Statistics
| Branch: | Revision:

root / block / qcow2-cluster.c @ 60651f90

History | View | Annotate | Download (34.5 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <zlib.h>
26

    
27
#include "qemu-common.h"
28
#include "block_int.h"
29
#include "block/qcow2.h"
30
#include "trace.h"
31

    
32
int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
33
{
34
    BDRVQcowState *s = bs->opaque;
35
    int new_l1_size, new_l1_size2, ret, i;
36
    uint64_t *new_l1_table;
37
    int64_t new_l1_table_offset;
38
    uint8_t data[12];
39

    
40
    if (min_size <= s->l1_size)
41
        return 0;
42

    
43
    if (exact_size) {
44
        new_l1_size = min_size;
45
    } else {
46
        /* Bump size up to reduce the number of times we have to grow */
47
        new_l1_size = s->l1_size;
48
        if (new_l1_size == 0) {
49
            new_l1_size = 1;
50
        }
51
        while (min_size > new_l1_size) {
52
            new_l1_size = (new_l1_size * 3 + 1) / 2;
53
        }
54
    }
55

    
56
#ifdef DEBUG_ALLOC2
57
    fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
58
#endif
59

    
60
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
61
    new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
62
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
63

    
64
    /* write new table (align to cluster) */
65
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
66
    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
67
    if (new_l1_table_offset < 0) {
68
        g_free(new_l1_table);
69
        return new_l1_table_offset;
70
    }
71

    
72
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
73
    if (ret < 0) {
74
        goto fail;
75
    }
76

    
77
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
78
    for(i = 0; i < s->l1_size; i++)
79
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
80
    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
81
    if (ret < 0)
82
        goto fail;
83
    for(i = 0; i < s->l1_size; i++)
84
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
85

    
86
    /* set new table */
87
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
88
    cpu_to_be32w((uint32_t*)data, new_l1_size);
89
    cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
90
    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
91
    if (ret < 0) {
92
        goto fail;
93
    }
94
    g_free(s->l1_table);
95
    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
96
    s->l1_table_offset = new_l1_table_offset;
97
    s->l1_table = new_l1_table;
98
    s->l1_size = new_l1_size;
99
    return 0;
100
 fail:
101
    g_free(new_l1_table);
102
    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
103
    return ret;
104
}
105

    
106
/*
107
 * l2_load
108
 *
109
 * Loads a L2 table into memory. If the table is in the cache, the cache
110
 * is used; otherwise the L2 table is loaded from the image file.
111
 *
112
 * Returns a pointer to the L2 table on success, or NULL if the read from
113
 * the image file failed.
114
 */
115

    
116
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
117
    uint64_t **l2_table)
118
{
119
    BDRVQcowState *s = bs->opaque;
120
    int ret;
121

    
122
    ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
123

    
124
    return ret;
125
}
126

    
127
/*
128
 * Writes one sector of the L1 table to the disk (can't update single entries
129
 * and we really don't want bdrv_pread to perform a read-modify-write)
130
 */
131
#define L1_ENTRIES_PER_SECTOR (512 / 8)
132
static int write_l1_entry(BlockDriverState *bs, int l1_index)
133
{
134
    BDRVQcowState *s = bs->opaque;
135
    uint64_t buf[L1_ENTRIES_PER_SECTOR];
136
    int l1_start_index;
137
    int i, ret;
138

    
139
    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
140
    for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
141
        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
142
    }
143

    
144
    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
145
    ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
146
        buf, sizeof(buf));
147
    if (ret < 0) {
148
        return ret;
149
    }
150

    
151
    return 0;
152
}
153

    
154
/*
155
 * l2_allocate
156
 *
157
 * Allocate a new l2 entry in the file. If l1_index points to an already
158
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
159
 * table) copy the contents of the old L2 table into the newly allocated one.
160
 * Otherwise the new table is initialized with zeros.
161
 *
162
 */
163

    
164
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
165
{
166
    BDRVQcowState *s = bs->opaque;
167
    uint64_t old_l2_offset;
168
    uint64_t *l2_table;
169
    int64_t l2_offset;
170
    int ret;
171

    
172
    old_l2_offset = s->l1_table[l1_index];
173

    
174
    trace_qcow2_l2_allocate(bs, l1_index);
175

    
176
    /* allocate a new l2 entry */
177

    
178
    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
179
    if (l2_offset < 0) {
180
        return l2_offset;
181
    }
182

    
183
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
184
    if (ret < 0) {
185
        goto fail;
186
    }
187

    
188
    /* allocate a new entry in the l2 cache */
189

    
190
    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
191
    ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
192
    if (ret < 0) {
193
        return ret;
194
    }
195

    
196
    l2_table = *table;
197

    
198
    if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
199
        /* if there was no old l2 table, clear the new table */
200
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
201
    } else {
202
        uint64_t* old_table;
203

    
204
        /* if there was an old l2 table, read it from the disk */
205
        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
206
        ret = qcow2_cache_get(bs, s->l2_table_cache,
207
            old_l2_offset & L1E_OFFSET_MASK,
208
            (void**) &old_table);
209
        if (ret < 0) {
210
            goto fail;
211
        }
212

    
213
        memcpy(l2_table, old_table, s->cluster_size);
214

    
215
        ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
216
        if (ret < 0) {
217
            goto fail;
218
        }
219
    }
220

    
221
    /* write the l2 table to the file */
222
    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
223

    
224
    trace_qcow2_l2_allocate_write_l2(bs, l1_index);
225
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
226
    ret = qcow2_cache_flush(bs, s->l2_table_cache);
227
    if (ret < 0) {
228
        goto fail;
229
    }
230

    
231
    /* update the L1 entry */
232
    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
233
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
234
    ret = write_l1_entry(bs, l1_index);
235
    if (ret < 0) {
236
        goto fail;
237
    }
238

    
239
    *table = l2_table;
240
    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
241
    return 0;
242

    
243
fail:
244
    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
245
    qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
246
    s->l1_table[l1_index] = old_l2_offset;
247
    return ret;
248
}
249

    
250
/*
251
 * Checks how many clusters in a given L2 table are contiguous in the image
252
 * file. As soon as one of the flags in the bitmask stop_flags changes compared
253
 * to the first cluster, the search is stopped and the cluster is not counted
254
 * as contiguous. (This allows it, for example, to stop at the first compressed
255
 * cluster which may require a different handling)
256
 */
257
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
258
        uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
259
{
260
    int i;
261
    uint64_t mask = stop_flags | L2E_OFFSET_MASK;
262
    uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
263

    
264
    if (!offset)
265
        return 0;
266

    
267
    for (i = start; i < start + nb_clusters; i++) {
268
        uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
269
        if (offset + (uint64_t) i * cluster_size != l2_entry) {
270
            break;
271
        }
272
    }
273

    
274
        return (i - start);
275
}
276

    
277
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
278
{
279
    int i;
280

    
281
    for (i = 0; i < nb_clusters; i++) {
282
        int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
283

    
284
        if (type != QCOW2_CLUSTER_UNALLOCATED) {
285
            break;
286
        }
287
    }
288

    
289
    return i;
290
}
291

    
292
/* The crypt function is compatible with the linux cryptoloop
293
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
294
   supported */
295
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
296
                           uint8_t *out_buf, const uint8_t *in_buf,
297
                           int nb_sectors, int enc,
298
                           const AES_KEY *key)
299
{
300
    union {
301
        uint64_t ll[2];
302
        uint8_t b[16];
303
    } ivec;
304
    int i;
305

    
306
    for(i = 0; i < nb_sectors; i++) {
307
        ivec.ll[0] = cpu_to_le64(sector_num);
308
        ivec.ll[1] = 0;
309
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
310
                        ivec.b, enc);
311
        sector_num++;
312
        in_buf += 512;
313
        out_buf += 512;
314
    }
315
}
316

    
317
static int coroutine_fn copy_sectors(BlockDriverState *bs,
318
                                     uint64_t start_sect,
319
                                     uint64_t cluster_offset,
320
                                     int n_start, int n_end)
321
{
322
    BDRVQcowState *s = bs->opaque;
323
    QEMUIOVector qiov;
324
    struct iovec iov;
325
    int n, ret;
326

    
327
    /*
328
     * If this is the last cluster and it is only partially used, we must only
329
     * copy until the end of the image, or bdrv_check_request will fail for the
330
     * bdrv_read/write calls below.
331
     */
332
    if (start_sect + n_end > bs->total_sectors) {
333
        n_end = bs->total_sectors - start_sect;
334
    }
335

    
336
    n = n_end - n_start;
337
    if (n <= 0) {
338
        return 0;
339
    }
340

    
341
    iov.iov_len = n * BDRV_SECTOR_SIZE;
342
    iov.iov_base = qemu_blockalign(bs, iov.iov_len);
343

    
344
    qemu_iovec_init_external(&qiov, &iov, 1);
345

    
346
    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
347

    
348
    /* Call .bdrv_co_readv() directly instead of using the public block-layer
349
     * interface.  This avoids double I/O throttling and request tracking,
350
     * which can lead to deadlock when block layer copy-on-read is enabled.
351
     */
352
    ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
353
    if (ret < 0) {
354
        goto out;
355
    }
356

    
357
    if (s->crypt_method) {
358
        qcow2_encrypt_sectors(s, start_sect + n_start,
359
                        iov.iov_base, iov.iov_base, n, 1,
360
                        &s->aes_encrypt_key);
361
    }
362

    
363
    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
364
    ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
365
    if (ret < 0) {
366
        goto out;
367
    }
368

    
369
    ret = 0;
370
out:
371
    qemu_vfree(iov.iov_base);
372
    return ret;
373
}
374

    
375

    
376
/*
377
 * get_cluster_offset
378
 *
379
 * For a given offset of the disk image, find the cluster offset in
380
 * qcow2 file. The offset is stored in *cluster_offset.
381
 *
382
 * on entry, *num is the number of contiguous sectors we'd like to
383
 * access following offset.
384
 *
385
 * on exit, *num is the number of contiguous sectors we can read.
386
 *
387
 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
388
 * cases.
389
 */
390
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
391
    int *num, uint64_t *cluster_offset)
392
{
393
    BDRVQcowState *s = bs->opaque;
394
    unsigned int l1_index, l2_index;
395
    uint64_t l2_offset, *l2_table;
396
    int l1_bits, c;
397
    unsigned int index_in_cluster, nb_clusters;
398
    uint64_t nb_available, nb_needed;
399
    int ret;
400

    
401
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
402
    nb_needed = *num + index_in_cluster;
403

    
404
    l1_bits = s->l2_bits + s->cluster_bits;
405

    
406
    /* compute how many bytes there are between the offset and
407
     * the end of the l1 entry
408
     */
409

    
410
    nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
411

    
412
    /* compute the number of available sectors */
413

    
414
    nb_available = (nb_available >> 9) + index_in_cluster;
415

    
416
    if (nb_needed > nb_available) {
417
        nb_needed = nb_available;
418
    }
419

    
420
    *cluster_offset = 0;
421

    
422
    /* seek the the l2 offset in the l1 table */
423

    
424
    l1_index = offset >> l1_bits;
425
    if (l1_index >= s->l1_size) {
426
        ret = QCOW2_CLUSTER_UNALLOCATED;
427
        goto out;
428
    }
429

    
430
    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
431
    if (!l2_offset) {
432
        ret = QCOW2_CLUSTER_UNALLOCATED;
433
        goto out;
434
    }
435

    
436
    /* load the l2 table in memory */
437

    
438
    ret = l2_load(bs, l2_offset, &l2_table);
439
    if (ret < 0) {
440
        return ret;
441
    }
442

    
443
    /* find the cluster offset for the given disk offset */
444

    
445
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
446
    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
447
    nb_clusters = size_to_clusters(s, nb_needed << 9);
448

    
449
    ret = qcow2_get_cluster_type(*cluster_offset);
450
    switch (ret) {
451
    case QCOW2_CLUSTER_COMPRESSED:
452
        /* Compressed clusters can only be processed one by one */
453
        c = 1;
454
        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
455
        break;
456
    case QCOW2_CLUSTER_ZERO:
457
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
458
                &l2_table[l2_index], 0,
459
                QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
460
        *cluster_offset = 0;
461
        break;
462
    case QCOW2_CLUSTER_UNALLOCATED:
463
        /* how many empty clusters ? */
464
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
465
        *cluster_offset = 0;
466
        break;
467
    case QCOW2_CLUSTER_NORMAL:
468
        /* how many allocated clusters ? */
469
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
470
                &l2_table[l2_index], 0,
471
                QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
472
        *cluster_offset &= L2E_OFFSET_MASK;
473
        break;
474
    }
475

    
476
    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
477

    
478
    nb_available = (c * s->cluster_sectors);
479

    
480
out:
481
    if (nb_available > nb_needed)
482
        nb_available = nb_needed;
483

    
484
    *num = nb_available - index_in_cluster;
485

    
486
    return ret;
487
}
488

    
489
/*
490
 * get_cluster_table
491
 *
492
 * for a given disk offset, load (and allocate if needed)
493
 * the l2 table.
494
 *
495
 * the l2 table offset in the qcow2 file and the cluster index
496
 * in the l2 table are given to the caller.
497
 *
498
 * Returns 0 on success, -errno in failure case
499
 */
500
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
501
                             uint64_t **new_l2_table,
502
                             int *new_l2_index)
503
{
504
    BDRVQcowState *s = bs->opaque;
505
    unsigned int l1_index, l2_index;
506
    uint64_t l2_offset;
507
    uint64_t *l2_table = NULL;
508
    int ret;
509

    
510
    /* seek the the l2 offset in the l1 table */
511

    
512
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
513
    if (l1_index >= s->l1_size) {
514
        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
515
        if (ret < 0) {
516
            return ret;
517
        }
518
    }
519

    
520
    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
521

    
522
    /* seek the l2 table of the given l2 offset */
523

    
524
    if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
525
        /* load the l2 table in memory */
526
        ret = l2_load(bs, l2_offset, &l2_table);
527
        if (ret < 0) {
528
            return ret;
529
        }
530
    } else {
531
        /* First allocate a new L2 table (and do COW if needed) */
532
        ret = l2_allocate(bs, l1_index, &l2_table);
533
        if (ret < 0) {
534
            return ret;
535
        }
536

    
537
        /* Then decrease the refcount of the old table */
538
        if (l2_offset) {
539
            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
540
        }
541
        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
542
    }
543

    
544
    /* find the cluster offset for the given disk offset */
545

    
546
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
547

    
548
    *new_l2_table = l2_table;
549
    *new_l2_index = l2_index;
550

    
551
    return 0;
552
}
553

    
554
/*
555
 * alloc_compressed_cluster_offset
556
 *
557
 * For a given offset of the disk image, return cluster offset in
558
 * qcow2 file.
559
 *
560
 * If the offset is not found, allocate a new compressed cluster.
561
 *
562
 * Return the cluster offset if successful,
563
 * Return 0, otherwise.
564
 *
565
 */
566

    
567
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
568
                                               uint64_t offset,
569
                                               int compressed_size)
570
{
571
    BDRVQcowState *s = bs->opaque;
572
    int l2_index, ret;
573
    uint64_t *l2_table;
574
    int64_t cluster_offset;
575
    int nb_csectors;
576

    
577
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
578
    if (ret < 0) {
579
        return 0;
580
    }
581

    
582
    /* Compression can't overwrite anything. Fail if the cluster was already
583
     * allocated. */
584
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
585
    if (cluster_offset & L2E_OFFSET_MASK) {
586
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
587
        return 0;
588
    }
589

    
590
    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
591
    if (cluster_offset < 0) {
592
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
593
        return 0;
594
    }
595

    
596
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
597
                  (cluster_offset >> 9);
598

    
599
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
600
                      ((uint64_t)nb_csectors << s->csize_shift);
601

    
602
    /* update L2 table */
603

    
604
    /* compressed clusters never have the copied flag */
605

    
606
    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
607
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
608
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
609
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
610
    if (ret < 0) {
611
        return 0;
612
    }
613

    
614
    return cluster_offset;
615
}
616

    
617
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
618
{
619
    BDRVQcowState *s = bs->opaque;
620
    int i, j = 0, l2_index, ret;
621
    uint64_t *old_cluster, start_sect, *l2_table;
622
    uint64_t cluster_offset = m->alloc_offset;
623
    bool cow = false;
624

    
625
    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
626

    
627
    if (m->nb_clusters == 0)
628
        return 0;
629

    
630
    old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
631

    
632
    /* copy content of unmodified sectors */
633
    start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
634
    if (m->n_start) {
635
        cow = true;
636
        qemu_co_mutex_unlock(&s->lock);
637
        ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
638
        qemu_co_mutex_lock(&s->lock);
639
        if (ret < 0)
640
            goto err;
641
    }
642

    
643
    if (m->nb_available & (s->cluster_sectors - 1)) {
644
        uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
645
        cow = true;
646
        qemu_co_mutex_unlock(&s->lock);
647
        ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
648
                m->nb_available - end, s->cluster_sectors);
649
        qemu_co_mutex_lock(&s->lock);
650
        if (ret < 0)
651
            goto err;
652
    }
653

    
654
    /*
655
     * Update L2 table.
656
     *
657
     * Before we update the L2 table to actually point to the new cluster, we
658
     * need to be sure that the refcounts have been increased and COW was
659
     * handled.
660
     */
661
    if (cow) {
662
        qcow2_cache_depends_on_flush(s->l2_table_cache);
663
    }
664

    
665
    qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
666
    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
667
    if (ret < 0) {
668
        goto err;
669
    }
670
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
671

    
672
    for (i = 0; i < m->nb_clusters; i++) {
673
        /* if two concurrent writes happen to the same unallocated cluster
674
         * each write allocates separate cluster and writes data concurrently.
675
         * The first one to complete updates l2 table with pointer to its
676
         * cluster the second one has to do RMW (which is done above by
677
         * copy_sectors()), update l2 table with its cluster pointer and free
678
         * old cluster. This is what this loop does */
679
        if(l2_table[l2_index + i] != 0)
680
            old_cluster[j++] = l2_table[l2_index + i];
681

    
682
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
683
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
684
     }
685

    
686

    
687
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
688
    if (ret < 0) {
689
        goto err;
690
    }
691

    
692
    /*
693
     * If this was a COW, we need to decrease the refcount of the old cluster.
694
     * Also flush bs->file to get the right order for L2 and refcount update.
695
     */
696
    if (j != 0) {
697
        for (i = 0; i < j; i++) {
698
            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
699
        }
700
    }
701

    
702
    ret = 0;
703
err:
704
    g_free(old_cluster);
705
    return ret;
706
 }
707

    
708
/*
709
 * Returns the number of contiguous clusters that can be used for an allocating
710
 * write, but require COW to be performed (this includes yet unallocated space,
711
 * which must copy from the backing file)
712
 */
713
static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
714
    uint64_t *l2_table, int l2_index)
715
{
716
    int i;
717

    
718
    for (i = 0; i < nb_clusters; i++) {
719
        uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
720
        int cluster_type = qcow2_get_cluster_type(l2_entry);
721

    
722
        switch(cluster_type) {
723
        case QCOW2_CLUSTER_NORMAL:
724
            if (l2_entry & QCOW_OFLAG_COPIED) {
725
                goto out;
726
            }
727
            break;
728
        case QCOW2_CLUSTER_UNALLOCATED:
729
        case QCOW2_CLUSTER_COMPRESSED:
730
        case QCOW2_CLUSTER_ZERO:
731
            break;
732
        default:
733
            abort();
734
        }
735
    }
736

    
737
out:
738
    assert(i <= nb_clusters);
739
    return i;
740
}
741

    
742
/*
743
 * Allocates new clusters for the given guest_offset.
744
 *
745
 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
746
 * contain the number of clusters that have been allocated and are contiguous
747
 * in the image file.
748
 *
749
 * If *host_offset is non-zero, it specifies the offset in the image file at
750
 * which the new clusters must start. *nb_clusters can be 0 on return in this
751
 * case if the cluster at host_offset is already in use. If *host_offset is
752
 * zero, the clusters can be allocated anywhere in the image file.
753
 *
754
 * *host_offset is updated to contain the offset into the image file at which
755
 * the first allocated cluster starts.
756
 *
757
 * Return 0 on success and -errno in error cases. -EAGAIN means that the
758
 * function has been waiting for another request and the allocation must be
759
 * restarted, but the whole request should not be failed.
760
 */
761
static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
762
    uint64_t *host_offset, unsigned int *nb_clusters)
763
{
764
    BDRVQcowState *s = bs->opaque;
765
    int64_t cluster_offset;
766
    QCowL2Meta *old_alloc;
767

    
768
    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
769
                                         *host_offset, *nb_clusters);
770

    
771
    /*
772
     * Check if there already is an AIO write request in flight which allocates
773
     * the same cluster. In this case we need to wait until the previous
774
     * request has completed and updated the L2 table accordingly.
775
     */
776
    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
777

    
778
        uint64_t start = guest_offset >> s->cluster_bits;
779
        uint64_t end = start + *nb_clusters;
780
        uint64_t old_start = old_alloc->offset >> s->cluster_bits;
781
        uint64_t old_end = old_start + old_alloc->nb_clusters;
782

    
783
        if (end < old_start || start > old_end) {
784
            /* No intersection */
785
        } else {
786
            if (start < old_start) {
787
                /* Stop at the start of a running allocation */
788
                *nb_clusters = old_start - start;
789
            } else {
790
                *nb_clusters = 0;
791
            }
792

    
793
            if (*nb_clusters == 0) {
794
                /* Wait for the dependency to complete. We need to recheck
795
                 * the free/allocated clusters when we continue. */
796
                qemu_co_mutex_unlock(&s->lock);
797
                qemu_co_queue_wait(&old_alloc->dependent_requests);
798
                qemu_co_mutex_lock(&s->lock);
799
                return -EAGAIN;
800
            }
801
        }
802
    }
803

    
804
    if (!*nb_clusters) {
805
        abort();
806
    }
807

    
808
    /* Allocate new clusters */
809
    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
810
    if (*host_offset == 0) {
811
        cluster_offset = qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
812
    } else {
813
        cluster_offset = *host_offset;
814
        *nb_clusters = qcow2_alloc_clusters_at(bs, cluster_offset, *nb_clusters);
815
    }
816

    
817
    if (cluster_offset < 0) {
818
        return cluster_offset;
819
    }
820
    *host_offset = cluster_offset;
821
    return 0;
822
}
823

    
824
/*
825
 * alloc_cluster_offset
826
 *
827
 * For a given offset on the virtual disk, find the cluster offset in qcow2
828
 * file. If the offset is not found, allocate a new cluster.
829
 *
830
 * If the cluster was already allocated, m->nb_clusters is set to 0 and
831
 * other fields in m are meaningless.
832
 *
833
 * If the cluster is newly allocated, m->nb_clusters is set to the number of
834
 * contiguous clusters that have been allocated. In this case, the other
835
 * fields of m are valid and contain information about the first allocated
836
 * cluster.
837
 *
838
 * If the request conflicts with another write request in flight, the coroutine
839
 * is queued and will be reentered when the dependency has completed.
840
 *
841
 * Return 0 on success and -errno in error cases
842
 */
843
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
844
    int n_start, int n_end, int *num, QCowL2Meta *m)
845
{
846
    BDRVQcowState *s = bs->opaque;
847
    int l2_index, ret, sectors;
848
    uint64_t *l2_table;
849
    unsigned int nb_clusters, keep_clusters;
850
    uint64_t cluster_offset;
851

    
852
    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
853
                                      n_start, n_end);
854

    
855
    /* Find L2 entry for the first involved cluster */
856
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
857
    if (ret < 0) {
858
        return ret;
859
    }
860

    
861
    /*
862
     * Calculate the number of clusters to look for. We stop at L2 table
863
     * boundaries to keep things simple.
864
     */
865
again:
866
    nb_clusters = MIN(size_to_clusters(s, n_end << BDRV_SECTOR_BITS),
867
                      s->l2_size - l2_index);
868

    
869
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
870

    
871
    /*
872
     * Check how many clusters are already allocated and don't need COW, and how
873
     * many need a new allocation.
874
     */
875
    if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
876
        && (cluster_offset & QCOW_OFLAG_COPIED))
877
    {
878
        /* We keep all QCOW_OFLAG_COPIED clusters */
879
        keep_clusters =
880
            count_contiguous_clusters(nb_clusters, s->cluster_size,
881
                                      &l2_table[l2_index], 0,
882
                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
883
        assert(keep_clusters <= nb_clusters);
884
        nb_clusters -= keep_clusters;
885
    } else {
886
        /* For the moment, overwrite compressed clusters one by one */
887
        if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
888
            nb_clusters = 1;
889
        } else {
890
            nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
891
        }
892

    
893
        keep_clusters = 0;
894
        cluster_offset = 0;
895
    }
896

    
897
    cluster_offset &= L2E_OFFSET_MASK;
898

    
899
    /* If there is something left to allocate, do that now */
900
    *m = (QCowL2Meta) {
901
        .cluster_offset     = cluster_offset,
902
        .nb_clusters        = 0,
903
    };
904
    qemu_co_queue_init(&m->dependent_requests);
905

    
906
    if (nb_clusters > 0) {
907
        uint64_t alloc_offset;
908
        uint64_t alloc_cluster_offset;
909
        uint64_t keep_bytes = keep_clusters * s->cluster_size;
910

    
911
        /* Calculate start and size of allocation */
912
        alloc_offset = offset + keep_bytes;
913

    
914
        if (keep_clusters == 0) {
915
            alloc_cluster_offset = 0;
916
        } else {
917
            alloc_cluster_offset = cluster_offset + keep_bytes;
918
        }
919

    
920
        /* Allocate, if necessary at a given offset in the image file */
921
        ret = do_alloc_cluster_offset(bs, alloc_offset, &alloc_cluster_offset,
922
                                      &nb_clusters);
923
        if (ret == -EAGAIN) {
924
            goto again;
925
        } else if (ret < 0) {
926
            goto fail;
927
        }
928

    
929
        /* save info needed for meta data update */
930
        if (nb_clusters > 0) {
931
            int requested_sectors = n_end - keep_clusters * s->cluster_sectors;
932
            int avail_sectors = (keep_clusters + nb_clusters)
933
                                << (s->cluster_bits - BDRV_SECTOR_BITS);
934

    
935
            *m = (QCowL2Meta) {
936
                .cluster_offset = keep_clusters == 0 ?
937
                                  alloc_cluster_offset : cluster_offset,
938
                .alloc_offset   = alloc_cluster_offset,
939
                .offset         = alloc_offset,
940
                .n_start        = keep_clusters == 0 ? n_start : 0,
941
                .nb_clusters    = nb_clusters,
942
                .nb_available   = MIN(requested_sectors, avail_sectors),
943
            };
944
            qemu_co_queue_init(&m->dependent_requests);
945
            QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
946
        }
947
    }
948

    
949
    /* Some cleanup work */
950
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
951
    if (ret < 0) {
952
        goto fail_put;
953
    }
954

    
955
    sectors = (keep_clusters + nb_clusters) << (s->cluster_bits - 9);
956
    if (sectors > n_end) {
957
        sectors = n_end;
958
    }
959

    
960
    assert(sectors > n_start);
961
    *num = sectors - n_start;
962

    
963
    return 0;
964

    
965
fail:
966
    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
967
fail_put:
968
    if (m->nb_clusters > 0) {
969
        QLIST_REMOVE(m, next_in_flight);
970
    }
971
    return ret;
972
}
973

    
974
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
975
                             const uint8_t *buf, int buf_size)
976
{
977
    z_stream strm1, *strm = &strm1;
978
    int ret, out_len;
979

    
980
    memset(strm, 0, sizeof(*strm));
981

    
982
    strm->next_in = (uint8_t *)buf;
983
    strm->avail_in = buf_size;
984
    strm->next_out = out_buf;
985
    strm->avail_out = out_buf_size;
986

    
987
    ret = inflateInit2(strm, -12);
988
    if (ret != Z_OK)
989
        return -1;
990
    ret = inflate(strm, Z_FINISH);
991
    out_len = strm->next_out - out_buf;
992
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
993
        out_len != out_buf_size) {
994
        inflateEnd(strm);
995
        return -1;
996
    }
997
    inflateEnd(strm);
998
    return 0;
999
}
1000

    
1001
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1002
{
1003
    BDRVQcowState *s = bs->opaque;
1004
    int ret, csize, nb_csectors, sector_offset;
1005
    uint64_t coffset;
1006

    
1007
    coffset = cluster_offset & s->cluster_offset_mask;
1008
    if (s->cluster_cache_offset != coffset) {
1009
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1010
        sector_offset = coffset & 511;
1011
        csize = nb_csectors * 512 - sector_offset;
1012
        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1013
        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1014
        if (ret < 0) {
1015
            return ret;
1016
        }
1017
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1018
                              s->cluster_data + sector_offset, csize) < 0) {
1019
            return -EIO;
1020
        }
1021
        s->cluster_cache_offset = coffset;
1022
    }
1023
    return 0;
1024
}
1025

    
1026
/*
1027
 * This discards as many clusters of nb_clusters as possible at once (i.e.
1028
 * all clusters in the same L2 table) and returns the number of discarded
1029
 * clusters.
1030
 */
1031
static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1032
    unsigned int nb_clusters)
1033
{
1034
    BDRVQcowState *s = bs->opaque;
1035
    uint64_t *l2_table;
1036
    int l2_index;
1037
    int ret;
1038
    int i;
1039

    
1040
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1041
    if (ret < 0) {
1042
        return ret;
1043
    }
1044

    
1045
    /* Limit nb_clusters to one L2 table */
1046
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1047

    
1048
    for (i = 0; i < nb_clusters; i++) {
1049
        uint64_t old_offset;
1050

    
1051
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1052
        if ((old_offset & L2E_OFFSET_MASK) == 0) {
1053
            continue;
1054
        }
1055

    
1056
        /* First remove L2 entries */
1057
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1058
        l2_table[l2_index + i] = cpu_to_be64(0);
1059

    
1060
        /* Then decrease the refcount */
1061
        qcow2_free_any_clusters(bs, old_offset, 1);
1062
    }
1063

    
1064
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1065
    if (ret < 0) {
1066
        return ret;
1067
    }
1068

    
1069
    return nb_clusters;
1070
}
1071

    
1072
int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1073
    int nb_sectors)
1074
{
1075
    BDRVQcowState *s = bs->opaque;
1076
    uint64_t end_offset;
1077
    unsigned int nb_clusters;
1078
    int ret;
1079

    
1080
    end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1081

    
1082
    /* Round start up and end down */
1083
    offset = align_offset(offset, s->cluster_size);
1084
    end_offset &= ~(s->cluster_size - 1);
1085

    
1086
    if (offset > end_offset) {
1087
        return 0;
1088
    }
1089

    
1090
    nb_clusters = size_to_clusters(s, end_offset - offset);
1091

    
1092
    /* Each L2 table is handled by its own loop iteration */
1093
    while (nb_clusters > 0) {
1094
        ret = discard_single_l2(bs, offset, nb_clusters);
1095
        if (ret < 0) {
1096
            return ret;
1097
        }
1098

    
1099
        nb_clusters -= ret;
1100
        offset += (ret * s->cluster_size);
1101
    }
1102

    
1103
    return 0;
1104
}
1105

    
1106
/*
1107
 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1108
 * all clusters in the same L2 table) and returns the number of zeroed
1109
 * clusters.
1110
 */
1111
static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1112
    unsigned int nb_clusters)
1113
{
1114
    BDRVQcowState *s = bs->opaque;
1115
    uint64_t *l2_table;
1116
    int l2_index;
1117
    int ret;
1118
    int i;
1119

    
1120
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1121
    if (ret < 0) {
1122
        return ret;
1123
    }
1124

    
1125
    /* Limit nb_clusters to one L2 table */
1126
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1127

    
1128
    for (i = 0; i < nb_clusters; i++) {
1129
        uint64_t old_offset;
1130

    
1131
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1132

    
1133
        /* Update L2 entries */
1134
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1135
        if (old_offset & QCOW_OFLAG_COMPRESSED) {
1136
            l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1137
            qcow2_free_any_clusters(bs, old_offset, 1);
1138
        } else {
1139
            l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1140
        }
1141
    }
1142

    
1143
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1144
    if (ret < 0) {
1145
        return ret;
1146
    }
1147

    
1148
    return nb_clusters;
1149
}
1150

    
1151
int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1152
{
1153
    BDRVQcowState *s = bs->opaque;
1154
    unsigned int nb_clusters;
1155
    int ret;
1156

    
1157
    /* The zero flag is only supported by version 3 and newer */
1158
    if (s->qcow_version < 3) {
1159
        return -ENOTSUP;
1160
    }
1161

    
1162
    /* Each L2 table is handled by its own loop iteration */
1163
    nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1164

    
1165
    while (nb_clusters > 0) {
1166
        ret = zero_single_l2(bs, offset, nb_clusters);
1167
        if (ret < 0) {
1168
            return ret;
1169
        }
1170

    
1171
        nb_clusters -= ret;
1172
        offset += (ret * s->cluster_size);
1173
    }
1174

    
1175
    return 0;
1176
}