Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 5d794885

History | View | Annotate | Download (88.2 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 9d0a8e6f bellard
@item G3 BW PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 3475187d bellard
@item Sun4u (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 b00052e4 balrog
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 52c00a5f bellard
@end itemize
93 386405f7 bellard
94 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95 0806e3f6 bellard
96 debc7065 bellard
@node Installation
97 5b9f457a bellard
@chapter Installation
98 5b9f457a bellard
99 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
100 15a34c63 bellard
101 debc7065 bellard
@menu
102 debc7065 bellard
* install_linux::   Linux
103 debc7065 bellard
* install_windows:: Windows
104 debc7065 bellard
* install_mac::     Macintosh
105 debc7065 bellard
@end menu
106 debc7065 bellard
107 debc7065 bellard
@node install_linux
108 1f673135 bellard
@section Linux
109 1f673135 bellard
110 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
111 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
112 5b9f457a bellard
113 debc7065 bellard
@node install_windows
114 1f673135 bellard
@section Windows
115 8cd0ac2f bellard
116 15a34c63 bellard
Download the experimental binary installer at
117 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
118 d691f669 bellard
119 debc7065 bellard
@node install_mac
120 1f673135 bellard
@section Mac OS X
121 d691f669 bellard
122 15a34c63 bellard
Download the experimental binary installer at
123 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
124 df0f11a0 bellard
125 debc7065 bellard
@node QEMU PC System emulator
126 3f9f3aa1 bellard
@chapter QEMU PC System emulator
127 1eb20527 bellard
128 debc7065 bellard
@menu
129 debc7065 bellard
* pcsys_introduction:: Introduction
130 debc7065 bellard
* pcsys_quickstart::   Quick Start
131 debc7065 bellard
* sec_invocation::     Invocation
132 debc7065 bellard
* pcsys_keys::         Keys
133 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
134 debc7065 bellard
* disk_images::        Disk Images
135 debc7065 bellard
* pcsys_network::      Network emulation
136 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
137 debc7065 bellard
* pcsys_usb::          USB emulation
138 f858dcae ths
* vnc_security::       VNC security
139 debc7065 bellard
* gdb_usage::          GDB usage
140 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
141 debc7065 bellard
@end menu
142 debc7065 bellard
143 debc7065 bellard
@node pcsys_introduction
144 0806e3f6 bellard
@section Introduction
145 0806e3f6 bellard
146 0806e3f6 bellard
@c man begin DESCRIPTION
147 0806e3f6 bellard
148 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
149 3f9f3aa1 bellard
following peripherals:
150 0806e3f6 bellard
151 0806e3f6 bellard
@itemize @minus
152 5fafdf24 ths
@item
153 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154 0806e3f6 bellard
@item
155 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156 15a34c63 bellard
extensions (hardware level, including all non standard modes).
157 0806e3f6 bellard
@item
158 0806e3f6 bellard
PS/2 mouse and keyboard
159 5fafdf24 ths
@item
160 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
161 1f673135 bellard
@item
162 1f673135 bellard
Floppy disk
163 5fafdf24 ths
@item
164 c4a7060c blueswir1
PCI/ISA PCI network adapters
165 0806e3f6 bellard
@item
166 05d5818c bellard
Serial ports
167 05d5818c bellard
@item
168 c0fe3827 bellard
Creative SoundBlaster 16 sound card
169 c0fe3827 bellard
@item
170 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
171 c0fe3827 bellard
@item
172 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
173 e5c9a13e balrog
@item
174 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
175 b389dbfb bellard
@item
176 26463dbc balrog
Gravis Ultrasound GF1 sound card
177 26463dbc balrog
@item
178 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
179 0806e3f6 bellard
@end itemize
180 0806e3f6 bellard
181 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
182 3f9f3aa1 bellard
183 423d65f4 balrog
Note that adlib, ac97 and gus are only available when QEMU was configured
184 423d65f4 balrog
with --enable-adlib, --enable-ac97 or --enable-gus respectively.
185 c0fe3827 bellard
186 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
187 15a34c63 bellard
VGA BIOS.
188 15a34c63 bellard
189 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
190 c0fe3827 bellard
191 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
192 26463dbc balrog
by Tibor "TS" Sch?tz.
193 423d65f4 balrog
194 0806e3f6 bellard
@c man end
195 0806e3f6 bellard
196 debc7065 bellard
@node pcsys_quickstart
197 1eb20527 bellard
@section Quick Start
198 1eb20527 bellard
199 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
200 0806e3f6 bellard
201 0806e3f6 bellard
@example
202 285dc330 bellard
qemu linux.img
203 0806e3f6 bellard
@end example
204 0806e3f6 bellard
205 0806e3f6 bellard
Linux should boot and give you a prompt.
206 0806e3f6 bellard
207 6cc721cf bellard
@node sec_invocation
208 ec410fc9 bellard
@section Invocation
209 ec410fc9 bellard
210 ec410fc9 bellard
@example
211 0806e3f6 bellard
@c man begin SYNOPSIS
212 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
213 0806e3f6 bellard
@c man end
214 ec410fc9 bellard
@end example
215 ec410fc9 bellard
216 0806e3f6 bellard
@c man begin OPTIONS
217 9d4520d0 bellard
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
218 ec410fc9 bellard
219 ec410fc9 bellard
General options:
220 ec410fc9 bellard
@table @option
221 89dfe898 ths
@item -M @var{machine}
222 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
223 3dbbdc25 bellard
224 89dfe898 ths
@item -fda @var{file}
225 89dfe898 ths
@item -fdb @var{file}
226 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
227 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
228 2be3bc02 bellard
229 89dfe898 ths
@item -hda @var{file}
230 89dfe898 ths
@item -hdb @var{file}
231 89dfe898 ths
@item -hdc @var{file}
232 89dfe898 ths
@item -hdd @var{file}
233 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
234 1f47a922 bellard
235 89dfe898 ths
@item -cdrom @var{file}
236 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
237 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
238 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
239 181f1558 bellard
240 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
241 e0e7ada1 balrog
242 e0e7ada1 balrog
Define a new drive. Valid options are:
243 e0e7ada1 balrog
244 e0e7ada1 balrog
@table @code
245 e0e7ada1 balrog
@item file=@var{file}
246 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
247 609497ab balrog
this drive. If the filename contains comma, you must double it
248 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
249 e0e7ada1 balrog
@item if=@var{interface}
250 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
251 e0e7ada1 balrog
Available types are: ide, scsi, sd, mtd, floppy, pflash.
252 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
253 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
254 e0e7ada1 balrog
the unit id.
255 e0e7ada1 balrog
@item index=@var{index}
256 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
257 e0e7ada1 balrog
of available connectors of a given interface type.
258 e0e7ada1 balrog
@item media=@var{media}
259 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
260 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
261 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
262 e0e7ada1 balrog
@item snapshot=@var{snapshot}
263 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
264 33f00271 balrog
@item cache=@var{cache}
265 33f00271 balrog
@var{cache} is "on" or "off" and allows to disable host cache to access data.
266 1e72d3b7 aurel32
@item format=@var{format}
267 1e72d3b7 aurel32
Specify which disk @var{format} will be used rather than detecting
268 1e72d3b7 aurel32
the format.  Can be used to specifiy format=raw to avoid interpreting
269 1e72d3b7 aurel32
an untrusted format header.
270 e0e7ada1 balrog
@end table
271 e0e7ada1 balrog
272 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
273 e0e7ada1 balrog
@example
274 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
275 e0e7ada1 balrog
@end example
276 e0e7ada1 balrog
277 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
278 e0e7ada1 balrog
use:
279 e0e7ada1 balrog
@example
280 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
281 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
282 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
283 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
284 e0e7ada1 balrog
@end example
285 e0e7ada1 balrog
286 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
287 e0e7ada1 balrog
@example
288 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
289 e0e7ada1 balrog
@end example
290 e0e7ada1 balrog
291 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
292 e0e7ada1 balrog
@example
293 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
294 e0e7ada1 balrog
@end example
295 e0e7ada1 balrog
296 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
297 e0e7ada1 balrog
@example
298 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
299 e0e7ada1 balrog
@end example
300 e0e7ada1 balrog
301 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
302 e0e7ada1 balrog
@example
303 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
304 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
305 e0e7ada1 balrog
@end example
306 e0e7ada1 balrog
307 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
308 e0e7ada1 balrog
incremented:
309 e0e7ada1 balrog
@example
310 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
311 e0e7ada1 balrog
@end example
312 e0e7ada1 balrog
is interpreted like:
313 e0e7ada1 balrog
@example
314 e0e7ada1 balrog
qemu -hda a -hdb b
315 e0e7ada1 balrog
@end example
316 e0e7ada1 balrog
317 eec85c2a ths
@item -boot [a|c|d|n]
318 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
319 eec85c2a ths
is the default.
320 1f47a922 bellard
321 181f1558 bellard
@item -snapshot
322 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
323 1f47a922 bellard
the raw disk image you use is not written back. You can however force
324 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
325 ec410fc9 bellard
326 52ca8d6a bellard
@item -no-fd-bootchk
327 52ca8d6a bellard
Disable boot signature checking for floppy disks in Bochs BIOS. It may
328 52ca8d6a bellard
be needed to boot from old floppy disks.
329 52ca8d6a bellard
330 89dfe898 ths
@item -m @var{megs}
331 00f82b8a aurel32
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
332 00f82b8a aurel32
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
333 00f82b8a aurel32
gigabytes respectively.
334 ec410fc9 bellard
335 89dfe898 ths
@item -smp @var{n}
336 3f9f3aa1 bellard
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
337 a785e42e blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
338 a785e42e blueswir1
to 4.
339 3f9f3aa1 bellard
340 1d14ffa9 bellard
@item -audio-help
341 1d14ffa9 bellard
342 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
343 1d14ffa9 bellard
parameters.
344 1d14ffa9 bellard
345 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
346 1d14ffa9 bellard
347 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
348 1d14ffa9 bellard
available sound hardware.
349 1d14ffa9 bellard
350 1d14ffa9 bellard
@example
351 1d14ffa9 bellard
qemu -soundhw sb16,adlib hda
352 1d14ffa9 bellard
qemu -soundhw es1370 hda
353 e5c9a13e balrog
qemu -soundhw ac97 hda
354 6a36d84e bellard
qemu -soundhw all hda
355 1d14ffa9 bellard
qemu -soundhw ?
356 1d14ffa9 bellard
@end example
357 a8c490cd bellard
358 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
359 e5c9a13e balrog
require manually specifying clocking.
360 e5c9a13e balrog
361 e5c9a13e balrog
@example
362 e5c9a13e balrog
modprobe i810_audio clocking=48000
363 e5c9a13e balrog
@end example
364 e5c9a13e balrog
365 15a34c63 bellard
@item -localtime
366 15a34c63 bellard
Set the real time clock to local time (the default is to UTC
367 15a34c63 bellard
time). This option is needed to have correct date in MS-DOS or
368 15a34c63 bellard
Windows.
369 15a34c63 bellard
370 89dfe898 ths
@item -startdate @var{date}
371 7e0af5d0 bellard
Set the initial date of the real time clock. Valid format for
372 7e0af5d0 bellard
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
373 7e0af5d0 bellard
@code{2006-06-17}. The default value is @code{now}.
374 7e0af5d0 bellard
375 89dfe898 ths
@item -pidfile @var{file}
376 f7cce898 bellard
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
377 f7cce898 bellard
from a script.
378 f7cce898 bellard
379 71e3ceb8 ths
@item -daemonize
380 71e3ceb8 ths
Daemonize the QEMU process after initialization.  QEMU will not detach from
381 71e3ceb8 ths
standard IO until it is ready to receive connections on any of its devices.
382 71e3ceb8 ths
This option is a useful way for external programs to launch QEMU without having
383 71e3ceb8 ths
to cope with initialization race conditions.
384 71e3ceb8 ths
385 9d0a8e6f bellard
@item -win2k-hack
386 9d0a8e6f bellard
Use it when installing Windows 2000 to avoid a disk full bug. After
387 9d0a8e6f bellard
Windows 2000 is installed, you no longer need this option (this option
388 9d0a8e6f bellard
slows down the IDE transfers).
389 9d0a8e6f bellard
390 89dfe898 ths
@item -option-rom @var{file}
391 89dfe898 ths
Load the contents of @var{file} as an option ROM.
392 89dfe898 ths
This option is useful to load things like EtherBoot.
393 9ae02555 ths
394 89dfe898 ths
@item -name @var{name}
395 89dfe898 ths
Sets the @var{name} of the guest.
396 89dfe898 ths
This name will be display in the SDL window caption.
397 89dfe898 ths
The @var{name} will also be used for the VNC server.
398 c35734b2 ths
399 0806e3f6 bellard
@end table
400 0806e3f6 bellard
401 f858dcae ths
Display options:
402 f858dcae ths
@table @option
403 f858dcae ths
404 f858dcae ths
@item -nographic
405 f858dcae ths
406 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
407 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
408 f858dcae ths
command line application. The emulated serial port is redirected on
409 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
410 f858dcae ths
with a serial console.
411 f858dcae ths
412 052caf70 aurel32
@item -curses
413 052caf70 aurel32
414 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
415 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
416 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
417 052caf70 aurel32
418 f858dcae ths
@item -no-frame
419 f858dcae ths
420 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
421 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
422 f858dcae ths
workspace more convenient.
423 f858dcae ths
424 99aa9e4c aurel32
@item -no-quit
425 99aa9e4c aurel32
426 99aa9e4c aurel32
Disable SDL window close capability.
427 99aa9e4c aurel32
428 f858dcae ths
@item -full-screen
429 f858dcae ths
Start in full screen.
430 f858dcae ths
431 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
432 f858dcae ths
433 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
434 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
435 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
436 f858dcae ths
tablet device when using this option (option @option{-usbdevice
437 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
438 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
439 f858dcae ths
syntax for the @var{display} is
440 f858dcae ths
441 f858dcae ths
@table @code
442 f858dcae ths
443 3aa3eea3 balrog
@item @var{host}:@var{d}
444 f858dcae ths
445 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
446 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
447 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
448 f858dcae ths
449 3aa3eea3 balrog
@item @code{unix}:@var{path}
450 f858dcae ths
451 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
452 f858dcae ths
location of a unix socket to listen for connections on.
453 f858dcae ths
454 89dfe898 ths
@item none
455 f858dcae ths
456 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
457 3aa3eea3 balrog
can be used to later start the VNC server.
458 f858dcae ths
459 f858dcae ths
@end table
460 f858dcae ths
461 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
462 f858dcae ths
separated by commas. Valid options are
463 f858dcae ths
464 f858dcae ths
@table @code
465 f858dcae ths
466 3aa3eea3 balrog
@item reverse
467 3aa3eea3 balrog
468 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
469 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
470 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
471 3aa3eea3 balrog
is a TCP port number, not a display number.
472 3aa3eea3 balrog
473 89dfe898 ths
@item password
474 f858dcae ths
475 f858dcae ths
Require that password based authentication is used for client connections.
476 f858dcae ths
The password must be set separately using the @code{change} command in the
477 f858dcae ths
@ref{pcsys_monitor}
478 f858dcae ths
479 89dfe898 ths
@item tls
480 f858dcae ths
481 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
482 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
483 f858dcae ths
attack. It is recommended that this option be combined with either the
484 f858dcae ths
@var{x509} or @var{x509verify} options.
485 f858dcae ths
486 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
487 f858dcae ths
488 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
489 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
490 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
491 f858dcae ths
to provide authentication of the client when this is used. The path following
492 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
493 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
494 f858dcae ths
495 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
496 f858dcae ths
497 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
498 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
499 f858dcae ths
to the client, and request that the client send its own x509 certificate.
500 f858dcae ths
The server will validate the client's certificate against the CA certificate,
501 f858dcae ths
and reject clients when validation fails. If the certificate authority is
502 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
503 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
504 f858dcae ths
path following this option specifies where the x509 certificates are to
505 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
506 f858dcae ths
certificates.
507 f858dcae ths
508 f858dcae ths
@end table
509 f858dcae ths
510 89dfe898 ths
@item -k @var{language}
511 f858dcae ths
512 f858dcae ths
Use keyboard layout @var{language} (for example @code{fr} for
513 f858dcae ths
French). This option is only needed where it is not easy to get raw PC
514 f858dcae ths
keycodes (e.g. on Macs, with some X11 servers or with a VNC
515 f858dcae ths
display). You don't normally need to use it on PC/Linux or PC/Windows
516 f858dcae ths
hosts.
517 f858dcae ths
518 f858dcae ths
The available layouts are:
519 f858dcae ths
@example
520 f858dcae ths
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
521 f858dcae ths
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
522 f858dcae ths
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
523 f858dcae ths
@end example
524 f858dcae ths
525 f858dcae ths
The default is @code{en-us}.
526 f858dcae ths
527 f858dcae ths
@end table
528 f858dcae ths
529 b389dbfb bellard
USB options:
530 b389dbfb bellard
@table @option
531 b389dbfb bellard
532 b389dbfb bellard
@item -usb
533 b389dbfb bellard
Enable the USB driver (will be the default soon)
534 b389dbfb bellard
535 89dfe898 ths
@item -usbdevice @var{devname}
536 0aff66b5 pbrook
Add the USB device @var{devname}. @xref{usb_devices}.
537 8fccda83 ths
538 8fccda83 ths
@table @code
539 8fccda83 ths
540 8fccda83 ths
@item mouse
541 8fccda83 ths
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
542 8fccda83 ths
543 8fccda83 ths
@item tablet
544 8fccda83 ths
Pointer device that uses absolute coordinates (like a touchscreen). This
545 8fccda83 ths
means qemu is able to report the mouse position without having to grab the
546 8fccda83 ths
mouse. Also overrides the PS/2 mouse emulation when activated.
547 8fccda83 ths
548 8fccda83 ths
@item disk:file
549 8fccda83 ths
Mass storage device based on file
550 8fccda83 ths
551 8fccda83 ths
@item host:bus.addr
552 8fccda83 ths
Pass through the host device identified by bus.addr (Linux only).
553 8fccda83 ths
554 8fccda83 ths
@item host:vendor_id:product_id
555 8fccda83 ths
Pass through the host device identified by vendor_id:product_id (Linux only).
556 8fccda83 ths
557 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
558 db380c06 balrog
Serial converter to host character device @var{dev}, see @code{-serial} for the
559 db380c06 balrog
available devices.
560 db380c06 balrog
561 2e4d9fb1 aurel32
@item braille
562 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
563 2e4d9fb1 aurel32
or fake device.
564 2e4d9fb1 aurel32
565 8fccda83 ths
@end table
566 8fccda83 ths
567 b389dbfb bellard
@end table
568 b389dbfb bellard
569 1f673135 bellard
Network options:
570 1f673135 bellard
571 1f673135 bellard
@table @option
572 1f673135 bellard
573 89dfe898 ths
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
574 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
575 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
576 41d03949 bellard
target. Optionally, the MAC address can be changed. If no
577 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
578 549444e1 balrog
Qemu can emulate several different models of network card.
579 549444e1 balrog
Valid values for @var{type} are
580 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
581 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
582 7c23b892 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
583 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
584 c4a7060c blueswir1
for a list of available devices for your target.
585 41d03949 bellard
586 89dfe898 ths
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
587 7e89463d bellard
Use the user mode network stack which requires no administrator
588 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
589 115defd1 pbrook
hostname reported by the builtin DHCP server.
590 41d03949 bellard
591 89dfe898 ths
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
592 41d03949 bellard
Connect the host TAP network interface @var{name} to VLAN @var{n} and
593 41d03949 bellard
use the network script @var{file} to configure it. The default
594 6a1cbf68 ths
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
595 6a1cbf68 ths
disable script execution. If @var{name} is not
596 89dfe898 ths
provided, the OS automatically provides one. @option{fd}=@var{h} can be
597 41d03949 bellard
used to specify the handle of an already opened host TAP interface. Example:
598 1f673135 bellard
599 41d03949 bellard
@example
600 41d03949 bellard
qemu linux.img -net nic -net tap
601 41d03949 bellard
@end example
602 41d03949 bellard
603 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
604 41d03949 bellard
@example
605 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
606 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
607 41d03949 bellard
@end example
608 3f1a88f4 bellard
609 3f1a88f4 bellard
610 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
611 1f673135 bellard
612 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
613 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
614 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
615 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
616 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
617 3d830459 bellard
specifies an already opened TCP socket.
618 1f673135 bellard
619 41d03949 bellard
Example:
620 41d03949 bellard
@example
621 41d03949 bellard
# launch a first QEMU instance
622 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
623 debc7065 bellard
               -net socket,listen=:1234
624 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
625 debc7065 bellard
# of the first instance
626 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
627 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
628 41d03949 bellard
@end example
629 52c00a5f bellard
630 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
631 3d830459 bellard
632 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
633 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
634 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
635 3d830459 bellard
NOTES:
636 3d830459 bellard
@enumerate
637 5fafdf24 ths
@item
638 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
639 3d830459 bellard
correct multicast setup for these hosts).
640 3d830459 bellard
@item
641 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
642 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
643 4be456f1 ths
@item
644 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
645 3d830459 bellard
@end enumerate
646 3d830459 bellard
647 3d830459 bellard
Example:
648 3d830459 bellard
@example
649 3d830459 bellard
# launch one QEMU instance
650 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
651 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
652 3d830459 bellard
# launch another QEMU instance on same "bus"
653 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
654 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
655 3d830459 bellard
# launch yet another QEMU instance on same "bus"
656 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
657 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
658 3d830459 bellard
@end example
659 3d830459 bellard
660 3d830459 bellard
Example (User Mode Linux compat.):
661 3d830459 bellard
@example
662 debc7065 bellard
# launch QEMU instance (note mcast address selected
663 debc7065 bellard
# is UML's default)
664 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
665 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
666 3d830459 bellard
# launch UML
667 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
668 3d830459 bellard
@end example
669 3d830459 bellard
670 41d03949 bellard
@item -net none
671 41d03949 bellard
Indicate that no network devices should be configured. It is used to
672 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
673 039af320 bellard
is activated if no @option{-net} options are provided.
674 52c00a5f bellard
675 89dfe898 ths
@item -tftp @var{dir}
676 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
677 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
678 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
679 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
680 0db1137d ths
usual 10.0.2.2.
681 9bf05444 bellard
682 89dfe898 ths
@item -bootp @var{file}
683 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
684 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
685 47d5d01a ths
a guest from a local directory.
686 47d5d01a ths
687 47d5d01a ths
Example (using pxelinux):
688 47d5d01a ths
@example
689 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
690 47d5d01a ths
@end example
691 47d5d01a ths
692 89dfe898 ths
@item -smb @var{dir}
693 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
694 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
695 2518bd0d bellard
transparently.
696 2518bd0d bellard
697 2518bd0d bellard
In the guest Windows OS, the line:
698 2518bd0d bellard
@example
699 2518bd0d bellard
10.0.2.4 smbserver
700 2518bd0d bellard
@end example
701 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
702 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
703 2518bd0d bellard
704 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
705 2518bd0d bellard
706 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
707 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
708 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
709 2518bd0d bellard
710 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
711 9bf05444 bellard
712 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
713 9bf05444 bellard
connections to the host port @var{host-port} to the guest
714 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
715 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
716 9bf05444 bellard
built-in DHCP server).
717 9bf05444 bellard
718 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
719 9bf05444 bellard
screen 0, use the following:
720 9bf05444 bellard
721 9bf05444 bellard
@example
722 9bf05444 bellard
# on the host
723 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
724 9bf05444 bellard
# this host xterm should open in the guest X11 server
725 9bf05444 bellard
xterm -display :1
726 9bf05444 bellard
@end example
727 9bf05444 bellard
728 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
729 9bf05444 bellard
the guest, use the following:
730 9bf05444 bellard
731 9bf05444 bellard
@example
732 9bf05444 bellard
# on the host
733 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
734 9bf05444 bellard
telnet localhost 5555
735 9bf05444 bellard
@end example
736 9bf05444 bellard
737 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
738 9bf05444 bellard
connect to the guest telnet server.
739 9bf05444 bellard
740 1f673135 bellard
@end table
741 1f673135 bellard
742 41d03949 bellard
Linux boot specific: When using these options, you can use a given
743 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
744 1f673135 bellard
for easier testing of various kernels.
745 1f673135 bellard
746 0806e3f6 bellard
@table @option
747 0806e3f6 bellard
748 89dfe898 ths
@item -kernel @var{bzImage}
749 0806e3f6 bellard
Use @var{bzImage} as kernel image.
750 0806e3f6 bellard
751 89dfe898 ths
@item -append @var{cmdline}
752 0806e3f6 bellard
Use @var{cmdline} as kernel command line
753 0806e3f6 bellard
754 89dfe898 ths
@item -initrd @var{file}
755 0806e3f6 bellard
Use @var{file} as initial ram disk.
756 0806e3f6 bellard
757 ec410fc9 bellard
@end table
758 ec410fc9 bellard
759 15a34c63 bellard
Debug/Expert options:
760 ec410fc9 bellard
@table @option
761 a0a821a4 bellard
762 89dfe898 ths
@item -serial @var{dev}
763 0bab00f3 bellard
Redirect the virtual serial port to host character device
764 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
765 0bab00f3 bellard
@code{stdio} in non graphical mode.
766 0bab00f3 bellard
767 0bab00f3 bellard
This option can be used several times to simulate up to 4 serials
768 0bab00f3 bellard
ports.
769 0bab00f3 bellard
770 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
771 c03b0f0f bellard
772 0bab00f3 bellard
Available character devices are:
773 a0a821a4 bellard
@table @code
774 af3a9031 ths
@item vc[:WxH]
775 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
776 af3a9031 ths
@example
777 af3a9031 ths
vc:800x600
778 af3a9031 ths
@end example
779 af3a9031 ths
It is also possible to specify width or height in characters:
780 af3a9031 ths
@example
781 af3a9031 ths
vc:80Cx24C
782 af3a9031 ths
@end example
783 a0a821a4 bellard
@item pty
784 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
785 c03b0f0f bellard
@item none
786 c03b0f0f bellard
No device is allocated.
787 a0a821a4 bellard
@item null
788 a0a821a4 bellard
void device
789 f8d179e3 bellard
@item /dev/XXX
790 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
791 f8d179e3 bellard
parameters are set according to the emulated ones.
792 89dfe898 ths
@item /dev/parport@var{N}
793 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
794 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
795 89dfe898 ths
@item file:@var{filename}
796 89dfe898 ths
Write output to @var{filename}. No character can be read.
797 a0a821a4 bellard
@item stdio
798 a0a821a4 bellard
[Unix only] standard input/output
799 89dfe898 ths
@item pipe:@var{filename}
800 0bab00f3 bellard
name pipe @var{filename}
801 89dfe898 ths
@item COM@var{n}
802 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
803 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
804 89dfe898 ths
This implements UDP Net Console.
805 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
806 89dfe898 ths
they default to @code{0.0.0.0}.
807 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
808 951f1351 bellard
809 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
810 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
811 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
812 951f1351 bellard
will appear in the netconsole session.
813 0bab00f3 bellard
814 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
815 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
816 0bab00f3 bellard
source port each time by using something like @code{-serial
817 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
818 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
819 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
820 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
821 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
822 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
823 0bab00f3 bellard
@table @code
824 951f1351 bellard
@item Qemu Options:
825 951f1351 bellard
-serial udp::4555@@:4556
826 951f1351 bellard
@item netcat options:
827 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
828 951f1351 bellard
@item telnet options:
829 951f1351 bellard
localhost 5555
830 951f1351 bellard
@end table
831 951f1351 bellard
832 951f1351 bellard
833 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
834 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
835 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
836 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
837 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
838 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
839 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
840 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
841 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
842 951f1351 bellard
connect to the corresponding character device.
843 951f1351 bellard
@table @code
844 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
845 951f1351 bellard
-serial tcp:192.168.0.2:4444
846 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
847 951f1351 bellard
-serial tcp::4444,server
848 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
849 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
850 a0a821a4 bellard
@end table
851 a0a821a4 bellard
852 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
853 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
854 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
855 951f1351 bellard
difference is that the port acts like a telnet server or client using
856 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
857 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
858 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
859 951f1351 bellard
type "send break" followed by pressing the enter key.
860 0bab00f3 bellard
861 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
862 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
863 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
864 ffd843bc ths
@var{path} is used for connections.
865 ffd843bc ths
866 89dfe898 ths
@item mon:@var{dev_string}
867 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
868 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
869 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
870 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
871 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
872 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
873 20d8a3ed ths
listening on port 4444 would be:
874 20d8a3ed ths
@table @code
875 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
876 20d8a3ed ths
@end table
877 20d8a3ed ths
878 2e4d9fb1 aurel32
@item braille
879 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
880 2e4d9fb1 aurel32
or fake device.
881 2e4d9fb1 aurel32
882 0bab00f3 bellard
@end table
883 05d5818c bellard
884 89dfe898 ths
@item -parallel @var{dev}
885 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
886 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
887 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
888 e57a8c0e bellard
parallel port.
889 e57a8c0e bellard
890 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
891 e57a8c0e bellard
ports.
892 e57a8c0e bellard
893 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
894 c03b0f0f bellard
895 89dfe898 ths
@item -monitor @var{dev}
896 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
897 a0a821a4 bellard
serial port).
898 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
899 a0a821a4 bellard
non graphical mode.
900 a0a821a4 bellard
901 20d8a3ed ths
@item -echr numeric_ascii_value
902 20d8a3ed ths
Change the escape character used for switching to the monitor when using
903 20d8a3ed ths
monitor and serial sharing.  The default is @code{0x01} when using the
904 20d8a3ed ths
@code{-nographic} option.  @code{0x01} is equal to pressing
905 20d8a3ed ths
@code{Control-a}.  You can select a different character from the ascii
906 20d8a3ed ths
control keys where 1 through 26 map to Control-a through Control-z.  For
907 20d8a3ed ths
instance you could use the either of the following to change the escape
908 20d8a3ed ths
character to Control-t.
909 20d8a3ed ths
@table @code
910 20d8a3ed ths
@item -echr 0x14
911 20d8a3ed ths
@item -echr 20
912 20d8a3ed ths
@end table
913 20d8a3ed ths
914 ec410fc9 bellard
@item -s
915 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
916 89dfe898 ths
@item -p @var{port}
917 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
918 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
919 52c00a5f bellard
@item -S
920 52c00a5f bellard
Do not start CPU at startup (you must type 'c' in the monitor).
921 3b46e624 ths
@item -d
922 9d4520d0 bellard
Output log in /tmp/qemu.log
923 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
924 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
925 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
926 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
927 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
928 46d4767d bellard
images.
929 7c3fc84d bellard
930 87b47350 bellard
@item -L path
931 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
932 87b47350 bellard
933 15a34c63 bellard
@item -std-vga
934 15a34c63 bellard
Simulate a standard VGA card with Bochs VBE extensions (default is
935 3cb0853a bellard
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
936 3cb0853a bellard
VBE extensions (e.g. Windows XP) and if you want to use high
937 3cb0853a bellard
resolution modes (>= 1280x1024x16) then you should use this option.
938 3cb0853a bellard
939 3c656346 bellard
@item -no-acpi
940 3c656346 bellard
Disable ACPI (Advanced Configuration and Power Interface) support. Use
941 3c656346 bellard
it if your guest OS complains about ACPI problems (PC target machine
942 3c656346 bellard
only).
943 3c656346 bellard
944 d1beab82 bellard
@item -no-reboot
945 d1beab82 bellard
Exit instead of rebooting.
946 d1beab82 bellard
947 99aa9e4c aurel32
@item -no-shutdown
948 99aa9e4c aurel32
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
949 99aa9e4c aurel32
This allows for instance switching to monitor to commit changes to the
950 99aa9e4c aurel32
disk image.
951 99aa9e4c aurel32
952 d63d307f bellard
@item -loadvm file
953 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
954 8e71621f pbrook
955 8e71621f pbrook
@item -semihosting
956 a87295e8 pbrook
Enable semihosting syscall emulation (ARM and M68K target machines only).
957 a87295e8 pbrook
958 a87295e8 pbrook
On ARM this implements the "Angel" interface.
959 a87295e8 pbrook
On M68K this implements the "ColdFire GDB" interface used by libgloss.
960 a87295e8 pbrook
961 8e71621f pbrook
Note that this allows guest direct access to the host filesystem,
962 8e71621f pbrook
so should only be used with trusted guest OS.
963 ec410fc9 bellard
@end table
964 ec410fc9 bellard
965 3e11db9a bellard
@c man end
966 3e11db9a bellard
967 debc7065 bellard
@node pcsys_keys
968 3e11db9a bellard
@section Keys
969 3e11db9a bellard
970 3e11db9a bellard
@c man begin OPTIONS
971 3e11db9a bellard
972 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
973 a1b74fe8 bellard
@table @key
974 f9859310 bellard
@item Ctrl-Alt-f
975 a1b74fe8 bellard
Toggle full screen
976 a0a821a4 bellard
977 f9859310 bellard
@item Ctrl-Alt-n
978 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
979 a0a821a4 bellard
@table @emph
980 a0a821a4 bellard
@item 1
981 a0a821a4 bellard
Target system display
982 a0a821a4 bellard
@item 2
983 a0a821a4 bellard
Monitor
984 a0a821a4 bellard
@item 3
985 a0a821a4 bellard
Serial port
986 a1b74fe8 bellard
@end table
987 a1b74fe8 bellard
988 f9859310 bellard
@item Ctrl-Alt
989 a0a821a4 bellard
Toggle mouse and keyboard grab.
990 a0a821a4 bellard
@end table
991 a0a821a4 bellard
992 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
993 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
994 3e11db9a bellard
995 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
996 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
997 ec410fc9 bellard
998 ec410fc9 bellard
@table @key
999 a1b74fe8 bellard
@item Ctrl-a h
1000 ec410fc9 bellard
Print this help
1001 3b46e624 ths
@item Ctrl-a x
1002 366dfc52 ths
Exit emulator
1003 3b46e624 ths
@item Ctrl-a s
1004 1f47a922 bellard
Save disk data back to file (if -snapshot)
1005 20d8a3ed ths
@item Ctrl-a t
1006 20d8a3ed ths
toggle console timestamps
1007 a1b74fe8 bellard
@item Ctrl-a b
1008 1f673135 bellard
Send break (magic sysrq in Linux)
1009 a1b74fe8 bellard
@item Ctrl-a c
1010 1f673135 bellard
Switch between console and monitor
1011 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
1012 a1b74fe8 bellard
Send Ctrl-a
1013 ec410fc9 bellard
@end table
1014 0806e3f6 bellard
@c man end
1015 0806e3f6 bellard
1016 0806e3f6 bellard
@ignore
1017 0806e3f6 bellard
1018 1f673135 bellard
@c man begin SEEALSO
1019 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
1020 1f673135 bellard
user mode emulator invocation.
1021 1f673135 bellard
@c man end
1022 1f673135 bellard
1023 1f673135 bellard
@c man begin AUTHOR
1024 1f673135 bellard
Fabrice Bellard
1025 1f673135 bellard
@c man end
1026 1f673135 bellard
1027 1f673135 bellard
@end ignore
1028 1f673135 bellard
1029 debc7065 bellard
@node pcsys_monitor
1030 1f673135 bellard
@section QEMU Monitor
1031 1f673135 bellard
1032 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1033 1f673135 bellard
emulator. You can use it to:
1034 1f673135 bellard
1035 1f673135 bellard
@itemize @minus
1036 1f673135 bellard
1037 1f673135 bellard
@item
1038 e598752a ths
Remove or insert removable media images
1039 89dfe898 ths
(such as CD-ROM or floppies).
1040 1f673135 bellard
1041 5fafdf24 ths
@item
1042 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1043 1f673135 bellard
from a disk file.
1044 1f673135 bellard
1045 1f673135 bellard
@item Inspect the VM state without an external debugger.
1046 1f673135 bellard
1047 1f673135 bellard
@end itemize
1048 1f673135 bellard
1049 1f673135 bellard
@subsection Commands
1050 1f673135 bellard
1051 1f673135 bellard
The following commands are available:
1052 1f673135 bellard
1053 1f673135 bellard
@table @option
1054 1f673135 bellard
1055 89dfe898 ths
@item help or ? [@var{cmd}]
1056 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1057 1f673135 bellard
1058 3b46e624 ths
@item commit
1059 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1060 1f673135 bellard
1061 89dfe898 ths
@item info @var{subcommand}
1062 89dfe898 ths
Show various information about the system state.
1063 1f673135 bellard
1064 1f673135 bellard
@table @option
1065 1f673135 bellard
@item info network
1066 41d03949 bellard
show the various VLANs and the associated devices
1067 1f673135 bellard
@item info block
1068 1f673135 bellard
show the block devices
1069 1f673135 bellard
@item info registers
1070 1f673135 bellard
show the cpu registers
1071 1f673135 bellard
@item info history
1072 1f673135 bellard
show the command line history
1073 b389dbfb bellard
@item info pci
1074 b389dbfb bellard
show emulated PCI device
1075 b389dbfb bellard
@item info usb
1076 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1077 b389dbfb bellard
@item info usbhost
1078 b389dbfb bellard
show all USB host devices
1079 a3c25997 bellard
@item info capture
1080 a3c25997 bellard
show information about active capturing
1081 13a2e80f bellard
@item info snapshots
1082 13a2e80f bellard
show list of VM snapshots
1083 455204eb ths
@item info mice
1084 455204eb ths
show which guest mouse is receiving events
1085 1f673135 bellard
@end table
1086 1f673135 bellard
1087 1f673135 bellard
@item q or quit
1088 1f673135 bellard
Quit the emulator.
1089 1f673135 bellard
1090 89dfe898 ths
@item eject [-f] @var{device}
1091 e598752a ths
Eject a removable medium (use -f to force it).
1092 1f673135 bellard
1093 89dfe898 ths
@item change @var{device} @var{setting}
1094 f858dcae ths
1095 89dfe898 ths
Change the configuration of a device.
1096 f858dcae ths
1097 f858dcae ths
@table @option
1098 f858dcae ths
@item change @var{diskdevice} @var{filename}
1099 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1100 f858dcae ths
1101 f858dcae ths
@example
1102 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1103 f858dcae ths
@end example
1104 f858dcae ths
1105 89dfe898 ths
@item change vnc @var{display},@var{options}
1106 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1107 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1108 f858dcae ths
1109 f858dcae ths
@example
1110 f858dcae ths
(qemu) change vnc localhost:1
1111 f858dcae ths
@end example
1112 f858dcae ths
1113 f858dcae ths
@item change vnc password
1114 f858dcae ths
1115 f858dcae ths
Change the password associated with the VNC server. The monitor will prompt for
1116 f858dcae ths
the new password to be entered. VNC passwords are only significant upto 8 letters.
1117 f858dcae ths
eg.
1118 f858dcae ths
1119 f858dcae ths
@example
1120 f858dcae ths
(qemu) change vnc password
1121 f858dcae ths
Password: ********
1122 f858dcae ths
@end example
1123 f858dcae ths
1124 f858dcae ths
@end table
1125 1f673135 bellard
1126 89dfe898 ths
@item screendump @var{filename}
1127 1f673135 bellard
Save screen into PPM image @var{filename}.
1128 1f673135 bellard
1129 89dfe898 ths
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1130 455204eb ths
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1131 455204eb ths
with optional scroll axis @var{dz}.
1132 455204eb ths
1133 89dfe898 ths
@item mouse_button @var{val}
1134 455204eb ths
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1135 455204eb ths
1136 89dfe898 ths
@item mouse_set @var{index}
1137 455204eb ths
Set which mouse device receives events at given @var{index}, index
1138 455204eb ths
can be obtained with
1139 455204eb ths
@example
1140 455204eb ths
info mice
1141 455204eb ths
@end example
1142 455204eb ths
1143 89dfe898 ths
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1144 a3c25997 bellard
Capture audio into @var{filename}. Using sample rate @var{frequency}
1145 a3c25997 bellard
bits per sample @var{bits} and number of channels @var{channels}.
1146 a3c25997 bellard
1147 a3c25997 bellard
Defaults:
1148 a3c25997 bellard
@itemize @minus
1149 a3c25997 bellard
@item Sample rate = 44100 Hz - CD quality
1150 a3c25997 bellard
@item Bits = 16
1151 a3c25997 bellard
@item Number of channels = 2 - Stereo
1152 a3c25997 bellard
@end itemize
1153 a3c25997 bellard
1154 89dfe898 ths
@item stopcapture @var{index}
1155 a3c25997 bellard
Stop capture with a given @var{index}, index can be obtained with
1156 a3c25997 bellard
@example
1157 a3c25997 bellard
info capture
1158 a3c25997 bellard
@end example
1159 a3c25997 bellard
1160 89dfe898 ths
@item log @var{item1}[,...]
1161 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1162 1f673135 bellard
1163 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1164 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1165 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1166 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1167 13a2e80f bellard
@ref{vm_snapshots}.
1168 1f673135 bellard
1169 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1170 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1171 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1172 13a2e80f bellard
1173 89dfe898 ths
@item delvm @var{tag}|@var{id}
1174 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1175 1f673135 bellard
1176 1f673135 bellard
@item stop
1177 1f673135 bellard
Stop emulation.
1178 1f673135 bellard
1179 1f673135 bellard
@item c or cont
1180 1f673135 bellard
Resume emulation.
1181 1f673135 bellard
1182 89dfe898 ths
@item gdbserver [@var{port}]
1183 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1184 1f673135 bellard
1185 89dfe898 ths
@item x/fmt @var{addr}
1186 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1187 1f673135 bellard
1188 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1189 1f673135 bellard
Physical memory dump starting at @var{addr}.
1190 1f673135 bellard
1191 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1192 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1193 1f673135 bellard
1194 1f673135 bellard
@table @var
1195 5fafdf24 ths
@item count
1196 1f673135 bellard
is the number of items to be dumped.
1197 1f673135 bellard
1198 1f673135 bellard
@item format
1199 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1200 1f673135 bellard
c (char) or i (asm instruction).
1201 1f673135 bellard
1202 1f673135 bellard
@item size
1203 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1204 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1205 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1206 1f673135 bellard
1207 1f673135 bellard
@end table
1208 1f673135 bellard
1209 5fafdf24 ths
Examples:
1210 1f673135 bellard
@itemize
1211 1f673135 bellard
@item
1212 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1213 5fafdf24 ths
@example
1214 1f673135 bellard
(qemu) x/10i $eip
1215 1f673135 bellard
0x90107063:  ret
1216 1f673135 bellard
0x90107064:  sti
1217 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1218 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1219 1f673135 bellard
0x90107070:  ret
1220 1f673135 bellard
0x90107071:  jmp    0x90107080
1221 1f673135 bellard
0x90107073:  nop
1222 1f673135 bellard
0x90107074:  nop
1223 1f673135 bellard
0x90107075:  nop
1224 1f673135 bellard
0x90107076:  nop
1225 1f673135 bellard
@end example
1226 1f673135 bellard
1227 1f673135 bellard
@item
1228 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1229 5fafdf24 ths
@smallexample
1230 1f673135 bellard
(qemu) xp/80hx 0xb8000
1231 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1232 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1233 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1234 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1235 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1236 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1237 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1238 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1239 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1240 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1241 debc7065 bellard
@end smallexample
1242 1f673135 bellard
@end itemize
1243 1f673135 bellard
1244 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1245 1f673135 bellard
1246 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1247 1f673135 bellard
used.
1248 0806e3f6 bellard
1249 89dfe898 ths
@item sendkey @var{keys}
1250 a3a91a35 bellard
1251 a3a91a35 bellard
Send @var{keys} to the emulator. Use @code{-} to press several keys
1252 a3a91a35 bellard
simultaneously. Example:
1253 a3a91a35 bellard
@example
1254 a3a91a35 bellard
sendkey ctrl-alt-f1
1255 a3a91a35 bellard
@end example
1256 a3a91a35 bellard
1257 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1258 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1259 a3a91a35 bellard
1260 15a34c63 bellard
@item system_reset
1261 15a34c63 bellard
1262 15a34c63 bellard
Reset the system.
1263 15a34c63 bellard
1264 0ecdffbb aurel32
@item boot_set @var{bootdevicelist}
1265 0ecdffbb aurel32
1266 0ecdffbb aurel32
Define new values for the boot device list. Those values will override
1267 0ecdffbb aurel32
the values specified on the command line through the @code{-boot} option.
1268 0ecdffbb aurel32
1269 0ecdffbb aurel32
The values that can be specified here depend on the machine type, but are
1270 0ecdffbb aurel32
the same that can be specified in the @code{-boot} command line option.
1271 0ecdffbb aurel32
1272 89dfe898 ths
@item usb_add @var{devname}
1273 b389dbfb bellard
1274 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1275 0aff66b5 pbrook
@ref{usb_devices}
1276 b389dbfb bellard
1277 89dfe898 ths
@item usb_del @var{devname}
1278 b389dbfb bellard
1279 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1280 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1281 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1282 b389dbfb bellard
1283 1f673135 bellard
@end table
1284 0806e3f6 bellard
1285 1f673135 bellard
@subsection Integer expressions
1286 1f673135 bellard
1287 1f673135 bellard
The monitor understands integers expressions for every integer
1288 1f673135 bellard
argument. You can use register names to get the value of specifics
1289 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1290 ec410fc9 bellard
1291 1f47a922 bellard
@node disk_images
1292 1f47a922 bellard
@section Disk Images
1293 1f47a922 bellard
1294 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1295 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1296 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1297 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1298 13a2e80f bellard
snapshots.
1299 1f47a922 bellard
1300 debc7065 bellard
@menu
1301 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1302 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1303 13a2e80f bellard
* vm_snapshots::              VM snapshots
1304 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1305 19cb3738 bellard
* host_drives::               Using host drives
1306 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1307 debc7065 bellard
@end menu
1308 debc7065 bellard
1309 debc7065 bellard
@node disk_images_quickstart
1310 acd935ef bellard
@subsection Quick start for disk image creation
1311 acd935ef bellard
1312 acd935ef bellard
You can create a disk image with the command:
1313 1f47a922 bellard
@example
1314 acd935ef bellard
qemu-img create myimage.img mysize
1315 1f47a922 bellard
@end example
1316 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1317 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1318 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1319 acd935ef bellard
1320 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1321 1f47a922 bellard
1322 debc7065 bellard
@node disk_images_snapshot_mode
1323 1f47a922 bellard
@subsection Snapshot mode
1324 1f47a922 bellard
1325 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1326 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1327 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1328 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1329 acd935ef bellard
command (or @key{C-a s} in the serial console).
1330 1f47a922 bellard
1331 13a2e80f bellard
@node vm_snapshots
1332 13a2e80f bellard
@subsection VM snapshots
1333 13a2e80f bellard
1334 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1335 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1336 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1337 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1338 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1339 13a2e80f bellard
1340 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1341 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1342 19d36792 bellard
snapshot in addition to its numerical ID.
1343 13a2e80f bellard
1344 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1345 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1346 13a2e80f bellard
with their associated information:
1347 13a2e80f bellard
1348 13a2e80f bellard
@example
1349 13a2e80f bellard
(qemu) info snapshots
1350 13a2e80f bellard
Snapshot devices: hda
1351 13a2e80f bellard
Snapshot list (from hda):
1352 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1353 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1354 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1355 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1356 13a2e80f bellard
@end example
1357 13a2e80f bellard
1358 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1359 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1360 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1361 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1362 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1363 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1364 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1365 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1366 19d36792 bellard
disk images).
1367 13a2e80f bellard
1368 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1369 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1370 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1371 13a2e80f bellard
1372 13a2e80f bellard
VM snapshots currently have the following known limitations:
1373 13a2e80f bellard
@itemize
1374 5fafdf24 ths
@item
1375 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1376 13a2e80f bellard
inserted after a snapshot is done.
1377 5fafdf24 ths
@item
1378 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1379 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1380 13a2e80f bellard
@end itemize
1381 13a2e80f bellard
1382 acd935ef bellard
@node qemu_img_invocation
1383 acd935ef bellard
@subsection @code{qemu-img} Invocation
1384 1f47a922 bellard
1385 acd935ef bellard
@include qemu-img.texi
1386 05efe46e bellard
1387 19cb3738 bellard
@node host_drives
1388 19cb3738 bellard
@subsection Using host drives
1389 19cb3738 bellard
1390 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1391 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1392 19cb3738 bellard
1393 19cb3738 bellard
@subsubsection Linux
1394 19cb3738 bellard
1395 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1396 4be456f1 ths
disk image filename provided you have enough privileges to access
1397 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1398 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1399 19cb3738 bellard
1400 f542086d bellard
@table @code
1401 19cb3738 bellard
@item CD
1402 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1403 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1404 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1405 19cb3738 bellard
@item Floppy
1406 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1407 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1408 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1409 19cb3738 bellard
OS will think that the same floppy is loaded).
1410 19cb3738 bellard
@item Hard disks
1411 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1412 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1413 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1414 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1415 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1416 19cb3738 bellard
line option or modify the device permissions accordingly).
1417 19cb3738 bellard
@end table
1418 19cb3738 bellard
1419 19cb3738 bellard
@subsubsection Windows
1420 19cb3738 bellard
1421 01781963 bellard
@table @code
1422 01781963 bellard
@item CD
1423 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1424 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1425 01781963 bellard
supported as an alias to the first CDROM drive.
1426 19cb3738 bellard
1427 e598752a ths
Currently there is no specific code to handle removable media, so it
1428 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1429 19cb3738 bellard
change or eject media.
1430 01781963 bellard
@item Hard disks
1431 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1432 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1433 01781963 bellard
1434 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1435 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1436 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1437 01781963 bellard
modifications are written in a temporary file).
1438 01781963 bellard
@end table
1439 01781963 bellard
1440 19cb3738 bellard
1441 19cb3738 bellard
@subsubsection Mac OS X
1442 19cb3738 bellard
1443 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1444 19cb3738 bellard
1445 e598752a ths
Currently there is no specific code to handle removable media, so it
1446 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1447 19cb3738 bellard
change or eject media.
1448 19cb3738 bellard
1449 debc7065 bellard
@node disk_images_fat_images
1450 2c6cadd4 bellard
@subsection Virtual FAT disk images
1451 2c6cadd4 bellard
1452 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1453 2c6cadd4 bellard
directory tree. In order to use it, just type:
1454 2c6cadd4 bellard
1455 5fafdf24 ths
@example
1456 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1457 2c6cadd4 bellard
@end example
1458 2c6cadd4 bellard
1459 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1460 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1461 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1462 2c6cadd4 bellard
1463 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1464 2c6cadd4 bellard
1465 5fafdf24 ths
@example
1466 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1467 2c6cadd4 bellard
@end example
1468 2c6cadd4 bellard
1469 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1470 2c6cadd4 bellard
@code{:rw:} option:
1471 2c6cadd4 bellard
1472 5fafdf24 ths
@example
1473 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1474 2c6cadd4 bellard
@end example
1475 2c6cadd4 bellard
1476 2c6cadd4 bellard
What you should @emph{never} do:
1477 2c6cadd4 bellard
@itemize
1478 2c6cadd4 bellard
@item use non-ASCII filenames ;
1479 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1480 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1481 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1482 2c6cadd4 bellard
@end itemize
1483 2c6cadd4 bellard
1484 debc7065 bellard
@node pcsys_network
1485 9d4fb82e bellard
@section Network emulation
1486 9d4fb82e bellard
1487 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1488 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1489 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1490 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1491 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1492 41d03949 bellard
network stack can replace the TAP device to have a basic network
1493 41d03949 bellard
connection.
1494 41d03949 bellard
1495 41d03949 bellard
@subsection VLANs
1496 9d4fb82e bellard
1497 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1498 41d03949 bellard
connection between several network devices. These devices can be for
1499 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1500 41d03949 bellard
(TAP devices).
1501 9d4fb82e bellard
1502 41d03949 bellard
@subsection Using TAP network interfaces
1503 41d03949 bellard
1504 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1505 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1506 41d03949 bellard
can then configure it as if it was a real ethernet card.
1507 9d4fb82e bellard
1508 8f40c388 bellard
@subsubsection Linux host
1509 8f40c388 bellard
1510 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1511 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1512 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1513 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1514 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1515 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1516 9d4fb82e bellard
1517 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1518 ee0f4751 bellard
TAP network interfaces.
1519 9d4fb82e bellard
1520 8f40c388 bellard
@subsubsection Windows host
1521 8f40c388 bellard
1522 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1523 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1524 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1525 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1526 8f40c388 bellard
1527 9d4fb82e bellard
@subsection Using the user mode network stack
1528 9d4fb82e bellard
1529 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1530 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1531 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1532 41d03949 bellard
network). The virtual network configuration is the following:
1533 9d4fb82e bellard
1534 9d4fb82e bellard
@example
1535 9d4fb82e bellard
1536 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1537 41d03949 bellard
                           |          (10.0.2.2)
1538 9d4fb82e bellard
                           |
1539 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1540 3b46e624 ths
                           |
1541 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1542 9d4fb82e bellard
@end example
1543 9d4fb82e bellard
1544 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1545 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1546 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1547 41d03949 bellard
to the hosts starting from 10.0.2.15.
1548 9d4fb82e bellard
1549 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1550 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1551 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1552 9d4fb82e bellard
1553 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1554 4be456f1 ths
would require root privileges. It means you can only ping the local
1555 b415a407 bellard
router (10.0.2.2).
1556 b415a407 bellard
1557 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1558 9bf05444 bellard
server.
1559 9bf05444 bellard
1560 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1561 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1562 9bf05444 bellard
redirect X11, telnet or SSH connections.
1563 443f1376 bellard
1564 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1565 41d03949 bellard
1566 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1567 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1568 41d03949 bellard
basic example.
1569 41d03949 bellard
1570 9d4fb82e bellard
@node direct_linux_boot
1571 9d4fb82e bellard
@section Direct Linux Boot
1572 1f673135 bellard
1573 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1574 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1575 ee0f4751 bellard
kernel testing.
1576 1f673135 bellard
1577 ee0f4751 bellard
The syntax is:
1578 1f673135 bellard
@example
1579 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1580 1f673135 bellard
@end example
1581 1f673135 bellard
1582 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1583 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1584 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1585 1f673135 bellard
1586 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1587 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1588 ee0f4751 bellard
Linux kernel.
1589 1f673135 bellard
1590 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1591 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1592 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1593 1f673135 bellard
@example
1594 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1595 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1596 1f673135 bellard
@end example
1597 1f673135 bellard
1598 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1599 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1600 1f673135 bellard
1601 debc7065 bellard
@node pcsys_usb
1602 b389dbfb bellard
@section USB emulation
1603 b389dbfb bellard
1604 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1605 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1606 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1607 f542086d bellard
as necessary to connect multiple USB devices.
1608 b389dbfb bellard
1609 0aff66b5 pbrook
@menu
1610 0aff66b5 pbrook
* usb_devices::
1611 0aff66b5 pbrook
* host_usb_devices::
1612 0aff66b5 pbrook
@end menu
1613 0aff66b5 pbrook
@node usb_devices
1614 0aff66b5 pbrook
@subsection Connecting USB devices
1615 b389dbfb bellard
1616 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1617 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1618 b389dbfb bellard
1619 db380c06 balrog
@table @code
1620 db380c06 balrog
@item mouse
1621 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1622 db380c06 balrog
@item tablet
1623 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1624 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1625 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1626 db380c06 balrog
@item disk:@var{file}
1627 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1628 db380c06 balrog
@item host:@var{bus.addr}
1629 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1630 0aff66b5 pbrook
(Linux only)
1631 db380c06 balrog
@item host:@var{vendor_id:product_id}
1632 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1633 0aff66b5 pbrook
(Linux only)
1634 db380c06 balrog
@item wacom-tablet
1635 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1636 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1637 f6d2a316 balrog
coordinates it reports touch pressure.
1638 db380c06 balrog
@item keyboard
1639 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1640 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1641 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1642 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1643 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1644 a11d070e balrog
used to override the default 0403:6001. For instance, 
1645 db380c06 balrog
@example
1646 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1647 db380c06 balrog
@end example
1648 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1649 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1650 2e4d9fb1 aurel32
@item braille
1651 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1652 2e4d9fb1 aurel32
or fake device.
1653 0aff66b5 pbrook
@end table
1654 b389dbfb bellard
1655 0aff66b5 pbrook
@node host_usb_devices
1656 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1657 b389dbfb bellard
1658 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1659 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1660 b389dbfb bellard
Cameras) are not supported yet.
1661 b389dbfb bellard
1662 b389dbfb bellard
@enumerate
1663 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1664 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1665 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1666 b389dbfb bellard
to @file{mydriver.o.disabled}.
1667 b389dbfb bellard
1668 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1669 b389dbfb bellard
@example
1670 b389dbfb bellard
ls /proc/bus/usb
1671 b389dbfb bellard
001  devices  drivers
1672 b389dbfb bellard
@end example
1673 b389dbfb bellard
1674 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1675 b389dbfb bellard
@example
1676 b389dbfb bellard
chown -R myuid /proc/bus/usb
1677 b389dbfb bellard
@end example
1678 b389dbfb bellard
1679 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1680 5fafdf24 ths
@example
1681 b389dbfb bellard
info usbhost
1682 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1683 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1684 b389dbfb bellard
@end example
1685 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1686 b389dbfb bellard
hubs, it won't work).
1687 b389dbfb bellard
1688 b389dbfb bellard
@item Add the device in QEMU by using:
1689 5fafdf24 ths
@example
1690 b389dbfb bellard
usb_add host:1234:5678
1691 b389dbfb bellard
@end example
1692 b389dbfb bellard
1693 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1694 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1695 b389dbfb bellard
1696 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1697 b389dbfb bellard
1698 b389dbfb bellard
@end enumerate
1699 b389dbfb bellard
1700 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1701 b389dbfb bellard
device to make it work again (this is a bug).
1702 b389dbfb bellard
1703 f858dcae ths
@node vnc_security
1704 f858dcae ths
@section VNC security
1705 f858dcae ths
1706 f858dcae ths
The VNC server capability provides access to the graphical console
1707 f858dcae ths
of the guest VM across the network. This has a number of security
1708 f858dcae ths
considerations depending on the deployment scenarios.
1709 f858dcae ths
1710 f858dcae ths
@menu
1711 f858dcae ths
* vnc_sec_none::
1712 f858dcae ths
* vnc_sec_password::
1713 f858dcae ths
* vnc_sec_certificate::
1714 f858dcae ths
* vnc_sec_certificate_verify::
1715 f858dcae ths
* vnc_sec_certificate_pw::
1716 f858dcae ths
* vnc_generate_cert::
1717 f858dcae ths
@end menu
1718 f858dcae ths
@node vnc_sec_none
1719 f858dcae ths
@subsection Without passwords
1720 f858dcae ths
1721 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1722 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1723 f858dcae ths
socket only. For example
1724 f858dcae ths
1725 f858dcae ths
@example
1726 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1727 f858dcae ths
@end example
1728 f858dcae ths
1729 f858dcae ths
This ensures that only users on local box with read/write access to that
1730 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1731 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1732 f858dcae ths
tunnel.
1733 f858dcae ths
1734 f858dcae ths
@node vnc_sec_password
1735 f858dcae ths
@subsection With passwords
1736 f858dcae ths
1737 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1738 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1739 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1740 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1741 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1742 f858dcae ths
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1743 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1744 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1745 f858dcae ths
1746 f858dcae ths
@example
1747 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1748 f858dcae ths
(qemu) change vnc password
1749 f858dcae ths
Password: ********
1750 f858dcae ths
(qemu)
1751 f858dcae ths
@end example
1752 f858dcae ths
1753 f858dcae ths
@node vnc_sec_certificate
1754 f858dcae ths
@subsection With x509 certificates
1755 f858dcae ths
1756 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1757 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1758 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1759 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1760 f858dcae ths
support provides a secure session, but no authentication. This allows any
1761 f858dcae ths
client to connect, and provides an encrypted session.
1762 f858dcae ths
1763 f858dcae ths
@example
1764 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1765 f858dcae ths
@end example
1766 f858dcae ths
1767 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1768 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1769 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1770 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1771 f858dcae ths
only be readable by the user owning it.
1772 f858dcae ths
1773 f858dcae ths
@node vnc_sec_certificate_verify
1774 f858dcae ths
@subsection With x509 certificates and client verification
1775 f858dcae ths
1776 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1777 f858dcae ths
The server will request that the client provide a certificate, which it will
1778 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1779 f858dcae ths
in an environment with a private internal certificate authority.
1780 f858dcae ths
1781 f858dcae ths
@example
1782 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1783 f858dcae ths
@end example
1784 f858dcae ths
1785 f858dcae ths
1786 f858dcae ths
@node vnc_sec_certificate_pw
1787 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1788 f858dcae ths
1789 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1790 f858dcae ths
to provide two layers of authentication for clients.
1791 f858dcae ths
1792 f858dcae ths
@example
1793 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1794 f858dcae ths
(qemu) change vnc password
1795 f858dcae ths
Password: ********
1796 f858dcae ths
(qemu)
1797 f858dcae ths
@end example
1798 f858dcae ths
1799 f858dcae ths
@node vnc_generate_cert
1800 f858dcae ths
@subsection Generating certificates for VNC
1801 f858dcae ths
1802 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1803 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1804 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1805 f858dcae ths
each server. If using certificates for authentication, then each client
1806 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1807 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1808 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1809 f858dcae ths
1810 f858dcae ths
@menu
1811 f858dcae ths
* vnc_generate_ca::
1812 f858dcae ths
* vnc_generate_server::
1813 f858dcae ths
* vnc_generate_client::
1814 f858dcae ths
@end menu
1815 f858dcae ths
@node vnc_generate_ca
1816 f858dcae ths
@subsubsection Setup the Certificate Authority
1817 f858dcae ths
1818 f858dcae ths
This step only needs to be performed once per organization / organizational
1819 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1820 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1821 f858dcae ths
issued with it is lost.
1822 f858dcae ths
1823 f858dcae ths
@example
1824 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1825 f858dcae ths
@end example
1826 f858dcae ths
1827 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1828 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1829 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1830 f858dcae ths
name of the organization.
1831 f858dcae ths
1832 f858dcae ths
@example
1833 f858dcae ths
# cat > ca.info <<EOF
1834 f858dcae ths
cn = Name of your organization
1835 f858dcae ths
ca
1836 f858dcae ths
cert_signing_key
1837 f858dcae ths
EOF
1838 f858dcae ths
# certtool --generate-self-signed \
1839 f858dcae ths
           --load-privkey ca-key.pem
1840 f858dcae ths
           --template ca.info \
1841 f858dcae ths
           --outfile ca-cert.pem
1842 f858dcae ths
@end example
1843 f858dcae ths
1844 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1845 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1846 f858dcae ths
1847 f858dcae ths
@node vnc_generate_server
1848 f858dcae ths
@subsubsection Issuing server certificates
1849 f858dcae ths
1850 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1851 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1852 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1853 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1854 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1855 f858dcae ths
secure CA private key:
1856 f858dcae ths
1857 f858dcae ths
@example
1858 f858dcae ths
# cat > server.info <<EOF
1859 f858dcae ths
organization = Name  of your organization
1860 f858dcae ths
cn = server.foo.example.com
1861 f858dcae ths
tls_www_server
1862 f858dcae ths
encryption_key
1863 f858dcae ths
signing_key
1864 f858dcae ths
EOF
1865 f858dcae ths
# certtool --generate-privkey > server-key.pem
1866 f858dcae ths
# certtool --generate-certificate \
1867 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1868 f858dcae ths
           --load-ca-privkey ca-key.pem \
1869 f858dcae ths
           --load-privkey server server-key.pem \
1870 f858dcae ths
           --template server.info \
1871 f858dcae ths
           --outfile server-cert.pem
1872 f858dcae ths
@end example
1873 f858dcae ths
1874 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1875 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1876 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1877 f858dcae ths
1878 f858dcae ths
@node vnc_generate_client
1879 f858dcae ths
@subsubsection Issuing client certificates
1880 f858dcae ths
1881 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1882 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1883 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1884 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1885 f858dcae ths
the secure CA private key:
1886 f858dcae ths
1887 f858dcae ths
@example
1888 f858dcae ths
# cat > client.info <<EOF
1889 f858dcae ths
country = GB
1890 f858dcae ths
state = London
1891 f858dcae ths
locality = London
1892 f858dcae ths
organiazation = Name of your organization
1893 f858dcae ths
cn = client.foo.example.com
1894 f858dcae ths
tls_www_client
1895 f858dcae ths
encryption_key
1896 f858dcae ths
signing_key
1897 f858dcae ths
EOF
1898 f858dcae ths
# certtool --generate-privkey > client-key.pem
1899 f858dcae ths
# certtool --generate-certificate \
1900 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1901 f858dcae ths
           --load-ca-privkey ca-key.pem \
1902 f858dcae ths
           --load-privkey client-key.pem \
1903 f858dcae ths
           --template client.info \
1904 f858dcae ths
           --outfile client-cert.pem
1905 f858dcae ths
@end example
1906 f858dcae ths
1907 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1908 f858dcae ths
copied to the client for which they were generated.
1909 f858dcae ths
1910 0806e3f6 bellard
@node gdb_usage
1911 da415d54 bellard
@section GDB usage
1912 da415d54 bellard
1913 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1914 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1915 da415d54 bellard
1916 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1917 da415d54 bellard
gdb connection:
1918 da415d54 bellard
@example
1919 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1920 debc7065 bellard
       -append "root=/dev/hda"
1921 da415d54 bellard
Connected to host network interface: tun0
1922 da415d54 bellard
Waiting gdb connection on port 1234
1923 da415d54 bellard
@end example
1924 da415d54 bellard
1925 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1926 da415d54 bellard
@example
1927 da415d54 bellard
> gdb vmlinux
1928 da415d54 bellard
@end example
1929 da415d54 bellard
1930 da415d54 bellard
In gdb, connect to QEMU:
1931 da415d54 bellard
@example
1932 6c9bf893 bellard
(gdb) target remote localhost:1234
1933 da415d54 bellard
@end example
1934 da415d54 bellard
1935 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1936 da415d54 bellard
@example
1937 da415d54 bellard
(gdb) c
1938 da415d54 bellard
@end example
1939 da415d54 bellard
1940 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1941 0806e3f6 bellard
1942 0806e3f6 bellard
@enumerate
1943 0806e3f6 bellard
@item
1944 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1945 0806e3f6 bellard
@item
1946 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1947 0806e3f6 bellard
@item
1948 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1949 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1950 0806e3f6 bellard
@end enumerate
1951 0806e3f6 bellard
1952 60897d36 edgar_igl
Advanced debugging options:
1953 60897d36 edgar_igl
1954 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1955 94d45e44 edgar_igl
@table @code
1956 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1957 60897d36 edgar_igl
1958 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1959 60897d36 edgar_igl
@example
1960 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1961 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1962 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1963 60897d36 edgar_igl
@end example
1964 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1965 60897d36 edgar_igl
1966 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1967 60897d36 edgar_igl
@example
1968 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1969 60897d36 edgar_igl
sending: "qqemu.sstep"
1970 60897d36 edgar_igl
received: "0x7"
1971 60897d36 edgar_igl
@end example
1972 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1973 60897d36 edgar_igl
1974 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1975 60897d36 edgar_igl
@example
1976 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1977 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1978 60897d36 edgar_igl
received: "OK"
1979 60897d36 edgar_igl
@end example
1980 94d45e44 edgar_igl
@end table
1981 60897d36 edgar_igl
1982 debc7065 bellard
@node pcsys_os_specific
1983 1a084f3d bellard
@section Target OS specific information
1984 1a084f3d bellard
1985 1a084f3d bellard
@subsection Linux
1986 1a084f3d bellard
1987 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1988 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1989 15a34c63 bellard
color depth in the guest and the host OS.
1990 1a084f3d bellard
1991 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1992 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1993 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1994 e3371e62 bellard
cannot simulate exactly.
1995 e3371e62 bellard
1996 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1997 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1998 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1999 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2000 7c3fc84d bellard
patch by default. Newer kernels don't have it.
2001 7c3fc84d bellard
2002 1a084f3d bellard
@subsection Windows
2003 1a084f3d bellard
2004 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
2005 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
2006 1a084f3d bellard
2007 e3371e62 bellard
@subsubsection SVGA graphic modes support
2008 e3371e62 bellard
2009 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
2010 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
2011 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
2012 15a34c63 bellard
depth in the guest and the host OS.
2013 1a084f3d bellard
2014 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
2015 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2016 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
2017 3cb0853a bellard
(option @option{-std-vga}).
2018 3cb0853a bellard
2019 e3371e62 bellard
@subsubsection CPU usage reduction
2020 e3371e62 bellard
2021 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
2022 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
2023 15a34c63 bellard
idle. You can install the utility from
2024 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2025 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
2026 1a084f3d bellard
2027 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
2028 e3371e62 bellard
2029 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
2030 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
2031 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
2032 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
2033 9d0a8e6f bellard
IDE transfers).
2034 e3371e62 bellard
2035 6cc721cf bellard
@subsubsection Windows 2000 shutdown
2036 6cc721cf bellard
2037 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2038 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
2039 6cc721cf bellard
use the APM driver provided by the BIOS.
2040 6cc721cf bellard
2041 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
2042 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2043 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
2044 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2045 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
2046 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
2047 6cc721cf bellard
2048 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
2049 6cc721cf bellard
2050 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
2051 6cc721cf bellard
2052 2192c332 bellard
@subsubsection Windows XP security problem
2053 e3371e62 bellard
2054 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
2055 e3371e62 bellard
error when booting:
2056 e3371e62 bellard
@example
2057 e3371e62 bellard
A problem is preventing Windows from accurately checking the
2058 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
2059 e3371e62 bellard
@end example
2060 e3371e62 bellard
2061 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
2062 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
2063 2192c332 bellard
network while in safe mode, its recommended to download the full
2064 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
2065 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2066 e3371e62 bellard
2067 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2068 a0a821a4 bellard
2069 a0a821a4 bellard
@subsubsection CPU usage reduction
2070 a0a821a4 bellard
2071 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2072 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2073 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2074 a0a821a4 bellard
problem.
2075 a0a821a4 bellard
2076 debc7065 bellard
@node QEMU System emulator for non PC targets
2077 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2078 3f9f3aa1 bellard
2079 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2080 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2081 4be456f1 ths
differences are mentioned in the following sections.
2082 3f9f3aa1 bellard
2083 debc7065 bellard
@menu
2084 debc7065 bellard
* QEMU PowerPC System emulator::
2085 24d4de45 ths
* Sparc32 System emulator::
2086 24d4de45 ths
* Sparc64 System emulator::
2087 24d4de45 ths
* MIPS System emulator::
2088 24d4de45 ths
* ARM System emulator::
2089 24d4de45 ths
* ColdFire System emulator::
2090 debc7065 bellard
@end menu
2091 debc7065 bellard
2092 debc7065 bellard
@node QEMU PowerPC System emulator
2093 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2094 1a084f3d bellard
2095 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2096 15a34c63 bellard
or PowerMac PowerPC system.
2097 1a084f3d bellard
2098 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2099 1a084f3d bellard
2100 15a34c63 bellard
@itemize @minus
2101 5fafdf24 ths
@item
2102 5fafdf24 ths
UniNorth PCI Bridge
2103 15a34c63 bellard
@item
2104 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2105 5fafdf24 ths
@item
2106 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2107 5fafdf24 ths
@item
2108 15a34c63 bellard
NE2000 PCI adapters
2109 15a34c63 bellard
@item
2110 15a34c63 bellard
Non Volatile RAM
2111 15a34c63 bellard
@item
2112 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2113 1a084f3d bellard
@end itemize
2114 1a084f3d bellard
2115 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2116 52c00a5f bellard
2117 52c00a5f bellard
@itemize @minus
2118 5fafdf24 ths
@item
2119 15a34c63 bellard
PCI Bridge
2120 15a34c63 bellard
@item
2121 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2122 5fafdf24 ths
@item
2123 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2124 52c00a5f bellard
@item
2125 52c00a5f bellard
Floppy disk
2126 5fafdf24 ths
@item
2127 15a34c63 bellard
NE2000 network adapters
2128 52c00a5f bellard
@item
2129 52c00a5f bellard
Serial port
2130 52c00a5f bellard
@item
2131 52c00a5f bellard
PREP Non Volatile RAM
2132 15a34c63 bellard
@item
2133 15a34c63 bellard
PC compatible keyboard and mouse.
2134 52c00a5f bellard
@end itemize
2135 52c00a5f bellard
2136 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2137 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2138 52c00a5f bellard
2139 15a34c63 bellard
@c man begin OPTIONS
2140 15a34c63 bellard
2141 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2142 15a34c63 bellard
2143 15a34c63 bellard
@table @option
2144 15a34c63 bellard
2145 3b46e624 ths
@item -g WxH[xDEPTH]
2146 15a34c63 bellard
2147 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2148 15a34c63 bellard
2149 15a34c63 bellard
@end table
2150 15a34c63 bellard
2151 5fafdf24 ths
@c man end
2152 15a34c63 bellard
2153 15a34c63 bellard
2154 52c00a5f bellard
More information is available at
2155 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2156 52c00a5f bellard
2157 24d4de45 ths
@node Sparc32 System emulator
2158 24d4de45 ths
@section Sparc32 System emulator
2159 e80cfcfc bellard
2160 6a3b9cc9 blueswir1
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2161 ee76f82e blueswir1
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2162 ee76f82e blueswir1
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2163 ee76f82e blueswir1
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2164 ee76f82e blueswir1
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2165 ee76f82e blueswir1
of usable CPUs to 4.
2166 e80cfcfc bellard
2167 7d85892b blueswir1
QEMU emulates the following sun4m/sun4d peripherals:
2168 e80cfcfc bellard
2169 e80cfcfc bellard
@itemize @minus
2170 3475187d bellard
@item
2171 7d85892b blueswir1
IOMMU or IO-UNITs
2172 e80cfcfc bellard
@item
2173 e80cfcfc bellard
TCX Frame buffer
2174 5fafdf24 ths
@item
2175 e80cfcfc bellard
Lance (Am7990) Ethernet
2176 e80cfcfc bellard
@item
2177 e80cfcfc bellard
Non Volatile RAM M48T08
2178 e80cfcfc bellard
@item
2179 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2180 3475187d bellard
and power/reset logic
2181 3475187d bellard
@item
2182 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2183 3475187d bellard
@item
2184 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2185 a2502b58 blueswir1
@item
2186 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2187 e80cfcfc bellard
@end itemize
2188 e80cfcfc bellard
2189 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2190 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2191 7d85892b blueswir1
others 2047MB.
2192 3475187d bellard
2193 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2194 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2195 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2196 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2197 3475187d bellard
2198 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2199 0986ac3b bellard
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2200 0986ac3b bellard
Solaris kernels don't work.
2201 3475187d bellard
2202 3475187d bellard
@c man begin OPTIONS
2203 3475187d bellard
2204 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2205 3475187d bellard
2206 3475187d bellard
@table @option
2207 3475187d bellard
2208 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2209 3475187d bellard
2210 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2211 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2212 3475187d bellard
2213 66508601 blueswir1
@item -prom-env string
2214 66508601 blueswir1
2215 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2216 66508601 blueswir1
2217 66508601 blueswir1
@example
2218 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2219 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2220 66508601 blueswir1
@end example
2221 66508601 blueswir1
2222 ee76f82e blueswir1
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2223 a2502b58 blueswir1
2224 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2225 a2502b58 blueswir1
2226 3475187d bellard
@end table
2227 3475187d bellard
2228 5fafdf24 ths
@c man end
2229 3475187d bellard
2230 24d4de45 ths
@node Sparc64 System emulator
2231 24d4de45 ths
@section Sparc64 System emulator
2232 e80cfcfc bellard
2233 3475187d bellard
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2234 3475187d bellard
The emulator is not usable for anything yet.
2235 b756921a bellard
2236 83469015 bellard
QEMU emulates the following sun4u peripherals:
2237 83469015 bellard
2238 83469015 bellard
@itemize @minus
2239 83469015 bellard
@item
2240 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2241 83469015 bellard
@item
2242 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2243 83469015 bellard
@item
2244 83469015 bellard
Non Volatile RAM M48T59
2245 83469015 bellard
@item
2246 83469015 bellard
PC-compatible serial ports
2247 83469015 bellard
@end itemize
2248 83469015 bellard
2249 24d4de45 ths
@node MIPS System emulator
2250 24d4de45 ths
@section MIPS System emulator
2251 9d0a8e6f bellard
2252 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2253 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2254 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2255 88cb0a02 aurel32
Five different machine types are emulated:
2256 24d4de45 ths
2257 24d4de45 ths
@itemize @minus
2258 24d4de45 ths
@item
2259 24d4de45 ths
A generic ISA PC-like machine "mips"
2260 24d4de45 ths
@item
2261 24d4de45 ths
The MIPS Malta prototype board "malta"
2262 24d4de45 ths
@item
2263 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2264 6bf5b4e8 ths
@item
2265 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2266 88cb0a02 aurel32
@item
2267 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2268 24d4de45 ths
@end itemize
2269 24d4de45 ths
2270 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2271 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2272 24d4de45 ths
emulated:
2273 3f9f3aa1 bellard
2274 3f9f3aa1 bellard
@itemize @minus
2275 5fafdf24 ths
@item
2276 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2277 3f9f3aa1 bellard
@item
2278 3f9f3aa1 bellard
PC style serial port
2279 3f9f3aa1 bellard
@item
2280 24d4de45 ths
PC style IDE disk
2281 24d4de45 ths
@item
2282 3f9f3aa1 bellard
NE2000 network card
2283 3f9f3aa1 bellard
@end itemize
2284 3f9f3aa1 bellard
2285 24d4de45 ths
The Malta emulation supports the following devices:
2286 24d4de45 ths
2287 24d4de45 ths
@itemize @minus
2288 24d4de45 ths
@item
2289 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2290 24d4de45 ths
@item
2291 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2292 24d4de45 ths
@item
2293 24d4de45 ths
The Multi-I/O chip's serial device
2294 24d4de45 ths
@item
2295 24d4de45 ths
PCnet32 PCI network card
2296 24d4de45 ths
@item
2297 24d4de45 ths
Malta FPGA serial device
2298 24d4de45 ths
@item
2299 24d4de45 ths
Cirrus VGA graphics card
2300 24d4de45 ths
@end itemize
2301 24d4de45 ths
2302 24d4de45 ths
The ACER Pica emulation supports:
2303 24d4de45 ths
2304 24d4de45 ths
@itemize @minus
2305 24d4de45 ths
@item
2306 24d4de45 ths
MIPS R4000 CPU
2307 24d4de45 ths
@item
2308 24d4de45 ths
PC-style IRQ and DMA controllers
2309 24d4de45 ths
@item
2310 24d4de45 ths
PC Keyboard
2311 24d4de45 ths
@item
2312 24d4de45 ths
IDE controller
2313 24d4de45 ths
@end itemize
2314 3f9f3aa1 bellard
2315 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2316 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2317 f0fc6f8f ths
It supports:
2318 6bf5b4e8 ths
2319 6bf5b4e8 ths
@itemize @minus
2320 6bf5b4e8 ths
@item
2321 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2322 6bf5b4e8 ths
@item
2323 6bf5b4e8 ths
PC style serial port
2324 6bf5b4e8 ths
@item
2325 6bf5b4e8 ths
MIPSnet network emulation
2326 6bf5b4e8 ths
@end itemize
2327 6bf5b4e8 ths
2328 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
2329 88cb0a02 aurel32
2330 88cb0a02 aurel32
@itemize @minus
2331 88cb0a02 aurel32
@item
2332 88cb0a02 aurel32
MIPS R4000 CPU
2333 88cb0a02 aurel32
@item
2334 88cb0a02 aurel32
PC-style IRQ controller
2335 88cb0a02 aurel32
@item
2336 88cb0a02 aurel32
PC Keyboard
2337 88cb0a02 aurel32
@item
2338 88cb0a02 aurel32
SCSI controller
2339 88cb0a02 aurel32
@item
2340 88cb0a02 aurel32
G364 framebuffer
2341 88cb0a02 aurel32
@end itemize
2342 88cb0a02 aurel32
2343 88cb0a02 aurel32
2344 24d4de45 ths
@node ARM System emulator
2345 24d4de45 ths
@section ARM System emulator
2346 3f9f3aa1 bellard
2347 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2348 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2349 3f9f3aa1 bellard
devices:
2350 3f9f3aa1 bellard
2351 3f9f3aa1 bellard
@itemize @minus
2352 3f9f3aa1 bellard
@item
2353 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2354 3f9f3aa1 bellard
@item
2355 3f9f3aa1 bellard
Two PL011 UARTs
2356 5fafdf24 ths
@item
2357 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2358 00a9bf19 pbrook
@item
2359 00a9bf19 pbrook
PL110 LCD controller
2360 00a9bf19 pbrook
@item
2361 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2362 a1bb27b1 pbrook
@item
2363 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2364 00a9bf19 pbrook
@end itemize
2365 00a9bf19 pbrook
2366 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2367 00a9bf19 pbrook
2368 00a9bf19 pbrook
@itemize @minus
2369 00a9bf19 pbrook
@item
2370 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2371 00a9bf19 pbrook
@item
2372 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2373 00a9bf19 pbrook
@item
2374 00a9bf19 pbrook
Four PL011 UARTs
2375 5fafdf24 ths
@item
2376 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2377 00a9bf19 pbrook
@item
2378 00a9bf19 pbrook
PL110 LCD controller
2379 00a9bf19 pbrook
@item
2380 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2381 00a9bf19 pbrook
@item
2382 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2383 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2384 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2385 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2386 00a9bf19 pbrook
mapped control registers.
2387 e6de1bad pbrook
@item
2388 e6de1bad pbrook
PCI OHCI USB controller.
2389 e6de1bad pbrook
@item
2390 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2391 a1bb27b1 pbrook
@item
2392 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2393 3f9f3aa1 bellard
@end itemize
2394 3f9f3aa1 bellard
2395 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2396 d7739d75 pbrook
2397 d7739d75 pbrook
@itemize @minus
2398 d7739d75 pbrook
@item
2399 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2400 d7739d75 pbrook
@item
2401 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2402 d7739d75 pbrook
@item
2403 d7739d75 pbrook
Four PL011 UARTs
2404 5fafdf24 ths
@item
2405 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2406 d7739d75 pbrook
@item
2407 d7739d75 pbrook
PL110 LCD controller
2408 d7739d75 pbrook
@item
2409 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2410 d7739d75 pbrook
@item
2411 d7739d75 pbrook
PCI host bridge
2412 d7739d75 pbrook
@item
2413 d7739d75 pbrook
PCI OHCI USB controller
2414 d7739d75 pbrook
@item
2415 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2416 a1bb27b1 pbrook
@item
2417 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2418 d7739d75 pbrook
@end itemize
2419 d7739d75 pbrook
2420 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2421 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2422 b00052e4 balrog
2423 b00052e4 balrog
@itemize @minus
2424 b00052e4 balrog
@item
2425 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2426 b00052e4 balrog
@item
2427 b00052e4 balrog
NAND Flash memory
2428 b00052e4 balrog
@item
2429 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2430 b00052e4 balrog
@item
2431 b00052e4 balrog
On-chip OHCI USB controller
2432 b00052e4 balrog
@item
2433 b00052e4 balrog
On-chip LCD controller
2434 b00052e4 balrog
@item
2435 b00052e4 balrog
On-chip Real Time Clock
2436 b00052e4 balrog
@item
2437 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2438 b00052e4 balrog
@item
2439 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2440 b00052e4 balrog
@item
2441 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2442 b00052e4 balrog
@item
2443 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2444 b00052e4 balrog
@item
2445 b00052e4 balrog
Three on-chip UARTs
2446 b00052e4 balrog
@item
2447 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2448 b00052e4 balrog
@end itemize
2449 b00052e4 balrog
2450 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2451 02645926 balrog
following elements:
2452 02645926 balrog
2453 02645926 balrog
@itemize @minus
2454 02645926 balrog
@item
2455 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2456 02645926 balrog
@item
2457 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2458 02645926 balrog
@item
2459 02645926 balrog
On-chip LCD controller
2460 02645926 balrog
@item
2461 02645926 balrog
On-chip Real Time Clock
2462 02645926 balrog
@item
2463 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2464 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2465 02645926 balrog
@item
2466 02645926 balrog
GPIO-connected matrix keypad
2467 02645926 balrog
@item
2468 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2469 02645926 balrog
@item
2470 02645926 balrog
Three on-chip UARTs
2471 02645926 balrog
@end itemize
2472 02645926 balrog
2473 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2474 c30bb264 balrog
emulation supports the following elements:
2475 c30bb264 balrog
2476 c30bb264 balrog
@itemize @minus
2477 c30bb264 balrog
@item
2478 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2479 c30bb264 balrog
@item
2480 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2481 c30bb264 balrog
@item
2482 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2483 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2484 c30bb264 balrog
@item
2485 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2486 c30bb264 balrog
driven through SPI bus
2487 c30bb264 balrog
@item
2488 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2489 c30bb264 balrog
through I@math{^2}C bus
2490 c30bb264 balrog
@item
2491 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2492 c30bb264 balrog
@item
2493 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2494 c30bb264 balrog
@item
2495 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2496 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2497 c30bb264 balrog
@item
2498 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2499 c30bb264 balrog
@item
2500 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2501 c30bb264 balrog
@item
2502 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2503 c30bb264 balrog
through CBUS
2504 c30bb264 balrog
@end itemize
2505 c30bb264 balrog
2506 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2507 9ee6e8bb pbrook
devices:
2508 9ee6e8bb pbrook
2509 9ee6e8bb pbrook
@itemize @minus
2510 9ee6e8bb pbrook
@item
2511 9ee6e8bb pbrook
Cortex-M3 CPU core.
2512 9ee6e8bb pbrook
@item
2513 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2514 9ee6e8bb pbrook
@item
2515 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2516 9ee6e8bb pbrook
@item
2517 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2518 9ee6e8bb pbrook
@end itemize
2519 9ee6e8bb pbrook
2520 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2521 9ee6e8bb pbrook
devices:
2522 9ee6e8bb pbrook
2523 9ee6e8bb pbrook
@itemize @minus
2524 9ee6e8bb pbrook
@item
2525 9ee6e8bb pbrook
Cortex-M3 CPU core.
2526 9ee6e8bb pbrook
@item
2527 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2528 9ee6e8bb pbrook
@item
2529 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2530 9ee6e8bb pbrook
@item
2531 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2532 9ee6e8bb pbrook
@end itemize
2533 9ee6e8bb pbrook
2534 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2535 57cd6e97 balrog
elements:
2536 57cd6e97 balrog
2537 57cd6e97 balrog
@itemize @minus
2538 57cd6e97 balrog
@item
2539 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2540 57cd6e97 balrog
@item
2541 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2542 57cd6e97 balrog
@item
2543 57cd6e97 balrog
Up to 2 16550 UARTs
2544 57cd6e97 balrog
@item
2545 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2546 57cd6e97 balrog
@item
2547 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2548 57cd6e97 balrog
@item
2549 57cd6e97 balrog
128?64 display with brightness control
2550 57cd6e97 balrog
@item
2551 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2552 57cd6e97 balrog
@end itemize
2553 57cd6e97 balrog
2554 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2555 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2556 9d0a8e6f bellard
2557 24d4de45 ths
@node ColdFire System emulator
2558 24d4de45 ths
@section ColdFire System emulator
2559 209a4e69 pbrook
2560 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2561 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2562 707e011b pbrook
2563 707e011b pbrook
The M5208EVB emulation includes the following devices:
2564 707e011b pbrook
2565 707e011b pbrook
@itemize @minus
2566 5fafdf24 ths
@item
2567 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2568 707e011b pbrook
@item
2569 707e011b pbrook
Three Two on-chip UARTs.
2570 707e011b pbrook
@item
2571 707e011b pbrook
Fast Ethernet Controller (FEC)
2572 707e011b pbrook
@end itemize
2573 707e011b pbrook
2574 707e011b pbrook
The AN5206 emulation includes the following devices:
2575 209a4e69 pbrook
2576 209a4e69 pbrook
@itemize @minus
2577 5fafdf24 ths
@item
2578 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2579 209a4e69 pbrook
@item
2580 209a4e69 pbrook
Two on-chip UARTs.
2581 209a4e69 pbrook
@end itemize
2582 209a4e69 pbrook
2583 5fafdf24 ths
@node QEMU User space emulator
2584 5fafdf24 ths
@chapter QEMU User space emulator
2585 83195237 bellard
2586 83195237 bellard
@menu
2587 83195237 bellard
* Supported Operating Systems ::
2588 83195237 bellard
* Linux User space emulator::
2589 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2590 83195237 bellard
@end menu
2591 83195237 bellard
2592 83195237 bellard
@node Supported Operating Systems
2593 83195237 bellard
@section Supported Operating Systems
2594 83195237 bellard
2595 83195237 bellard
The following OS are supported in user space emulation:
2596 83195237 bellard
2597 83195237 bellard
@itemize @minus
2598 83195237 bellard
@item
2599 4be456f1 ths
Linux (referred as qemu-linux-user)
2600 83195237 bellard
@item
2601 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2602 83195237 bellard
@end itemize
2603 83195237 bellard
2604 83195237 bellard
@node Linux User space emulator
2605 83195237 bellard
@section Linux User space emulator
2606 386405f7 bellard
2607 debc7065 bellard
@menu
2608 debc7065 bellard
* Quick Start::
2609 debc7065 bellard
* Wine launch::
2610 debc7065 bellard
* Command line options::
2611 79737e4a pbrook
* Other binaries::
2612 debc7065 bellard
@end menu
2613 debc7065 bellard
2614 debc7065 bellard
@node Quick Start
2615 83195237 bellard
@subsection Quick Start
2616 df0f11a0 bellard
2617 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2618 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2619 386405f7 bellard
2620 1f673135 bellard
@itemize
2621 386405f7 bellard
2622 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2623 1f673135 bellard
libraries:
2624 386405f7 bellard
2625 5fafdf24 ths
@example
2626 1f673135 bellard
qemu-i386 -L / /bin/ls
2627 1f673135 bellard
@end example
2628 386405f7 bellard
2629 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2630 1f673135 bellard
@file{/} prefix.
2631 386405f7 bellard
2632 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2633 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2634 386405f7 bellard
2635 5fafdf24 ths
@example
2636 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2637 1f673135 bellard
@end example
2638 386405f7 bellard
2639 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2640 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2641 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2642 df0f11a0 bellard
2643 1f673135 bellard
@example
2644 5fafdf24 ths
unset LD_LIBRARY_PATH
2645 1f673135 bellard
@end example
2646 1eb87257 bellard
2647 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2648 1eb87257 bellard
2649 1f673135 bellard
@example
2650 1f673135 bellard
qemu-i386 tests/i386/ls
2651 1f673135 bellard
@end example
2652 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2653 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2654 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2655 1f673135 bellard
Linux kernel.
2656 1eb87257 bellard
2657 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2658 1f673135 bellard
@example
2659 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2660 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2661 1f673135 bellard
@end example
2662 1eb20527 bellard
2663 1f673135 bellard
@end itemize
2664 1eb20527 bellard
2665 debc7065 bellard
@node Wine launch
2666 83195237 bellard
@subsection Wine launch
2667 1eb20527 bellard
2668 1f673135 bellard
@itemize
2669 386405f7 bellard
2670 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2671 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2672 1f673135 bellard
able to do:
2673 386405f7 bellard
2674 1f673135 bellard
@example
2675 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2676 1f673135 bellard
@end example
2677 386405f7 bellard
2678 1f673135 bellard
@item Download the binary x86 Wine install
2679 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2680 386405f7 bellard
2681 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2682 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2683 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2684 386405f7 bellard
2685 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2686 386405f7 bellard
2687 1f673135 bellard
@example
2688 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2689 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2690 1f673135 bellard
@end example
2691 386405f7 bellard
2692 1f673135 bellard
@end itemize
2693 fd429f2f bellard
2694 debc7065 bellard
@node Command line options
2695 83195237 bellard
@subsection Command line options
2696 1eb20527 bellard
2697 1f673135 bellard
@example
2698 1f673135 bellard
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2699 1f673135 bellard
@end example
2700 1eb20527 bellard
2701 1f673135 bellard
@table @option
2702 1f673135 bellard
@item -h
2703 1f673135 bellard
Print the help
2704 3b46e624 ths
@item -L path
2705 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2706 1f673135 bellard
@item -s size
2707 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2708 386405f7 bellard
@end table
2709 386405f7 bellard
2710 1f673135 bellard
Debug options:
2711 386405f7 bellard
2712 1f673135 bellard
@table @option
2713 1f673135 bellard
@item -d
2714 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2715 1f673135 bellard
@item -p pagesize
2716 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2717 1f673135 bellard
@end table
2718 386405f7 bellard
2719 b01bcae6 balrog
Environment variables:
2720 b01bcae6 balrog
2721 b01bcae6 balrog
@table @env
2722 b01bcae6 balrog
@item QEMU_STRACE
2723 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2724 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2725 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2726 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2727 b01bcae6 balrog
format are printed with information for six arguments.  Many
2728 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2729 5cfdf930 ths
@end table
2730 b01bcae6 balrog
2731 79737e4a pbrook
@node Other binaries
2732 83195237 bellard
@subsection Other binaries
2733 79737e4a pbrook
2734 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2735 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2736 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2737 79737e4a pbrook
2738 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2739 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2740 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2741 e6e5906b pbrook
2742 79737e4a pbrook
The binary format is detected automatically.
2743 79737e4a pbrook
2744 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2745 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2746 a785e42e blueswir1
2747 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2748 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2749 a785e42e blueswir1
2750 83195237 bellard
@node Mac OS X/Darwin User space emulator
2751 83195237 bellard
@section Mac OS X/Darwin User space emulator
2752 83195237 bellard
2753 83195237 bellard
@menu
2754 83195237 bellard
* Mac OS X/Darwin Status::
2755 83195237 bellard
* Mac OS X/Darwin Quick Start::
2756 83195237 bellard
* Mac OS X/Darwin Command line options::
2757 83195237 bellard
@end menu
2758 83195237 bellard
2759 83195237 bellard
@node Mac OS X/Darwin Status
2760 83195237 bellard
@subsection Mac OS X/Darwin Status
2761 83195237 bellard
2762 83195237 bellard
@itemize @minus
2763 83195237 bellard
@item
2764 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2765 83195237 bellard
@item
2766 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2767 83195237 bellard
@item
2768 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2769 83195237 bellard
@item
2770 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2771 83195237 bellard
@end itemize
2772 83195237 bellard
2773 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2774 83195237 bellard
2775 83195237 bellard
@node Mac OS X/Darwin Quick Start
2776 83195237 bellard
@subsection Quick Start
2777 83195237 bellard
2778 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2779 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2780 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2781 83195237 bellard
CD or compile them by hand.
2782 83195237 bellard
2783 83195237 bellard
@itemize
2784 83195237 bellard
2785 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2786 83195237 bellard
libraries:
2787 83195237 bellard
2788 5fafdf24 ths
@example
2789 dbcf5e82 ths
qemu-i386 /bin/ls
2790 83195237 bellard
@end example
2791 83195237 bellard
2792 83195237 bellard
or to run the ppc version of the executable:
2793 83195237 bellard
2794 5fafdf24 ths
@example
2795 dbcf5e82 ths
qemu-ppc /bin/ls
2796 83195237 bellard
@end example
2797 83195237 bellard
2798 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2799 83195237 bellard
are installed:
2800 83195237 bellard
2801 5fafdf24 ths
@example
2802 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2803 83195237 bellard
@end example
2804 83195237 bellard
2805 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2806 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2807 83195237 bellard
2808 83195237 bellard
@end itemize
2809 83195237 bellard
2810 83195237 bellard
@node Mac OS X/Darwin Command line options
2811 83195237 bellard
@subsection Command line options
2812 83195237 bellard
2813 83195237 bellard
@example
2814 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2815 83195237 bellard
@end example
2816 83195237 bellard
2817 83195237 bellard
@table @option
2818 83195237 bellard
@item -h
2819 83195237 bellard
Print the help
2820 3b46e624 ths
@item -L path
2821 83195237 bellard
Set the library root path (default=/)
2822 83195237 bellard
@item -s size
2823 83195237 bellard
Set the stack size in bytes (default=524288)
2824 83195237 bellard
@end table
2825 83195237 bellard
2826 83195237 bellard
Debug options:
2827 83195237 bellard
2828 83195237 bellard
@table @option
2829 83195237 bellard
@item -d
2830 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2831 83195237 bellard
@item -p pagesize
2832 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2833 83195237 bellard
@end table
2834 83195237 bellard
2835 15a34c63 bellard
@node compilation
2836 15a34c63 bellard
@chapter Compilation from the sources
2837 15a34c63 bellard
2838 debc7065 bellard
@menu
2839 debc7065 bellard
* Linux/Unix::
2840 debc7065 bellard
* Windows::
2841 debc7065 bellard
* Cross compilation for Windows with Linux::
2842 debc7065 bellard
* Mac OS X::
2843 debc7065 bellard
@end menu
2844 debc7065 bellard
2845 debc7065 bellard
@node Linux/Unix
2846 7c3fc84d bellard
@section Linux/Unix
2847 7c3fc84d bellard
2848 7c3fc84d bellard
@subsection Compilation
2849 7c3fc84d bellard
2850 7c3fc84d bellard
First you must decompress the sources:
2851 7c3fc84d bellard
@example
2852 7c3fc84d bellard
cd /tmp
2853 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2854 7c3fc84d bellard
cd qemu-x.y.z
2855 7c3fc84d bellard
@end example
2856 7c3fc84d bellard
2857 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2858 7c3fc84d bellard
@example
2859 7c3fc84d bellard
./configure
2860 7c3fc84d bellard
make
2861 7c3fc84d bellard
@end example
2862 7c3fc84d bellard
2863 7c3fc84d bellard
Then type as root user:
2864 7c3fc84d bellard
@example
2865 7c3fc84d bellard
make install
2866 7c3fc84d bellard
@end example
2867 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2868 7c3fc84d bellard
2869 4fe8b87a bellard
@subsection GCC version
2870 7c3fc84d bellard
2871 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
2872 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
2873 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2874 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
2875 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
2876 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
2877 4be456f1 ths
these older versions so that usually you don't have to do anything.
2878 15a34c63 bellard
2879 debc7065 bellard
@node Windows
2880 15a34c63 bellard
@section Windows
2881 15a34c63 bellard
2882 15a34c63 bellard
@itemize
2883 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2884 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2885 15a34c63 bellard
instructions in the download section and the FAQ.
2886 15a34c63 bellard
2887 5fafdf24 ths
@item Download
2888 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2889 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2890 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2891 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2892 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
2893 15a34c63 bellard
correct SDL directory when invoked.
2894 15a34c63 bellard
2895 15a34c63 bellard
@item Extract the current version of QEMU.
2896 5fafdf24 ths
2897 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2898 15a34c63 bellard
2899 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2900 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2901 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2902 15a34c63 bellard
2903 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2904 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2905 15a34c63 bellard
@file{Program Files/Qemu}.
2906 15a34c63 bellard
2907 15a34c63 bellard
@end itemize
2908 15a34c63 bellard
2909 debc7065 bellard
@node Cross compilation for Windows with Linux
2910 15a34c63 bellard
@section Cross compilation for Windows with Linux
2911 15a34c63 bellard
2912 15a34c63 bellard
@itemize
2913 15a34c63 bellard
@item
2914 15a34c63 bellard
Install the MinGW cross compilation tools available at
2915 15a34c63 bellard
@url{http://www.mingw.org/}.
2916 15a34c63 bellard
2917 5fafdf24 ths
@item
2918 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2919 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2920 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2921 15a34c63 bellard
the QEMU configuration script.
2922 15a34c63 bellard
2923 5fafdf24 ths
@item
2924 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2925 15a34c63 bellard
@example
2926 15a34c63 bellard
./configure --enable-mingw32
2927 15a34c63 bellard
@end example
2928 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
2929 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
2930 15a34c63 bellard
--prefix to set the Win32 install path.
2931 15a34c63 bellard
2932 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2933 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2934 5fafdf24 ths
installation directory.
2935 15a34c63 bellard
2936 15a34c63 bellard
@end itemize
2937 15a34c63 bellard
2938 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
2939 15a34c63 bellard
QEMU for Win32.
2940 15a34c63 bellard
2941 debc7065 bellard
@node Mac OS X
2942 15a34c63 bellard
@section Mac OS X
2943 15a34c63 bellard
2944 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2945 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2946 15a34c63 bellard
information.
2947 15a34c63 bellard
2948 debc7065 bellard
@node Index
2949 debc7065 bellard
@chapter Index
2950 debc7065 bellard
@printindex cp
2951 debc7065 bellard
2952 debc7065 bellard
@bye