1018
    eflags = cc_table[CC_OP].compute_all();
1019
    af = eflags & CC_A;
1020
    al = EAX & 0xff;
1021
    ah = (EAX >> 8) & 0xff;
1022

    
1023
    icarry = (al > 0xf9);
1024
    if (((al & 0x0f) > 9 ) || af) {
1025
        al = (al + 6) & 0x0f;
1026
        ah = (ah + 1 + icarry) & 0xff;
1027
        eflags |= CC_C | CC_A;
1028
    } else {
1029
        eflags &= ~(CC_C | CC_A);
1030
        al &= 0x0f;
1031
    }
1032
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1033
    CC_SRC = eflags;
1034
}
1035

    
1036
void OPPROTO op_aas(void)
1037
{
1038
    int icarry;
1039
    int al, ah, af;
1040
    int eflags;
1041

    
1042
    eflags = cc_table[CC_OP].compute_all();
1043
    af = eflags & CC_A;
1044
    al = EAX & 0xff;
1045
    ah = (EAX >> 8) & 0xff;
1046

    
1047
    icarry = (al < 6);
1048
    if (((al & 0x0f) > 9 ) || af) {
1049
        al = (al - 6) & 0x0f;
1050
        ah = (ah - 1 - icarry) & 0xff;
1051
        eflags |= CC_C | CC_A;
1052
    } else {
1053
        eflags &= ~(CC_C | CC_A);
1054
        al &= 0x0f;
1055
    }
1056
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1057
    CC_SRC = eflags;
1058
}
1059

    
1060
void OPPROTO op_daa(void)
1061
{
1062
    int al, af, cf;
1063
    int eflags;
1064

    
1065
    eflags = cc_table[CC_OP].compute_all();
1066
    cf = eflags & CC_C;
1067
    af = eflags & CC_A;
1068
    al = EAX & 0xff;
1069

    
1070
    eflags = 0;
1071
    if (((al & 0x0f) > 9 ) || af) {
1072
        al = (al + 6) & 0xff;
1073
        eflags |= CC_A;
1074
    }
1075
    if ((al > 0x9f) || cf) {
1076
        al = (al + 0x60) & 0xff;
1077
        eflags |= CC_C;
1078
    }
1079
    EAX = (EAX & ~0xff) | al;
1080
    /* well, speed is not an issue here, so we compute the flags by hand */
1081
    eflags |= (al == 0) << 6; /* zf */
1082
    eflags |= parity_table[al]; /* pf */
1083
    eflags |= (al & 0x80); /* sf */
1084
    CC_SRC = eflags;
1085
}
1086

    
1087
void OPPROTO op_das(void)
1088
{
1089
    int al, al1, af, cf;
1090
    int eflags;
1091

    
1092
    eflags = cc_table[CC_OP].compute_all();
1093
    cf = eflags & CC_C;
1094
    af = eflags & CC_A;
1095
    al = EAX & 0xff;
1096

    
1097
    eflags = 0;
1098
    al1 = al;
1099
    if (((al & 0x0f) > 9 ) || af) {
1100
        eflags |= CC_A;
1101
        if (al < 6 || cf)
1102
            eflags |= CC_C;
1103
        al = (al - 6) & 0xff;
1104
    }
1105
    if ((al1 > 0x99) || cf) {
1106
        al = (al - 0x60) & 0xff;
1107
        eflags |= CC_C;
1108
    }
1109
    EAX = (EAX & ~0xff) | al;
1110
    /* well, speed is not an issue here, so we compute the flags by hand */
1111
    eflags |= (al == 0) << 6; /* zf */
1112
    eflags |= parity_table[al]; /* pf */
1113
    eflags |= (al & 0x80); /* sf */
1114
    CC_SRC = eflags;
1115
}
1116

    
1117
/* segment handling */
1118

    
1119
/* XXX: use static VM86 information */
1120
void load_seg(int seg_reg, int selector)
1121
{
1122
    SegmentCache *sc;
1123
    SegmentDescriptorTable *dt;
1124
    int index;
1125
    uint32_t e1, e2;
1126
    uint8_t *ptr;
1127

    
1128
    sc = &env->seg_cache[seg_reg];
1129
    if (env->eflags & VM_MASK) {
1130
        sc->base = (void *)(selector << 4);
1131
        sc->limit = 0xffff;
1132
        sc->seg_32bit = 0;
1133
    } else {
1134
        if (selector & 0x4)
1135
            dt = &env->ldt;
1136
        else
1137
            dt = &env->gdt;
1138
        index = selector & ~7;
1139
        if ((index + 7) > dt->limit)
1140
            raise_exception_err(EXCP0D_GPF, selector);
1141
        ptr = dt->base + index;
1142
        e1 = ldl(ptr);
1143
        e2 = ldl(ptr + 4);
1144
        sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1145
        sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1146
        if (e2 & (1 << 23))
1147
            sc->limit = (sc->limit << 12) | 0xfff;
1148
        sc->seg_32bit = (e2 >> 22) & 1;
1149
#if 0
1150
        fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n", 
1151
                selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1152
#endif
1153
    }
1154
    env->segs[seg_reg] = selector;
1155
}
1156

    
1157
void OPPROTO op_movl_seg_T0(void)
1158
{
1159
    load_seg(PARAM1, T0 & 0xffff);
1160
}
1161

    
1162
void OPPROTO op_movl_T0_seg(void)
1163
{
1164
    T0 = env->segs[PARAM1];
1165
}
1166

    
1167
void OPPROTO op_movl_A0_seg(void)
1168
{
1169
    A0 = *(unsigned long *)((char *)env + PARAM1);
1170
}
1171

    
1172
void OPPROTO op_addl_A0_seg(void)
1173
{
1174
    A0 += *(unsigned long *)((char *)env + PARAM1);
1175
}
1176

    
1177
void helper_lsl(void)
1178
{
1179
    unsigned int selector, limit;
1180
    SegmentDescriptorTable *dt;
1181
    int index;
1182
    uint32_t e1, e2;
1183
    uint8_t *ptr;
1184

    
1185
    CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
1186
    selector = T0 & 0xffff;
1187
    if (selector & 0x4)
1188
        dt = &env->ldt;
1189
    else
1190
        dt = &env->gdt;
1191
    index = selector & ~7;
1192
    if ((index + 7) > dt->limit)
1193
        return;
1194
    ptr = dt->base + index;
1195
    e1 = ldl(ptr);
1196
    e2 = ldl(ptr + 4);
1197
    limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1198
    if (e2 & (1 << 23))
1199
        limit = (limit << 12) | 0xfff;
1200
    T1 = limit;
1201
    CC_SRC |= CC_Z;
1202
}
1203

    
1204
void OPPROTO op_lsl(void)
1205
{
1206
    helper_lsl();
1207
}
1208

    
1209
void helper_lar(void)
1210
{
1211
    unsigned int selector;
1212
    SegmentDescriptorTable *dt;
1213
    int index;
1214
    uint32_t e2;
1215
    uint8_t *ptr;
1216

    
1217
    CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
1218
    selector = T0 & 0xffff;
1219
    if (selector & 0x4)
1220
        dt = &env->ldt;
1221
    else
1222
        dt = &env->gdt;
1223
    index = selector & ~7;
1224
    if ((index + 7) > dt->limit)
1225
        return;
1226
    ptr = dt->base + index;
1227
    e2 = ldl(ptr + 4);
1228
    T1 = e2 & 0x00f0ff00;
1229
    CC_SRC |= CC_Z;
1230
}
1231

    
1232
void OPPROTO op_lar(void)
1233
{
1234
    helper_lar();
1235
}
1236

    
1237
/* flags handling */
1238

    
1239
/* slow jumps cases : in order to avoid calling a function with a
1240
   pointer (which can generate a stack frame on PowerPC), we use
1241
   op_setcc to set T0 and then call op_jcc. */
1242
void OPPROTO op_jcc(void)
1243
{
1244
    if (T0)
1245
        JUMP_TB(PARAM1, 0, PARAM2);
1246
    else
1247
        JUMP_TB(PARAM1, 1, PARAM3);
1248
    FORCE_RET();
1249
}
1250

    
1251
/* slow set cases (compute x86 flags) */
1252
void OPPROTO op_seto_T0_cc(void)
1253
{
1254
    int eflags;
1255
    eflags = cc_table[CC_OP].compute_all();
1256
    T0 = (eflags >> 11) & 1;
1257
}
1258

    
1259
void OPPROTO op_setb_T0_cc(void)
1260
{
1261
    T0 = cc_table[CC_OP].compute_c();
1262
}
1263

    
1264
void OPPROTO op_setz_T0_cc(void)
1265
{
1266
    int eflags;
1267
    eflags = cc_table[CC_OP].compute_all();
1268
    T0 = (eflags >> 6) & 1;
1269
}
1270

    
1271
void OPPROTO op_setbe_T0_cc(void)
1272
{
1273
    int eflags;
1274
    eflags = cc_table[CC_OP].compute_all();
1275
    T0 = (eflags & (CC_Z | CC_C)) != 0;
1276
}
1277

    
1278
void OPPROTO op_sets_T0_cc(void)
1279
{
1280
    int eflags;
1281
    eflags = cc_table[CC_OP].compute_all();
1282
    T0 = (eflags >> 7) & 1;
1283
}
1284

    
1285
void OPPROTO op_setp_T0_cc(void)
1286
{
1287
    int eflags;
1288
    eflags = cc_table[CC_OP].compute_all();
1289
    T0 = (eflags >> 2) & 1;
1290
}
1291

    
1292
void OPPROTO op_setl_T0_cc(void)
1293
{
1294
    int eflags;
1295
    eflags = cc_table[CC_OP].compute_all();
1296
    T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1297
}
1298

    
1299
void OPPROTO op_setle_T0_cc(void)
1300
{
1301
    int eflags;
1302
    eflags = cc_table[CC_OP].compute_all();
1303
    T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1304
}
1305

    
1306
void OPPROTO op_xor_T0_1(void)
1307
{
1308
    T0 ^= 1;
1309
}
1310

    
1311
void OPPROTO op_set_cc_op(void)
1312
{
1313
    CC_OP = PARAM1;
1314
}
1315

    
1316
#define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
1317
#define FL_UPDATE_MASK16 (TF_MASK)
1318

    
1319
void OPPROTO op_movl_eflags_T0(void)
1320
{
1321
    int eflags;
1322
    eflags = T0;
1323
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1324
    DF = 1 - (2 * ((eflags >> 10) & 1));
1325
    /* we also update some system flags as in user mode */
1326
    env->eflags = (env->eflags & ~FL_UPDATE_MASK32) | (eflags & FL_UPDATE_MASK32);
1327
}
1328

    
1329
void OPPROTO op_movw_eflags_T0(void)
1330
{
1331
    int eflags;
1332
    eflags = T0;
1333
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1334
    DF = 1 - (2 * ((eflags >> 10) & 1));
1335
    /* we also update some system flags as in user mode */
1336
    env->eflags = (env->eflags & ~FL_UPDATE_MASK16) | (eflags & FL_UPDATE_MASK16);
1337
}
1338

    
1339
#if 0
1340
/* vm86plus version */
1341
void OPPROTO op_movw_eflags_T0_vm(void)
1342
{
1343
    int eflags;
1344
    eflags = T0;
1345
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1346
    DF = 1 - (2 * ((eflags >> 10) & 1));
1347
    /* we also update some system flags as in user mode */
1348
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1349
        (eflags & FL_UPDATE_MASK16);
1350
    if (eflags & IF_MASK) {
1351
        env->eflags |= VIF_MASK;
1352
        if (env->eflags & VIP_MASK) {
1353
            EIP = PARAM1;
1354
            raise_exception(EXCP0D_GPF);
1355
        }
1356
    }
1357
    FORCE_RET();
1358
}
1359

1360
void OPPROTO op_movl_eflags_T0_vm(void)
1361
{
1362
    int eflags;
1363
    eflags = T0;
1364
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1365
    DF = 1 - (2 * ((eflags >> 10) & 1));
1366
    /* we also update some system flags as in user mode */
1367
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1368
        (eflags & FL_UPDATE_MASK32);
1369
    if (eflags & IF_MASK) {
1370
        env->eflags |= VIF_MASK;
1371
        if (env->eflags & VIP_MASK) {
1372
            EIP = PARAM1;
1373
            raise_exception(EXCP0D_GPF);
1374
        }
1375
    }
1376
    FORCE_RET();
1377
}
1378
#endif
1379

    
1380
/* XXX: compute only O flag */
1381
void OPPROTO op_movb_eflags_T0(void)
1382
{
1383
    int of;
1384
    of = cc_table[CC_OP].compute_all() & CC_O;
1385
    CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1386
}
1387

    
1388
void OPPROTO op_movl_T0_eflags(void)
1389
{
1390
    int eflags;
1391
    eflags = cc_table[CC_OP].compute_all();
1392
    eflags |= (DF & DF_MASK);
1393
    eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1394
    T0 = eflags;
1395
}
1396

    
1397
/* vm86plus version */
1398
#if 0
1399
void OPPROTO op_movl_T0_eflags_vm(void)
1400
{
1401
    int eflags;
1402
    eflags = cc_table[CC_OP].compute_all();
1403
    eflags |= (DF & DF_MASK);
1404
    eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1405
    if (env->eflags & VIF_MASK)
1406
        eflags |= IF_MASK;
1407
    T0 = eflags;
1408
}
1409
#endif
1410

    
1411
void OPPROTO op_cld(void)
1412
{
1413
    DF = 1;
1414
}
1415

    
1416
void OPPROTO op_std(void)
1417
{
1418
    DF = -1;
1419
}
1420

    
1421
void OPPROTO op_clc(void)
1422
{
1423
    int eflags;
1424
    eflags = cc_table[CC_OP].compute_all();
1425
    eflags &= ~CC_C;
1426
    CC_SRC = eflags;
1427
}
1428

    
1429
void OPPROTO op_stc(void)
1430
{
1431
    int eflags;
1432
    eflags = cc_table[CC_OP].compute_all();
1433
    eflags |= CC_C;
1434
    CC_SRC = eflags;
1435
}
1436

    
1437
void OPPROTO op_cmc(void)
1438
{
1439
    int eflags;
1440
    eflags = cc_table[CC_OP].compute_all();
1441
    eflags ^= CC_C;
1442
    CC_SRC = eflags;
1443
}
1444

    
1445
void OPPROTO op_salc(void)
1446
{
1447
    int cf;
1448
    cf = cc_table[CC_OP].compute_c();
1449
    EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1450
}
1451

    
1452
static int compute_all_eflags(void)
1453
{
1454
    return CC_SRC;
1455
}
1456

    
1457
static int compute_c_eflags(void)
1458
{
1459
    return CC_SRC & CC_C;
1460
}
1461

    
1462
static int compute_c_mul(void)
1463
{
1464
    int cf;
1465
    cf = (CC_SRC != 0);
1466
    return cf;
1467
}
1468

    
1469
static int compute_all_mul(void)
1470
{
1471
    int cf, pf, af, zf, sf, of;
1472
    cf = (CC_SRC != 0);
1473
    pf = 0; /* undefined */
1474
    af = 0; /* undefined */
1475
    zf = 0; /* undefined */
1476
    sf = 0; /* undefined */
1477
    of = cf << 11;
1478
    return cf | pf | af | zf | sf | of;
1479
}
1480
    
1481
CCTable cc_table[CC_OP_NB] = {
1482
    [CC_OP_DYNAMIC] = { /* should never happen */ },
1483

    
1484
    [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1485

    
1486
    [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1487

    
1488
    [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1489
    [CC_OP_ADDW] = { compute_all_addw, compute_c_addw  },
1490
    [CC_OP_ADDL] = { compute_all_addl, compute_c_addl  },
1491

    
1492
    [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1493
    [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw  },
1494
    [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl  },
1495

    
1496
    [CC_OP_SUBB] = { compute_all_subb, compute_c_subb  },
1497
    [CC_OP_SUBW] = { compute_all_subw, compute_c_subw  },
1498
    [CC_OP_SUBL] = { compute_all_subl, compute_c_subl  },
1499
    
1500
    [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb  },
1501
    [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw  },
1502
    [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl  },
1503
    
1504
    [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1505
    [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1506
    [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1507
    
1508
    [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1509
    [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1510
    [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1511
    
1512
    [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1513
    [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1514
    [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1515
    
1516
    [CC_OP_SHLB] = { compute_all_shlb, compute_c_shlb },
1517
    [CC_OP_SHLW] = { compute_all_shlw, compute_c_shlw },
1518
    [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1519

    
1520
    [CC_OP_SARB] = { compute_all_sarb, compute_c_sarl },
1521
    [CC_OP_SARW] = { compute_all_sarw, compute_c_sarl },
1522
    [CC_OP_SARL] = { compute_all_sarl, compute_c_sarl },
1523
};
1524

    
1525
/* floating point support. Some of the code for complicated x87
1526
   functions comes from the LGPL'ed x86 emulator found in the Willows
1527
   TWIN windows emulator. */
1528

    
1529
#ifdef USE_X86LDOUBLE
1530
/* use long double functions */
1531
#define lrint lrintl
1532
#define llrint llrintl
1533
#define fabs fabsl
1534
#define sin sinl
1535
#define cos cosl
1536
#define sqrt sqrtl
1537
#define pow powl
1538
#define log logl
1539
#define tan tanl
1540
#define atan2 atan2l
1541
#define floor floorl
1542
#define ceil ceill
1543
#define rint rintl
1544
#endif
1545

    
1546
extern int lrint(CPU86_LDouble x);
1547
extern int64_t llrint(CPU86_LDouble x);
1548
extern CPU86_LDouble fabs(CPU86_LDouble x);
1549
extern CPU86_LDouble sin(CPU86_LDouble x);
1550
extern CPU86_LDouble cos(CPU86_LDouble x);
1551
extern CPU86_LDouble sqrt(CPU86_LDouble x);
1552
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1553
extern CPU86_LDouble log(CPU86_LDouble x);
1554
extern CPU86_LDouble tan(CPU86_LDouble x);
1555
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1556
extern CPU86_LDouble floor(CPU86_LDouble x);
1557
extern CPU86_LDouble ceil(CPU86_LDouble x);
1558
extern CPU86_LDouble rint(CPU86_LDouble x);
1559

    
1560
#if defined(__powerpc__)
1561
extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1562

    
1563
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1564
double qemu_rint(double x)
1565
{
1566
    double y = 4503599627370496.0;
1567
    if (fabs(x) >= y)
1568
        return x;
1569
    if (x < 0) 
1570
        y = -y;
1571
    y = (x + y) - y;
1572
    if (y == 0.0)
1573
        y = copysign(y, x);
1574
    return y;
1575
}
1576

    
1577
#define rint qemu_rint
1578
#endif
1579

    
1580
#define RC_MASK         0xc00
1581
#define RC_NEAR                0x000
1582
#define RC_DOWN                0x400
1583
#define RC_UP                0x800
1584
#define RC_CHOP                0xc00
1585

    
1586
#define MAXTAN 9223372036854775808.0
1587

    
1588
#ifdef USE_X86LDOUBLE
1589

    
1590
/* only for x86 */
1591
typedef union {
1592
    long double d;
1593
    struct {
1594
        unsigned long long lower;
1595
        unsigned short upper;
1596
    } l;
1597
} CPU86_LDoubleU;
1598

    
1599
/* the following deal with x86 long double-precision numbers */
1600
#define MAXEXPD 0x7fff
1601
#define EXPBIAS 16383
1602
#define EXPD(fp)        (fp.l.upper & 0x7fff)
1603
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
1604
#define MANTD(fp)       (fp.l.lower)
1605
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1606

    
1607
#else
1608

    
1609
typedef union {
1610
    double d;
1611
#ifndef WORDS_BIGENDIAN
1612
    struct {
1613
        unsigned long lower;
1614
        long upper;
1615
    } l;
1616
#else
1617
    struct {
1618
        long upper;
1619
        unsigned long lower;
1620
    } l;
1621
#endif
1622
    long long ll;
1623
} CPU86_LDoubleU;
1624

    
1625
/* the following deal with IEEE double-precision numbers */
1626
#define MAXEXPD 0x7ff
1627
#define EXPBIAS 1023
1628
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
1629
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
1630
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
1631
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1632
#endif
1633

    
1634
/* fp load FT0 */
1635

    
1636
void OPPROTO op_flds_FT0_A0(void)
1637
{
1638
#ifdef USE_FP_CONVERT
1639
    FP_CONVERT.i32 = ldl((void *)A0);
1640
    FT0 = FP_CONVERT.f;
1641
#else
1642
    FT0 = ldfl((void *)A0);
1643
#endif
1644
}
1645

    
1646
void OPPROTO op_fldl_FT0_A0(void)
1647
{
1648
#ifdef USE_FP_CONVERT
1649
    FP_CONVERT.i64 = ldq((void *)A0);
1650
    FT0 = FP_CONVERT.d;
1651
#else
1652
    FT0 = ldfq((void *)A0);
1653
#endif
1654
}
1655

    
1656
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1657
#ifdef USE_INT_TO_FLOAT_HELPERS
1658

    
1659
void helper_fild_FT0_A0(void)
1660
{
1661
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1662
}
1663

    
1664
void helper_fildl_FT0_A0(void)
1665
{
1666
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1667
}
1668

    
1669
void helper_fildll_FT0_A0(void)
1670
{
1671
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1672
}
1673

    
1674
void OPPROTO op_fild_FT0_A0(void)
1675
{
1676
    helper_fild_FT0_A0();
1677
}
1678

    
1679
void OPPROTO op_fildl_FT0_A0(void)
1680
{
1681
    helper_fildl_FT0_A0();
1682
}
1683

    
1684
void OPPROTO op_fildll_FT0_A0(void)
1685
{
1686
    helper_fildll_FT0_A0();
1687
}
1688

    
1689
#else
1690

    
1691
void OPPROTO op_fild_FT0_A0(void)
1692
{
1693
#ifdef USE_FP_CONVERT
1694
    FP_CONVERT.i32 = ldsw((void *)A0);
1695
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1696
#else
1697
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1698
#endif
1699
}
1700

    
1701
void OPPROTO op_fildl_FT0_A0(void)
1702
{
1703
#ifdef USE_FP_CONVERT
1704
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1705
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1706
#else
1707
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1708
#endif
1709
}
1710

    
1711
void OPPROTO op_fildll_FT0_A0(void)
1712
{
1713
#ifdef USE_FP_CONVERT
1714
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1715
    FT0 = (CPU86_LDouble)FP_CONVERT.i64;
1716
#else
1717
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1718
#endif
1719
}
1720
#endif
1721

    
1722
/* fp load ST0 */
1723

    
1724
void OPPROTO op_flds_ST0_A0(void)
1725
{
1726
#ifdef USE_FP_CONVERT
1727
    FP_CONVERT.i32 = ldl((void *)A0);
1728
    ST0 = FP_CONVERT.f;
1729
#else
1730
    ST0 = ldfl((void *)A0);
1731
#endif
1732
}
1733

    
1734
void OPPROTO op_fldl_ST0_A0(void)
1735
{
1736
#ifdef USE_FP_CONVERT
1737
    FP_CONVERT.i64 = ldq((void *)A0);
1738
    ST0 = FP_CONVERT.d;
1739
#else
1740
    ST0 = ldfq((void *)A0);
1741
#endif
1742
}
1743

    
1744
#ifdef USE_X86LDOUBLE
1745
void OPPROTO op_fldt_ST0_A0(void)
1746
{
1747
    ST0 = *(long double *)A0;
1748
}
1749
#else
1750
void helper_fldt_ST0_A0(void)
1751
{
1752
    CPU86_LDoubleU temp;
1753
    int upper, e;
1754
    /* mantissa */
1755
    upper = lduw((uint8_t *)A0 + 8);
1756
    /* XXX: handle overflow ? */
1757
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1758
    e |= (upper >> 4) & 0x800; /* sign */
1759
    temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1760
    ST0 = temp.d;
1761
}
1762

    
1763
void OPPROTO op_fldt_ST0_A0(void)
1764
{
1765
    helper_fldt_ST0_A0();
1766
}
1767
#endif
1768

    
1769
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1770
#ifdef USE_INT_TO_FLOAT_HELPERS
1771

    
1772
void helper_fild_ST0_A0(void)
1773
{
1774
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1775
}
1776

    
1777
void helper_fildl_ST0_A0(void)
1778
{
1779
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1780
}
1781

    
1782
void helper_fildll_ST0_A0(void)
1783
{
1784
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1785
}
1786

    
1787
void OPPROTO op_fild_ST0_A0(void)
1788
{
1789
    helper_fild_ST0_A0();
1790
}
1791

    
1792
void OPPROTO op_fildl_ST0_A0(void)
1793
{
1794
    helper_fildl_ST0_A0();
1795
}
1796

    
1797
void OPPROTO op_fildll_ST0_A0(void)
1798
{
1799
    helper_fildll_ST0_A0();
1800
}
1801

    
1802
#else
1803

    
1804
void OPPROTO op_fild_ST0_A0(void)
1805
{
1806
#ifdef USE_FP_CONVERT
1807
    FP_CONVERT.i32 = ldsw((void *)A0);
1808
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1809
#else
1810
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1811
#endif
1812
}
1813

    
1814
void OPPROTO op_fildl_ST0_A0(void)
1815
{
1816
#ifdef USE_FP_CONVERT
1817
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1818
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1819
#else
1820
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1821
#endif
1822
}
1823

    
1824
void OPPROTO op_fildll_ST0_A0(void)
1825
{
1826
#ifdef USE_FP_CONVERT
1827
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1828
    ST0 = (CPU86_LDouble)FP_CONVERT.i64;
1829
#else
1830
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1831
#endif
1832
}
1833

    
1834
#endif
1835

    
1836
/* fp store */
1837

    
1838
void OPPROTO op_fsts_ST0_A0(void)
1839
{
1840
#ifdef USE_FP_CONVERT
1841
    FP_CONVERT.d = ST0;
1842
    stfl((void *)A0, FP_CONVERT.f);
1843
#else
1844
    stfl((void *)A0, (float)ST0);
1845
#endif
1846
}
1847

    
1848
void OPPROTO op_fstl_ST0_A0(void)
1849
{
1850
    stfq((void *)A0, (double)ST0);
1851
}
1852

    
1853
#ifdef USE_X86LDOUBLE
1854
void OPPROTO op_fstt_ST0_A0(void)
1855
{
1856
    *(long double *)A0 = ST0;
1857
}
1858
#else
1859
void helper_fstt_ST0_A0(void)
1860
{
1861
    CPU86_LDoubleU temp;
1862
    int e;
1863
    temp.d = ST0;
1864
    /* mantissa */
1865
    stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1866
    /* exponent + sign */
1867
    e = EXPD(temp) - EXPBIAS + 16383;
1868
    e |= SIGND(temp) >> 16;
1869
    stw((uint8_t *)A0 + 8, e);
1870
}
1871

    
1872
void OPPROTO op_fstt_ST0_A0(void)
1873
{
1874
    helper_fstt_ST0_A0();
1875
}
1876
#endif
1877

    
1878
void OPPROTO op_fist_ST0_A0(void)
1879
{
1880
#if defined(__sparc__) && !defined(__sparc_v9__)
1881
    register CPU86_LDouble d asm("o0");
1882
#else
1883
    CPU86_LDouble d;
1884
#endif
1885
    int val;
1886

    
1887
    d = ST0;
1888
    val = lrint(d);
1889
    stw((void *)A0, val);
1890
}
1891

    
1892
void OPPROTO op_fistl_ST0_A0(void)
1893
{
1894
#if defined(__sparc__) && !defined(__sparc_v9__)
1895
    register CPU86_LDouble d asm("o0");
1896
#else
1897
    CPU86_LDouble d;
1898
#endif
1899
    int val;
1900

    
1901
    d = ST0;
1902
    val = lrint(d);
1903
    stl((void *)A0, val);
1904
}
1905

    
1906
void OPPROTO op_fistll_ST0_A0(void)
1907
{
1908
#if defined(__sparc__) && !defined(__sparc_v9__)
1909
    register CPU86_LDouble d asm("o0");
1910
#else
1911
    CPU86_LDouble d;
1912
#endif
1913
    int64_t val;
1914

    
1915
    d = ST0;
1916
    val = llrint(d);
1917
    stq((void *)A0, val);
1918
}
1919

    
1920
/* BCD ops */
1921

    
1922
#define MUL10(iv) ( iv + iv + (iv << 3) )
1923

    
1924
void helper_fbld_ST0_A0(void)
1925
{
1926
    uint8_t *seg;
1927
    CPU86_LDouble fpsrcop;
1928
    int m32i;
1929
    unsigned int v;
1930

    
1931
    /* in this code, seg/m32i will be used as temporary ptr/int */
1932
    seg = (uint8_t *)A0 + 8;
1933
    v = ldub(seg--);
1934
    /* XXX: raise exception */
1935
    if (v != 0)
1936
        return;
1937
    v = ldub(seg--);
1938
    /* XXX: raise exception */
1939
    if ((v & 0xf0) != 0)
1940
        return;
1941
    m32i = v;  /* <-- d14 */
1942
    v = ldub(seg--);
1943
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d13 */
1944
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1945
    v = ldub(seg--);
1946
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d11 */
1947
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1948
    v = ldub(seg--);
1949
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d9 */
1950
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1951
    fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1952

    
1953
    v = ldub(seg--);
1954
    m32i = (v >> 4);  /* <-- d7 */
1955
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1956
    v = ldub(seg--);
1957
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d5 */
1958
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1959
    v = ldub(seg--);
1960
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d3 */
1961
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
1962
    v = ldub(seg);
1963
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d1 */
1964
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
1965
    fpsrcop += ((CPU86_LDouble)m32i);
1966
    if ( ldub(seg+9) & 0x80 )
1967
        fpsrcop = -fpsrcop;
1968
    ST0 = fpsrcop;
1969
}
1970

    
1971
void OPPROTO op_fbld_ST0_A0(void)
1972
{
1973
    helper_fbld_ST0_A0();
1974
}
1975

    
1976
void helper_fbst_ST0_A0(void)
1977
{
1978
    CPU86_LDouble fptemp;
1979
    CPU86_LDouble fpsrcop;
1980
    int v;
1981
    uint8_t *mem_ref, *mem_end;
1982

    
1983
    fpsrcop = rint(ST0);
1984
    mem_ref = (uint8_t *)A0;
1985
    mem_end = mem_ref + 8;
1986
    if ( fpsrcop < 0.0 ) {
1987
        stw(mem_end, 0x8000);
1988
        fpsrcop = -fpsrcop;
1989
    } else {
1990
        stw(mem_end, 0x0000);
1991
    }
1992
    while (mem_ref < mem_end) {
1993
        if (fpsrcop == 0.0)
1994
            break;
1995
        fptemp = floor(fpsrcop/10.0);
1996
        v = ((int)(fpsrcop - fptemp*10.0));
1997
        if  (fptemp == 0.0)  { 
1998
            stb(mem_ref++, v); 
1999
            break; 
2000
        }
2001
        fpsrcop = fptemp;
2002
        fptemp = floor(fpsrcop/10.0);
2003
        v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
2004
        stb(mem_ref++, v);
2005
        fpsrcop = fptemp;
2006
    }
2007
    while (mem_ref < mem_end) {
2008
        stb(mem_ref++, 0);
2009
    }
2010
}
2011

    
2012
void OPPROTO op_fbst_ST0_A0(void)
2013
{
2014
    helper_fbst_ST0_A0();
2015
}
2016

    
2017
/* FPU move */
2018

    
2019
static inline void fpush(void)
2020
{
2021
    env->fpstt = (env->fpstt - 1) & 7;
2022
    env->fptags[env->fpstt] = 0; /* validate stack entry */
2023
}
2024

    
2025
static inline void fpop(void)
2026
{
2027
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
2028
    env->fpstt = (env->fpstt + 1) & 7;
2029
}
2030

    
2031
void OPPROTO op_fpush(void)
2032
{
2033
    fpush();
2034
}
2035

    
2036
void OPPROTO op_fpop(void)
2037
{
2038
    fpop();
2039
}
2040

    
2041
void OPPROTO op_fdecstp(void)
2042
{
2043
    env->fpstt = (env->fpstt - 1) & 7;
2044
    env->fpus &= (~0x4700);
2045
}
2046

    
2047
void OPPROTO op_fincstp(void)
2048
{
2049
    env->fpstt = (env->fpstt + 1) & 7;
2050
    env->fpus &= (~0x4700);
2051
}
2052

    
2053
void OPPROTO op_fmov_ST0_FT0(void)
2054
{
2055
    ST0 = FT0;
2056
}
2057

    
2058
void OPPROTO op_fmov_FT0_STN(void)
2059
{
2060
    FT0 = ST(PARAM1);
2061
}
2062

    
2063
void OPPROTO op_fmov_ST0_STN(void)
2064
{
2065
    ST0 = ST(PARAM1);
2066
}
2067

    
2068
void OPPROTO op_fmov_STN_ST0(void)
2069
{
2070
    ST(PARAM1) = ST0;
2071
}
2072

    
2073
void OPPROTO op_fxchg_ST0_STN(void)
2074
{
2075
    CPU86_LDouble tmp;
2076
    tmp = ST(PARAM1);
2077
    ST(PARAM1) = ST0;
2078
    ST0 = tmp;
2079
}
2080

    
2081
/* FPU operations */
2082

    
2083
/* XXX: handle nans */
2084
void OPPROTO op_fcom_ST0_FT0(void)
2085
{
2086
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2087
    if (ST0 < FT0)
2088
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2089
    else if (ST0 == FT0)
2090
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2091
    FORCE_RET();
2092
}
2093

    
2094
/* XXX: handle nans */
2095
void OPPROTO op_fucom_ST0_FT0(void)
2096
{
2097
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2098
    if (ST0 < FT0)
2099
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2100
    else if (ST0 == FT0)
2101
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2102
    FORCE_RET();
2103
}
2104

    
2105
void OPPROTO op_fadd_ST0_FT0(void)
2106
{
2107
    ST0 += FT0;
2108
}
2109

    
2110
void OPPROTO op_fmul_ST0_FT0(void)
2111
{
2112
    ST0 *= FT0;
2113
}
2114

    
2115
void OPPROTO op_fsub_ST0_FT0(void)
2116
{
2117
    ST0 -= FT0;
2118
}
2119

    
2120
void OPPROTO op_fsubr_ST0_FT0(void)
2121
{
2122
    ST0 = FT0 - ST0;
2123
}
2124

    
2125
void OPPROTO op_fdiv_ST0_FT0(void)
2126
{
2127
    ST0 /= FT0;
2128
}
2129

    
2130
void OPPROTO op_fdivr_ST0_FT0(void)
2131
{
2132
    ST0 = FT0 / ST0;
2133
}
2134

    
2135
/* fp operations between STN and ST0 */
2136

    
2137
void OPPROTO op_fadd_STN_ST0(void)
2138
{
2139
    ST(PARAM1) += ST0;
2140
}
2141

    
2142
void OPPROTO op_fmul_STN_ST0(void)
2143
{
2144
    ST(PARAM1) *= ST0;
2145
}
2146

    
2147
void OPPROTO op_fsub_STN_ST0(void)
2148
{
2149
    ST(PARAM1) -= ST0;
2150
}
2151

    
2152
void OPPROTO op_fsubr_STN_ST0(void)
2153
{
2154
    CPU86_LDouble *p;
2155
    p = &ST(PARAM1);
2156
    *p = ST0 - *p;
2157
}
2158

    
2159
void OPPROTO op_fdiv_STN_ST0(void)
2160
{
2161
    ST(PARAM1) /= ST0;
2162
}
2163

    
2164
void OPPROTO op_fdivr_STN_ST0(void)
2165
{
2166
    CPU86_LDouble *p;
2167
    p = &ST(PARAM1);
2168
    *p = ST0 / *p;
2169
}
2170

    
2171
/* misc FPU operations */
2172
void OPPROTO op_fchs_ST0(void)
2173
{
2174
    ST0 = -ST0;
2175
}
2176

    
2177
void OPPROTO op_fabs_ST0(void)
2178
{
2179
    ST0 = fabs(ST0);
2180
}
2181

    
2182
void helper_fxam_ST0(void)
2183
{
2184
    CPU86_LDoubleU temp;
2185
    int expdif;
2186

    
2187
    temp.d = ST0;
2188

    
2189
    env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2190
    if (SIGND(temp))
2191
        env->fpus |= 0x200; /* C1 <-- 1 */
2192

    
2193
    expdif = EXPD(temp);
2194
    if (expdif == MAXEXPD) {
2195
        if (MANTD(temp) == 0)
2196
            env->fpus |=  0x500 /*Infinity*/;
2197
        else
2198
            env->fpus |=  0x100 /*NaN*/;
2199
    } else if (expdif == 0) {
2200
        if (MANTD(temp) == 0)
2201
            env->fpus |=  0x4000 /*Zero*/;
2202
        else
2203
            env->fpus |= 0x4400 /*Denormal*/;
2204
    } else {
2205
        env->fpus |= 0x400;
2206
    }
2207
}
2208

    
2209
void OPPROTO op_fxam_ST0(void)
2210
{
2211
    helper_fxam_ST0();
2212
}
2213

    
2214
void OPPROTO op_fld1_ST0(void)
2215
{
2216
    ST0 = *(CPU86_LDouble *)&f15rk[1];
2217
}
2218

    
2219
void OPPROTO op_fldl2t_ST0(void)
2220
{
2221
    ST0 = *(CPU86_LDouble *)&f15rk[6];
2222
}
2223

    
2224
void OPPROTO op_fldl2e_ST0(void)
2225
{
2226
    ST0 = *(CPU86_LDouble *)&f15rk[5];
2227
}
2228

    
2229
void OPPROTO op_fldpi_ST0(void)
2230
{
2231
    ST0 = *(CPU86_LDouble *)&f15rk[2];
2232
}
2233

    
2234
void OPPROTO op_fldlg2_ST0(void)
2235
{
2236
    ST0 = *(CPU86_LDouble *)&f15rk[3];
2237
}
2238

    
2239
void OPPROTO op_fldln2_ST0(void)
2240
{
2241
    ST0 = *(CPU86_LDouble *)&f15rk[4];
2242
}
2243

    
2244
void OPPROTO op_fldz_ST0(void)
2245
{
2246
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2247
}
2248

    
2249
void OPPROTO op_fldz_FT0(void)
2250
{
2251
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2252
}
2253

    
2254
void helper_f2xm1(void)
2255
{
2256
    ST0 = pow(2.0,ST0) - 1.0;
2257
}
2258

    
2259
void helper_fyl2x(void)
2260
{
2261
    CPU86_LDouble fptemp;
2262
    
2263
    fptemp = ST0;
2264
    if (fptemp>0.0){
2265
        fptemp = log(fptemp)/log(2.0);         /* log2(ST) */
2266
        ST1 *= fptemp;
2267
        fpop();
2268
    } else { 
2269
        env->fpus &= (~0x4700);
2270
        env->fpus |= 0x400;
2271
    }
2272
}
2273

    
2274
void helper_fptan(void)
2275
{
2276
    CPU86_LDouble fptemp;
2277

    
2278
    fptemp = ST0;
2279
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2280
        env->fpus |= 0x400;
2281
    } else {
2282
        ST0 = tan(fptemp);
2283
        fpush();
2284
        ST0 = 1.0;
2285
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2286
        /* the above code is for  |arg| < 2**52 only */
2287
    }
2288
}
2289

    
2290
void helper_fpatan(void)
2291
{
2292
    CPU86_LDouble fptemp, fpsrcop;
2293

    
2294
    fpsrcop = ST1;
2295
    fptemp = ST0;
2296
    ST1 = atan2(fpsrcop,fptemp);
2297
    fpop();
2298
}
2299

    
2300
void helper_fxtract(void)
2301
{
2302
    CPU86_LDoubleU temp;
2303
    unsigned int expdif;
2304

    
2305
    temp.d = ST0;
2306
    expdif = EXPD(temp) - EXPBIAS;
2307
    /*DP exponent bias*/
2308
    ST0 = expdif;
2309
    fpush();
2310
    BIASEXPONENT(temp);
2311
    ST0 = temp.d;
2312
}
2313

    
2314
void helper_fprem1(void)
2315
{
2316
    CPU86_LDouble dblq, fpsrcop, fptemp;
2317
    CPU86_LDoubleU fpsrcop1, fptemp1;
2318
    int expdif;
2319
    int q;
2320

    
2321
    fpsrcop = ST0;
2322
    fptemp = ST1;
2323
    fpsrcop1.d = fpsrcop;
2324
    fptemp1.d = fptemp;
2325
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2326
    if (expdif < 53) {
2327
        dblq = fpsrcop / fptemp;
2328
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2329
        ST0 = fpsrcop - fptemp*dblq;
2330
        q = (int)dblq; /* cutting off top bits is assumed here */
2331
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2332
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2333
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2334
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2335
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2336
    } else {
2337
        env->fpus |= 0x400;  /* C2 <-- 1 */
2338
        fptemp = pow(2.0, expdif-50);
2339
        fpsrcop = (ST0 / ST1) / fptemp;
2340
        /* fpsrcop = integer obtained by rounding to the nearest */
2341
        fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2342
            floor(fpsrcop): ceil(fpsrcop);
2343
        ST0 -= (ST1 * fpsrcop * fptemp);
2344
    }
2345
}
2346

    
2347
void helper_fprem(void)
2348
{
2349
    CPU86_LDouble dblq, fpsrcop, fptemp;
2350
    CPU86_LDoubleU fpsrcop1, fptemp1;
2351
    int expdif;
2352
    int q;
2353
    
2354
    fpsrcop = ST0;
2355
    fptemp = ST1;
2356
    fpsrcop1.d = fpsrcop;
2357
    fptemp1.d = fptemp;
2358
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2359
    if ( expdif < 53 ) {
2360
        dblq = fpsrcop / fptemp;
2361
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2362
        ST0 = fpsrcop - fptemp*dblq;
2363
        q = (int)dblq; /* cutting off top bits is assumed here */
2364
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2365
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2366
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2367
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2368
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2369
    } else {
2370
        env->fpus |= 0x400;  /* C2 <-- 1 */
2371
        fptemp = pow(2.0, expdif-50);
2372
        fpsrcop = (ST0 / ST1) / fptemp;
2373
        /* fpsrcop = integer obtained by chopping */
2374
        fpsrcop = (fpsrcop < 0.0)?
2375
            -(floor(fabs(fpsrcop))): floor(fpsrcop);
2376
        ST0 -= (ST1 * fpsrcop * fptemp);
2377
    }
2378
}
2379

    
2380
void helper_fyl2xp1(void)
2381
{
2382
    CPU86_LDouble fptemp;
2383

    
2384
    fptemp = ST0;
2385
    if ((fptemp+1.0)>0.0) {
2386
        fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2387
        ST1 *= fptemp;
2388
        fpop();
2389
    } else { 
2390
        env->fpus &= (~0x4700);
2391
        env->fpus |= 0x400;
2392
    }
2393
}
2394

    
2395
void helper_fsqrt(void)
2396
{
2397
    CPU86_LDouble fptemp;
2398

    
2399
    fptemp = ST0;
2400
    if (fptemp<0.0) { 
2401
        env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2402
        env->fpus |= 0x400;
2403
    }
2404
    ST0 = sqrt(fptemp);
2405
}
2406

    
2407
void helper_fsincos(void)
2408
{
2409
    CPU86_LDouble fptemp;
2410

    
2411
    fptemp = ST0;
2412
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2413
        env->fpus |= 0x400;
2414
    } else {
2415
        ST0 = sin(fptemp);
2416
        fpush();
2417
        ST0 = cos(fptemp);
2418
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2419
        /* the above code is for  |arg| < 2**63 only */
2420
    }
2421
}
2422

    
2423
void helper_frndint(void)
2424
{
2425
    ST0 = rint(ST0);
2426
}
2427

    
2428
void helper_fscale(void)
2429
{
2430
    CPU86_LDouble fpsrcop, fptemp;
2431

    
2432
    fpsrcop = 2.0;
2433
    fptemp = pow(fpsrcop,ST1);
2434
    ST0 *= fptemp;
2435
}
2436

    
2437
void helper_fsin(void)
2438
{
2439
    CPU86_LDouble fptemp;
2440

    
2441
    fptemp = ST0;
2442
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2443
        env->fpus |= 0x400;
2444
    } else {
2445
        ST0 = sin(fptemp);
2446
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2447
        /* the above code is for  |arg| < 2**53 only */
2448
    }
2449
}
2450

    
2451
void helper_fcos(void)
2452
{
2453
    CPU86_LDouble fptemp;
2454

    
2455
    fptemp = ST0;
2456
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2457
        env->fpus |= 0x400;
2458
    } else {
2459
        ST0 = cos(fptemp);
2460
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2461
        /* the above code is for  |arg5 < 2**63 only */
2462
    }
2463
}
2464

    
2465
/* associated heplers to reduce generated code length and to simplify
2466
   relocation (FP constants are usually stored in .rodata section) */
2467

    
2468
void OPPROTO op_f2xm1(void)
2469
{
2470
    helper_f2xm1();
2471
}
2472

    
2473
void OPPROTO op_fyl2x(void)
2474
{
2475
    helper_fyl2x();
2476
}
2477

    
2478
void OPPROTO op_fptan(void)
2479
{
2480
    helper_fptan();
2481
}
2482

    
2483
void OPPROTO op_fpatan(void)
2484
{
2485
    helper_fpatan();
2486
}
2487

    
2488
void OPPROTO op_fxtract(void)
2489
{
2490
    helper_fxtract();
2491
}
2492

    
2493
void OPPROTO op_fprem1(void)
2494
{
2495
    helper_fprem1();
2496
}
2497

    
2498

    
2499
void OPPROTO op_fprem(void)
2500
{
2501
    helper_fprem();
2502
}
2503

    
2504
void OPPROTO op_fyl2xp1(void)
2505
{
2506
    helper_fyl2xp1();
2507
}
2508

    
2509
void OPPROTO op_fsqrt(void)
2510
{
2511
    helper_fsqrt();
2512
}
2513

    
2514
void OPPROTO op_fsincos(void)
2515
{
2516
    helper_fsincos();
2517
}
2518

    
2519
void OPPROTO op_frndint(void)
2520
{
2521
    helper_frndint();
2522
}
2523

    
2524
void OPPROTO op_fscale(void)
2525
{
2526
    helper_fscale();
2527
}
2528

    
2529
void OPPROTO op_fsin(void)
2530
{
2531
    helper_fsin();
2532
}
2533

    
2534
void OPPROTO op_fcos(void)
2535
{
2536
    helper_fcos();
2537
}
2538

    
2539
void OPPROTO op_fnstsw_A0(void)
2540
{
2541
    int fpus;
2542
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2543
    stw((void *)A0, fpus);
2544
}
2545

    
2546
void OPPROTO op_fnstsw_EAX(void)
2547
{
2548
    int fpus;
2549
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2550
    EAX = (EAX & 0xffff0000) | fpus;
2551
}
2552

    
2553
void OPPROTO op_fnstcw_A0(void)
2554
{
2555
    stw((void *)A0, env->fpuc);
2556
}
2557

    
2558
void OPPROTO op_fldcw_A0(void)
2559
{
2560
    int rnd_type;
2561
    env->fpuc = lduw((void *)A0);
2562
    /* set rounding mode */
2563
    switch(env->fpuc & RC_MASK) {
2564
    default:
2565
    case RC_NEAR:
2566
        rnd_type = FE_TONEAREST;
2567
        break;
2568
    case RC_DOWN:
2569
        rnd_type = FE_DOWNWARD;
2570
        break;
2571
    case RC_UP:
2572
        rnd_type = FE_UPWARD;
2573
        break;
2574
    case RC_CHOP:
2575
        rnd_type = FE_TOWARDZERO;
2576
        break;
2577
    }
2578
    fesetround(rnd_type);
2579
}
2580

    
2581
void OPPROTO op_fclex(void)
2582
{
2583
    env->fpus &= 0x7f00;
2584
}
2585

    
2586
void OPPROTO op_fninit(void)
2587
{
2588
    env->fpus = 0;
2589
    env->fpstt = 0;
2590
    env->fpuc = 0x37f;
2591
    env->fptags[0] = 1;
2592
    env->fptags[1] = 1;
2593
    env->fptags[2] = 1;
2594
    env->fptags[3] = 1;
2595
    env->fptags[4] = 1;
2596
    env->fptags[5] = 1;
2597
    env->fptags[6] = 1;
2598
    env->fptags[7] = 1;
2599
}
2600

    
2601
/* threading support */
2602
void OPPROTO op_lock(void)
2603
{
2604
    cpu_lock();
2605
}
2606

    
2607
void OPPROTO op_unlock(void)
2608
{
2609
    cpu_unlock();
2610
}