Statistics
| Branch: | Revision:

root / hw / slavio_misc.c @ 5e3cb534

History | View | Annotate | Download (12.5 kB)

1
/*
2
 * QEMU Sparc SLAVIO aux io port emulation
3
 *
4
 * Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "sysemu.h"
27

    
28
/* debug misc */
29
//#define DEBUG_MISC
30

    
31
/*
32
 * This is the auxio port, chip control and system control part of
33
 * chip STP2001 (Slave I/O), also produced as NCR89C105. See
34
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
35
 *
36
 * This also includes the PMC CPU idle controller.
37
 */
38

    
39
#ifdef DEBUG_MISC
40
#define MISC_DPRINTF(fmt, args...) \
41
do { printf("MISC: " fmt , ##args); } while (0)
42
#else
43
#define MISC_DPRINTF(fmt, args...)
44
#endif
45

    
46
typedef struct MiscState {
47
    qemu_irq irq;
48
    uint8_t config;
49
    uint8_t aux1, aux2;
50
    uint8_t diag, mctrl;
51
    uint32_t sysctrl;
52
    uint16_t leds;
53
    qemu_irq cpu_halt;
54
    qemu_irq fdc_tc;
55
} MiscState;
56

    
57
#define MISC_SIZE 1
58
#define SYSCTRL_SIZE 4
59
#define LED_MAXADDR 1
60
#define LED_SIZE (LED_MAXADDR + 1)
61

    
62
#define MISC_MASK 0x0fff0000
63
#define MISC_LEDS 0x01600000
64
#define MISC_CFG  0x01800000
65
#define MISC_DIAG 0x01a00000
66
#define MISC_MDM  0x01b00000
67
#define MISC_SYS  0x01f00000
68

    
69
#define AUX1_TC        0x02
70

    
71
#define AUX2_PWROFF    0x01
72
#define AUX2_PWRINTCLR 0x02
73
#define AUX2_PWRFAIL   0x20
74

    
75
#define CFG_PWRINTEN   0x08
76

    
77
#define SYS_RESET      0x01
78
#define SYS_RESETSTAT  0x02
79

    
80
static void slavio_misc_update_irq(void *opaque)
81
{
82
    MiscState *s = opaque;
83

    
84
    if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) {
85
        MISC_DPRINTF("Raise IRQ\n");
86
        qemu_irq_raise(s->irq);
87
    } else {
88
        MISC_DPRINTF("Lower IRQ\n");
89
        qemu_irq_lower(s->irq);
90
    }
91
}
92

    
93
static void slavio_misc_reset(void *opaque)
94
{
95
    MiscState *s = opaque;
96

    
97
    // Diagnostic and system control registers not cleared in reset
98
    s->config = s->aux1 = s->aux2 = s->mctrl = 0;
99
}
100

    
101
void slavio_set_power_fail(void *opaque, int power_failing)
102
{
103
    MiscState *s = opaque;
104

    
105
    MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config);
106
    if (power_failing && (s->config & CFG_PWRINTEN)) {
107
        s->aux2 |= AUX2_PWRFAIL;
108
    } else {
109
        s->aux2 &= ~AUX2_PWRFAIL;
110
    }
111
    slavio_misc_update_irq(s);
112
}
113

    
114
static void slavio_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
115
                                  uint32_t val)
116
{
117
    MiscState *s = opaque;
118

    
119
    MISC_DPRINTF("Write config %2.2x\n", val & 0xff);
120
    s->config = val & 0xff;
121
    slavio_misc_update_irq(s);
122
}
123

    
124
static uint32_t slavio_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
125
{
126
    MiscState *s = opaque;
127
    uint32_t ret = 0;
128

    
129
    ret = s->config;
130
    MISC_DPRINTF("Read config %2.2x\n", ret);
131
    return ret;
132
}
133

    
134
static CPUReadMemoryFunc *slavio_cfg_mem_read[3] = {
135
    slavio_cfg_mem_readb,
136
    NULL,
137
    NULL,
138
};
139

    
140
static CPUWriteMemoryFunc *slavio_cfg_mem_write[3] = {
141
    slavio_cfg_mem_writeb,
142
    NULL,
143
    NULL,
144
};
145

    
146
static void slavio_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
147
                                   uint32_t val)
148
{
149
    MiscState *s = opaque;
150

    
151
    MISC_DPRINTF("Write diag %2.2x\n", val & 0xff);
152
    s->diag = val & 0xff;
153
}
154

    
155
static uint32_t slavio_diag_mem_readb(void *opaque, target_phys_addr_t addr)
156
{
157
    MiscState *s = opaque;
158
    uint32_t ret = 0;
159

    
160
    ret = s->diag;
161
    MISC_DPRINTF("Read diag %2.2x\n", ret);
162
    return ret;
163
}
164

    
165
static CPUReadMemoryFunc *slavio_diag_mem_read[3] = {
166
    slavio_diag_mem_readb,
167
    NULL,
168
    NULL,
169
};
170

    
171
static CPUWriteMemoryFunc *slavio_diag_mem_write[3] = {
172
    slavio_diag_mem_writeb,
173
    NULL,
174
    NULL,
175
};
176

    
177
static void slavio_mdm_mem_writeb(void *opaque, target_phys_addr_t addr,
178
                                  uint32_t val)
179
{
180
    MiscState *s = opaque;
181

    
182
    MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff);
183
    s->mctrl = val & 0xff;
184
}
185

    
186
static uint32_t slavio_mdm_mem_readb(void *opaque, target_phys_addr_t addr)
187
{
188
    MiscState *s = opaque;
189
    uint32_t ret = 0;
190

    
191
    ret = s->mctrl;
192
    MISC_DPRINTF("Read modem control %2.2x\n", ret);
193
    return ret;
194
}
195

    
196
static CPUReadMemoryFunc *slavio_mdm_mem_read[3] = {
197
    slavio_mdm_mem_readb,
198
    NULL,
199
    NULL,
200
};
201

    
202
static CPUWriteMemoryFunc *slavio_mdm_mem_write[3] = {
203
    slavio_mdm_mem_writeb,
204
    NULL,
205
    NULL,
206
};
207

    
208
static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr,
209
                                   uint32_t val)
210
{
211
    MiscState *s = opaque;
212

    
213
    MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff);
214
    if (val & AUX1_TC) {
215
        // Send a pulse to floppy terminal count line
216
        if (s->fdc_tc) {
217
            qemu_irq_raise(s->fdc_tc);
218
            qemu_irq_lower(s->fdc_tc);
219
        }
220
        val &= ~AUX1_TC;
221
    }
222
    s->aux1 = val & 0xff;
223
}
224

    
225
static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr)
226
{
227
    MiscState *s = opaque;
228
    uint32_t ret = 0;
229

    
230
    ret = s->aux1;
231
    MISC_DPRINTF("Read aux1 %2.2x\n", ret);
232

    
233
    return ret;
234
}
235

    
236
static CPUReadMemoryFunc *slavio_aux1_mem_read[3] = {
237
    slavio_aux1_mem_readb,
238
    NULL,
239
    NULL,
240
};
241

    
242
static CPUWriteMemoryFunc *slavio_aux1_mem_write[3] = {
243
    slavio_aux1_mem_writeb,
244
    NULL,
245
    NULL,
246
};
247

    
248
static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr,
249
                                   uint32_t val)
250
{
251
    MiscState *s = opaque;
252

    
253
    val &= AUX2_PWRINTCLR | AUX2_PWROFF;
254
    MISC_DPRINTF("Write aux2 %2.2x\n", val);
255
    val |= s->aux2 & AUX2_PWRFAIL;
256
    if (val & AUX2_PWRINTCLR) // Clear Power Fail int
257
        val &= AUX2_PWROFF;
258
    s->aux2 = val;
259
    if (val & AUX2_PWROFF)
260
        qemu_system_shutdown_request();
261
    slavio_misc_update_irq(s);
262
}
263

    
264
static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr)
265
{
266
    MiscState *s = opaque;
267
    uint32_t ret = 0;
268

    
269
    ret = s->aux2;
270
    MISC_DPRINTF("Read aux2 %2.2x\n", ret);
271

    
272
    return ret;
273
}
274

    
275
static CPUReadMemoryFunc *slavio_aux2_mem_read[3] = {
276
    slavio_aux2_mem_readb,
277
    NULL,
278
    NULL,
279
};
280

    
281
static CPUWriteMemoryFunc *slavio_aux2_mem_write[3] = {
282
    slavio_aux2_mem_writeb,
283
    NULL,
284
    NULL,
285
};
286

    
287
static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
288
{
289
    MiscState *s = opaque;
290

    
291
    MISC_DPRINTF("Write power management %2.2x\n", val & 0xff);
292
    qemu_irq_raise(s->cpu_halt);
293
}
294

    
295
static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr)
296
{
297
    uint32_t ret = 0;
298

    
299
    MISC_DPRINTF("Read power management %2.2x\n", ret);
300
    return ret;
301
}
302

    
303
static CPUReadMemoryFunc *apc_mem_read[3] = {
304
    apc_mem_readb,
305
    NULL,
306
    NULL,
307
};
308

    
309
static CPUWriteMemoryFunc *apc_mem_write[3] = {
310
    apc_mem_writeb,
311
    NULL,
312
    NULL,
313
};
314

    
315
static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
316
{
317
    MiscState *s = opaque;
318
    uint32_t ret = 0;
319

    
320
    switch (addr) {
321
    case 0:
322
        ret = s->sysctrl;
323
        break;
324
    default:
325
        break;
326
    }
327
    MISC_DPRINTF("Read system control %08x\n", ret);
328
    return ret;
329
}
330

    
331
static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
332
                                      uint32_t val)
333
{
334
    MiscState *s = opaque;
335

    
336
    MISC_DPRINTF("Write system control %08x\n", val);
337
    switch (addr) {
338
    case 0:
339
        if (val & SYS_RESET) {
340
            s->sysctrl = SYS_RESETSTAT;
341
            qemu_system_reset_request();
342
        }
343
        break;
344
    default:
345
        break;
346
    }
347
}
348

    
349
static CPUReadMemoryFunc *slavio_sysctrl_mem_read[3] = {
350
    NULL,
351
    NULL,
352
    slavio_sysctrl_mem_readl,
353
};
354

    
355
static CPUWriteMemoryFunc *slavio_sysctrl_mem_write[3] = {
356
    NULL,
357
    NULL,
358
    slavio_sysctrl_mem_writel,
359
};
360

    
361
static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr)
362
{
363
    MiscState *s = opaque;
364
    uint32_t ret = 0;
365

    
366
    switch (addr) {
367
    case 0:
368
        ret = s->leds;
369
        break;
370
    default:
371
        break;
372
    }
373
    MISC_DPRINTF("Read diagnostic LED %04x\n", ret);
374
    return ret;
375
}
376

    
377
static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr,
378
                                  uint32_t val)
379
{
380
    MiscState *s = opaque;
381

    
382
    MISC_DPRINTF("Write diagnostic LED %04x\n", val & 0xffff);
383
    switch (addr) {
384
    case 0:
385
        s->leds = val;
386
        break;
387
    default:
388
        break;
389
    }
390
}
391

    
392
static CPUReadMemoryFunc *slavio_led_mem_read[3] = {
393
    NULL,
394
    slavio_led_mem_readw,
395
    NULL,
396
};
397

    
398
static CPUWriteMemoryFunc *slavio_led_mem_write[3] = {
399
    NULL,
400
    slavio_led_mem_writew,
401
    NULL,
402
};
403

    
404
static void slavio_misc_save(QEMUFile *f, void *opaque)
405
{
406
    MiscState *s = opaque;
407
    uint32_t tmp = 0;
408
    uint8_t tmp8;
409

    
410
    qemu_put_be32s(f, &tmp); /* ignored, was IRQ.  */
411
    qemu_put_8s(f, &s->config);
412
    qemu_put_8s(f, &s->aux1);
413
    qemu_put_8s(f, &s->aux2);
414
    qemu_put_8s(f, &s->diag);
415
    qemu_put_8s(f, &s->mctrl);
416
    tmp8 = s->sysctrl & 0xff;
417
    qemu_put_8s(f, &tmp8);
418
}
419

    
420
static int slavio_misc_load(QEMUFile *f, void *opaque, int version_id)
421
{
422
    MiscState *s = opaque;
423
    uint32_t tmp;
424
    uint8_t tmp8;
425

    
426
    if (version_id != 1)
427
        return -EINVAL;
428

    
429
    qemu_get_be32s(f, &tmp);
430
    qemu_get_8s(f, &s->config);
431
    qemu_get_8s(f, &s->aux1);
432
    qemu_get_8s(f, &s->aux2);
433
    qemu_get_8s(f, &s->diag);
434
    qemu_get_8s(f, &s->mctrl);
435
    qemu_get_8s(f, &tmp8);
436
    s->sysctrl = (uint32_t)tmp8;
437
    return 0;
438
}
439

    
440
void *slavio_misc_init(target_phys_addr_t base, target_phys_addr_t power_base,
441
                       target_phys_addr_t aux1_base,
442
                       target_phys_addr_t aux2_base, qemu_irq irq,
443
                       qemu_irq cpu_halt, qemu_irq **fdc_tc)
444
{
445
    int io;
446
    MiscState *s;
447

    
448
    s = qemu_mallocz(sizeof(MiscState));
449

    
450
    if (base) {
451
        /* 8 bit registers */
452

    
453
        // Slavio control
454
        io = cpu_register_io_memory(0, slavio_cfg_mem_read,
455
                                    slavio_cfg_mem_write, s);
456
        cpu_register_physical_memory(base + MISC_CFG, MISC_SIZE, io);
457

    
458
        // Diagnostics
459
        io = cpu_register_io_memory(0, slavio_diag_mem_read,
460
                                    slavio_diag_mem_write, s);
461
        cpu_register_physical_memory(base + MISC_DIAG, MISC_SIZE, io);
462

    
463
        // Modem control
464
        io = cpu_register_io_memory(0, slavio_mdm_mem_read,
465
                                    slavio_mdm_mem_write, s);
466
        cpu_register_physical_memory(base + MISC_MDM, MISC_SIZE, io);
467

    
468
        /* 16 bit registers */
469
        io = cpu_register_io_memory(0, slavio_led_mem_read,
470
                                    slavio_led_mem_write, s);
471
        /* ss600mp diag LEDs */
472
        cpu_register_physical_memory(base + MISC_LEDS, MISC_SIZE, io);
473

    
474
        /* 32 bit registers */
475
        io = cpu_register_io_memory(0, slavio_sysctrl_mem_read,
476
                                    slavio_sysctrl_mem_write, s);
477
        // System control
478
        cpu_register_physical_memory(base + MISC_SYS, SYSCTRL_SIZE, io);
479
    }
480

    
481
    // AUX 1 (Misc System Functions)
482
    if (aux1_base) {
483
        io = cpu_register_io_memory(0, slavio_aux1_mem_read,
484
                                    slavio_aux1_mem_write, s);
485
        cpu_register_physical_memory(aux1_base, MISC_SIZE, io);
486
    }
487

    
488
    // AUX 2 (Software Powerdown Control)
489
    if (aux2_base) {
490
        io = cpu_register_io_memory(0, slavio_aux2_mem_read,
491
                                    slavio_aux2_mem_write, s);
492
        cpu_register_physical_memory(aux2_base, MISC_SIZE, io);
493
    }
494

    
495
    // Power management (APC) XXX: not a Slavio device
496
    if (power_base) {
497
        io = cpu_register_io_memory(0, apc_mem_read, apc_mem_write, s);
498
        cpu_register_physical_memory(power_base, MISC_SIZE, io);
499
    }
500

    
501
    s->irq = irq;
502
    s->cpu_halt = cpu_halt;
503
    *fdc_tc = &s->fdc_tc;
504

    
505
    register_savevm("slavio_misc", base, 1, slavio_misc_save, slavio_misc_load,
506
                    s);
507
    qemu_register_reset(slavio_misc_reset, s);
508
    slavio_misc_reset(s);
509

    
510
    return s;
511
}