Statistics
| Branch: | Revision:

root / hw / xtensa_lx60.c @ 5f893b4e

History | View | Annotate | Download (9.9 kB)

1
/*
2
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions are met:
7
 *     * Redistributions of source code must retain the above copyright
8
 *       notice, this list of conditions and the following disclaimer.
9
 *     * Redistributions in binary form must reproduce the above copyright
10
 *       notice, this list of conditions and the following disclaimer in the
11
 *       documentation and/or other materials provided with the distribution.
12
 *     * Neither the name of the Open Source and Linux Lab nor the
13
 *       names of its contributors may be used to endorse or promote products
14
 *       derived from this software without specific prior written permission.
15
 *
16
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 */
27

    
28
#include "sysemu.h"
29
#include "boards.h"
30
#include "loader.h"
31
#include "elf.h"
32
#include "memory.h"
33
#include "exec-memory.h"
34
#include "pc.h"
35
#include "sysbus.h"
36
#include "flash.h"
37
#include "blockdev.h"
38
#include "xtensa_bootparam.h"
39

    
40
typedef struct LxBoardDesc {
41
    size_t flash_size;
42
    size_t flash_sector_size;
43
    size_t sram_size;
44
} LxBoardDesc;
45

    
46
typedef struct Lx60FpgaState {
47
    MemoryRegion iomem;
48
    uint32_t leds;
49
    uint32_t switches;
50
} Lx60FpgaState;
51

    
52
static void lx60_fpga_reset(void *opaque)
53
{
54
    Lx60FpgaState *s = opaque;
55

    
56
    s->leds = 0;
57
    s->switches = 0;
58
}
59

    
60
static uint64_t lx60_fpga_read(void *opaque, target_phys_addr_t addr,
61
        unsigned size)
62
{
63
    Lx60FpgaState *s = opaque;
64

    
65
    switch (addr) {
66
    case 0x0: /*build date code*/
67
        return 0x09272011;
68

    
69
    case 0x4: /*processor clock frequency, Hz*/
70
        return 10000000;
71

    
72
    case 0x8: /*LEDs (off = 0, on = 1)*/
73
        return s->leds;
74

    
75
    case 0xc: /*DIP switches (off = 0, on = 1)*/
76
        return s->switches;
77
    }
78
    return 0;
79
}
80

    
81
static void lx60_fpga_write(void *opaque, target_phys_addr_t addr,
82
        uint64_t val, unsigned size)
83
{
84
    Lx60FpgaState *s = opaque;
85

    
86
    switch (addr) {
87
    case 0x8: /*LEDs (off = 0, on = 1)*/
88
        s->leds = val;
89
        break;
90

    
91
    case 0x10: /*board reset*/
92
        if (val == 0xdead) {
93
            qemu_system_reset_request();
94
        }
95
        break;
96
    }
97
}
98

    
99
static const MemoryRegionOps lx60_fpga_ops = {
100
    .read = lx60_fpga_read,
101
    .write = lx60_fpga_write,
102
    .endianness = DEVICE_NATIVE_ENDIAN,
103
};
104

    
105
static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
106
        target_phys_addr_t base)
107
{
108
    Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
109

    
110
    memory_region_init_io(&s->iomem, &lx60_fpga_ops, s,
111
            "lx60.fpga", 0x10000);
112
    memory_region_add_subregion(address_space, base, &s->iomem);
113
    lx60_fpga_reset(s);
114
    qemu_register_reset(lx60_fpga_reset, s);
115
    return s;
116
}
117

    
118
static void lx60_net_init(MemoryRegion *address_space,
119
        target_phys_addr_t base,
120
        target_phys_addr_t descriptors,
121
        target_phys_addr_t buffers,
122
        qemu_irq irq, NICInfo *nd)
123
{
124
    DeviceState *dev;
125
    SysBusDevice *s;
126
    MemoryRegion *ram;
127

    
128
    dev = qdev_create(NULL, "open_eth");
129
    qdev_set_nic_properties(dev, nd);
130
    qdev_init_nofail(dev);
131

    
132
    s = sysbus_from_qdev(dev);
133
    sysbus_connect_irq(s, 0, irq);
134
    memory_region_add_subregion(address_space, base,
135
            sysbus_mmio_get_region(s, 0));
136
    memory_region_add_subregion(address_space, descriptors,
137
            sysbus_mmio_get_region(s, 1));
138

    
139
    ram = g_malloc(sizeof(*ram));
140
    memory_region_init_ram(ram, "open_eth.ram", 16384);
141
    vmstate_register_ram_global(ram);
142
    memory_region_add_subregion(address_space, buffers, ram);
143
}
144

    
145
static uint64_t translate_phys_addr(void *env, uint64_t addr)
146
{
147
    return cpu_get_phys_page_debug(env, addr);
148
}
149

    
150
static void lx60_reset(void *opaque)
151
{
152
    XtensaCPU *cpu = opaque;
153

    
154
    cpu_reset(CPU(cpu));
155
}
156

    
157
static void lx_init(const LxBoardDesc *board,
158
        ram_addr_t ram_size, const char *boot_device,
159
        const char *kernel_filename, const char *kernel_cmdline,
160
        const char *initrd_filename, const char *cpu_model)
161
{
162
#ifdef TARGET_WORDS_BIGENDIAN
163
    int be = 1;
164
#else
165
    int be = 0;
166
#endif
167
    MemoryRegion *system_memory = get_system_memory();
168
    XtensaCPU *cpu = NULL;
169
    CPUXtensaState *env = NULL;
170
    MemoryRegion *ram, *rom, *system_io;
171
    DriveInfo *dinfo;
172
    pflash_t *flash = NULL;
173
    int n;
174

    
175
    if (!cpu_model) {
176
        cpu_model = XTENSA_DEFAULT_CPU_MODEL;
177
    }
178

    
179
    for (n = 0; n < smp_cpus; n++) {
180
        cpu = cpu_xtensa_init(cpu_model);
181
        if (cpu == NULL) {
182
            fprintf(stderr, "Unable to find CPU definition\n");
183
            exit(1);
184
        }
185
        env = &cpu->env;
186

    
187
        env->sregs[PRID] = n;
188
        qemu_register_reset(lx60_reset, cpu);
189
        /* Need MMU initialized prior to ELF loading,
190
         * so that ELF gets loaded into virtual addresses
191
         */
192
        cpu_reset(CPU(cpu));
193
    }
194

    
195
    ram = g_malloc(sizeof(*ram));
196
    memory_region_init_ram(ram, "lx60.dram", ram_size);
197
    vmstate_register_ram_global(ram);
198
    memory_region_add_subregion(system_memory, 0, ram);
199

    
200
    system_io = g_malloc(sizeof(*system_io));
201
    memory_region_init(system_io, "lx60.io", 224 * 1024 * 1024);
202
    memory_region_add_subregion(system_memory, 0xf0000000, system_io);
203
    lx60_fpga_init(system_io, 0x0d020000);
204
    if (nd_table[0].used) {
205
        lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
206
                xtensa_get_extint(env, 1), nd_table);
207
    }
208

    
209
    if (!serial_hds[0]) {
210
        serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
211
    }
212

    
213
    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
214
            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
215

    
216
    dinfo = drive_get(IF_PFLASH, 0, 0);
217
    if (dinfo) {
218
        flash = pflash_cfi01_register(0xf8000000,
219
                NULL, "lx60.io.flash", board->flash_size,
220
                dinfo->bdrv, board->flash_sector_size,
221
                board->flash_size / board->flash_sector_size,
222
                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
223
        if (flash == NULL) {
224
            fprintf(stderr, "Unable to mount pflash\n");
225
            exit(1);
226
        }
227
    }
228

    
229
    /* Use presence of kernel file name as 'boot from SRAM' switch. */
230
    if (kernel_filename) {
231
        rom = g_malloc(sizeof(*rom));
232
        memory_region_init_ram(rom, "lx60.sram", board->sram_size);
233
        vmstate_register_ram_global(rom);
234
        memory_region_add_subregion(system_memory, 0xfe000000, rom);
235

    
236
        /* Put kernel bootparameters to the end of that SRAM */
237
        if (kernel_cmdline) {
238
            size_t cmdline_size = strlen(kernel_cmdline) + 1;
239
            size_t bp_size = sizeof(BpTag[4]) + cmdline_size;
240
            uint32_t tagptr = (0xfe000000 + board->sram_size - bp_size) & ~0xff;
241

    
242
            env->regs[2] = tagptr;
243

    
244
            tagptr = put_tag(tagptr, 0x7b0b, 0, NULL);
245
            if (cmdline_size > 1) {
246
                tagptr = put_tag(tagptr, 0x1001,
247
                        cmdline_size, kernel_cmdline);
248
            }
249
            tagptr = put_tag(tagptr, 0x7e0b, 0, NULL);
250
        }
251
        uint64_t elf_entry;
252
        uint64_t elf_lowaddr;
253
        int success = load_elf(kernel_filename, translate_phys_addr, env,
254
                &elf_entry, &elf_lowaddr, NULL, be, ELF_MACHINE, 0);
255
        if (success > 0) {
256
            env->pc = elf_entry;
257
        }
258
    } else {
259
        if (flash) {
260
            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
261
            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
262

    
263
            memory_region_init_alias(flash_io, "lx60.flash",
264
                    flash_mr, 0, board->flash_size);
265
            memory_region_add_subregion(system_memory, 0xfe000000,
266
                    flash_io);
267
        }
268
    }
269
}
270

    
271
static void xtensa_lx60_init(ram_addr_t ram_size,
272
                     const char *boot_device,
273
                     const char *kernel_filename, const char *kernel_cmdline,
274
                     const char *initrd_filename, const char *cpu_model)
275
{
276
    static const LxBoardDesc lx60_board = {
277
        .flash_size = 0x400000,
278
        .flash_sector_size = 0x10000,
279
        .sram_size = 0x20000,
280
    };
281
    lx_init(&lx60_board, ram_size, boot_device,
282
            kernel_filename, kernel_cmdline,
283
            initrd_filename, cpu_model);
284
}
285

    
286
static void xtensa_lx200_init(ram_addr_t ram_size,
287
                     const char *boot_device,
288
                     const char *kernel_filename, const char *kernel_cmdline,
289
                     const char *initrd_filename, const char *cpu_model)
290
{
291
    static const LxBoardDesc lx200_board = {
292
        .flash_size = 0x1000000,
293
        .flash_sector_size = 0x20000,
294
        .sram_size = 0x2000000,
295
    };
296
    lx_init(&lx200_board, ram_size, boot_device,
297
            kernel_filename, kernel_cmdline,
298
            initrd_filename, cpu_model);
299
}
300

    
301
static QEMUMachine xtensa_lx60_machine = {
302
    .name = "lx60",
303
    .desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
304
    .init = xtensa_lx60_init,
305
    .max_cpus = 4,
306
};
307

    
308
static QEMUMachine xtensa_lx200_machine = {
309
    .name = "lx200",
310
    .desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")",
311
    .init = xtensa_lx200_init,
312
    .max_cpus = 4,
313
};
314

    
315
static void xtensa_lx_machines_init(void)
316
{
317
    qemu_register_machine(&xtensa_lx60_machine);
318
    qemu_register_machine(&xtensa_lx200_machine);
319
}
320

    
321
machine_init(xtensa_lx_machines_init);