Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ 5aea4c58

History | View | Annotate | Download (24.1 kB)

1
/*
2
 * QEMU float support
3
 *
4
 * Derived from SoftFloat.
5
 */
6

    
7
/*============================================================================
8

9
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10
Package, Release 2b.
11

12
Written by John R. Hauser.  This work was made possible in part by the
13
International Computer Science Institute, located at Suite 600, 1947 Center
14
Street, Berkeley, California 94704.  Funding was partially provided by the
15
National Science Foundation under grant MIP-9311980.  The original version
16
of this code was written as part of a project to build a fixed-point vector
17
processor in collaboration with the University of California at Berkeley,
18
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20
arithmetic/SoftFloat.html'.
21

22
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30

31
Derivative works are acceptable, even for commercial purposes, so long as
32
(1) the source code for the derivative work includes prominent notice that
33
the work is derivative, and (2) the source code includes prominent notice with
34
these four paragraphs for those parts of this code that are retained.
35

36
=============================================================================*/
37

    
38
#ifndef SOFTFLOAT_H
39
#define SOFTFLOAT_H
40

    
41
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42
#include <sunmath.h>
43
#endif
44

    
45
#include <inttypes.h>
46
#include "config-host.h"
47
#include "osdep.h"
48

    
49
/*----------------------------------------------------------------------------
50
| Each of the following `typedef's defines the most convenient type that holds
51
| integers of at least as many bits as specified.  For example, `uint8' should
52
| be the most convenient type that can hold unsigned integers of as many as
53
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
54
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55
| to the same as `int'.
56
*----------------------------------------------------------------------------*/
57
typedef uint8_t flag;
58
typedef uint8_t uint8;
59
typedef int8_t int8;
60
#ifndef _AIX
61
typedef int int16;
62
#endif
63
typedef unsigned int uint32;
64
typedef signed int int32;
65
typedef uint64_t uint64;
66
typedef int64_t int64;
67

    
68
#define LIT64( a ) a##LL
69
#define INLINE static inline
70

    
71
#define STATUS_PARAM , float_status *status
72
#define STATUS(field) status->field
73
#define STATUS_VAR , status
74

    
75
/*----------------------------------------------------------------------------
76
| Software IEC/IEEE floating-point ordering relations
77
*----------------------------------------------------------------------------*/
78
enum {
79
    float_relation_less      = -1,
80
    float_relation_equal     =  0,
81
    float_relation_greater   =  1,
82
    float_relation_unordered =  2
83
};
84

    
85
/*----------------------------------------------------------------------------
86
| Software IEC/IEEE floating-point types.
87
*----------------------------------------------------------------------------*/
88
/* Use structures for soft-float types.  This prevents accidentally mixing
89
   them with native int/float types.  A sufficiently clever compiler and
90
   sane ABI should be able to see though these structs.  However
91
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
92
//#define USE_SOFTFLOAT_STRUCT_TYPES
93
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
94
typedef struct {
95
    uint16_t v;
96
} float16;
97
#define float16_val(x) (((float16)(x)).v)
98
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
99
#define const_float16(x) { x }
100
typedef struct {
101
    uint32_t v;
102
} float32;
103
/* The cast ensures an error if the wrong type is passed.  */
104
#define float32_val(x) (((float32)(x)).v)
105
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
106
#define const_float32(x) { x }
107
typedef struct {
108
    uint64_t v;
109
} float64;
110
#define float64_val(x) (((float64)(x)).v)
111
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
112
#define const_float64(x) { x }
113
#else
114
typedef uint16_t float16;
115
typedef uint32_t float32;
116
typedef uint64_t float64;
117
#define float16_val(x) (x)
118
#define float32_val(x) (x)
119
#define float64_val(x) (x)
120
#define make_float16(x) (x)
121
#define make_float32(x) (x)
122
#define make_float64(x) (x)
123
#define const_float16(x) (x)
124
#define const_float32(x) (x)
125
#define const_float64(x) (x)
126
#endif
127
typedef struct {
128
    uint64_t low;
129
    uint16_t high;
130
} floatx80;
131
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
132
#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
133
typedef struct {
134
#ifdef HOST_WORDS_BIGENDIAN
135
    uint64_t high, low;
136
#else
137
    uint64_t low, high;
138
#endif
139
} float128;
140
#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
141
#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
142

    
143
/*----------------------------------------------------------------------------
144
| Software IEC/IEEE floating-point underflow tininess-detection mode.
145
*----------------------------------------------------------------------------*/
146
enum {
147
    float_tininess_after_rounding  = 0,
148
    float_tininess_before_rounding = 1
149
};
150

    
151
/*----------------------------------------------------------------------------
152
| Software IEC/IEEE floating-point rounding mode.
153
*----------------------------------------------------------------------------*/
154
enum {
155
    float_round_nearest_even = 0,
156
    float_round_down         = 1,
157
    float_round_up           = 2,
158
    float_round_to_zero      = 3
159
};
160

    
161
/*----------------------------------------------------------------------------
162
| Software IEC/IEEE floating-point exception flags.
163
*----------------------------------------------------------------------------*/
164
enum {
165
    float_flag_invalid   =  1,
166
    float_flag_divbyzero =  4,
167
    float_flag_overflow  =  8,
168
    float_flag_underflow = 16,
169
    float_flag_inexact   = 32,
170
    float_flag_input_denormal = 64,
171
    float_flag_output_denormal = 128
172
};
173

    
174
typedef struct float_status {
175
    signed char float_detect_tininess;
176
    signed char float_rounding_mode;
177
    signed char float_exception_flags;
178
    signed char floatx80_rounding_precision;
179
    /* should denormalised results go to zero and set the inexact flag? */
180
    flag flush_to_zero;
181
    /* should denormalised inputs go to zero and set the input_denormal flag? */
182
    flag flush_inputs_to_zero;
183
    flag default_nan_mode;
184
} float_status;
185

    
186
void set_float_rounding_mode(int val STATUS_PARAM);
187
void set_float_exception_flags(int val STATUS_PARAM);
188
INLINE void set_float_detect_tininess(int val STATUS_PARAM)
189
{
190
    STATUS(float_detect_tininess) = val;
191
}
192
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
193
{
194
    STATUS(flush_to_zero) = val;
195
}
196
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
197
{
198
    STATUS(flush_inputs_to_zero) = val;
199
}
200
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
201
{
202
    STATUS(default_nan_mode) = val;
203
}
204
INLINE int get_float_exception_flags(float_status *status)
205
{
206
    return STATUS(float_exception_flags);
207
}
208
void set_floatx80_rounding_precision(int val STATUS_PARAM);
209

    
210
/*----------------------------------------------------------------------------
211
| Routine to raise any or all of the software IEC/IEEE floating-point
212
| exception flags.
213
*----------------------------------------------------------------------------*/
214
void float_raise( int8 flags STATUS_PARAM);
215

    
216
/*----------------------------------------------------------------------------
217
| Options to indicate which negations to perform in float*_muladd()
218
| Using these differs from negating an input or output before calling
219
| the muladd function in that this means that a NaN doesn't have its
220
| sign bit inverted before it is propagated.
221
*----------------------------------------------------------------------------*/
222
enum {
223
    float_muladd_negate_c = 1,
224
    float_muladd_negate_product = 2,
225
    float_muladd_negate_result = 3,
226
};
227

    
228
/*----------------------------------------------------------------------------
229
| Software IEC/IEEE integer-to-floating-point conversion routines.
230
*----------------------------------------------------------------------------*/
231
float32 int32_to_float32( int32 STATUS_PARAM );
232
float64 int32_to_float64( int32 STATUS_PARAM );
233
float32 uint32_to_float32( uint32 STATUS_PARAM );
234
float64 uint32_to_float64( uint32 STATUS_PARAM );
235
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
236
float128 int32_to_float128( int32 STATUS_PARAM );
237
float32 int64_to_float32( int64 STATUS_PARAM );
238
float32 uint64_to_float32( uint64 STATUS_PARAM );
239
float64 int64_to_float64( int64 STATUS_PARAM );
240
float64 uint64_to_float64( uint64 STATUS_PARAM );
241
floatx80 int64_to_floatx80( int64 STATUS_PARAM );
242
float128 int64_to_float128( int64 STATUS_PARAM );
243

    
244
/*----------------------------------------------------------------------------
245
| Software half-precision conversion routines.
246
*----------------------------------------------------------------------------*/
247
float16 float32_to_float16( float32, flag STATUS_PARAM );
248
float32 float16_to_float32( float16, flag STATUS_PARAM );
249

    
250
/*----------------------------------------------------------------------------
251
| Software half-precision operations.
252
*----------------------------------------------------------------------------*/
253
int float16_is_quiet_nan( float16 );
254
int float16_is_signaling_nan( float16 );
255
float16 float16_maybe_silence_nan( float16 );
256

    
257
/*----------------------------------------------------------------------------
258
| The pattern for a default generated half-precision NaN.
259
*----------------------------------------------------------------------------*/
260
extern const float16 float16_default_nan;
261

    
262
/*----------------------------------------------------------------------------
263
| Software IEC/IEEE single-precision conversion routines.
264
*----------------------------------------------------------------------------*/
265
int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
266
uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
267
int32 float32_to_int32( float32 STATUS_PARAM );
268
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
269
uint32 float32_to_uint32( float32 STATUS_PARAM );
270
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
271
int64 float32_to_int64( float32 STATUS_PARAM );
272
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
273
float64 float32_to_float64( float32 STATUS_PARAM );
274
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
275
float128 float32_to_float128( float32 STATUS_PARAM );
276

    
277
/*----------------------------------------------------------------------------
278
| Software IEC/IEEE single-precision operations.
279
*----------------------------------------------------------------------------*/
280
float32 float32_round_to_int( float32 STATUS_PARAM );
281
float32 float32_add( float32, float32 STATUS_PARAM );
282
float32 float32_sub( float32, float32 STATUS_PARAM );
283
float32 float32_mul( float32, float32 STATUS_PARAM );
284
float32 float32_div( float32, float32 STATUS_PARAM );
285
float32 float32_rem( float32, float32 STATUS_PARAM );
286
float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
287
float32 float32_sqrt( float32 STATUS_PARAM );
288
float32 float32_exp2( float32 STATUS_PARAM );
289
float32 float32_log2( float32 STATUS_PARAM );
290
int float32_eq( float32, float32 STATUS_PARAM );
291
int float32_le( float32, float32 STATUS_PARAM );
292
int float32_lt( float32, float32 STATUS_PARAM );
293
int float32_unordered( float32, float32 STATUS_PARAM );
294
int float32_eq_quiet( float32, float32 STATUS_PARAM );
295
int float32_le_quiet( float32, float32 STATUS_PARAM );
296
int float32_lt_quiet( float32, float32 STATUS_PARAM );
297
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
298
int float32_compare( float32, float32 STATUS_PARAM );
299
int float32_compare_quiet( float32, float32 STATUS_PARAM );
300
float32 float32_min(float32, float32 STATUS_PARAM);
301
float32 float32_max(float32, float32 STATUS_PARAM);
302
int float32_is_quiet_nan( float32 );
303
int float32_is_signaling_nan( float32 );
304
float32 float32_maybe_silence_nan( float32 );
305
float32 float32_scalbn( float32, int STATUS_PARAM );
306

    
307
INLINE float32 float32_abs(float32 a)
308
{
309
    /* Note that abs does *not* handle NaN specially, nor does
310
     * it flush denormal inputs to zero.
311
     */
312
    return make_float32(float32_val(a) & 0x7fffffff);
313
}
314

    
315
INLINE float32 float32_chs(float32 a)
316
{
317
    /* Note that chs does *not* handle NaN specially, nor does
318
     * it flush denormal inputs to zero.
319
     */
320
    return make_float32(float32_val(a) ^ 0x80000000);
321
}
322

    
323
INLINE int float32_is_infinity(float32 a)
324
{
325
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
326
}
327

    
328
INLINE int float32_is_neg(float32 a)
329
{
330
    return float32_val(a) >> 31;
331
}
332

    
333
INLINE int float32_is_zero(float32 a)
334
{
335
    return (float32_val(a) & 0x7fffffff) == 0;
336
}
337

    
338
INLINE int float32_is_any_nan(float32 a)
339
{
340
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
341
}
342

    
343
INLINE int float32_is_zero_or_denormal(float32 a)
344
{
345
    return (float32_val(a) & 0x7f800000) == 0;
346
}
347

    
348
INLINE float32 float32_set_sign(float32 a, int sign)
349
{
350
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
351
}
352

    
353
#define float32_zero make_float32(0)
354
#define float32_one make_float32(0x3f800000)
355
#define float32_ln2 make_float32(0x3f317218)
356
#define float32_pi make_float32(0x40490fdb)
357
#define float32_half make_float32(0x3f000000)
358
#define float32_infinity make_float32(0x7f800000)
359

    
360

    
361
/*----------------------------------------------------------------------------
362
| The pattern for a default generated single-precision NaN.
363
*----------------------------------------------------------------------------*/
364
extern const float32 float32_default_nan;
365

    
366
/*----------------------------------------------------------------------------
367
| Software IEC/IEEE double-precision conversion routines.
368
*----------------------------------------------------------------------------*/
369
int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
370
uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
371
int32 float64_to_int32( float64 STATUS_PARAM );
372
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
373
uint32 float64_to_uint32( float64 STATUS_PARAM );
374
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
375
int64 float64_to_int64( float64 STATUS_PARAM );
376
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
377
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
378
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
379
float32 float64_to_float32( float64 STATUS_PARAM );
380
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
381
float128 float64_to_float128( float64 STATUS_PARAM );
382

    
383
/*----------------------------------------------------------------------------
384
| Software IEC/IEEE double-precision operations.
385
*----------------------------------------------------------------------------*/
386
float64 float64_round_to_int( float64 STATUS_PARAM );
387
float64 float64_trunc_to_int( float64 STATUS_PARAM );
388
float64 float64_add( float64, float64 STATUS_PARAM );
389
float64 float64_sub( float64, float64 STATUS_PARAM );
390
float64 float64_mul( float64, float64 STATUS_PARAM );
391
float64 float64_div( float64, float64 STATUS_PARAM );
392
float64 float64_rem( float64, float64 STATUS_PARAM );
393
float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
394
float64 float64_sqrt( float64 STATUS_PARAM );
395
float64 float64_log2( float64 STATUS_PARAM );
396
int float64_eq( float64, float64 STATUS_PARAM );
397
int float64_le( float64, float64 STATUS_PARAM );
398
int float64_lt( float64, float64 STATUS_PARAM );
399
int float64_unordered( float64, float64 STATUS_PARAM );
400
int float64_eq_quiet( float64, float64 STATUS_PARAM );
401
int float64_le_quiet( float64, float64 STATUS_PARAM );
402
int float64_lt_quiet( float64, float64 STATUS_PARAM );
403
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
404
int float64_compare( float64, float64 STATUS_PARAM );
405
int float64_compare_quiet( float64, float64 STATUS_PARAM );
406
float64 float64_min(float64, float64 STATUS_PARAM);
407
float64 float64_max(float64, float64 STATUS_PARAM);
408
int float64_is_quiet_nan( float64 a );
409
int float64_is_signaling_nan( float64 );
410
float64 float64_maybe_silence_nan( float64 );
411
float64 float64_scalbn( float64, int STATUS_PARAM );
412

    
413
INLINE float64 float64_abs(float64 a)
414
{
415
    /* Note that abs does *not* handle NaN specially, nor does
416
     * it flush denormal inputs to zero.
417
     */
418
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
419
}
420

    
421
INLINE float64 float64_chs(float64 a)
422
{
423
    /* Note that chs does *not* handle NaN specially, nor does
424
     * it flush denormal inputs to zero.
425
     */
426
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
427
}
428

    
429
INLINE int float64_is_infinity(float64 a)
430
{
431
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
432
}
433

    
434
INLINE int float64_is_neg(float64 a)
435
{
436
    return float64_val(a) >> 63;
437
}
438

    
439
INLINE int float64_is_zero(float64 a)
440
{
441
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
442
}
443

    
444
INLINE int float64_is_any_nan(float64 a)
445
{
446
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
447
}
448

    
449
INLINE int float64_is_zero_or_denormal(float64 a)
450
{
451
    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
452
}
453

    
454
INLINE float64 float64_set_sign(float64 a, int sign)
455
{
456
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
457
                        | ((int64_t)sign << 63));
458
}
459

    
460
#define float64_zero make_float64(0)
461
#define float64_one make_float64(0x3ff0000000000000LL)
462
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
463
#define float64_pi make_float64(0x400921fb54442d18LL)
464
#define float64_half make_float64(0x3fe0000000000000LL)
465
#define float64_infinity make_float64(0x7ff0000000000000LL)
466

    
467
/*----------------------------------------------------------------------------
468
| The pattern for a default generated double-precision NaN.
469
*----------------------------------------------------------------------------*/
470
extern const float64 float64_default_nan;
471

    
472
/*----------------------------------------------------------------------------
473
| Software IEC/IEEE extended double-precision conversion routines.
474
*----------------------------------------------------------------------------*/
475
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
476
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
477
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
478
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
479
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
480
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
481
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
482

    
483
/*----------------------------------------------------------------------------
484
| Software IEC/IEEE extended double-precision operations.
485
*----------------------------------------------------------------------------*/
486
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
487
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
488
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
489
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
490
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
491
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
492
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
493
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
494
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
495
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
496
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
497
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
498
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
499
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
500
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
501
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
502
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
503
int floatx80_is_quiet_nan( floatx80 );
504
int floatx80_is_signaling_nan( floatx80 );
505
floatx80 floatx80_maybe_silence_nan( floatx80 );
506
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
507

    
508
INLINE floatx80 floatx80_abs(floatx80 a)
509
{
510
    a.high &= 0x7fff;
511
    return a;
512
}
513

    
514
INLINE floatx80 floatx80_chs(floatx80 a)
515
{
516
    a.high ^= 0x8000;
517
    return a;
518
}
519

    
520
INLINE int floatx80_is_infinity(floatx80 a)
521
{
522
    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
523
}
524

    
525
INLINE int floatx80_is_neg(floatx80 a)
526
{
527
    return a.high >> 15;
528
}
529

    
530
INLINE int floatx80_is_zero(floatx80 a)
531
{
532
    return (a.high & 0x7fff) == 0 && a.low == 0;
533
}
534

    
535
INLINE int floatx80_is_zero_or_denormal(floatx80 a)
536
{
537
    return (a.high & 0x7fff) == 0;
538
}
539

    
540
INLINE int floatx80_is_any_nan(floatx80 a)
541
{
542
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
543
}
544

    
545
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
546
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
547
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
548
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
549
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
550
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
551

    
552
/*----------------------------------------------------------------------------
553
| The pattern for a default generated extended double-precision NaN.
554
*----------------------------------------------------------------------------*/
555
extern const floatx80 floatx80_default_nan;
556

    
557
/*----------------------------------------------------------------------------
558
| Software IEC/IEEE quadruple-precision conversion routines.
559
*----------------------------------------------------------------------------*/
560
int32 float128_to_int32( float128 STATUS_PARAM );
561
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
562
int64 float128_to_int64( float128 STATUS_PARAM );
563
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
564
float32 float128_to_float32( float128 STATUS_PARAM );
565
float64 float128_to_float64( float128 STATUS_PARAM );
566
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
567

    
568
/*----------------------------------------------------------------------------
569
| Software IEC/IEEE quadruple-precision operations.
570
*----------------------------------------------------------------------------*/
571
float128 float128_round_to_int( float128 STATUS_PARAM );
572
float128 float128_add( float128, float128 STATUS_PARAM );
573
float128 float128_sub( float128, float128 STATUS_PARAM );
574
float128 float128_mul( float128, float128 STATUS_PARAM );
575
float128 float128_div( float128, float128 STATUS_PARAM );
576
float128 float128_rem( float128, float128 STATUS_PARAM );
577
float128 float128_sqrt( float128 STATUS_PARAM );
578
int float128_eq( float128, float128 STATUS_PARAM );
579
int float128_le( float128, float128 STATUS_PARAM );
580
int float128_lt( float128, float128 STATUS_PARAM );
581
int float128_unordered( float128, float128 STATUS_PARAM );
582
int float128_eq_quiet( float128, float128 STATUS_PARAM );
583
int float128_le_quiet( float128, float128 STATUS_PARAM );
584
int float128_lt_quiet( float128, float128 STATUS_PARAM );
585
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
586
int float128_compare( float128, float128 STATUS_PARAM );
587
int float128_compare_quiet( float128, float128 STATUS_PARAM );
588
int float128_is_quiet_nan( float128 );
589
int float128_is_signaling_nan( float128 );
590
float128 float128_maybe_silence_nan( float128 );
591
float128 float128_scalbn( float128, int STATUS_PARAM );
592

    
593
INLINE float128 float128_abs(float128 a)
594
{
595
    a.high &= 0x7fffffffffffffffLL;
596
    return a;
597
}
598

    
599
INLINE float128 float128_chs(float128 a)
600
{
601
    a.high ^= 0x8000000000000000LL;
602
    return a;
603
}
604

    
605
INLINE int float128_is_infinity(float128 a)
606
{
607
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
608
}
609

    
610
INLINE int float128_is_neg(float128 a)
611
{
612
    return a.high >> 63;
613
}
614

    
615
INLINE int float128_is_zero(float128 a)
616
{
617
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
618
}
619

    
620
INLINE int float128_is_zero_or_denormal(float128 a)
621
{
622
    return (a.high & 0x7fff000000000000LL) == 0;
623
}
624

    
625
INLINE int float128_is_any_nan(float128 a)
626
{
627
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
628
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
629
}
630

    
631
/*----------------------------------------------------------------------------
632
| The pattern for a default generated quadruple-precision NaN.
633
*----------------------------------------------------------------------------*/
634
extern const float128 float128_default_nan;
635

    
636
#endif /* !SOFTFLOAT_H */