Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ 5aca8c3b

History | View | Annotate | Download (7.2 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_TIMER
27

    
28
#ifdef DEBUG_TIMER
29
#define DPRINTF(fmt, args...) \
30
do { printf("TIMER: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of hardware timer in sun4m.
37
 *
38
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 * 
42
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43
 * are zero. Bit 31 is 1 when count has been reached.
44
 *
45
 * Per-CPU timers interrupt local CPU, system timer uses normal
46
 * interrupt routing.
47
 *
48
 */
49

    
50
typedef struct SLAVIO_TIMERState {
51
    ptimer_state *timer;
52
    uint32_t count, counthigh, reached;
53
    uint64_t limit;
54
    int irq;
55
    int stopped;
56
    int mode; // 0 = processor, 1 = user, 2 = system
57
    unsigned int cpu;
58
    void *intctl;
59
} SLAVIO_TIMERState;
60

    
61
#define TIMER_MAXADDR 0x1f
62
#define TIMER_SIZE (TIMER_MAXADDR + 1)
63

    
64
// Update count, set irq, update expire_time
65
// Convert from ptimer countdown units
66
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
67
{
68
    uint64_t count;
69

    
70
    count = s->limit - (ptimer_get_count(s->timer) << 9);
71
    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh,
72
            s->count);
73
    s->count = count & 0xfffffe00;
74
    s->counthigh = count >> 32;
75
}
76

    
77
// timer callback
78
static void slavio_timer_irq(void *opaque)
79
{
80
    SLAVIO_TIMERState *s = opaque;
81

    
82
    slavio_timer_get_out(s);
83
    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
84
    s->reached = 0x80000000;
85
    if (s->mode != 1)
86
        pic_set_irq_cpu(s->intctl, s->irq, 1, s->cpu);
87
}
88

    
89
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
90
{
91
    SLAVIO_TIMERState *s = opaque;
92
    uint32_t saddr, ret;
93

    
94
    saddr = (addr & TIMER_MAXADDR) >> 2;
95
    switch (saddr) {
96
    case 0:
97
        // read limit (system counter mode) or read most signifying
98
        // part of counter (user mode)
99
        if (s->mode != 1) {
100
            // clear irq
101
            pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
102
            s->reached = 0;
103
            ret = s->limit & 0x7fffffff;
104
        }
105
        else {
106
            slavio_timer_get_out(s);
107
            ret = s->counthigh & 0x7fffffff;
108
        }
109
        break;
110
    case 1:
111
        // read counter and reached bit (system mode) or read lsbits
112
        // of counter (user mode)
113
        slavio_timer_get_out(s);
114
        if (s->mode != 1)
115
            ret = (s->count & 0x7fffffff) | s->reached;
116
        else
117
            ret = s->count;
118
        break;
119
    case 3:
120
        // read start/stop status
121
        ret = s->stopped;
122
        break;
123
    case 4:
124
        // read user/system mode
125
        ret = s->mode & 1;
126
        break;
127
    default:
128
        ret = 0;
129
        break;
130
    }
131
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
132

    
133
    return ret;
134
}
135

    
136
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
137
{
138
    SLAVIO_TIMERState *s = opaque;
139
    uint32_t saddr;
140
    int reload = 0;
141

    
142
    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
143
    saddr = (addr & TIMER_MAXADDR) >> 2;
144
    switch (saddr) {
145
    case 0:
146
        // set limit, reset counter
147
        reload = 1;
148
        pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
149
        // fall through
150
    case 2:
151
        // set limit without resetting counter
152
        s->limit = val & 0x7ffffe00ULL;
153
        if (!s->limit)
154
            s->limit = 0x7ffffe00ULL;
155
        ptimer_set_limit(s->timer, s->limit >> 9, reload);
156
        break;
157
    case 3:
158
        // start/stop user counter
159
        if (s->mode == 1) {
160
            if (val & 1) {
161
                ptimer_stop(s->timer);
162
                s->stopped = 1;
163
            }
164
            else {
165
                ptimer_run(s->timer, 0);
166
                s->stopped = 0;
167
            }
168
        }
169
        break;
170
    case 4:
171
        // bit 0: user (1) or system (0) counter mode
172
        if (s->mode == 0 || s->mode == 1)
173
            s->mode = val & 1;
174
        if (s->mode == 1) {
175
            pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
176
            s->limit = -1ULL;
177
        }
178
        ptimer_set_limit(s->timer, s->limit >> 9, 1);
179
        break;
180
    default:
181
        break;
182
    }
183
}
184

    
185
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
186
    slavio_timer_mem_readl,
187
    slavio_timer_mem_readl,
188
    slavio_timer_mem_readl,
189
};
190

    
191
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
192
    slavio_timer_mem_writel,
193
    slavio_timer_mem_writel,
194
    slavio_timer_mem_writel,
195
};
196

    
197
static void slavio_timer_save(QEMUFile *f, void *opaque)
198
{
199
    SLAVIO_TIMERState *s = opaque;
200

    
201
    qemu_put_be64s(f, &s->limit);
202
    qemu_put_be32s(f, &s->count);
203
    qemu_put_be32s(f, &s->counthigh);
204
    qemu_put_be32s(f, &s->irq);
205
    qemu_put_be32s(f, &s->reached);
206
    qemu_put_be32s(f, &s->stopped);
207
    qemu_put_be32s(f, &s->mode);
208
    qemu_put_ptimer(f, s->timer);
209
}
210

    
211
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
212
{
213
    SLAVIO_TIMERState *s = opaque;
214
    
215
    if (version_id != 2)
216
        return -EINVAL;
217

    
218
    qemu_get_be64s(f, &s->limit);
219
    qemu_get_be32s(f, &s->count);
220
    qemu_get_be32s(f, &s->counthigh);
221
    qemu_get_be32s(f, &s->irq);
222
    qemu_get_be32s(f, &s->reached);
223
    qemu_get_be32s(f, &s->stopped);
224
    qemu_get_be32s(f, &s->mode);
225
    qemu_get_ptimer(f, s->timer);
226

    
227
    return 0;
228
}
229

    
230
static void slavio_timer_reset(void *opaque)
231
{
232
    SLAVIO_TIMERState *s = opaque;
233

    
234
    s->limit = 0x7ffffe00ULL;
235
    s->count = 0;
236
    s->reached = 0;
237
    s->mode &= 2;
238
    ptimer_set_limit(s->timer, s->limit >> 9, 1);
239
    ptimer_run(s->timer, 0);
240
    s->stopped = 1;
241
    slavio_timer_irq(s);
242
}
243

    
244
void slavio_timer_init(target_phys_addr_t addr, int irq, int mode,
245
                       unsigned int cpu, void *intctl)
246
{
247
    int slavio_timer_io_memory;
248
    SLAVIO_TIMERState *s;
249
    QEMUBH *bh;
250

    
251
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
252
    if (!s)
253
        return;
254
    s->irq = irq;
255
    s->mode = mode;
256
    s->cpu = cpu;
257
    bh = qemu_bh_new(slavio_timer_irq, s);
258
    s->timer = ptimer_init(bh);
259
    ptimer_set_period(s->timer, 500ULL);
260
    s->intctl = intctl;
261

    
262
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
263
                                                    slavio_timer_mem_write, s);
264
    cpu_register_physical_memory(addr, TIMER_SIZE, slavio_timer_io_memory);
265
    register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
266
    qemu_register_reset(slavio_timer_reset, s);
267
    slavio_timer_reset(s);
268
}