Statistics
| Branch: | Revision:

root / alpha-dis.c @ 5bc89ef6

History | View | Annotate | Download (80.4 kB)

1
/* alpha-dis.c -- Disassemble Alpha AXP instructions
2
   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Richard Henderson <rth@tamu.edu>,
4
   patterned after the PPC opcode handling written by Ian Lance Taylor.
5

6
This file is part of GDB, GAS, and the GNU binutils.
7

8
GDB, GAS, and the GNU binutils are free software; you can redistribute
9
them and/or modify them under the terms of the GNU General Public
10
License as published by the Free Software Foundation; either version
11
2, or (at your option) any later version.
12

13
GDB, GAS, and the GNU binutils are distributed in the hope that they
14
will be useful, but WITHOUT ANY WARRANTY; without even the implied
15
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16
the GNU General Public License for more details.
17

18
You should have received a copy of the GNU General Public License
19
along with this file; see the file COPYING.  If not, see
20
<http://www.gnu.org/licenses/>. */
21

    
22
#include <stdio.h>
23
#include "dis-asm.h"
24

    
25
/* The opcode table is an array of struct alpha_opcode.  */
26

    
27
struct alpha_opcode
28
{
29
  /* The opcode name.  */
30
  const char *name;
31

    
32
  /* The opcode itself.  Those bits which will be filled in with
33
     operands are zeroes.  */
34
  unsigned opcode;
35

    
36
  /* The opcode mask.  This is used by the disassembler.  This is a
37
     mask containing ones indicating those bits which must match the
38
     opcode field, and zeroes indicating those bits which need not
39
     match (and are presumably filled in by operands).  */
40
  unsigned mask;
41

    
42
  /* One bit flags for the opcode.  These are primarily used to
43
     indicate specific processors and environments support the
44
     instructions.  The defined values are listed below. */
45
  unsigned flags;
46

    
47
  /* An array of operand codes.  Each code is an index into the
48
     operand table.  They appear in the order which the operands must
49
     appear in assembly code, and are terminated by a zero.  */
50
  unsigned char operands[4];
51
};
52

    
53
/* The table itself is sorted by major opcode number, and is otherwise
54
   in the order in which the disassembler should consider
55
   instructions.  */
56
extern const struct alpha_opcode alpha_opcodes[];
57
extern const unsigned alpha_num_opcodes;
58

    
59
/* Values defined for the flags field of a struct alpha_opcode.  */
60

    
61
/* CPU Availability */
62
#define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
63
#define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
64
#define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
65
#define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
66
#define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
67
#define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
68
#define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
69

    
70
#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
71

    
72
/* A macro to extract the major opcode from an instruction.  */
73
#define AXP_OP(i)        (((i) >> 26) & 0x3F)
74

    
75
/* The total number of major opcodes. */
76
#define AXP_NOPS        0x40
77

    
78
 
79
/* The operands table is an array of struct alpha_operand.  */
80

    
81
struct alpha_operand
82
{
83
  /* The number of bits in the operand.  */
84
  unsigned int bits : 5;
85

    
86
  /* How far the operand is left shifted in the instruction.  */
87
  unsigned int shift : 5;
88

    
89
  /* The default relocation type for this operand.  */
90
  signed int default_reloc : 16;
91

    
92
  /* One bit syntax flags.  */
93
  unsigned int flags : 16;
94

    
95
  /* Insertion function.  This is used by the assembler.  To insert an
96
     operand value into an instruction, check this field.
97

98
     If it is NULL, execute
99
         i |= (op & ((1 << o->bits) - 1)) << o->shift;
100
     (i is the instruction which we are filling in, o is a pointer to
101
     this structure, and op is the opcode value; this assumes twos
102
     complement arithmetic).
103

104
     If this field is not NULL, then simply call it with the
105
     instruction and the operand value.  It will return the new value
106
     of the instruction.  If the ERRMSG argument is not NULL, then if
107
     the operand value is illegal, *ERRMSG will be set to a warning
108
     string (the operand will be inserted in any case).  If the
109
     operand value is legal, *ERRMSG will be unchanged (most operands
110
     can accept any value).  */
111
  unsigned (*insert) PARAMS ((unsigned instruction, int op,
112
                              const char **errmsg));
113

    
114
  /* Extraction function.  This is used by the disassembler.  To
115
     extract this operand type from an instruction, check this field.
116

117
     If it is NULL, compute
118
         op = ((i) >> o->shift) & ((1 << o->bits) - 1);
119
         if ((o->flags & AXP_OPERAND_SIGNED) != 0
120
             && (op & (1 << (o->bits - 1))) != 0)
121
           op -= 1 << o->bits;
122
     (i is the instruction, o is a pointer to this structure, and op
123
     is the result; this assumes twos complement arithmetic).
124

125
     If this field is not NULL, then simply call it with the
126
     instruction value.  It will return the value of the operand.  If
127
     the INVALID argument is not NULL, *INVALID will be set to
128
     non-zero if this operand type can not actually be extracted from
129
     this operand (i.e., the instruction does not match).  If the
130
     operand is valid, *INVALID will not be changed.  */
131
  int (*extract) PARAMS ((unsigned instruction, int *invalid));
132
};
133

    
134
/* Elements in the table are retrieved by indexing with values from
135
   the operands field of the alpha_opcodes table.  */
136

    
137
extern const struct alpha_operand alpha_operands[];
138
extern const unsigned alpha_num_operands;
139

    
140
/* Values defined for the flags field of a struct alpha_operand.  */
141

    
142
/* Mask for selecting the type for typecheck purposes */
143
#define AXP_OPERAND_TYPECHECK_MASK                                        \
144
  (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |                \
145
   AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED |         \
146
   AXP_OPERAND_UNSIGNED)
147

    
148
/* This operand does not actually exist in the assembler input.  This
149
   is used to support extended mnemonics, for which two operands fields
150
   are identical.  The assembler should call the insert function with
151
   any op value.  The disassembler should call the extract function,
152
   ignore the return value, and check the value placed in the invalid
153
   argument.  */
154
#define AXP_OPERAND_FAKE        01
155

    
156
/* The operand should be wrapped in parentheses rather than separated
157
   from the previous by a comma.  This is used for the load and store
158
   instructions which want their operands to look like "Ra,disp(Rb)".  */
159
#define AXP_OPERAND_PARENS        02
160

    
161
/* Used in combination with PARENS, this supresses the supression of
162
   the comma.  This is used for "jmp Ra,(Rb),hint".  */
163
#define AXP_OPERAND_COMMA        04
164

    
165
/* This operand names an integer register.  */
166
#define AXP_OPERAND_IR                010
167

    
168
/* This operand names a floating point register.  */
169
#define AXP_OPERAND_FPR                020
170

    
171
/* This operand is a relative branch displacement.  The disassembler
172
   prints these symbolically if possible.  */
173
#define AXP_OPERAND_RELATIVE        040
174

    
175
/* This operand takes signed values.  */
176
#define AXP_OPERAND_SIGNED        0100
177

    
178
/* This operand takes unsigned values.  This exists primarily so that
179
   a flags value of 0 can be treated as end-of-arguments.  */
180
#define AXP_OPERAND_UNSIGNED        0200
181

    
182
/* Supress overflow detection on this field.  This is used for hints. */
183
#define AXP_OPERAND_NOOVERFLOW        0400
184

    
185
/* Mask for optional argument default value.  */
186
#define AXP_OPERAND_OPTIONAL_MASK 07000
187

    
188
/* This operand defaults to zero.  This is used for jump hints.  */
189
#define AXP_OPERAND_DEFAULT_ZERO 01000
190

    
191
/* This operand should default to the first (real) operand and is used
192
   in conjunction with AXP_OPERAND_OPTIONAL.  This allows
193
   "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
194
   it, but it's what DEC does.  */
195
#define AXP_OPERAND_DEFAULT_FIRST 02000
196

    
197
/* Similarly, this operand should default to the second (real) operand.
198
   This allows "negl $0" instead of "negl $0,$0".  */
199
#define AXP_OPERAND_DEFAULT_SECOND 04000
200

    
201
 
202
/* Register common names */
203

    
204
#define AXP_REG_V0        0
205
#define AXP_REG_T0        1
206
#define AXP_REG_T1        2
207
#define AXP_REG_T2        3
208
#define AXP_REG_T3        4
209
#define AXP_REG_T4        5
210
#define AXP_REG_T5        6
211
#define AXP_REG_T6        7
212
#define AXP_REG_T7        8
213
#define AXP_REG_S0        9
214
#define AXP_REG_S1        10
215
#define AXP_REG_S2        11
216
#define AXP_REG_S3        12
217
#define AXP_REG_S4        13
218
#define AXP_REG_S5        14
219
#define AXP_REG_FP        15
220
#define AXP_REG_A0        16
221
#define AXP_REG_A1        17
222
#define AXP_REG_A2        18
223
#define AXP_REG_A3        19
224
#define AXP_REG_A4        20
225
#define AXP_REG_A5        21
226
#define AXP_REG_T8        22
227
#define AXP_REG_T9        23
228
#define AXP_REG_T10        24
229
#define AXP_REG_T11        25
230
#define AXP_REG_RA        26
231
#define AXP_REG_PV        27
232
#define AXP_REG_T12        27
233
#define AXP_REG_AT        28
234
#define AXP_REG_GP        29
235
#define AXP_REG_SP        30
236
#define AXP_REG_ZERO        31
237

    
238
#define bfd_mach_alpha_ev4  0x10
239
#define bfd_mach_alpha_ev5  0x20
240
#define bfd_mach_alpha_ev6  0x30
241

    
242
enum bfd_reloc_code_real {
243
    BFD_RELOC_23_PCREL_S2,
244
    BFD_RELOC_ALPHA_HINT
245
};
246

    
247
/* This file holds the Alpha AXP opcode table.  The opcode table includes
248
   almost all of the extended instruction mnemonics.  This permits the
249
   disassembler to use them, and simplifies the assembler logic, at the
250
   cost of increasing the table size.  The table is strictly constant
251
   data, so the compiler should be able to put it in the text segment.
252

253
   This file also holds the operand table.  All knowledge about inserting
254
   and extracting operands from instructions is kept in this file.
255

256
   The information for the base instruction set was compiled from the
257
   _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
258
   version 2.
259

260
   The information for the post-ev5 architecture extensions BWX, CIX and
261
   MAX came from version 3 of this same document, which is also available
262
   on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
263
   /literature/alphahb2.pdf
264

265
   The information for the EV4 PALcode instructions was compiled from
266
   _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
267
   Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
268
   revision dated June 1994.
269

270
   The information for the EV5 PALcode instructions was compiled from
271
   _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
272
   Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
273
 
274
/* Local insertion and extraction functions */
275

    
276
static unsigned insert_rba PARAMS((unsigned, int, const char **));
277
static unsigned insert_rca PARAMS((unsigned, int, const char **));
278
static unsigned insert_za PARAMS((unsigned, int, const char **));
279
static unsigned insert_zb PARAMS((unsigned, int, const char **));
280
static unsigned insert_zc PARAMS((unsigned, int, const char **));
281
static unsigned insert_bdisp PARAMS((unsigned, int, const char **));
282
static unsigned insert_jhint PARAMS((unsigned, int, const char **));
283
static unsigned insert_ev6hwjhint PARAMS((unsigned, int, const char **));
284

    
285
static int extract_rba PARAMS((unsigned, int *));
286
static int extract_rca PARAMS((unsigned, int *));
287
static int extract_za PARAMS((unsigned, int *));
288
static int extract_zb PARAMS((unsigned, int *));
289
static int extract_zc PARAMS((unsigned, int *));
290
static int extract_bdisp PARAMS((unsigned, int *));
291
static int extract_jhint PARAMS((unsigned, int *));
292
static int extract_ev6hwjhint PARAMS((unsigned, int *));
293

    
294
 
295
/* The operands table  */
296

    
297
const struct alpha_operand alpha_operands[] =
298
{
299
  /* The fields are bits, shift, insert, extract, flags */
300
  /* The zero index is used to indicate end-of-list */
301
#define UNUSED                0
302
  { 0, 0, 0, 0, 0, 0 },
303

    
304
  /* The plain integer register fields */
305
#define RA                (UNUSED + 1)
306
  { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
307
#define RB                (RA + 1)
308
  { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
309
#define RC                (RB + 1)
310
  { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
311

    
312
  /* The plain fp register fields */
313
#define FA                (RC + 1)
314
  { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
315
#define FB                (FA + 1)
316
  { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
317
#define FC                (FB + 1)
318
  { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
319

    
320
  /* The integer registers when they are ZERO */
321
#define ZA                (FC + 1)
322
  { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
323
#define ZB                (ZA + 1)
324
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
325
#define ZC                (ZB + 1)
326
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
327

    
328
  /* The RB field when it needs parentheses */
329
#define PRB                (ZC + 1)
330
  { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
331

    
332
  /* The RB field when it needs parentheses _and_ a preceding comma */
333
#define CPRB                (PRB + 1)
334
  { 5, 16, 0,
335
    AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
336

    
337
  /* The RB field when it must be the same as the RA field */
338
#define RBA                (CPRB + 1)
339
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
340

    
341
  /* The RC field when it must be the same as the RB field */
342
#define RCA                (RBA + 1)
343
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
344

    
345
  /* The RC field when it can *default* to RA */
346
#define DRC1                (RCA + 1)
347
  { 5, 0, 0,
348
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
349

    
350
  /* The RC field when it can *default* to RB */
351
#define DRC2                (DRC1 + 1)
352
  { 5, 0, 0,
353
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
354

    
355
  /* The FC field when it can *default* to RA */
356
#define DFC1                (DRC2 + 1)
357
  { 5, 0, 0,
358
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
359

    
360
  /* The FC field when it can *default* to RB */
361
#define DFC2                (DFC1 + 1)
362
  { 5, 0, 0,
363
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
364

    
365
  /* The unsigned 8-bit literal of Operate format insns */
366
#define LIT                (DFC2 + 1)
367
  { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
368

    
369
  /* The signed 16-bit displacement of Memory format insns.  From here
370
     we can't tell what relocation should be used, so don't use a default. */
371
#define MDISP                (LIT + 1)
372
  { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
373

    
374
  /* The signed "23-bit" aligned displacement of Branch format insns */
375
#define BDISP                (MDISP + 1)
376
  { 21, 0, BFD_RELOC_23_PCREL_S2,
377
    AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
378

    
379
  /* The 26-bit PALcode function */
380
#define PALFN                (BDISP + 1)
381
  { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
382

    
383
  /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
384
#define JMPHINT                (PALFN + 1)
385
  { 14, 0, BFD_RELOC_ALPHA_HINT,
386
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
387
    insert_jhint, extract_jhint },
388

    
389
  /* The optional hint to RET/JSR_COROUTINE */
390
#define RETHINT                (JMPHINT + 1)
391
  { 14, 0, -RETHINT,
392
    AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
393

    
394
  /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
395
#define EV4HWDISP        (RETHINT + 1)
396
#define EV6HWDISP        (EV4HWDISP)
397
  { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
398

    
399
  /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
400
#define EV4HWINDEX        (EV4HWDISP + 1)
401
  { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
402

    
403
  /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
404
     that occur in DEC PALcode.  */
405
#define EV4EXTHWINDEX        (EV4HWINDEX + 1)
406
  { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
407

    
408
  /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
409
#define EV5HWDISP        (EV4EXTHWINDEX + 1)
410
  { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
411

    
412
  /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
413
#define EV5HWINDEX        (EV5HWDISP + 1)
414
  { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
415

    
416
  /* The 16-bit combined index/scoreboard mask for the ev6
417
     hw_m[ft]pr (pal19/pal1d) insns */
418
#define EV6HWINDEX        (EV5HWINDEX + 1)
419
  { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
420

    
421
  /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
422
#define EV6HWJMPHINT        (EV6HWINDEX+ 1)
423
  { 8, 0, -EV6HWJMPHINT,
424
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
425
    insert_ev6hwjhint, extract_ev6hwjhint }
426
};
427

    
428
const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
429

    
430
/* The RB field when it is the same as the RA field in the same insn.
431
   This operand is marked fake.  The insertion function just copies
432
   the RA field into the RB field, and the extraction function just
433
   checks that the fields are the same. */
434

    
435
/*ARGSUSED*/
436
static unsigned
437
insert_rba(insn, value, errmsg)
438
     unsigned insn;
439
     int value ATTRIBUTE_UNUSED;
440
     const char **errmsg ATTRIBUTE_UNUSED;
441
{
442
  return insn | (((insn >> 21) & 0x1f) << 16);
443
}
444

    
445
static int
446
extract_rba(insn, invalid)
447
     unsigned insn;
448
     int *invalid;
449
{
450
  if (invalid != (int *) NULL
451
      && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
452
    *invalid = 1;
453
  return 0;
454
}
455

    
456

    
457
/* The same for the RC field */
458

    
459
/*ARGSUSED*/
460
static unsigned
461
insert_rca(insn, value, errmsg)
462
     unsigned insn;
463
     int value ATTRIBUTE_UNUSED;
464
     const char **errmsg ATTRIBUTE_UNUSED;
465
{
466
  return insn | ((insn >> 21) & 0x1f);
467
}
468

    
469
static int
470
extract_rca(insn, invalid)
471
     unsigned insn;
472
     int *invalid;
473
{
474
  if (invalid != (int *) NULL
475
      && ((insn >> 21) & 0x1f) != (insn & 0x1f))
476
    *invalid = 1;
477
  return 0;
478
}
479

    
480

    
481
/* Fake arguments in which the registers must be set to ZERO */
482

    
483
/*ARGSUSED*/
484
static unsigned
485
insert_za(insn, value, errmsg)
486
     unsigned insn;
487
     int value ATTRIBUTE_UNUSED;
488
     const char **errmsg ATTRIBUTE_UNUSED;
489
{
490
  return insn | (31 << 21);
491
}
492

    
493
static int
494
extract_za(insn, invalid)
495
     unsigned insn;
496
     int *invalid;
497
{
498
  if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
499
    *invalid = 1;
500
  return 0;
501
}
502

    
503
/*ARGSUSED*/
504
static unsigned
505
insert_zb(insn, value, errmsg)
506
     unsigned insn;
507
     int value ATTRIBUTE_UNUSED;
508
     const char **errmsg ATTRIBUTE_UNUSED;
509
{
510
  return insn | (31 << 16);
511
}
512

    
513
static int
514
extract_zb(insn, invalid)
515
     unsigned insn;
516
     int *invalid;
517
{
518
  if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
519
    *invalid = 1;
520
  return 0;
521
}
522

    
523
/*ARGSUSED*/
524
static unsigned
525
insert_zc(insn, value, errmsg)
526
     unsigned insn;
527
     int value ATTRIBUTE_UNUSED;
528
     const char **errmsg ATTRIBUTE_UNUSED;
529
{
530
  return insn | 31;
531
}
532

    
533
static int
534
extract_zc(insn, invalid)
535
     unsigned insn;
536
     int *invalid;
537
{
538
  if (invalid != (int *) NULL && (insn & 0x1f) != 31)
539
    *invalid = 1;
540
  return 0;
541
}
542

    
543

    
544
/* The displacement field of a Branch format insn.  */
545

    
546
static unsigned
547
insert_bdisp(insn, value, errmsg)
548
     unsigned insn;
549
     int value;
550
     const char **errmsg;
551
{
552
  if (errmsg != (const char **)NULL && (value & 3))
553
    *errmsg = _("branch operand unaligned");
554
  return insn | ((value / 4) & 0x1FFFFF);
555
}
556

    
557
/*ARGSUSED*/
558
static int
559
extract_bdisp(insn, invalid)
560
     unsigned insn;
561
     int *invalid ATTRIBUTE_UNUSED;
562
{
563
  return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
564
}
565

    
566

    
567
/* The hint field of a JMP/JSR insn.  */
568

    
569
static unsigned
570
insert_jhint(insn, value, errmsg)
571
     unsigned insn;
572
     int value;
573
     const char **errmsg;
574
{
575
  if (errmsg != (const char **)NULL && (value & 3))
576
    *errmsg = _("jump hint unaligned");
577
  return insn | ((value / 4) & 0x3FFF);
578
}
579

    
580
/*ARGSUSED*/
581
static int
582
extract_jhint(insn, invalid)
583
     unsigned insn;
584
     int *invalid ATTRIBUTE_UNUSED;
585
{
586
  return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
587
}
588

    
589
/* The hint field of an EV6 HW_JMP/JSR insn.  */
590

    
591
static unsigned
592
insert_ev6hwjhint(insn, value, errmsg)
593
     unsigned insn;
594
     int value;
595
     const char **errmsg;
596
{
597
  if (errmsg != (const char **)NULL && (value & 3))
598
    *errmsg = _("jump hint unaligned");
599
  return insn | ((value / 4) & 0x1FFF);
600
}
601

    
602
/*ARGSUSED*/
603
static int
604
extract_ev6hwjhint(insn, invalid)
605
     unsigned insn;
606
     int *invalid ATTRIBUTE_UNUSED;
607
{
608
  return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
609
}
610

    
611
 
612
/* Macros used to form opcodes */
613

    
614
/* The main opcode */
615
#define OP(x)                (((x) & 0x3F) << 26)
616
#define OP_MASK                0xFC000000
617

    
618
/* Branch format instructions */
619
#define BRA_(oo)        OP(oo)
620
#define BRA_MASK        OP_MASK
621
#define BRA(oo)                BRA_(oo), BRA_MASK
622

    
623
/* Floating point format instructions */
624
#define FP_(oo,fff)        (OP(oo) | (((fff) & 0x7FF) << 5))
625
#define FP_MASK                (OP_MASK | 0xFFE0)
626
#define FP(oo,fff)        FP_(oo,fff), FP_MASK
627

    
628
/* Memory format instructions */
629
#define MEM_(oo)        OP(oo)
630
#define MEM_MASK        OP_MASK
631
#define MEM(oo)                MEM_(oo), MEM_MASK
632

    
633
/* Memory/Func Code format instructions */
634
#define MFC_(oo,ffff)        (OP(oo) | ((ffff) & 0xFFFF))
635
#define MFC_MASK        (OP_MASK | 0xFFFF)
636
#define MFC(oo,ffff)        MFC_(oo,ffff), MFC_MASK
637

    
638
/* Memory/Branch format instructions */
639
#define MBR_(oo,h)        (OP(oo) | (((h) & 3) << 14))
640
#define MBR_MASK        (OP_MASK | 0xC000)
641
#define MBR(oo,h)        MBR_(oo,h), MBR_MASK
642

    
643
/* Operate format instructions.  The OPRL variant specifies a
644
   literal second argument. */
645
#define OPR_(oo,ff)        (OP(oo) | (((ff) & 0x7F) << 5))
646
#define OPRL_(oo,ff)        (OPR_((oo),(ff)) | 0x1000)
647
#define OPR_MASK        (OP_MASK | 0x1FE0)
648
#define OPR(oo,ff)        OPR_(oo,ff), OPR_MASK
649
#define OPRL(oo,ff)        OPRL_(oo,ff), OPR_MASK
650

    
651
/* Generic PALcode format instructions */
652
#define PCD_(oo)        OP(oo)
653
#define PCD_MASK        OP_MASK
654
#define PCD(oo)                PCD_(oo), PCD_MASK
655

    
656
/* Specific PALcode instructions */
657
#define SPCD_(oo,ffff)        (OP(oo) | ((ffff) & 0x3FFFFFF))
658
#define SPCD_MASK        0xFFFFFFFF
659
#define SPCD(oo,ffff)        SPCD_(oo,ffff), SPCD_MASK
660

    
661
/* Hardware memory (hw_{ld,st}) instructions */
662
#define EV4HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
663
#define EV4HWMEM_MASK        (OP_MASK | 0xF000)
664
#define EV4HWMEM(oo,f)        EV4HWMEM_(oo,f), EV4HWMEM_MASK
665

    
666
#define EV5HWMEM_(oo,f)        (OP(oo) | (((f) & 0x3F) << 10))
667
#define EV5HWMEM_MASK        (OP_MASK | 0xF800)
668
#define EV5HWMEM(oo,f)        EV5HWMEM_(oo,f), EV5HWMEM_MASK
669

    
670
#define EV6HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
671
#define EV6HWMEM_MASK        (OP_MASK | 0xF000)
672
#define EV6HWMEM(oo,f)        EV6HWMEM_(oo,f), EV6HWMEM_MASK
673

    
674
#define EV6HWMBR_(oo,h)        (OP(oo) | (((h) & 7) << 13))
675
#define EV6HWMBR_MASK        (OP_MASK | 0xE000)
676
#define EV6HWMBR(oo,h)        EV6HWMBR_(oo,h), EV6HWMBR_MASK
677

    
678
/* Abbreviations for instruction subsets.  */
679
#define BASE                        AXP_OPCODE_BASE
680
#define EV4                        AXP_OPCODE_EV4
681
#define EV5                        AXP_OPCODE_EV5
682
#define EV6                        AXP_OPCODE_EV6
683
#define BWX                        AXP_OPCODE_BWX
684
#define CIX                        AXP_OPCODE_CIX
685
#define MAX                        AXP_OPCODE_MAX
686

    
687
/* Common combinations of arguments */
688
#define ARG_NONE                { 0 }
689
#define ARG_BRA                        { RA, BDISP }
690
#define ARG_FBRA                { FA, BDISP }
691
#define ARG_FP                        { FA, FB, DFC1 }
692
#define ARG_FPZ1                { ZA, FB, DFC1 }
693
#define ARG_MEM                        { RA, MDISP, PRB }
694
#define ARG_FMEM                { FA, MDISP, PRB }
695
#define ARG_OPR                        { RA, RB, DRC1 }
696
#define ARG_OPRL                { RA, LIT, DRC1 }
697
#define ARG_OPRZ1                { ZA, RB, DRC1 }
698
#define ARG_OPRLZ1                { ZA, LIT, RC }
699
#define ARG_PCD                        { PALFN }
700
#define ARG_EV4HWMEM                { RA, EV4HWDISP, PRB }
701
#define ARG_EV4HWMPR                { RA, RBA, EV4HWINDEX }
702
#define ARG_EV5HWMEM                { RA, EV5HWDISP, PRB }
703
#define ARG_EV6HWMEM                { RA, EV6HWDISP, PRB }
704
 
705
/* The opcode table.
706

707
   The format of the opcode table is:
708

709
   NAME OPCODE MASK { OPERANDS }
710

711
   NAME                is the name of the instruction.
712

713
   OPCODE        is the instruction opcode.
714

715
   MASK                is the opcode mask; this is used to tell the disassembler
716
                    which bits in the actual opcode must match OPCODE.
717

718
   OPERANDS        is the list of operands.
719

720
   The preceding macros merge the text of the OPCODE and MASK fields.
721

722
   The disassembler reads the table in order and prints the first
723
   instruction which matches, so this table is sorted to put more
724
   specific instructions before more general instructions.
725

726
   Otherwise, it is sorted by major opcode and minor function code.
727

728
   There are three classes of not-really-instructions in this table:
729

730
   ALIAS        is another name for another instruction.  Some of
731
                these come from the Architecture Handbook, some
732
                come from the original gas opcode tables.  In all
733
                cases, the functionality of the opcode is unchanged.
734

735
   PSEUDO        a stylized code form endorsed by Chapter A.4 of the
736
                Architecture Handbook.
737

738
   EXTRA        a stylized code form found in the original gas tables.
739

740
   And two annotations:
741

742
   EV56 BUT        opcodes that are officially introduced as of the ev56,
743
                   but with defined results on previous implementations.
744

745
   EV56 UNA        opcodes that were introduced as of the ev56 with
746
                   presumably undefined results on previous implementations
747
                that were not assigned to a particular extension.
748
*/
749

    
750
const struct alpha_opcode alpha_opcodes[] = {
751
  { "halt",                SPCD(0x00,0x0000), BASE, ARG_NONE },
752
  { "draina",                SPCD(0x00,0x0002), BASE, ARG_NONE },
753
  { "bpt",                SPCD(0x00,0x0080), BASE, ARG_NONE },
754
  { "bugchk",                SPCD(0x00,0x0081), BASE, ARG_NONE },
755
  { "callsys",                SPCD(0x00,0x0083), BASE, ARG_NONE },
756
  { "chmk",                 SPCD(0x00,0x0083), BASE, ARG_NONE },
757
  { "imb",                SPCD(0x00,0x0086), BASE, ARG_NONE },
758
  { "rduniq",                SPCD(0x00,0x009e), BASE, ARG_NONE },
759
  { "wruniq",                SPCD(0x00,0x009f), BASE, ARG_NONE },
760
  { "gentrap",                SPCD(0x00,0x00aa), BASE, ARG_NONE },
761
  { "call_pal",                PCD(0x00), BASE, ARG_PCD },
762
  { "pal",                PCD(0x00), BASE, ARG_PCD },                /* alias */
763

    
764
  { "lda",                MEM(0x08), BASE, { RA, MDISP, ZB } },        /* pseudo */
765
  { "lda",                MEM(0x08), BASE, ARG_MEM },
766
  { "ldah",                MEM(0x09), BASE, { RA, MDISP, ZB } },        /* pseudo */
767
  { "ldah",                MEM(0x09), BASE, ARG_MEM },
768
  { "ldbu",                MEM(0x0A), BWX, ARG_MEM },
769
  { "unop",                MEM_(0x0B) | (30 << 16),
770
                        MEM_MASK, BASE, { ZA } },                /* pseudo */
771
  { "ldq_u",                MEM(0x0B), BASE, ARG_MEM },
772
  { "ldwu",                MEM(0x0C), BWX, ARG_MEM },
773
  { "stw",                MEM(0x0D), BWX, ARG_MEM },
774
  { "stb",                MEM(0x0E), BWX, ARG_MEM },
775
  { "stq_u",                MEM(0x0F), BASE, ARG_MEM },
776

    
777
  { "sextl",                OPR(0x10,0x00), BASE, ARG_OPRZ1 },        /* pseudo */
778
  { "sextl",                OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },        /* pseudo */
779
  { "addl",                OPR(0x10,0x00), BASE, ARG_OPR },
780
  { "addl",                OPRL(0x10,0x00), BASE, ARG_OPRL },
781
  { "s4addl",                OPR(0x10,0x02), BASE, ARG_OPR },
782
  { "s4addl",                OPRL(0x10,0x02), BASE, ARG_OPRL },
783
  { "negl",                OPR(0x10,0x09), BASE, ARG_OPRZ1 },        /* pseudo */
784
  { "negl",                OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },        /* pseudo */
785
  { "subl",                OPR(0x10,0x09), BASE, ARG_OPR },
786
  { "subl",                OPRL(0x10,0x09), BASE, ARG_OPRL },
787
  { "s4subl",                OPR(0x10,0x0B), BASE, ARG_OPR },
788
  { "s4subl",                OPRL(0x10,0x0B), BASE, ARG_OPRL },
789
  { "cmpbge",                OPR(0x10,0x0F), BASE, ARG_OPR },
790
  { "cmpbge",                OPRL(0x10,0x0F), BASE, ARG_OPRL },
791
  { "s8addl",                OPR(0x10,0x12), BASE, ARG_OPR },
792
  { "s8addl",                OPRL(0x10,0x12), BASE, ARG_OPRL },
793
  { "s8subl",                OPR(0x10,0x1B), BASE, ARG_OPR },
794
  { "s8subl",                OPRL(0x10,0x1B), BASE, ARG_OPRL },
795
  { "cmpult",                OPR(0x10,0x1D), BASE, ARG_OPR },
796
  { "cmpult",                OPRL(0x10,0x1D), BASE, ARG_OPRL },
797
  { "addq",                OPR(0x10,0x20), BASE, ARG_OPR },
798
  { "addq",                OPRL(0x10,0x20), BASE, ARG_OPRL },
799
  { "s4addq",                OPR(0x10,0x22), BASE, ARG_OPR },
800
  { "s4addq",                OPRL(0x10,0x22), BASE, ARG_OPRL },
801
  { "negq",                 OPR(0x10,0x29), BASE, ARG_OPRZ1 },        /* pseudo */
802
  { "negq",                 OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },        /* pseudo */
803
  { "subq",                OPR(0x10,0x29), BASE, ARG_OPR },
804
  { "subq",                OPRL(0x10,0x29), BASE, ARG_OPRL },
805
  { "s4subq",                OPR(0x10,0x2B), BASE, ARG_OPR },
806
  { "s4subq",                OPRL(0x10,0x2B), BASE, ARG_OPRL },
807
  { "cmpeq",                OPR(0x10,0x2D), BASE, ARG_OPR },
808
  { "cmpeq",                OPRL(0x10,0x2D), BASE, ARG_OPRL },
809
  { "s8addq",                OPR(0x10,0x32), BASE, ARG_OPR },
810
  { "s8addq",                OPRL(0x10,0x32), BASE, ARG_OPRL },
811
  { "s8subq",                OPR(0x10,0x3B), BASE, ARG_OPR },
812
  { "s8subq",                OPRL(0x10,0x3B), BASE, ARG_OPRL },
813
  { "cmpule",                OPR(0x10,0x3D), BASE, ARG_OPR },
814
  { "cmpule",                OPRL(0x10,0x3D), BASE, ARG_OPRL },
815
  { "addl/v",                OPR(0x10,0x40), BASE, ARG_OPR },
816
  { "addl/v",                OPRL(0x10,0x40), BASE, ARG_OPRL },
817
  { "negl/v",                OPR(0x10,0x49), BASE, ARG_OPRZ1 },        /* pseudo */
818
  { "negl/v",                OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },        /* pseudo */
819
  { "subl/v",                OPR(0x10,0x49), BASE, ARG_OPR },
820
  { "subl/v",                OPRL(0x10,0x49), BASE, ARG_OPRL },
821
  { "cmplt",                OPR(0x10,0x4D), BASE, ARG_OPR },
822
  { "cmplt",                OPRL(0x10,0x4D), BASE, ARG_OPRL },
823
  { "addq/v",                OPR(0x10,0x60), BASE, ARG_OPR },
824
  { "addq/v",                OPRL(0x10,0x60), BASE, ARG_OPRL },
825
  { "negq/v",                OPR(0x10,0x69), BASE, ARG_OPRZ1 },        /* pseudo */
826
  { "negq/v",                OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },        /* pseudo */
827
  { "subq/v",                OPR(0x10,0x69), BASE, ARG_OPR },
828
  { "subq/v",                OPRL(0x10,0x69), BASE, ARG_OPRL },
829
  { "cmple",                OPR(0x10,0x6D), BASE, ARG_OPR },
830
  { "cmple",                OPRL(0x10,0x6D), BASE, ARG_OPRL },
831

    
832
  { "and",                OPR(0x11,0x00), BASE, ARG_OPR },
833
  { "and",                OPRL(0x11,0x00), BASE, ARG_OPRL },
834
  { "andnot",                OPR(0x11,0x08), BASE, ARG_OPR },        /* alias */
835
  { "andnot",                OPRL(0x11,0x08), BASE, ARG_OPRL },        /* alias */
836
  { "bic",                OPR(0x11,0x08), BASE, ARG_OPR },
837
  { "bic",                OPRL(0x11,0x08), BASE, ARG_OPRL },
838
  { "cmovlbs",                OPR(0x11,0x14), BASE, ARG_OPR },
839
  { "cmovlbs",                OPRL(0x11,0x14), BASE, ARG_OPRL },
840
  { "cmovlbc",                OPR(0x11,0x16), BASE, ARG_OPR },
841
  { "cmovlbc",                OPRL(0x11,0x16), BASE, ARG_OPRL },
842
  { "nop",                OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
843
  { "clr",                OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
844
  { "mov",                OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
845
  { "mov",                OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
846
  { "mov",                OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
847
  { "or",                OPR(0x11,0x20), BASE, ARG_OPR },        /* alias */
848
  { "or",                OPRL(0x11,0x20), BASE, ARG_OPRL },        /* alias */
849
  { "bis",                OPR(0x11,0x20), BASE, ARG_OPR },
850
  { "bis",                OPRL(0x11,0x20), BASE, ARG_OPRL },
851
  { "cmoveq",                OPR(0x11,0x24), BASE, ARG_OPR },
852
  { "cmoveq",                OPRL(0x11,0x24), BASE, ARG_OPRL },
853
  { "cmovne",                OPR(0x11,0x26), BASE, ARG_OPR },
854
  { "cmovne",                OPRL(0x11,0x26), BASE, ARG_OPRL },
855
  { "not",                OPR(0x11,0x28), BASE, ARG_OPRZ1 },        /* pseudo */
856
  { "not",                OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },        /* pseudo */
857
  { "ornot",                OPR(0x11,0x28), BASE, ARG_OPR },
858
  { "ornot",                OPRL(0x11,0x28), BASE, ARG_OPRL },
859
  { "xor",                OPR(0x11,0x40), BASE, ARG_OPR },
860
  { "xor",                OPRL(0x11,0x40), BASE, ARG_OPRL },
861
  { "cmovlt",                OPR(0x11,0x44), BASE, ARG_OPR },
862
  { "cmovlt",                OPRL(0x11,0x44), BASE, ARG_OPRL },
863
  { "cmovge",                OPR(0x11,0x46), BASE, ARG_OPR },
864
  { "cmovge",                OPRL(0x11,0x46), BASE, ARG_OPRL },
865
  { "eqv",                OPR(0x11,0x48), BASE, ARG_OPR },
866
  { "eqv",                OPRL(0x11,0x48), BASE, ARG_OPRL },
867
  { "xornot",                OPR(0x11,0x48), BASE, ARG_OPR },        /* alias */
868
  { "xornot",                OPRL(0x11,0x48), BASE, ARG_OPRL },        /* alias */
869
  { "amask",                OPR(0x11,0x61), BASE, ARG_OPRZ1 },        /* ev56 but */
870
  { "amask",                OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },        /* ev56 but */
871
  { "cmovle",                OPR(0x11,0x64), BASE, ARG_OPR },
872
  { "cmovle",                OPRL(0x11,0x64), BASE, ARG_OPRL },
873
  { "cmovgt",                OPR(0x11,0x66), BASE, ARG_OPR },
874
  { "cmovgt",                OPRL(0x11,0x66), BASE, ARG_OPRL },
875
  { "implver",                OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
876
                            0xFFFFFFE0, BASE, { RC } },                /* ev56 but */
877

    
878
  { "mskbl",                OPR(0x12,0x02), BASE, ARG_OPR },
879
  { "mskbl",                OPRL(0x12,0x02), BASE, ARG_OPRL },
880
  { "extbl",                OPR(0x12,0x06), BASE, ARG_OPR },
881
  { "extbl",                OPRL(0x12,0x06), BASE, ARG_OPRL },
882
  { "insbl",                OPR(0x12,0x0B), BASE, ARG_OPR },
883
  { "insbl",                OPRL(0x12,0x0B), BASE, ARG_OPRL },
884
  { "mskwl",                OPR(0x12,0x12), BASE, ARG_OPR },
885
  { "mskwl",                OPRL(0x12,0x12), BASE, ARG_OPRL },
886
  { "extwl",                OPR(0x12,0x16), BASE, ARG_OPR },
887
  { "extwl",                OPRL(0x12,0x16), BASE, ARG_OPRL },
888
  { "inswl",                OPR(0x12,0x1B), BASE, ARG_OPR },
889
  { "inswl",                OPRL(0x12,0x1B), BASE, ARG_OPRL },
890
  { "mskll",                OPR(0x12,0x22), BASE, ARG_OPR },
891
  { "mskll",                OPRL(0x12,0x22), BASE, ARG_OPRL },
892
  { "extll",                OPR(0x12,0x26), BASE, ARG_OPR },
893
  { "extll",                OPRL(0x12,0x26), BASE, ARG_OPRL },
894
  { "insll",                OPR(0x12,0x2B), BASE, ARG_OPR },
895
  { "insll",                OPRL(0x12,0x2B), BASE, ARG_OPRL },
896
  { "zap",                OPR(0x12,0x30), BASE, ARG_OPR },
897
  { "zap",                OPRL(0x12,0x30), BASE, ARG_OPRL },
898
  { "zapnot",                OPR(0x12,0x31), BASE, ARG_OPR },
899
  { "zapnot",                OPRL(0x12,0x31), BASE, ARG_OPRL },
900
  { "mskql",                OPR(0x12,0x32), BASE, ARG_OPR },
901
  { "mskql",                OPRL(0x12,0x32), BASE, ARG_OPRL },
902
  { "srl",                OPR(0x12,0x34), BASE, ARG_OPR },
903
  { "srl",                OPRL(0x12,0x34), BASE, ARG_OPRL },
904
  { "extql",                OPR(0x12,0x36), BASE, ARG_OPR },
905
  { "extql",                OPRL(0x12,0x36), BASE, ARG_OPRL },
906
  { "sll",                OPR(0x12,0x39), BASE, ARG_OPR },
907
  { "sll",                OPRL(0x12,0x39), BASE, ARG_OPRL },
908
  { "insql",                OPR(0x12,0x3B), BASE, ARG_OPR },
909
  { "insql",                OPRL(0x12,0x3B), BASE, ARG_OPRL },
910
  { "sra",                OPR(0x12,0x3C), BASE, ARG_OPR },
911
  { "sra",                OPRL(0x12,0x3C), BASE, ARG_OPRL },
912
  { "mskwh",                OPR(0x12,0x52), BASE, ARG_OPR },
913
  { "mskwh",                OPRL(0x12,0x52), BASE, ARG_OPRL },
914
  { "inswh",                OPR(0x12,0x57), BASE, ARG_OPR },
915
  { "inswh",                OPRL(0x12,0x57), BASE, ARG_OPRL },
916
  { "extwh",                OPR(0x12,0x5A), BASE, ARG_OPR },
917
  { "extwh",                OPRL(0x12,0x5A), BASE, ARG_OPRL },
918
  { "msklh",                OPR(0x12,0x62), BASE, ARG_OPR },
919
  { "msklh",                OPRL(0x12,0x62), BASE, ARG_OPRL },
920
  { "inslh",                OPR(0x12,0x67), BASE, ARG_OPR },
921
  { "inslh",                OPRL(0x12,0x67), BASE, ARG_OPRL },
922
  { "extlh",                OPR(0x12,0x6A), BASE, ARG_OPR },
923
  { "extlh",                OPRL(0x12,0x6A), BASE, ARG_OPRL },
924
  { "mskqh",                OPR(0x12,0x72), BASE, ARG_OPR },
925
  { "mskqh",                OPRL(0x12,0x72), BASE, ARG_OPRL },
926
  { "insqh",                OPR(0x12,0x77), BASE, ARG_OPR },
927
  { "insqh",                OPRL(0x12,0x77), BASE, ARG_OPRL },
928
  { "extqh",                OPR(0x12,0x7A), BASE, ARG_OPR },
929
  { "extqh",                OPRL(0x12,0x7A), BASE, ARG_OPRL },
930

    
931
  { "mull",                OPR(0x13,0x00), BASE, ARG_OPR },
932
  { "mull",                OPRL(0x13,0x00), BASE, ARG_OPRL },
933
  { "mulq",                OPR(0x13,0x20), BASE, ARG_OPR },
934
  { "mulq",                OPRL(0x13,0x20), BASE, ARG_OPRL },
935
  { "umulh",                OPR(0x13,0x30), BASE, ARG_OPR },
936
  { "umulh",                OPRL(0x13,0x30), BASE, ARG_OPRL },
937
  { "mull/v",                OPR(0x13,0x40), BASE, ARG_OPR },
938
  { "mull/v",                OPRL(0x13,0x40), BASE, ARG_OPRL },
939
  { "mulq/v",                OPR(0x13,0x60), BASE, ARG_OPR },
940
  { "mulq/v",                OPRL(0x13,0x60), BASE, ARG_OPRL },
941

    
942
  { "itofs",                FP(0x14,0x004), CIX, { RA, ZB, FC } },
943
  { "sqrtf/c",                FP(0x14,0x00A), CIX, ARG_FPZ1 },
944
  { "sqrts/c",                FP(0x14,0x00B), CIX, ARG_FPZ1 },
945
  { "itoff",                FP(0x14,0x014), CIX, { RA, ZB, FC } },
946
  { "itoft",                FP(0x14,0x024), CIX, { RA, ZB, FC } },
947
  { "sqrtg/c",                FP(0x14,0x02A), CIX, ARG_FPZ1 },
948
  { "sqrtt/c",                FP(0x14,0x02B), CIX, ARG_FPZ1 },
949
  { "sqrts/m",                FP(0x14,0x04B), CIX, ARG_FPZ1 },
950
  { "sqrtt/m",                FP(0x14,0x06B), CIX, ARG_FPZ1 },
951
  { "sqrtf",                FP(0x14,0x08A), CIX, ARG_FPZ1 },
952
  { "sqrts",                FP(0x14,0x08B), CIX, ARG_FPZ1 },
953
  { "sqrtg",                FP(0x14,0x0AA), CIX, ARG_FPZ1 },
954
  { "sqrtt",                FP(0x14,0x0AB), CIX, ARG_FPZ1 },
955
  { "sqrts/d",                FP(0x14,0x0CB), CIX, ARG_FPZ1 },
956
  { "sqrtt/d",                FP(0x14,0x0EB), CIX, ARG_FPZ1 },
957
  { "sqrtf/uc",                FP(0x14,0x10A), CIX, ARG_FPZ1 },
958
  { "sqrts/uc",                FP(0x14,0x10B), CIX, ARG_FPZ1 },
959
  { "sqrtg/uc",                FP(0x14,0x12A), CIX, ARG_FPZ1 },
960
  { "sqrtt/uc",                FP(0x14,0x12B), CIX, ARG_FPZ1 },
961
  { "sqrts/um",                FP(0x14,0x14B), CIX, ARG_FPZ1 },
962
  { "sqrtt/um",                FP(0x14,0x16B), CIX, ARG_FPZ1 },
963
  { "sqrtf/u",                FP(0x14,0x18A), CIX, ARG_FPZ1 },
964
  { "sqrts/u",                FP(0x14,0x18B), CIX, ARG_FPZ1 },
965
  { "sqrtg/u",                FP(0x14,0x1AA), CIX, ARG_FPZ1 },
966
  { "sqrtt/u",                FP(0x14,0x1AB), CIX, ARG_FPZ1 },
967
  { "sqrts/ud",                FP(0x14,0x1CB), CIX, ARG_FPZ1 },
968
  { "sqrtt/ud",                FP(0x14,0x1EB), CIX, ARG_FPZ1 },
969
  { "sqrtf/sc",                FP(0x14,0x40A), CIX, ARG_FPZ1 },
970
  { "sqrtg/sc",                FP(0x14,0x42A), CIX, ARG_FPZ1 },
971
  { "sqrtf/s",                FP(0x14,0x48A), CIX, ARG_FPZ1 },
972
  { "sqrtg/s",                FP(0x14,0x4AA), CIX, ARG_FPZ1 },
973
  { "sqrtf/suc",        FP(0x14,0x50A), CIX, ARG_FPZ1 },
974
  { "sqrts/suc",        FP(0x14,0x50B), CIX, ARG_FPZ1 },
975
  { "sqrtg/suc",        FP(0x14,0x52A), CIX, ARG_FPZ1 },
976
  { "sqrtt/suc",        FP(0x14,0x52B), CIX, ARG_FPZ1 },
977
  { "sqrts/sum",        FP(0x14,0x54B), CIX, ARG_FPZ1 },
978
  { "sqrtt/sum",        FP(0x14,0x56B), CIX, ARG_FPZ1 },
979
  { "sqrtf/su",                FP(0x14,0x58A), CIX, ARG_FPZ1 },
980
  { "sqrts/su",                FP(0x14,0x58B), CIX, ARG_FPZ1 },
981
  { "sqrtg/su",                FP(0x14,0x5AA), CIX, ARG_FPZ1 },
982
  { "sqrtt/su",                FP(0x14,0x5AB), CIX, ARG_FPZ1 },
983
  { "sqrts/sud",        FP(0x14,0x5CB), CIX, ARG_FPZ1 },
984
  { "sqrtt/sud",        FP(0x14,0x5EB), CIX, ARG_FPZ1 },
985
  { "sqrts/suic",        FP(0x14,0x70B), CIX, ARG_FPZ1 },
986
  { "sqrtt/suic",        FP(0x14,0x72B), CIX, ARG_FPZ1 },
987
  { "sqrts/suim",        FP(0x14,0x74B), CIX, ARG_FPZ1 },
988
  { "sqrtt/suim",        FP(0x14,0x76B), CIX, ARG_FPZ1 },
989
  { "sqrts/sui",        FP(0x14,0x78B), CIX, ARG_FPZ1 },
990
  { "sqrtt/sui",        FP(0x14,0x7AB), CIX, ARG_FPZ1 },
991
  { "sqrts/suid",        FP(0x14,0x7CB), CIX, ARG_FPZ1 },
992
  { "sqrtt/suid",        FP(0x14,0x7EB), CIX, ARG_FPZ1 },
993

    
994
  { "addf/c",                FP(0x15,0x000), BASE, ARG_FP },
995
  { "subf/c",                FP(0x15,0x001), BASE, ARG_FP },
996
  { "mulf/c",                FP(0x15,0x002), BASE, ARG_FP },
997
  { "divf/c",                FP(0x15,0x003), BASE, ARG_FP },
998
  { "cvtdg/c",                FP(0x15,0x01E), BASE, ARG_FPZ1 },
999
  { "addg/c",                FP(0x15,0x020), BASE, ARG_FP },
1000
  { "subg/c",                FP(0x15,0x021), BASE, ARG_FP },
1001
  { "mulg/c",                FP(0x15,0x022), BASE, ARG_FP },
1002
  { "divg/c",                FP(0x15,0x023), BASE, ARG_FP },
1003
  { "cvtgf/c",                FP(0x15,0x02C), BASE, ARG_FPZ1 },
1004
  { "cvtgd/c",                FP(0x15,0x02D), BASE, ARG_FPZ1 },
1005
  { "cvtgq/c",                FP(0x15,0x02F), BASE, ARG_FPZ1 },
1006
  { "cvtqf/c",                FP(0x15,0x03C), BASE, ARG_FPZ1 },
1007
  { "cvtqg/c",                FP(0x15,0x03E), BASE, ARG_FPZ1 },
1008
  { "addf",                FP(0x15,0x080), BASE, ARG_FP },
1009
  { "negf",                FP(0x15,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1010
  { "subf",                FP(0x15,0x081), BASE, ARG_FP },
1011
  { "mulf",                FP(0x15,0x082), BASE, ARG_FP },
1012
  { "divf",                FP(0x15,0x083), BASE, ARG_FP },
1013
  { "cvtdg",                FP(0x15,0x09E), BASE, ARG_FPZ1 },
1014
  { "addg",                FP(0x15,0x0A0), BASE, ARG_FP },
1015
  { "negg",                FP(0x15,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1016
  { "subg",                FP(0x15,0x0A1), BASE, ARG_FP },
1017
  { "mulg",                FP(0x15,0x0A2), BASE, ARG_FP },
1018
  { "divg",                FP(0x15,0x0A3), BASE, ARG_FP },
1019
  { "cmpgeq",                FP(0x15,0x0A5), BASE, ARG_FP },
1020
  { "cmpglt",                FP(0x15,0x0A6), BASE, ARG_FP },
1021
  { "cmpgle",                FP(0x15,0x0A7), BASE, ARG_FP },
1022
  { "cvtgf",                FP(0x15,0x0AC), BASE, ARG_FPZ1 },
1023
  { "cvtgd",                FP(0x15,0x0AD), BASE, ARG_FPZ1 },
1024
  { "cvtgq",                FP(0x15,0x0AF), BASE, ARG_FPZ1 },
1025
  { "cvtqf",                FP(0x15,0x0BC), BASE, ARG_FPZ1 },
1026
  { "cvtqg",                FP(0x15,0x0BE), BASE, ARG_FPZ1 },
1027
  { "addf/uc",                FP(0x15,0x100), BASE, ARG_FP },
1028
  { "subf/uc",                FP(0x15,0x101), BASE, ARG_FP },
1029
  { "mulf/uc",                FP(0x15,0x102), BASE, ARG_FP },
1030
  { "divf/uc",                FP(0x15,0x103), BASE, ARG_FP },
1031
  { "cvtdg/uc",                FP(0x15,0x11E), BASE, ARG_FPZ1 },
1032
  { "addg/uc",                FP(0x15,0x120), BASE, ARG_FP },
1033
  { "subg/uc",                FP(0x15,0x121), BASE, ARG_FP },
1034
  { "mulg/uc",                FP(0x15,0x122), BASE, ARG_FP },
1035
  { "divg/uc",                FP(0x15,0x123), BASE, ARG_FP },
1036
  { "cvtgf/uc",                FP(0x15,0x12C), BASE, ARG_FPZ1 },
1037
  { "cvtgd/uc",                FP(0x15,0x12D), BASE, ARG_FPZ1 },
1038
  { "cvtgq/vc",                FP(0x15,0x12F), BASE, ARG_FPZ1 },
1039
  { "addf/u",                FP(0x15,0x180), BASE, ARG_FP },
1040
  { "subf/u",                FP(0x15,0x181), BASE, ARG_FP },
1041
  { "mulf/u",                FP(0x15,0x182), BASE, ARG_FP },
1042
  { "divf/u",                FP(0x15,0x183), BASE, ARG_FP },
1043
  { "cvtdg/u",                FP(0x15,0x19E), BASE, ARG_FPZ1 },
1044
  { "addg/u",                FP(0x15,0x1A0), BASE, ARG_FP },
1045
  { "subg/u",                FP(0x15,0x1A1), BASE, ARG_FP },
1046
  { "mulg/u",                FP(0x15,0x1A2), BASE, ARG_FP },
1047
  { "divg/u",                FP(0x15,0x1A3), BASE, ARG_FP },
1048
  { "cvtgf/u",                FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1049
  { "cvtgd/u",                FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1050
  { "cvtgq/v",                FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1051
  { "addf/sc",                FP(0x15,0x400), BASE, ARG_FP },
1052
  { "subf/sc",                FP(0x15,0x401), BASE, ARG_FP },
1053
  { "mulf/sc",                FP(0x15,0x402), BASE, ARG_FP },
1054
  { "divf/sc",                FP(0x15,0x403), BASE, ARG_FP },
1055
  { "cvtdg/sc",                FP(0x15,0x41E), BASE, ARG_FPZ1 },
1056
  { "addg/sc",                FP(0x15,0x420), BASE, ARG_FP },
1057
  { "subg/sc",                FP(0x15,0x421), BASE, ARG_FP },
1058
  { "mulg/sc",                FP(0x15,0x422), BASE, ARG_FP },
1059
  { "divg/sc",                FP(0x15,0x423), BASE, ARG_FP },
1060
  { "cvtgf/sc",                FP(0x15,0x42C), BASE, ARG_FPZ1 },
1061
  { "cvtgd/sc",                FP(0x15,0x42D), BASE, ARG_FPZ1 },
1062
  { "cvtgq/sc",                FP(0x15,0x42F), BASE, ARG_FPZ1 },
1063
  { "addf/s",                FP(0x15,0x480), BASE, ARG_FP },
1064
  { "negf/s",                FP(0x15,0x481), BASE, ARG_FPZ1 },        /* pseudo */
1065
  { "subf/s",                FP(0x15,0x481), BASE, ARG_FP },
1066
  { "mulf/s",                FP(0x15,0x482), BASE, ARG_FP },
1067
  { "divf/s",                FP(0x15,0x483), BASE, ARG_FP },
1068
  { "cvtdg/s",                FP(0x15,0x49E), BASE, ARG_FPZ1 },
1069
  { "addg/s",                FP(0x15,0x4A0), BASE, ARG_FP },
1070
  { "negg/s",                FP(0x15,0x4A1), BASE, ARG_FPZ1 },        /* pseudo */
1071
  { "subg/s",                FP(0x15,0x4A1), BASE, ARG_FP },
1072
  { "mulg/s",                FP(0x15,0x4A2), BASE, ARG_FP },
1073
  { "divg/s",                FP(0x15,0x4A3), BASE, ARG_FP },
1074
  { "cmpgeq/s",                FP(0x15,0x4A5), BASE, ARG_FP },
1075
  { "cmpglt/s",                FP(0x15,0x4A6), BASE, ARG_FP },
1076
  { "cmpgle/s",                FP(0x15,0x4A7), BASE, ARG_FP },
1077
  { "cvtgf/s",                FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1078
  { "cvtgd/s",                FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1079
  { "cvtgq/s",                FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1080
  { "addf/suc",                FP(0x15,0x500), BASE, ARG_FP },
1081
  { "subf/suc",                FP(0x15,0x501), BASE, ARG_FP },
1082
  { "mulf/suc",                FP(0x15,0x502), BASE, ARG_FP },
1083
  { "divf/suc",                FP(0x15,0x503), BASE, ARG_FP },
1084
  { "cvtdg/suc",        FP(0x15,0x51E), BASE, ARG_FPZ1 },
1085
  { "addg/suc",                FP(0x15,0x520), BASE, ARG_FP },
1086
  { "subg/suc",                FP(0x15,0x521), BASE, ARG_FP },
1087
  { "mulg/suc",                FP(0x15,0x522), BASE, ARG_FP },
1088
  { "divg/suc",                FP(0x15,0x523), BASE, ARG_FP },
1089
  { "cvtgf/suc",        FP(0x15,0x52C), BASE, ARG_FPZ1 },
1090
  { "cvtgd/suc",        FP(0x15,0x52D), BASE, ARG_FPZ1 },
1091
  { "cvtgq/svc",        FP(0x15,0x52F), BASE, ARG_FPZ1 },
1092
  { "addf/su",                FP(0x15,0x580), BASE, ARG_FP },
1093
  { "subf/su",                FP(0x15,0x581), BASE, ARG_FP },
1094
  { "mulf/su",                FP(0x15,0x582), BASE, ARG_FP },
1095
  { "divf/su",                FP(0x15,0x583), BASE, ARG_FP },
1096
  { "cvtdg/su",                FP(0x15,0x59E), BASE, ARG_FPZ1 },
1097
  { "addg/su",                FP(0x15,0x5A0), BASE, ARG_FP },
1098
  { "subg/su",                FP(0x15,0x5A1), BASE, ARG_FP },
1099
  { "mulg/su",                FP(0x15,0x5A2), BASE, ARG_FP },
1100
  { "divg/su",                FP(0x15,0x5A3), BASE, ARG_FP },
1101
  { "cvtgf/su",                FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1102
  { "cvtgd/su",                FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1103
  { "cvtgq/sv",                FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1104

    
1105
  { "adds/c",                FP(0x16,0x000), BASE, ARG_FP },
1106
  { "subs/c",                FP(0x16,0x001), BASE, ARG_FP },
1107
  { "muls/c",                FP(0x16,0x002), BASE, ARG_FP },
1108
  { "divs/c",                FP(0x16,0x003), BASE, ARG_FP },
1109
  { "addt/c",                FP(0x16,0x020), BASE, ARG_FP },
1110
  { "subt/c",                FP(0x16,0x021), BASE, ARG_FP },
1111
  { "mult/c",                FP(0x16,0x022), BASE, ARG_FP },
1112
  { "divt/c",                FP(0x16,0x023), BASE, ARG_FP },
1113
  { "cvtts/c",                FP(0x16,0x02C), BASE, ARG_FPZ1 },
1114
  { "cvttq/c",                FP(0x16,0x02F), BASE, ARG_FPZ1 },
1115
  { "cvtqs/c",                FP(0x16,0x03C), BASE, ARG_FPZ1 },
1116
  { "cvtqt/c",                FP(0x16,0x03E), BASE, ARG_FPZ1 },
1117
  { "adds/m",                FP(0x16,0x040), BASE, ARG_FP },
1118
  { "subs/m",                FP(0x16,0x041), BASE, ARG_FP },
1119
  { "muls/m",                FP(0x16,0x042), BASE, ARG_FP },
1120
  { "divs/m",                FP(0x16,0x043), BASE, ARG_FP },
1121
  { "addt/m",                FP(0x16,0x060), BASE, ARG_FP },
1122
  { "subt/m",                FP(0x16,0x061), BASE, ARG_FP },
1123
  { "mult/m",                FP(0x16,0x062), BASE, ARG_FP },
1124
  { "divt/m",                FP(0x16,0x063), BASE, ARG_FP },
1125
  { "cvtts/m",                FP(0x16,0x06C), BASE, ARG_FPZ1 },
1126
  { "cvttq/m",                FP(0x16,0x06F), BASE, ARG_FPZ1 },
1127
  { "cvtqs/m",                FP(0x16,0x07C), BASE, ARG_FPZ1 },
1128
  { "cvtqt/m",                FP(0x16,0x07E), BASE, ARG_FPZ1 },
1129
  { "adds",                FP(0x16,0x080), BASE, ARG_FP },
1130
  { "negs",                 FP(0x16,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1131
  { "subs",                FP(0x16,0x081), BASE, ARG_FP },
1132
  { "muls",                FP(0x16,0x082), BASE, ARG_FP },
1133
  { "divs",                FP(0x16,0x083), BASE, ARG_FP },
1134
  { "addt",                FP(0x16,0x0A0), BASE, ARG_FP },
1135
  { "negt",                 FP(0x16,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1136
  { "subt",                FP(0x16,0x0A1), BASE, ARG_FP },
1137
  { "mult",                FP(0x16,0x0A2), BASE, ARG_FP },
1138
  { "divt",                FP(0x16,0x0A3), BASE, ARG_FP },
1139
  { "cmptun",                FP(0x16,0x0A4), BASE, ARG_FP },
1140
  { "cmpteq",                FP(0x16,0x0A5), BASE, ARG_FP },
1141
  { "cmptlt",                FP(0x16,0x0A6), BASE, ARG_FP },
1142
  { "cmptle",                FP(0x16,0x0A7), BASE, ARG_FP },
1143
  { "cvtts",                FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1144
  { "cvttq",                FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1145
  { "cvtqs",                FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1146
  { "cvtqt",                FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1147
  { "adds/d",                FP(0x16,0x0C0), BASE, ARG_FP },
1148
  { "subs/d",                FP(0x16,0x0C1), BASE, ARG_FP },
1149
  { "muls/d",                FP(0x16,0x0C2), BASE, ARG_FP },
1150
  { "divs/d",                FP(0x16,0x0C3), BASE, ARG_FP },
1151
  { "addt/d",                FP(0x16,0x0E0), BASE, ARG_FP },
1152
  { "subt/d",                FP(0x16,0x0E1), BASE, ARG_FP },
1153
  { "mult/d",                FP(0x16,0x0E2), BASE, ARG_FP },
1154
  { "divt/d",                FP(0x16,0x0E3), BASE, ARG_FP },
1155
  { "cvtts/d",                FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1156
  { "cvttq/d",                FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1157
  { "cvtqs/d",                FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1158
  { "cvtqt/d",                FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1159
  { "adds/uc",                FP(0x16,0x100), BASE, ARG_FP },
1160
  { "subs/uc",                FP(0x16,0x101), BASE, ARG_FP },
1161
  { "muls/uc",                FP(0x16,0x102), BASE, ARG_FP },
1162
  { "divs/uc",                FP(0x16,0x103), BASE, ARG_FP },
1163
  { "addt/uc",                FP(0x16,0x120), BASE, ARG_FP },
1164
  { "subt/uc",                FP(0x16,0x121), BASE, ARG_FP },
1165
  { "mult/uc",                FP(0x16,0x122), BASE, ARG_FP },
1166
  { "divt/uc",                FP(0x16,0x123), BASE, ARG_FP },
1167
  { "cvtts/uc",                FP(0x16,0x12C), BASE, ARG_FPZ1 },
1168
  { "cvttq/vc",                FP(0x16,0x12F), BASE, ARG_FPZ1 },
1169
  { "adds/um",                FP(0x16,0x140), BASE, ARG_FP },
1170
  { "subs/um",                FP(0x16,0x141), BASE, ARG_FP },
1171
  { "muls/um",                FP(0x16,0x142), BASE, ARG_FP },
1172
  { "divs/um",                FP(0x16,0x143), BASE, ARG_FP },
1173
  { "addt/um",                FP(0x16,0x160), BASE, ARG_FP },
1174
  { "subt/um",                FP(0x16,0x161), BASE, ARG_FP },
1175
  { "mult/um",                FP(0x16,0x162), BASE, ARG_FP },
1176
  { "divt/um",                FP(0x16,0x163), BASE, ARG_FP },
1177
  { "cvtts/um",                FP(0x16,0x16C), BASE, ARG_FPZ1 },
1178
  { "cvttq/vm",                FP(0x16,0x16F), BASE, ARG_FPZ1 },
1179
  { "adds/u",                FP(0x16,0x180), BASE, ARG_FP },
1180
  { "subs/u",                FP(0x16,0x181), BASE, ARG_FP },
1181
  { "muls/u",                FP(0x16,0x182), BASE, ARG_FP },
1182
  { "divs/u",                FP(0x16,0x183), BASE, ARG_FP },
1183
  { "addt/u",                FP(0x16,0x1A0), BASE, ARG_FP },
1184
  { "subt/u",                FP(0x16,0x1A1), BASE, ARG_FP },
1185
  { "mult/u",                FP(0x16,0x1A2), BASE, ARG_FP },
1186
  { "divt/u",                FP(0x16,0x1A3), BASE, ARG_FP },
1187
  { "cvtts/u",                FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1188
  { "cvttq/v",                FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1189
  { "adds/ud",                FP(0x16,0x1C0), BASE, ARG_FP },
1190
  { "subs/ud",                FP(0x16,0x1C1), BASE, ARG_FP },
1191
  { "muls/ud",                FP(0x16,0x1C2), BASE, ARG_FP },
1192
  { "divs/ud",                FP(0x16,0x1C3), BASE, ARG_FP },
1193
  { "addt/ud",                FP(0x16,0x1E0), BASE, ARG_FP },
1194
  { "subt/ud",                FP(0x16,0x1E1), BASE, ARG_FP },
1195
  { "mult/ud",                FP(0x16,0x1E2), BASE, ARG_FP },
1196
  { "divt/ud",                FP(0x16,0x1E3), BASE, ARG_FP },
1197
  { "cvtts/ud",                FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1198
  { "cvttq/vd",                FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1199
  { "cvtst",                FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1200
  { "adds/suc",                FP(0x16,0x500), BASE, ARG_FP },
1201
  { "subs/suc",                FP(0x16,0x501), BASE, ARG_FP },
1202
  { "muls/suc",                FP(0x16,0x502), BASE, ARG_FP },
1203
  { "divs/suc",                FP(0x16,0x503), BASE, ARG_FP },
1204
  { "addt/suc",                FP(0x16,0x520), BASE, ARG_FP },
1205
  { "subt/suc",                FP(0x16,0x521), BASE, ARG_FP },
1206
  { "mult/suc",                FP(0x16,0x522), BASE, ARG_FP },
1207
  { "divt/suc",                FP(0x16,0x523), BASE, ARG_FP },
1208
  { "cvtts/suc",        FP(0x16,0x52C), BASE, ARG_FPZ1 },
1209
  { "cvttq/svc",        FP(0x16,0x52F), BASE, ARG_FPZ1 },
1210
  { "adds/sum",                FP(0x16,0x540), BASE, ARG_FP },
1211
  { "subs/sum",                FP(0x16,0x541), BASE, ARG_FP },
1212
  { "muls/sum",                FP(0x16,0x542), BASE, ARG_FP },
1213
  { "divs/sum",                FP(0x16,0x543), BASE, ARG_FP },
1214
  { "addt/sum",                FP(0x16,0x560), BASE, ARG_FP },
1215
  { "subt/sum",                FP(0x16,0x561), BASE, ARG_FP },
1216
  { "mult/sum",                FP(0x16,0x562), BASE, ARG_FP },
1217
  { "divt/sum",                FP(0x16,0x563), BASE, ARG_FP },
1218
  { "cvtts/sum",        FP(0x16,0x56C), BASE, ARG_FPZ1 },
1219
  { "cvttq/svm",        FP(0x16,0x56F), BASE, ARG_FPZ1 },
1220
  { "adds/su",                FP(0x16,0x580), BASE, ARG_FP },
1221
  { "negs/su",                FP(0x16,0x581), BASE, ARG_FPZ1 },        /* pseudo */
1222
  { "subs/su",                FP(0x16,0x581), BASE, ARG_FP },
1223
  { "muls/su",                FP(0x16,0x582), BASE, ARG_FP },
1224
  { "divs/su",                FP(0x16,0x583), BASE, ARG_FP },
1225
  { "addt/su",                FP(0x16,0x5A0), BASE, ARG_FP },
1226
  { "negt/su",                FP(0x16,0x5A1), BASE, ARG_FPZ1 },        /* pseudo */
1227
  { "subt/su",                FP(0x16,0x5A1), BASE, ARG_FP },
1228
  { "mult/su",                FP(0x16,0x5A2), BASE, ARG_FP },
1229
  { "divt/su",                FP(0x16,0x5A3), BASE, ARG_FP },
1230
  { "cmptun/su",        FP(0x16,0x5A4), BASE, ARG_FP },
1231
  { "cmpteq/su",        FP(0x16,0x5A5), BASE, ARG_FP },
1232
  { "cmptlt/su",        FP(0x16,0x5A6), BASE, ARG_FP },
1233
  { "cmptle/su",        FP(0x16,0x5A7), BASE, ARG_FP },
1234
  { "cvtts/su",                FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1235
  { "cvttq/sv",                FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1236
  { "adds/sud",                FP(0x16,0x5C0), BASE, ARG_FP },
1237
  { "subs/sud",                FP(0x16,0x5C1), BASE, ARG_FP },
1238
  { "muls/sud",                FP(0x16,0x5C2), BASE, ARG_FP },
1239
  { "divs/sud",                FP(0x16,0x5C3), BASE, ARG_FP },
1240
  { "addt/sud",                FP(0x16,0x5E0), BASE, ARG_FP },
1241
  { "subt/sud",                FP(0x16,0x5E1), BASE, ARG_FP },
1242
  { "mult/sud",                FP(0x16,0x5E2), BASE, ARG_FP },
1243
  { "divt/sud",                FP(0x16,0x5E3), BASE, ARG_FP },
1244
  { "cvtts/sud",        FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1245
  { "cvttq/svd",        FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1246
  { "cvtst/s",                FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1247
  { "adds/suic",        FP(0x16,0x700), BASE, ARG_FP },
1248
  { "subs/suic",        FP(0x16,0x701), BASE, ARG_FP },
1249
  { "muls/suic",        FP(0x16,0x702), BASE, ARG_FP },
1250
  { "divs/suic",        FP(0x16,0x703), BASE, ARG_FP },
1251
  { "addt/suic",        FP(0x16,0x720), BASE, ARG_FP },
1252
  { "subt/suic",        FP(0x16,0x721), BASE, ARG_FP },
1253
  { "mult/suic",        FP(0x16,0x722), BASE, ARG_FP },
1254
  { "divt/suic",        FP(0x16,0x723), BASE, ARG_FP },
1255
  { "cvtts/suic",        FP(0x16,0x72C), BASE, ARG_FPZ1 },
1256
  { "cvttq/svic",        FP(0x16,0x72F), BASE, ARG_FPZ1 },
1257
  { "cvtqs/suic",        FP(0x16,0x73C), BASE, ARG_FPZ1 },
1258
  { "cvtqt/suic",        FP(0x16,0x73E), BASE, ARG_FPZ1 },
1259
  { "adds/suim",        FP(0x16,0x740), BASE, ARG_FP },
1260
  { "subs/suim",        FP(0x16,0x741), BASE, ARG_FP },
1261
  { "muls/suim",        FP(0x16,0x742), BASE, ARG_FP },
1262
  { "divs/suim",        FP(0x16,0x743), BASE, ARG_FP },
1263
  { "addt/suim",        FP(0x16,0x760), BASE, ARG_FP },
1264
  { "subt/suim",        FP(0x16,0x761), BASE, ARG_FP },
1265
  { "mult/suim",        FP(0x16,0x762), BASE, ARG_FP },
1266
  { "divt/suim",        FP(0x16,0x763), BASE, ARG_FP },
1267
  { "cvtts/suim",        FP(0x16,0x76C), BASE, ARG_FPZ1 },
1268
  { "cvttq/svim",        FP(0x16,0x76F), BASE, ARG_FPZ1 },
1269
  { "cvtqs/suim",        FP(0x16,0x77C), BASE, ARG_FPZ1 },
1270
  { "cvtqt/suim",        FP(0x16,0x77E), BASE, ARG_FPZ1 },
1271
  { "adds/sui",                FP(0x16,0x780), BASE, ARG_FP },
1272
  { "negs/sui",         FP(0x16,0x781), BASE, ARG_FPZ1 },        /* pseudo */
1273
  { "subs/sui",                FP(0x16,0x781), BASE, ARG_FP },
1274
  { "muls/sui",                FP(0x16,0x782), BASE, ARG_FP },
1275
  { "divs/sui",                FP(0x16,0x783), BASE, ARG_FP },
1276
  { "addt/sui",                FP(0x16,0x7A0), BASE, ARG_FP },
1277
  { "negt/sui",         FP(0x16,0x7A1), BASE, ARG_FPZ1 },        /* pseudo */
1278
  { "subt/sui",                FP(0x16,0x7A1), BASE, ARG_FP },
1279
  { "mult/sui",                FP(0x16,0x7A2), BASE, ARG_FP },
1280
  { "divt/sui",                FP(0x16,0x7A3), BASE, ARG_FP },
1281
  { "cvtts/sui",        FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1282
  { "cvttq/svi",        FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1283
  { "cvtqs/sui",        FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1284
  { "cvtqt/sui",        FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1285
  { "adds/suid",        FP(0x16,0x7C0), BASE, ARG_FP },
1286
  { "subs/suid",        FP(0x16,0x7C1), BASE, ARG_FP },
1287
  { "muls/suid",        FP(0x16,0x7C2), BASE, ARG_FP },
1288
  { "divs/suid",        FP(0x16,0x7C3), BASE, ARG_FP },
1289
  { "addt/suid",        FP(0x16,0x7E0), BASE, ARG_FP },
1290
  { "subt/suid",        FP(0x16,0x7E1), BASE, ARG_FP },
1291
  { "mult/suid",        FP(0x16,0x7E2), BASE, ARG_FP },
1292
  { "divt/suid",        FP(0x16,0x7E3), BASE, ARG_FP },
1293
  { "cvtts/suid",        FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1294
  { "cvttq/svid",        FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1295
  { "cvtqs/suid",        FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1296
  { "cvtqt/suid",        FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1297

    
1298
  { "cvtlq",                FP(0x17,0x010), BASE, ARG_FPZ1 },
1299
  { "fnop",                FP(0x17,0x020), BASE, { ZA, ZB, ZC } },        /* pseudo */
1300
  { "fclr",                FP(0x17,0x020), BASE, { ZA, ZB, FC } },        /* pseudo */
1301
  { "fabs",                FP(0x17,0x020), BASE, ARG_FPZ1 },        /* pseudo */
1302
  { "fmov",                FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1303
  { "cpys",                FP(0x17,0x020), BASE, ARG_FP },
1304
  { "fneg",                FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1305
  { "cpysn",                FP(0x17,0x021), BASE, ARG_FP },
1306
  { "cpyse",                FP(0x17,0x022), BASE, ARG_FP },
1307
  { "mt_fpcr",                FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1308
  { "mf_fpcr",                FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1309
  { "fcmoveq",                FP(0x17,0x02A), BASE, ARG_FP },
1310
  { "fcmovne",                FP(0x17,0x02B), BASE, ARG_FP },
1311
  { "fcmovlt",                FP(0x17,0x02C), BASE, ARG_FP },
1312
  { "fcmovge",                FP(0x17,0x02D), BASE, ARG_FP },
1313
  { "fcmovle",                FP(0x17,0x02E), BASE, ARG_FP },
1314
  { "fcmovgt",                FP(0x17,0x02F), BASE, ARG_FP },
1315
  { "cvtql",                FP(0x17,0x030), BASE, ARG_FPZ1 },
1316
  { "cvtql/v",                FP(0x17,0x130), BASE, ARG_FPZ1 },
1317
  { "cvtql/sv",                FP(0x17,0x530), BASE, ARG_FPZ1 },
1318

    
1319
  { "trapb",                MFC(0x18,0x0000), BASE, ARG_NONE },
1320
  { "draint",                MFC(0x18,0x0000), BASE, ARG_NONE },        /* alias */
1321
  { "excb",                MFC(0x18,0x0400), BASE, ARG_NONE },
1322
  { "mb",                MFC(0x18,0x4000), BASE, ARG_NONE },
1323
  { "wmb",                MFC(0x18,0x4400), BASE, ARG_NONE },
1324
  { "fetch",                MFC(0x18,0x8000), BASE, { ZA, PRB } },
1325
  { "fetch_m",                MFC(0x18,0xA000), BASE, { ZA, PRB } },
1326
  { "rpcc",                MFC(0x18,0xC000), BASE, { RA } },
1327
  { "rc",                MFC(0x18,0xE000), BASE, { RA } },
1328
  { "ecb",                MFC(0x18,0xE800), BASE, { ZA, PRB } },        /* ev56 una */
1329
  { "rs",                MFC(0x18,0xF000), BASE, { RA } },
1330
  { "wh64",                MFC(0x18,0xF800), BASE, { ZA, PRB } },        /* ev56 una */
1331
  { "wh64en",                MFC(0x18,0xFC00), BASE, { ZA, PRB } },        /* ev7 una */
1332

    
1333
  { "hw_mfpr",                OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1334
  { "hw_mfpr",                OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1335
  { "hw_mfpr",                OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1336
  { "hw_mfpr/i",        OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1337
  { "hw_mfpr/a",        OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1338
  { "hw_mfpr/ai",        OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1339
  { "hw_mfpr/p",        OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1340
  { "hw_mfpr/pi",        OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1341
  { "hw_mfpr/pa",        OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1342
  { "hw_mfpr/pai",        OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1343
  { "pal19",                PCD(0x19), BASE, ARG_PCD },
1344

    
1345
  { "jmp",                MBR_(0x1A,0), MBR_MASK | 0x3FFF,        /* pseudo */
1346
                        BASE, { ZA, CPRB } },
1347
  { "jmp",                MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1348
  { "jsr",                MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1349
  { "ret",                MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1350
                        0xFFFFFFFF, BASE, { 0 } },
1351
  { "ret",                MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1352
  { "jcr",                MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1353
  { "jsr_coroutine",        MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1354

    
1355
  { "hw_ldl",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1356
  { "hw_ldl",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1357
  { "hw_ldl",                EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1358
  { "hw_ldl/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1359
  { "hw_ldl/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1360
  { "hw_ldl/a",                EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1361
  { "hw_ldl/al",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1362
  { "hw_ldl/ar",        EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1363
  { "hw_ldl/av",        EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1364
  { "hw_ldl/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1365
  { "hw_ldl/aw",        EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1366
  { "hw_ldl/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1367
  { "hw_ldl/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1368
  { "hw_ldl/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1369
  { "hw_ldl/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1370
  { "hw_ldl/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1371
  { "hw_ldl/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1372
  { "hw_ldl/p",                EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1373
  { "hw_ldl/pa",        EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1374
  { "hw_ldl/pa",        EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1375
  { "hw_ldl/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1376
  { "hw_ldl/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1377
  { "hw_ldl/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1378
  { "hw_ldl/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1379
  { "hw_ldl/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1380
  { "hw_ldl/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1381
  { "hw_ldl/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1382
  { "hw_ldl/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1383
  { "hw_ldl/pl",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1384
  { "hw_ldl/pr",        EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1385
  { "hw_ldl/pv",        EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1386
  { "hw_ldl/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1387
  { "hw_ldl/pw",        EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1388
  { "hw_ldl/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1389
  { "hw_ldl/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1390
  { "hw_ldl/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1391
  { "hw_ldl/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1392
  { "hw_ldl/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1393
  { "hw_ldl/v",                EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1394
  { "hw_ldl/vl",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1395
  { "hw_ldl/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1396
  { "hw_ldl/w",                EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1397
  { "hw_ldl/wa",        EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1398
  { "hw_ldl/wl",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1399
  { "hw_ldl/wv",        EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1400
  { "hw_ldl/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1401
  { "hw_ldl_l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1402
  { "hw_ldl_l/a",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1403
  { "hw_ldl_l/av",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1404
  { "hw_ldl_l/aw",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1405
  { "hw_ldl_l/awv",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1406
  { "hw_ldl_l/p",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1407
  { "hw_ldl_l/p",        EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1408
  { "hw_ldl_l/pa",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1409
  { "hw_ldl_l/pav",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1410
  { "hw_ldl_l/paw",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1411
  { "hw_ldl_l/pawv",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1412
  { "hw_ldl_l/pv",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1413
  { "hw_ldl_l/pw",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1414
  { "hw_ldl_l/pwv",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1415
  { "hw_ldl_l/v",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1416
  { "hw_ldl_l/w",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1417
  { "hw_ldl_l/wv",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1418
  { "hw_ldq",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1419
  { "hw_ldq",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1420
  { "hw_ldq",                EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1421
  { "hw_ldq/a",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1422
  { "hw_ldq/a",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1423
  { "hw_ldq/a",                EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1424
  { "hw_ldq/al",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1425
  { "hw_ldq/ar",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1426
  { "hw_ldq/av",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1427
  { "hw_ldq/avl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1428
  { "hw_ldq/aw",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1429
  { "hw_ldq/awl",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1430
  { "hw_ldq/awv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1431
  { "hw_ldq/awvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1432
  { "hw_ldq/l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1433
  { "hw_ldq/p",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1434
  { "hw_ldq/p",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1435
  { "hw_ldq/p",                EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1436
  { "hw_ldq/pa",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1437
  { "hw_ldq/pa",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1438
  { "hw_ldq/pal",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1439
  { "hw_ldq/par",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1440
  { "hw_ldq/pav",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1441
  { "hw_ldq/pavl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1442
  { "hw_ldq/paw",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1443
  { "hw_ldq/pawl",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1444
  { "hw_ldq/pawv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1445
  { "hw_ldq/pawvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1446
  { "hw_ldq/pl",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1447
  { "hw_ldq/pr",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1448
  { "hw_ldq/pv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1449
  { "hw_ldq/pvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1450
  { "hw_ldq/pw",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1451
  { "hw_ldq/pwl",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1452
  { "hw_ldq/pwv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1453
  { "hw_ldq/pwvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1454
  { "hw_ldq/r",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1455
  { "hw_ldq/v",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1456
  { "hw_ldq/v",                EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1457
  { "hw_ldq/vl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1458
  { "hw_ldq/w",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1459
  { "hw_ldq/w",                EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1460
  { "hw_ldq/wa",        EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1461
  { "hw_ldq/wl",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1462
  { "hw_ldq/wv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1463
  { "hw_ldq/wvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1464
  { "hw_ldq_l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1465
  { "hw_ldq_l/a",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1466
  { "hw_ldq_l/av",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1467
  { "hw_ldq_l/aw",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1468
  { "hw_ldq_l/awv",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1469
  { "hw_ldq_l/p",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1470
  { "hw_ldq_l/p",        EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1471
  { "hw_ldq_l/pa",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1472
  { "hw_ldq_l/pav",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1473
  { "hw_ldq_l/paw",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1474
  { "hw_ldq_l/pawv",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1475
  { "hw_ldq_l/pv",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1476
  { "hw_ldq_l/pw",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1477
  { "hw_ldq_l/pwv",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1478
  { "hw_ldq_l/v",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1479
  { "hw_ldq_l/w",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1480
  { "hw_ldq_l/wv",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1481
  { "hw_ld",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1482
  { "hw_ld",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1483
  { "hw_ld/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1484
  { "hw_ld/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1485
  { "hw_ld/al",                EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1486
  { "hw_ld/aq",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1487
  { "hw_ld/aq",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1488
  { "hw_ld/aql",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1489
  { "hw_ld/aqv",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1490
  { "hw_ld/aqvl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1491
  { "hw_ld/ar",                EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1492
  { "hw_ld/arq",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1493
  { "hw_ld/av",                EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1494
  { "hw_ld/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1495
  { "hw_ld/aw",                EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1496
  { "hw_ld/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1497
  { "hw_ld/awq",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1498
  { "hw_ld/awql",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1499
  { "hw_ld/awqv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1500
  { "hw_ld/awqvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1501
  { "hw_ld/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1502
  { "hw_ld/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1503
  { "hw_ld/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1504
  { "hw_ld/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1505
  { "hw_ld/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1506
  { "hw_ld/pa",                EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1507
  { "hw_ld/pa",                EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1508
  { "hw_ld/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1509
  { "hw_ld/paq",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1510
  { "hw_ld/paq",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1511
  { "hw_ld/paql",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1512
  { "hw_ld/paqv",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1513
  { "hw_ld/paqvl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1514
  { "hw_ld/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1515
  { "hw_ld/parq",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1516
  { "hw_ld/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1517
  { "hw_ld/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1518
  { "hw_ld/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1519
  { "hw_ld/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1520
  { "hw_ld/pawq",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1521
  { "hw_ld/pawql",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1522
  { "hw_ld/pawqv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1523
  { "hw_ld/pawqvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1524
  { "hw_ld/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1525
  { "hw_ld/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1526
  { "hw_ld/pl",                EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1527
  { "hw_ld/pq",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1528
  { "hw_ld/pq",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1529
  { "hw_ld/pql",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1530
  { "hw_ld/pqv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1531
  { "hw_ld/pqvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1532
  { "hw_ld/pr",                EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1533
  { "hw_ld/prq",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1534
  { "hw_ld/pv",                EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1535
  { "hw_ld/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1536
  { "hw_ld/pw",                EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1537
  { "hw_ld/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1538
  { "hw_ld/pwq",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1539
  { "hw_ld/pwql",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1540
  { "hw_ld/pwqv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1541
  { "hw_ld/pwqvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1542
  { "hw_ld/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1543
  { "hw_ld/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1544
  { "hw_ld/q",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1545
  { "hw_ld/q",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1546
  { "hw_ld/ql",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1547
  { "hw_ld/qv",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1548
  { "hw_ld/qvl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1549
  { "hw_ld/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1550
  { "hw_ld/rq",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1551
  { "hw_ld/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1552
  { "hw_ld/vl",                EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1553
  { "hw_ld/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1554
  { "hw_ld/wl",                EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1555
  { "hw_ld/wq",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1556
  { "hw_ld/wql",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1557
  { "hw_ld/wqv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1558
  { "hw_ld/wqvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1559
  { "hw_ld/wv",                EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1560
  { "hw_ld/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1561
  { "pal1b",                PCD(0x1B), BASE, ARG_PCD },
1562

    
1563
  { "sextb",                OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1564
  { "sextw",                OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1565
  { "ctpop",                OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1566
  { "perr",                OPR(0x1C, 0x31), MAX, ARG_OPR },
1567
  { "ctlz",                OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1568
  { "cttz",                OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1569
  { "unpkbw",                OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1570
  { "unpkbl",                OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1571
  { "pkwb",                OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1572
  { "pklb",                OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1573
  { "minsb8",                 OPR(0x1C, 0x38), MAX, ARG_OPR },
1574
  { "minsb8",                 OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1575
  { "minsw4",                 OPR(0x1C, 0x39), MAX, ARG_OPR },
1576
  { "minsw4",                 OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1577
  { "minub8",                 OPR(0x1C, 0x3A), MAX, ARG_OPR },
1578
  { "minub8",                 OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1579
  { "minuw4",                 OPR(0x1C, 0x3B), MAX, ARG_OPR },
1580
  { "minuw4",                 OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1581
  { "maxub8",                OPR(0x1C, 0x3C), MAX, ARG_OPR },
1582
  { "maxub8",                OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1583
  { "maxuw4",                OPR(0x1C, 0x3D), MAX, ARG_OPR },
1584
  { "maxuw4",                OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1585
  { "maxsb8",                OPR(0x1C, 0x3E), MAX, ARG_OPR },
1586
  { "maxsb8",                OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1587
  { "maxsw4",                OPR(0x1C, 0x3F), MAX, ARG_OPR },
1588
  { "maxsw4",                OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1589
  { "ftoit",                FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1590
  { "ftois",                FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1591

    
1592
  { "hw_mtpr",                OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1593
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1594
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1595
  { "hw_mtpr/i",         OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1596
  { "hw_mtpr/a",         OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1597
  { "hw_mtpr/ai",        OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1598
  { "hw_mtpr/p",         OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1599
  { "hw_mtpr/pi",        OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1600
  { "hw_mtpr/pa",        OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1601
  { "hw_mtpr/pai",        OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1602
  { "pal1d",                PCD(0x1D), BASE, ARG_PCD },
1603

    
1604
  { "hw_rei",                SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1605
  { "hw_rei_stall",        SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1606
  { "hw_jmp",                 EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1607
  { "hw_jsr",                 EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1608
  { "hw_ret",                 EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1609
  { "hw_jcr",                 EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1610
  { "hw_coroutine",        EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1611
  { "hw_jmp/stall",        EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1612
  { "hw_jsr/stall",         EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1613
  { "hw_ret/stall",        EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1614
  { "hw_jcr/stall",         EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1615
  { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1616
  { "pal1e",                PCD(0x1E), BASE, ARG_PCD },
1617

    
1618
  { "hw_stl",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1619
  { "hw_stl",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1620
  { "hw_stl",                EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1621
  { "hw_stl/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1622
  { "hw_stl/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1623
  { "hw_stl/a",                EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1624
  { "hw_stl/ac",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1625
  { "hw_stl/ar",        EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1626
  { "hw_stl/av",        EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1627
  { "hw_stl/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1628
  { "hw_stl/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1629
  { "hw_stl/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1630
  { "hw_stl/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1631
  { "hw_stl/p",                EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1632
  { "hw_stl/pa",        EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1633
  { "hw_stl/pa",        EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1634
  { "hw_stl/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1635
  { "hw_stl/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1636
  { "hw_stl/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1637
  { "hw_stl/pc",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1638
  { "hw_stl/pr",        EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1639
  { "hw_stl/pv",        EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1640
  { "hw_stl/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1641
  { "hw_stl/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1642
  { "hw_stl/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1643
  { "hw_stl/vc",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1644
  { "hw_stl_c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1645
  { "hw_stl_c/a",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1646
  { "hw_stl_c/av",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1647
  { "hw_stl_c/p",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1648
  { "hw_stl_c/p",        EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1649
  { "hw_stl_c/pa",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1650
  { "hw_stl_c/pav",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1651
  { "hw_stl_c/pv",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1652
  { "hw_stl_c/v",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1653
  { "hw_stq",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1654
  { "hw_stq",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1655
  { "hw_stq",                EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1656
  { "hw_stq/a",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1657
  { "hw_stq/a",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1658
  { "hw_stq/a",                EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1659
  { "hw_stq/ac",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1660
  { "hw_stq/ar",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1661
  { "hw_stq/av",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1662
  { "hw_stq/avc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1663
  { "hw_stq/c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1664
  { "hw_stq/p",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1665
  { "hw_stq/p",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1666
  { "hw_stq/p",                EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1667
  { "hw_stq/pa",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1668
  { "hw_stq/pa",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1669
  { "hw_stq/pac",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1670
  { "hw_stq/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1671
  { "hw_stq/par",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1672
  { "hw_stq/pav",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1673
  { "hw_stq/pavc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1674
  { "hw_stq/pc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1675
  { "hw_stq/pr",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1676
  { "hw_stq/pv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1677
  { "hw_stq/pvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1678
  { "hw_stq/r",                EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1679
  { "hw_stq/v",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1680
  { "hw_stq/vc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1681
  { "hw_stq_c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1682
  { "hw_stq_c/a",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1683
  { "hw_stq_c/av",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1684
  { "hw_stq_c/p",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1685
  { "hw_stq_c/p",        EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1686
  { "hw_stq_c/pa",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1687
  { "hw_stq_c/pav",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1688
  { "hw_stq_c/pv",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1689
  { "hw_stq_c/v",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1690
  { "hw_st",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1691
  { "hw_st",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1692
  { "hw_st/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1693
  { "hw_st/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1694
  { "hw_st/ac",                EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1695
  { "hw_st/aq",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1696
  { "hw_st/aq",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1697
  { "hw_st/aqc",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1698
  { "hw_st/aqv",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1699
  { "hw_st/aqvc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1700
  { "hw_st/ar",                EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1701
  { "hw_st/arq",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1702
  { "hw_st/av",                EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1703
  { "hw_st/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1704
  { "hw_st/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1705
  { "hw_st/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1706
  { "hw_st/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1707
  { "hw_st/pa",                EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1708
  { "hw_st/pa",                EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1709
  { "hw_st/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1710
  { "hw_st/paq",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1711
  { "hw_st/paq",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1712
  { "hw_st/paqc",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1713
  { "hw_st/paqv",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1714
  { "hw_st/paqvc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1715
  { "hw_st/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1716
  { "hw_st/parq",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1717
  { "hw_st/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1718
  { "hw_st/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1719
  { "hw_st/pc",                EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1720
  { "hw_st/pq",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1721
  { "hw_st/pq",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1722
  { "hw_st/pqc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1723
  { "hw_st/pqv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1724
  { "hw_st/pqvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1725
  { "hw_st/pr",                EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1726
  { "hw_st/prq",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1727
  { "hw_st/pv",                EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1728
  { "hw_st/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1729
  { "hw_st/q",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1730
  { "hw_st/q",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1731
  { "hw_st/qc",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1732
  { "hw_st/qv",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1733
  { "hw_st/qvc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1734
  { "hw_st/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1735
  { "hw_st/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1736
  { "hw_st/vc",                EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1737
  { "pal1f",                PCD(0x1F), BASE, ARG_PCD },
1738

    
1739
  { "ldf",                MEM(0x20), BASE, ARG_FMEM },
1740
  { "ldg",                MEM(0x21), BASE, ARG_FMEM },
1741
  { "lds",                MEM(0x22), BASE, ARG_FMEM },
1742
  { "ldt",                MEM(0x23), BASE, ARG_FMEM },
1743
  { "stf",                MEM(0x24), BASE, ARG_FMEM },
1744
  { "stg",                MEM(0x25), BASE, ARG_FMEM },
1745
  { "sts",                MEM(0x26), BASE, ARG_FMEM },
1746
  { "stt",                MEM(0x27), BASE, ARG_FMEM },
1747

    
1748
  { "ldl",                MEM(0x28), BASE, ARG_MEM },
1749
  { "ldq",                MEM(0x29), BASE, ARG_MEM },
1750
  { "ldl_l",                MEM(0x2A), BASE, ARG_MEM },
1751
  { "ldq_l",                MEM(0x2B), BASE, ARG_MEM },
1752
  { "stl",                MEM(0x2C), BASE, ARG_MEM },
1753
  { "stq",                MEM(0x2D), BASE, ARG_MEM },
1754
  { "stl_c",                MEM(0x2E), BASE, ARG_MEM },
1755
  { "stq_c",                MEM(0x2F), BASE, ARG_MEM },
1756

    
1757
  { "br",                BRA(0x30), BASE, { ZA, BDISP } },        /* pseudo */
1758
  { "br",                BRA(0x30), BASE, ARG_BRA },
1759
  { "fbeq",                BRA(0x31), BASE, ARG_FBRA },
1760
  { "fblt",                BRA(0x32), BASE, ARG_FBRA },
1761
  { "fble",                BRA(0x33), BASE, ARG_FBRA },
1762
  { "bsr",                BRA(0x34), BASE, ARG_BRA },
1763
  { "fbne",                BRA(0x35), BASE, ARG_FBRA },
1764
  { "fbge",                BRA(0x36), BASE, ARG_FBRA },
1765
  { "fbgt",                BRA(0x37), BASE, ARG_FBRA },
1766
  { "blbc",                BRA(0x38), BASE, ARG_BRA },
1767
  { "beq",                BRA(0x39), BASE, ARG_BRA },
1768
  { "blt",                BRA(0x3A), BASE, ARG_BRA },
1769
  { "ble",                BRA(0x3B), BASE, ARG_BRA },
1770
  { "blbs",                BRA(0x3C), BASE, ARG_BRA },
1771
  { "bne",                BRA(0x3D), BASE, ARG_BRA },
1772
  { "bge",                BRA(0x3E), BASE, ARG_BRA },
1773
  { "bgt",                BRA(0x3F), BASE, ARG_BRA },
1774
};
1775

    
1776
const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1777

    
1778
/* OSF register names.  */
1779

    
1780
static const char * const osf_regnames[64] = {
1781
  "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1782
  "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1783
  "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1784
  "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1785
  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1786
  "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1787
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1788
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1789
};
1790

    
1791
/* VMS register names.  */
1792

    
1793
static const char * const vms_regnames[64] = {
1794
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1795
  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1796
  "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1797
  "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1798
  "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1799
  "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1800
  "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1801
  "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1802
};
1803

    
1804
/* Disassemble Alpha instructions.  */
1805

    
1806
int
1807
print_insn_alpha (memaddr, info)
1808
     bfd_vma memaddr;
1809
     struct disassemble_info *info;
1810
{
1811
  static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1812
  const char * const * regnames;
1813
  const struct alpha_opcode *opcode, *opcode_end;
1814
  const unsigned char *opindex;
1815
  unsigned insn, op, isa_mask;
1816
  int need_comma;
1817

    
1818
  /* Initialize the majorop table the first time through */
1819
  if (!opcode_index[0])
1820
    {
1821
      opcode = alpha_opcodes;
1822
      opcode_end = opcode + alpha_num_opcodes;
1823

    
1824
      for (op = 0; op < AXP_NOPS; ++op)
1825
        {
1826
          opcode_index[op] = opcode;
1827
          while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1828
            ++opcode;
1829
        }
1830
      opcode_index[op] = opcode;
1831
    }
1832

    
1833
  if (info->flavour == bfd_target_evax_flavour)
1834
    regnames = vms_regnames;
1835
  else
1836
    regnames = osf_regnames;
1837

    
1838
  isa_mask = AXP_OPCODE_NOPAL;
1839
  switch (info->mach)
1840
    {
1841
    case bfd_mach_alpha_ev4:
1842
      isa_mask |= AXP_OPCODE_EV4;
1843
      break;
1844
    case bfd_mach_alpha_ev5:
1845
      isa_mask |= AXP_OPCODE_EV5;
1846
      break;
1847
    case bfd_mach_alpha_ev6:
1848
      isa_mask |= AXP_OPCODE_EV6;
1849
      break;
1850
    }
1851

    
1852
  /* Read the insn into a host word */
1853
  {
1854
    bfd_byte buffer[4];
1855
    int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1856
    if (status != 0)
1857
      {
1858
        (*info->memory_error_func) (status, memaddr, info);
1859
        return -1;
1860
      }
1861
    insn = bfd_getl32 (buffer);
1862
  }
1863

    
1864
  /* Get the major opcode of the instruction.  */
1865
  op = AXP_OP (insn);
1866

    
1867
  /* Find the first match in the opcode table.  */
1868
  opcode_end = opcode_index[op + 1];
1869
  for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1870
    {
1871
      if ((insn ^ opcode->opcode) & opcode->mask)
1872
        continue;
1873

    
1874
      if (!(opcode->flags & isa_mask))
1875
        continue;
1876

    
1877
      /* Make two passes over the operands.  First see if any of them
1878
         have extraction functions, and, if they do, make sure the
1879
         instruction is valid.  */
1880
      {
1881
        int invalid = 0;
1882
        for (opindex = opcode->operands; *opindex != 0; opindex++)
1883
          {
1884
            const struct alpha_operand *operand = alpha_operands + *opindex;
1885
            if (operand->extract)
1886
              (*operand->extract) (insn, &invalid);
1887
          }
1888
        if (invalid)
1889
          continue;
1890
      }
1891

    
1892
      /* The instruction is valid.  */
1893
      goto found;
1894
    }
1895

    
1896
  /* No instruction found */
1897
  (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1898

    
1899
  return 4;
1900

    
1901
found:
1902
  (*info->fprintf_func) (info->stream, "%s", opcode->name);
1903
  if (opcode->operands[0] != 0)
1904
    (*info->fprintf_func) (info->stream, "\t");
1905

    
1906
  /* Now extract and print the operands.  */
1907
  need_comma = 0;
1908
  for (opindex = opcode->operands; *opindex != 0; opindex++)
1909
    {
1910
      const struct alpha_operand *operand = alpha_operands + *opindex;
1911
      int value;
1912

    
1913
      /* Operands that are marked FAKE are simply ignored.  We
1914
         already made sure that the extract function considered
1915
         the instruction to be valid.  */
1916
      if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1917
        continue;
1918

    
1919
      /* Extract the value from the instruction.  */
1920
      if (operand->extract)
1921
        value = (*operand->extract) (insn, (int *) NULL);
1922
      else
1923
        {
1924
          value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1925
          if (operand->flags & AXP_OPERAND_SIGNED)
1926
            {
1927
              int signbit = 1 << (operand->bits - 1);
1928
              value = (value ^ signbit) - signbit;
1929
            }
1930
        }
1931

    
1932
      if (need_comma &&
1933
          ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1934
           != AXP_OPERAND_PARENS))
1935
        {
1936
          (*info->fprintf_func) (info->stream, ",");
1937
        }
1938
      if (operand->flags & AXP_OPERAND_PARENS)
1939
        (*info->fprintf_func) (info->stream, "(");
1940

    
1941
      /* Print the operand as directed by the flags.  */
1942
      if (operand->flags & AXP_OPERAND_IR)
1943
        (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1944
      else if (operand->flags & AXP_OPERAND_FPR)
1945
        (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1946
      else if (operand->flags & AXP_OPERAND_RELATIVE)
1947
        (*info->print_address_func) (memaddr + 4 + value, info);
1948
      else if (operand->flags & AXP_OPERAND_SIGNED)
1949
        (*info->fprintf_func) (info->stream, "%d", value);
1950
      else
1951
        (*info->fprintf_func) (info->stream, "%#x", value);
1952

    
1953
      if (operand->flags & AXP_OPERAND_PARENS)
1954
        (*info->fprintf_func) (info->stream, ")");
1955
      need_comma = 1;
1956
    }
1957

    
1958
  return 4;
1959
}